1
|
Kamal MM, El-Abhar HS, Abdallah DM, Ahmed KA, Aly NES, Rabie MA. Mirabegron, dependent on β3-adrenergic receptor, alleviates mercuric chloride-induced kidney injury by reversing the impact on the inflammatory network, M1/M2 macrophages, and claudin-2. Int Immunopharmacol 2024; 126:111289. [PMID: 38016347 DOI: 10.1016/j.intimp.2023.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The β3-adrenergic receptor (β3-AR) agonism mirabegron is used to treat overactive urinary bladder syndrome; however, its role against acute kidney injury (AKI) is not unveiled, hence, we aim to repurpose mirabegron in the treatment of mercuric chloride (HgCl2)-induced AKI. Rats were allocated into normal, normal + mirabegron, HgCl2 untreated, HgCl2 + mirabegron, and HgCl2 + the β3-AR blocker SR59230A + mirabegron. The latter increased the mRNA of β3-AR and miR-127 besides downregulating NF-κB p65 protein expression and the contents of its downstream targets iNOS, IL-4, -13, and -17 but increased that of IL-10 to attest its anti-inflammatory capacity. Besides, mirabegron downregulated the protein expression of STAT-6, PI3K, and ERK1/2, the downstream targets of the above cytokines. Additionally, it enhanced the transcription factor PPAR-α but turned off the harmful hub HNF-4α/HNF-1α and the lipid peroxide marker MDA. Mirabegron also downregulated the CD-163 protein expression, which besides the inhibited correlated cytokines of M1 (NF-κB p65, iNOS, IL-17) and M2 (IL-4, IL-13, CD163, STAT6, ERK1/2), inactivated the macrophage phenotypes. The crosstalk between these parameters was echoed in the maintenance of claudin-2, kidney function-related early (cystatin-C, KIM-1, NGAL), and late (creatinine, BUN) injury markers, besides recovering the microscopic structures. Nonetheless, the pre-administration of SR59230A has nullified the beneficial effects of mirabegron on the aforementioned parameters. Here we verified that mirabegron can berepurposedto treat HgCl2-induced AKI by activating the β3-AR. Mirabegron signified its effect by inhibiting inflammation, oxidative stress, and the activated M1/M2 macrophages, events that preserved the proximal tubular tight junction claudin-2 via the intersection of several trajectories.
Collapse
Affiliation(s)
- Mahmoud M Kamal
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt (FUE), 11835 Cairo, Egypt
| | - Dalaal M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Nour Eldin S Aly
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Mostafa A Rabie
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt; Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), 19346, Egypt
| |
Collapse
|
2
|
He J, Liu Y, Li J, Zhao Y, Jiang H, Luo S, He G. Intestinal changes in permeability, tight junction and mucin synthesis in a mouse model of Alzheimer's disease. Int J Mol Med 2023; 52:113. [PMID: 37830152 PMCID: PMC10599350 DOI: 10.3892/ijmm.2023.5316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid‑β (Aβ) in the brain. The gut/brain axis may serve a role in AD pathogenesis. The present study investigated deposition of Aβ in the intestinal epithelium and its potential effects on intestinal barrier function in a transgenic mouse model of AD. To investigate alterations in the structure and functionality of the intestinal mucosal barrier in AD model mice, hematoxylin and eosin staining for Paneth cell count, Alcian blue‑periodic acid Schiff staining for goblet cells, immunohistochemistry and immunofluorescence for mucin (MUC)2 and wheat germ agglutin expression, transmission electron microscopy for mucosal ultrastructure, FITC‑labeled dextran assay for intestinal permeability, quantitative PCR for goblet cell precursor expression and western blot analysis for tight junction proteins, MUC2 and inflammatory cytokine detection were performed. The results showed that AD model mice exhibited excessive Aβ deposition in the intestinal epithelium, which was accompanied by increased intestinal permeability, inflammatory changes and decreased expression of tight junction proteins. These alterations in the intestinal barrier led to an increased proliferation of goblet and Paneth cells and increased mucus synthesis. Dysfunction of gut barrier occurs in AD and may contribute to its etiology. Future therapeutic strategies to reverse AD pathology may involve early manipulation of gut physiology and its microbiota.
Collapse
Affiliation(s)
- Jing He
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| | - Yuanjie Liu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| | - Junhua Li
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| | - Yueyang Zhao
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| | - Hanxiao Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shifang Luo
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| | - Guiqiong He
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| |
Collapse
|
3
|
Aboulhoda BE, Othman DA, Rashed LA, Alghamdi MA, E. Esawy AELW. Evaluating the hepatotoxic versus the nephrotoxic role of iron oxide nanoparticles: One step forward into the dose-dependent oxidative effects. Heliyon 2023; 9:e21202. [PMID: 37942152 PMCID: PMC10628677 DOI: 10.1016/j.heliyon.2023.e21202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
The present study has been designed to detect the dose-dependent effect of iron oxide nanoparticles (IONPs) on the liver and kidney of rats by evaluating three different doses 30, 300, 1000 mg/kg/day IONPs for 28 days. Forty rats were divided into four groups; I (control), II (low dose), III (medium dose) and IV (high dose). There also was a statistically-significant elevation in the serum levels of hepatic enzymes; AST and ALT in medium & high dose. The elevation of serum ALP, on the other hand, was significant in all IONPs doses. There was significant elevation in the levels of urea creatinine, and MDA in the medium and high doses of IONPs. The activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) showed significant decrease in the high dose only compared to the control group. The serum iron levels increased in a dose-dependent manner in the IONPs-treated groups with highly significant increase in the moderate and high dose groups. On comparing the effect of different doses of IONPs between the liver and kidney, the high dose revealed statistically significant difference (p < 0.05) in the area percent of collagen deposition (54.4 ± 3.9 versus 6.1 ± 2.6) and alpha smooth muscle actin (α-SMA) reaction (7.7 ± 1.5 versus 17.8 ± 4.3) in the liver relative to the kidney. The medium and high doses revealed statistically significant difference in optical density of Periodic acid Schiff (PAS) reaction (45 ± 3.4 versus 50.3 ± 1.8 in the medium dose, and 38.9 ± 6 versus 63 ± 3 in the high dose) and area percent of inducible nitric oxide synthase (iNOS) reaction (12.98 ± 2.7 versus 3.5 ± 0.5 in the medium dose, and 27.91 ± 1.5 versus 7.7 ± 0.6 in the high dose) in the liver relative to the kidney.
Collapse
Affiliation(s)
- Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt
| | - Doaa Abdullah Othman
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt
| | - Laila A. Rashed
- Department of Biochemistry and molecular biology, Faculty of Medicine, Cairo University, Egypt
| | - Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 62529, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 62529, Saudi Arabia
| | | |
Collapse
|
4
|
Tanriover C, Copur S, Ucku D, Cakir AB, Hasbal NB, Soler MJ, Kanbay M. The Mitochondrion: A Promising Target for Kidney Disease. Pharmaceutics 2023; 15:pharmaceutics15020570. [PMID: 36839892 PMCID: PMC9960839 DOI: 10.3390/pharmaceutics15020570] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Mitochondrial dysfunction is important in the pathogenesis of various kidney diseases and the mitochondria potentially serve as therapeutic targets necessitating further investigation. Alterations in mitochondrial biogenesis, imbalance between fusion and fission processes leading to mitochondrial fragmentation, oxidative stress, release of cytochrome c and mitochondrial DNA resulting in apoptosis, mitophagy, and defects in energy metabolism are the key pathophysiological mechanisms underlying the role of mitochondrial dysfunction in kidney diseases. Currently, various strategies target the mitochondria to improve kidney function and kidney treatment. The agents used in these strategies can be classified as biogenesis activators, fission inhibitors, antioxidants, mPTP inhibitors, and agents which enhance mitophagy and cardiolipin-protective drugs. Several glucose-lowering drugs, such as glucagon-like peptide-1 receptor agonists (GLP-1-RA) and sodium glucose co-transporter-2 (SGLT-2) inhibitors are also known to have influences on these mechanisms. In this review, we delineate the role of mitochondrial dysfunction in kidney disease, the current mitochondria-targeting treatment options affecting the kidneys and the future role of mitochondria in kidney pathology.
Collapse
Affiliation(s)
- Cem Tanriover
- Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Duygu Ucku
- Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Ahmet B. Cakir
- Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Nuri B. Hasbal
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Maria Jose Soler
- Nephrology and Kidney Transplant Research Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, 34010 Istanbul, Turkey
- Correspondence: or ; Tel.: +90-212-2508250
| |
Collapse
|
5
|
Involvement of Intestinal Goblet Cells and Changes in Sodium Glucose Transporters Expression: Possible Therapeutic Targets in Autistic BTBR T +Itpr3 tf/J Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111328. [PMID: 34769857 PMCID: PMC8583041 DOI: 10.3390/ijerph182111328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorder is a neurodevelopmental syndrome with a complicated etiology and could be responsible for disrupted gastrointestinal tract microbiota. The aim of this work was to study intestinal samples from an autistic animal model (BTBR mouse strain) to better describe gastrointestinal alterations. We performed a morphological and biological evaluation of small intestine samples. In terms of morphology, we studied the goblet cells, cells of intestinal mucosal responsible for the production and maintenance of the protective mucous blanket. Alterations in their secretion may indicate an altered rate of mucus synthesis and this is one of the possible causes of gastrointestinal problems. In terms of biological evaluation, impaired regulation of glucose homeostasis regulated by sodium-glucose transporters has been suggested as an important component of obesity and associated comorbidities; therefore, this study analyzed the expression of sodium/glucose transporter-1 and -3 in BTBR mice to better define their role. We demonstrated that, in BTBR mice as compared to C57BL/6J (B6) strain animals: (1) The goblet cells had different protein content in their vesicles and apparently a larger number of Golgi cisternae; (2) the expression and level of sodium/glucose transporters were higher. These findings could suggest new possible targets in autism spectrum disorder to maintain mucus barrier function.
Collapse
|
6
|
Tang C, Cai J, Yin XM, Weinberg JM, Venkatachalam MA, Dong Z. Mitochondrial quality control in kidney injury and repair. Nat Rev Nephrol 2021; 17:299-318. [PMID: 33235391 PMCID: PMC8958893 DOI: 10.1038/s41581-020-00369-0] [Citation(s) in RCA: 245] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 01/30/2023]
Abstract
Mitochondria are essential for the activity, function and viability of eukaryotic cells and mitochondrial dysfunction is involved in the pathogenesis of acute kidney injury (AKI) and chronic kidney disease, as well as in abnormal kidney repair after AKI. Multiple quality control mechanisms, including antioxidant defence, protein quality control, mitochondrial DNA repair, mitochondrial dynamics, mitophagy and mitochondrial biogenesis, have evolved to preserve mitochondrial homeostasis under physiological and pathological conditions. Loss of these mechanisms may induce mitochondrial damage and dysfunction, leading to cell death, tissue injury and, potentially, organ failure. Accumulating evidence suggests a role of disturbances in mitochondrial quality control in the pathogenesis of AKI, incomplete or maladaptive kidney repair and chronic kidney disease. Moreover, specific interventions that target mitochondrial quality control mechanisms to preserve and restore mitochondrial function have emerged as promising therapeutic strategies to prevent and treat kidney injury and accelerate kidney repair. However, clinical translation of these findings is challenging owing to potential adverse effects, unclear mechanisms of action and a lack of knowledge of the specific roles and regulation of mitochondrial quality control mechanisms in kidney resident and circulating cell types during injury and repair of the kidney.
Collapse
Affiliation(s)
- Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joel M. Weinberg
- Department of Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Manjeri A. Venkatachalam
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.,
| |
Collapse
|
7
|
Hazelhoff MH, Bulacio RP, Torres AM. Trimetazidine Protects from Mercury-Induced Kidney Injury. Pharmacology 2021; 106:332-340. [PMID: 33849026 DOI: 10.1159/000514843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/27/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The presence of mercury in the environment is a worldwide concern. Inorganic mercury is present in industrial materials, is employed in medical devices, is widely used in batteries, is a component of fluorescent light bulbs, and it has been associated with human poisoning in gold mining areas. The nephrotoxicity induced by inorganic mercury is a relevant health problem mainly in developing countries. The primary mechanism of mercury toxicity is oxidative stress. Trimetazidine (TMZ) is an anti-ischemic drug, which inhibits cellular oxidative stress, eliminates oxygen-free radicals, and improves lipid metabolism. The aim of this study was to evaluate whether the administration of TMZ protects against mercuric chloride (HgCl2) kidney damage. METHODS Adult male Wistar rats received only HgCl2 (4 mg/kg bw, sc) (Hg group, n = 5) or TMZ (3 mg/kg bw, ip) 30 min before HgCl2 administration (4 mg/kg bw, sc) (TMZHg group, n = 7). Simultaneously, a control group of rats (n = 4) was studied. After 4 days of HgCl2 injection, urinary flow, urea and creatinine (Cr) plasma levels, Cr clearance, urinary glucose, and sodium-dicarboxylate cotransporter 1 (NaDC1) in urine were determined. Lipid peroxidation (MDA) and glutathione (GSH) levels were measured in kidney homogenates. RESULTS Rats only treated with HgCl2 showed an increase in urea and Cr plasma levels, urinary flow, fractional excretion of water, glucosuria, and NaDC1 urinary excretion as compared with the control group and a decrease in Cr clearance. TMZHg group showed a decrease in urea and Cr plasma levels, urinary flow, fractional excretion of water, glucosuria, NaDC1 urinary excretion, and an increase in Cr clearance when compared to the Hg group. Moreover, MDA and GSH levels observed in Hg groups were decreased and increased, respectively, by TMZ pretreatment. CONCLUSION TMZ exerted a renoprotective action against HgCl2-induced renal injury, which might be mediated by the reduction of oxidative stress. Considering the absence of toxicity of TMZ, its clinical application against oxidative damage due to HgCl2-induced renal injury should be considered. The fact that TMZ is commercially available should simplify and accelerate the translation of the present data "from bench to bedside." In this context, TMZ become an interesting new example of drug repurposing.
Collapse
Affiliation(s)
- María Herminia Hazelhoff
- Pharmacology, Faculty of Biochemical and Pharmaceutical Sciences. National University of Rosario, CONICET, Rosario, Argentina
| | - Romina Paula Bulacio
- Pharmacology, Faculty of Biochemical and Pharmaceutical Sciences. National University of Rosario, CONICET, Rosario, Argentina
| | - Adriana Monica Torres
- Pharmacology, Faculty of Biochemical and Pharmaceutical Sciences. National University of Rosario, CONICET, Rosario, Argentina
| |
Collapse
|
8
|
Hazelhoff MH, Torres AM. Effect of erythropoietin on mercury-induced nephrotoxicity: Role of membrane transporters. Hum Exp Toxicol 2021; 40:515-525. [PMID: 32909846 DOI: 10.1177/0960327120958109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mercury is a widespread pollutant. Mercuric ions uptake into tubular cells is supported by the Organic anion transporter 1 (Oat1) and 3 (Oat3) and its elimination into urine is through the Multidrug resistance-associated protein 2 (Mrp2). We investigated the effect of recombinant human erythropoietin (Epo) on renal function and on renal expression of Oat1, Oat3, and Mrp2 in a model of mercuric chloride (HgCl2)-induced renal damage. Four experimental groups of adult male Wistar rats were used: Control, Epo, HgCl2, and Epo + HgCl2. Epo (3000 IU/kg, b.w., i.p.) was administered 24 h before HgCl2 (4 mg/kg, b.w., i.p.). Experiments were performed 18 h after the HgCl2 dose. Parameters of renal function and structure were evaluated. The protein expression of Oat1, Oat3 and Mrp2 in renal tissue was assessed by immunoblotting techniques. Mercury levels were determined by cold vapor atomic absorption spectrometry. Pretreatment with Epo ameliorated the HgCl2-induced tubular injury as assessed by histopathology and urinary biomarkers. Immunoblotting showed that pretreatment with Epo regulated the renal expression of mercury transporters in a way to decrease mercury content in the kidney. Epo pretreatment ameliorates HgCl2-induced renal tubular injury by modulation of mercury transporters expression in the kidneys.
Collapse
Affiliation(s)
- M H Hazelhoff
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, 63029Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - A M Torres
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, 63029Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| |
Collapse
|
9
|
Ramamoorthy H, Abraham P, Isaac B. Melatonin protects against tenofovir-induced nephrotoxicity in rats by targeting multiple cellular pathways. Hum Exp Toxicol 2020; 40:826-850. [PMID: 33146023 DOI: 10.1177/0960327120968860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nephrotoxicity is a dose-limiting side effect of long-term use of tenofovir, a reverse transcriptase inhibitor that is used for the treatment of HIV infection and chronic hepatitis B infection. Identifying an agent that prevents tenofovir disoproxil fumarate (TDF)-induced renal injury can lead to its better tolerance, and a more effective treatment can be achieved. The present study is aimed at investigating whether melatonin, a potent antioxidant and anti-inflammatory agent, protects against TDF nephrotoxicity in rats and to determine its cellular targets. Rats were divided into groups and treated as follows. Group I (control): Rats in this group (n = 6) received sterile water only by gavage for 35 days. Group II: Rats (n = 6) in this group received 600 mg/kg body weight TDF in sterile water by gavage for 35 days. Group III: Rats (n = 6) in this group received once daily 20 mg/kg bodyweight melatonin i.p. 2 h before the administration of 600 mg/kg body weight TDF in sterile water by gavage for 35 days. Group IV: Rats were pretreated daily with 20 mg/kg body weight melatonin i.p. 2 h before the administration of sterile water by gavage. All the rats were sacrificed on the 36th day, after overnight fast. Melatonin pretreatment protected the rats against TDF nephrotoxicity both histologically and biochemically. Biochemically, melatonin pretreatment attenuated TDF-induced, oxidative stress, nitrosative stress, mitochondrial pathway of apoptosis, PARP overactivation and preserved proximal tubular function (p < 0.01). This suggests that melatonin may be useful in ameliorating TDF nephrotoxicity.
Collapse
Affiliation(s)
| | - Premila Abraham
- Department of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India
| | - Bina Isaac
- Department of Anatomy, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
10
|
Tumor Necrosis Factor Receptor-Associated Protein 1 Protects against Mitochondrial Injury by Preventing High Glucose-Induced mPTP Opening in Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6431517. [PMID: 32215175 PMCID: PMC7079224 DOI: 10.1155/2020/6431517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/23/2020] [Indexed: 01/14/2023]
Abstract
Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease worldwide. Renal tubular epithelial cell apoptosis and tubular atrophy have been recognized as indicators of the severity and progression of DKD, while the mechanism remains elusive. Tumor necrosis factor receptor-associated protein 1 (TRAP1) plays critical roles in apoptosis. The aim of this study was to investigate the protective role TRAP1 plays in DKD and to study the potential underlying mechanisms. TRAP1 expression was decreased, and mitochondria were injured in NRK-52e cells under high-glucose (HG) conditions. The overexpression of TRAP1 ameliorated HG-induced apoptosis, increased cell viability, maintained mitochondrial morphology, adenosine triphosphate (ATP) levels, and mitochondrial membrane potential (MMP), and buffered oxidative stress, whereas TRAP1 knockdown aggravated these effects. The protective effects of TRAP1 may be exerted via the inhibition of mitochondrial permeability transition pore (mPTP) opening, and the damage caused by TRAP1 knockdown can be partially reversed by treatment with the mPTP opening inhibitor cyclosporin A (CsA). In vivo, TRAP1 expression upregulation by AAV2/9 injection prevented renal dysfunction, ameliorated histopathological changes, maintained mitochondrial morphology and function, and reduced apoptosis and reactive oxygen species (ROS) in STZ-treated DKD rats. Thus, our results suggest that TRAP1 ameliorates diabetes-induced renal injury by preventing abnormal mPTP opening and maintaining mitochondrial structure and function, which may be treated as a potential target for DKD treatment.
Collapse
|
11
|
Yang X, Li Y, Zheng L, He X, Luo Y, Huang K, Xu W. Glucose-regulated protein 75 in foodborne disease models induces renal tubular necrosis. Food Chem Toxicol 2019; 133:110720. [DOI: 10.1016/j.fct.2019.110720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/04/2019] [Accepted: 07/26/2019] [Indexed: 01/06/2023]
|
12
|
Taurine Supplementation Alleviates Puromycin Aminonucleoside Damage by Modulating Endoplasmic Reticulum Stress and Mitochondrial-Related Apoptosis in Rat Kidney. Nutrients 2018; 10:nu10060689. [PMID: 29843457 PMCID: PMC6024760 DOI: 10.3390/nu10060689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Taurine (TAU) is a sulfur-containing beta amino acid that is not involved in protein composition and anabolism, conditionally essential in mammals provided through diet. Growing evidence supports a protective role of TAU supply in osmoregulation, calcium flux, and reduction of inflammation and oxidant damage in renal diseases like diabetes. Endoplasmic reticulum (ER) stress, due to abnormal proteostasis, is a contributor to nephrotic syndrome and related renal damage. Here, we investigated the effect of dietary TAU (1.5% in drinking water for 15 days) in an established rat model that mimics human minimal change nephrosis, consisting of a single puromycin aminonucleoside (PAN) injection (intraperitoneally 15 mg/100 g body weight), with sacrifice after eight days. TAU limited proteinuria and podocytes foot processes effacement, and balanced slit diaphragm nephrin and glomerular claudin 1 expressions. In cortical proximal tubules, TAU improved lysosomal density, ER perimeter, restored proper ER-mitochondria tethering and mitochondrial cristae, and decreased inflammation. Remarkably, TAU downregulated glomerular ER stress markers (GRP78, GRP94), pro-apoptotic C/EBP homologous protein, activated caspase 3, tubular caspase1, and mitochondrial chaperone GRP75, but maintained anti-apoptotic HSP25. In conclusion, TAU, by targeting upstream ER stress separate from mitochondria dysfunctions at crucial renal sites, might be a promising dietary supplement in the treatment of the drug-resistant nephrotic syndrome.
Collapse
|
13
|
WANG YAN, LIN JIZONG, CHEN QINGZHUANG, ZHU NING, JIANG DEQI, LI MINGXING, WANG YONG. Overexpression of mitochondrial Hsp75 protects neural stem cells against microglia-derived soluble factor-induced neurotoxicity by regulating mitochondrial permeability transition pore opening in vitro. Int J Mol Med 2015; 36:1487-96. [PMID: 26500047 PMCID: PMC4678160 DOI: 10.3892/ijmm.2015.2380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/17/2015] [Indexed: 11/05/2022] Open
Abstract
Microglia (MG)-induced neurotoxicity, a major determinant of Alzheimer's disease, is closely related to the survival of neural stem cells (NSCs). Heat shock protein 75 (Hsp75) has been reported to exert protective effects against environmental stresses; however, whether or not it protects NSCs against MG-derived soluble factor-induced neurotoxicity remains unclear. In the present study, we constructed NSCs that overexpressed human Hsp75 protein and established a co-culture system in order to elucidate the role of Hsp75 in NSC-MG interactions. The results obtained indicated that Hsp75 expression increased after 12 h of soluble factor induction and continued to increase for up to 36 h of treatment. The overexpression of Hsp75 decreased NSC apoptosis and preserved mitochondrial membrane potential. Further experiments revealed that the overexpression of Hsp75 inhibited the formation of cyclophilin D (CypD)-dependent mitochondrial permeability transition pore (mPTP) involvement in neurotoxicity-mediated mitochondrial dysfunction and suppressed the activation of the mitochondrial apoptotic cascade, as demonstrated by the inhibition of the release of cytochrome c (Cytc) and the activation of caspase-3. The findings of this study demonstrate that Hsp75 overexpression prevents the impairment of NSCs induced by MG-derived soluble factors by regulating the opening of mPTP. Thus, Hsp75 warrants further investigation as a potential candidate for protection against neurotoxicity.
Collapse
Affiliation(s)
- YAN WANG
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
- Department of Pharmacy, Guangdong Hospital of Integrated Chinese and Western Medicine, Foshan, Guangdong 528200, P.R. China
| | - JIZONG LIN
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - QING-ZHUANG CHEN
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - NING ZHU
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - DE-QI JIANG
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - MING-XING LI
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - YONG WANG
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
14
|
Hazelhoff MH, Trebucobich MS, Stoyanoff TR, Chevalier AA, Torres AM. Amelioration of mercury nephrotoxicity after pharmacological manipulation of organic anion transporter 1 (Oat1) and multidrug resistance-associated protein 2 (Mrp2) with furosemide. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00100e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Furosemide improves HgCl2-induced tubule injury up-regulating Oat1 and Mrp2, thus increasing renal elimination of mercuric ions.
Collapse
Affiliation(s)
- María H. Hazelhoff
- Área Farmacología
- Facultad de Ciencias Bioquímicas y Farmacéuticas
- Universidad Nacional de Rosario
- Rosario
- Argentina
| | - Mara S. Trebucobich
- Área Farmacología
- Facultad de Ciencias Bioquímicas y Farmacéuticas
- Universidad Nacional de Rosario
- Rosario
- Argentina
| | - Tania R. Stoyanoff
- Departamento de Bioquímica
- Facultad de Medicina
- Universidad Nacional del Nordeste
- Corrientes
- Argentina
| | - Alberto A. Chevalier
- GIHON Laboratorios Químicos SRL
- Facultad de Ciencias Exactas
- Universidad Nacional de Mar del Plata
- Mar del Plata
- Argentina
| | - Adriana M. Torres
- Área Farmacología
- Facultad de Ciencias Bioquímicas y Farmacéuticas
- Universidad Nacional de Rosario
- Rosario
- Argentina
| |
Collapse
|
15
|
Stacchiotti A, Favero G, Giugno L, Lavazza A, Reiter RJ, Rodella LF, Rezzani R. Mitochondrial and metabolic dysfunction in renal convoluted tubules of obese mice: protective role of melatonin. PLoS One 2014; 9:e111141. [PMID: 25347680 PMCID: PMC4210266 DOI: 10.1371/journal.pone.0111141] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/28/2014] [Indexed: 01/11/2023] Open
Abstract
Obesity is a common and complex health problem, which impacts crucial organs; it is also considered an independent risk factor for chronic kidney disease. Few studies have analyzed the consequence of obesity in the renal proximal convoluted tubules, which are the major tubules involved in reabsorptive processes. For optimal performance of the kidney, energy is primarily provided by mitochondria. Melatonin, an indoleamine and antioxidant, has been identified in mitochondria, and there is considerable evidence regarding its essential role in the prevention of oxidative mitochondrial damage. In this study we evaluated the mechanism(s) of mitochondrial alterations in an animal model of obesity (ob/ob mice) and describe the beneficial effects of melatonin treatment on mitochondrial morphology and dynamics as influenced by mitofusin-2 and the intrinsic apoptotic cascade. Melatonin dissolved in 1% ethanol was added to the drinking water from postnatal week 5–13; the calculated dose of melatonin intake was 100 mg/kg body weight/day. Compared to control mice, obesity-related morphological alterations were apparent in the proximal tubules which contained round mitochondria with irregular, short cristae and cells with elevated apoptotic index. Melatonin supplementation in obese mice changed mitochondria shape and cristae organization of proximal tubules, enhanced mitofusin-2 expression, which in turn modulated the progression of the mitochondria-driven intrinsic apoptotic pathway. These changes possibly aid in reducing renal failure. The melatonin-mediated changes indicate its potential protective use against renal morphological damage and dysfunction associated with obesity and metabolic disease.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Lorena Giugno
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, OIE Reference Laboratory for RHD, Brescia, Italy
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- * E-mail:
| |
Collapse
|
16
|
Romero A, Ramos E, de Los Ríos C, Egea J, Del Pino J, Reiter RJ. A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res 2014; 56:343-70. [PMID: 24628077 DOI: 10.1111/jpi.12132] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/11/2014] [Indexed: 12/31/2022]
Abstract
Metal exposure is associated with several toxic effects; herein, we review the toxicity mechanisms of cadmium, mercury, arsenic, lead, aluminum, chromium, iron, copper, nickel, cobalt, vanadium, and molybdenum as these processes relate to free radical generation. Free radicals can be generated in cells due to a wide variety of exogenous and endogenous processes, causing modifications in DNA bases, enhancing lipid peroxidation, and altering calcium and sulfhydryl homeostasis. Melatonin, an ubiquitous and pleiotropic molecule, exerts efficient protection against oxidative stress and ameliorates oxidative/nitrosative damage by a variety of mechanisms. Also, melatonin has a chelating property which may contribute in reducing metal-induced toxicity as we postulate here. The aim of this review was to highlight the protective role of melatonin in counteracting metal-induced free radical generation. Understanding the physicochemical insights of melatonin related to the free radical scavenging activity and the stimulation of antioxidative enzymes is of critical importance for the development of novel therapeutic strategies against the toxic action of these metals.
Collapse
Affiliation(s)
- Alejandro Romero
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Anderson G, Maes M. Redox Regulation and the Autistic Spectrum: Role of Tryptophan Catabolites, Immuno-inflammation, Autoimmunity and the Amygdala. Curr Neuropharmacol 2014; 12:148-67. [PMID: 24669209 PMCID: PMC3964746 DOI: 10.2174/1570159x11666131120223757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 08/18/2013] [Accepted: 11/02/2013] [Indexed: 12/12/2022] Open
Abstract
The autistic spectrum disorders (ASD) form a set of multi-faceted disorders with significant genetic, epigenetic and environmental determinants. Oxidative and nitrosative stress (O&NS), immuno-inflammatory pathways, mitochondrial dysfunction and dysregulation of the tryptophan catabolite (TRYCATs) pathway play significant interactive roles in driving the early developmental etiology and course of ASD. O&NS interactions with immuno-inflammatory pathways mediate their effects centrally via the regulation of astrocyte and microglia responses, including regional variations in TRYCATs produced. Here we review the nature of these interactions and propose an early developmental model whereby different ASD genetic susceptibilities interact with environmental and epigenetic processes, resulting in glia biasing the patterning of central interarea interactions. A role for decreased local melatonin and N-acetylserotonin production by immune and glia cells may be a significant treatment target.
Collapse
Affiliation(s)
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Deakin University, Geelong, Australia
| |
Collapse
|
18
|
Martínez-Alfaro M, Ramírez-García G, Gutiérrez-Granados S, Alcaraz-Contreras Y, Gallegos-Corona MA, de Larrea GZL, Cárabez-Trejo A. Melatonin attenuates the effects of sub-acute administration of lead on kidneys in rats without altering the lead-induced reduction in nitric oxide. J Trace Elem Med Biol 2013; 27:364-9. [PMID: 23992869 DOI: 10.1016/j.jtemb.2013.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/05/2013] [Accepted: 05/15/2013] [Indexed: 11/19/2022]
Abstract
Exposure to lead induces oxidative stress and renal damage. Although most forms of oxidative stress are characterized by simultaneous elevation of nitrogen and oxidative species, lead-induced oxidative stress is unusual in that it is associated with a reduction in nitric oxide (NO) levels in the kidney. The role of NO in kidney injury is controversial; some studies suggest that it is associated with renal injury, whereas others show that it exerts protective effects. Concentration-dependent effects have also been proposed, linking low levels with vasodilatation and high levels with toxicity. The aim of this study was to evaluate the effects of melatonin co-exposure on the lead-induced reduction in renal NO levels. We found that sub-acute intraperitoneal administration of 10 mg/kg/day of lead for 15 days induced toxic levels of lead in the blood and caused renal toxicity (pathological and functional). Under our experimental conditions, lead induced an increase in lipid peroxidation and a decrease in NO. Melatonin co-treatment decreased lead-induced oxidative stress (peroxidation level) and toxic effects on kidneys without altering the lead-induced reduction in renal NO. These results suggest that, in our experimental model, the reduction in renal NO levels by lead exposure is not the only responsible factor for lead-induced kidney damage.
Collapse
|
19
|
Tight junction proteins and oxidative stress in heavy metals-induced nephrotoxicity. BIOMED RESEARCH INTERNATIONAL 2013; 2013:730789. [PMID: 23710457 PMCID: PMC3654622 DOI: 10.1155/2013/730789] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/27/2013] [Indexed: 12/11/2022]
Abstract
Kidney is a target organ for heavy metals. They accumulate in several segments of the nephron and cause profound alterations in morphology and function. Acute intoxication frequently causes acute renal failure. The effects of chronic exposure have not been fully disclosed. In recent years increasing awareness of the consequences of their presence in the kidney has evolved. In this review we focus on the alterations induced by heavy metals on the intercellular junctions of the kidney. We describe that in addition to the proximal tubule, which has been recognized as the main site of accumulation and injury, other segments of the nephron, such as glomeruli, vessels, and distal nephron, show also deleterious effects. We also emphasize the participation of oxidative stress as a relevant component of the renal damage induced by heavy metals and the beneficial effect that some antioxidant drugs, such as vitamin A (all-trans-retinoic acid) and vitamin E (α-tocopherol), depict on the morphological and functional alterations induced by heavy metals.
Collapse
|
20
|
Hazelhoff MH, Bulacio RP, Torres AM. Gender related differences in kidney injury induced by mercury. Int J Mol Sci 2012; 13:10523-10536. [PMID: 22949877 PMCID: PMC3431875 DOI: 10.3390/ijms130810523] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/07/2012] [Accepted: 08/14/2012] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to determine if there are sex-related differences in the acute kidney injury induced by HgCl2 since female rats express lower levels of renal Oat1 and Oat3 (transporters involved in renal uptake of mercury) as compared with males. Control males and females and Hg-treated male and female Wistar rats were employed. Animals were treated with HgCl2 (4 mg/kg body weight (b.w.), intraperitoneal (i.p.)) 18 h before the experiments. HgCl2 induced renal impairment both in male and female rats. However, female rats showed a lower renal impairment than male rats. The observed increase in kidney weight/body weight ratio seen in male and female rats following HgCl2 treatment was less in the female rats. Urine volume and creatinine clearance decreased and Oat5 urinary excretion increased in both males and females, but to a lesser degree in the latter. Urinary alkaline phosphatase (AP) activity and histological parameters were modified in male but not in female rats after HgCl2 administration. These results indicate that the lower Oat1 and Oat3 expression in the kidney of females restricts Hg uptake into renal cells protecting them from this metal toxicity. These gender differences in renal injury induced by mercury are striking and also indicate that Oat1 and Oat3 are among the main transporters responsible for HgCl2-induced renal injury.
Collapse
Affiliation(s)
| | | | - Adriana M. Torres
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +54-341-437-3787
| |
Collapse
|
21
|
Differential protein expression of hepatic cells associated with MeHg exposure: deepening into the molecular mechanisms of toxicity. Anal Bioanal Chem 2012; 404:315-24. [DOI: 10.1007/s00216-012-6042-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/03/2012] [Accepted: 04/10/2012] [Indexed: 01/09/2023]
|
22
|
Different role of Schisandrin B on mercury-induced renal damage in vivo and in vitro. Toxicology 2011; 286:48-57. [DOI: 10.1016/j.tox.2011.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/18/2011] [Accepted: 05/09/2011] [Indexed: 11/23/2022]
|
23
|
Mortalin overexpression attenuates beta-amyloid-induced neurotoxicity in SH-SY5Y cells. Brain Res 2010; 1368:336-45. [PMID: 20974113 DOI: 10.1016/j.brainres.2010.10.068] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/15/2010] [Accepted: 10/16/2010] [Indexed: 01/14/2023]
Abstract
Amyloid-beta peptide (Aβ) is shown to be toxic to the mitochondria and implicates this organelle in the pathogenesis of Alzheimer's disease. Previous studies suggest that targeting mitochondria for protection may be a useful strategy to reduce Aβ-induced neurotoxicity. Mortalin is the mitochondrial located member of the heat shock protein 70 family, which serves as a major mitochondrial molecular chaperone and plays a key role in mitochondrial import of proteins. Several studies have demonstrated the protective potential of Hsp75 overexpression against apoptosis induced by various forms of stresses. To investigate whether mortalin overexpression could provide protective effects on Aβ toxicity, SH-SY5Y cells were used to transfect human mortalin gene and then treated with Aβ(1-42) for 24h. It is found that overexpression of mortalin efficiently attenuated Aβ(1-42)-induced cell viability damage and apoptosis. Additionally, inhibition of mortalin expression by mortalin-specific siRNA oligonucleotides sensitized SH-SY5Y cells to Aβ(1-42)-induced neurotoxicity. Furthermore, mortalin overexpression significantly inhibited the Aβ(1-42)-induced depolarization of mitochondrial membrane potential, reversed the Aβ(1-42)-induced reduction in cytochrome c oxidase activity and ATP generation, and suppressed the Aβ(1-42)-induced reactive oxygen species accumulation and lipid peroxidation. Together, our results suggest that mortalin can afford protection against Aβ(1-42)-induced neurotoxicity in SH-SY5Y cells. These beneficial effects of mortalin overexpression may be attributable to its roles in maintaining mitochondrial function and reducing oxidative stress.
Collapse
|
24
|
Di Giusto G, Torres AM. Organic anion transporter 5 renal expression and urinary excretion in rats exposed to mercuric chloride: a potential biomarker of mercury-induced nephropathy. Arch Toxicol 2010; 84:741-9. [DOI: 10.1007/s00204-010-0541-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
|
25
|
Ellis BC, Gattoni-Celli S, Kindy MS. The impact of methylmercury on 1,25-dihydroxyvitamin D3-induced transcriptomic responses in dolphin skin cells. Biol Chem 2010; 391:245-258. [DOI: 10.1515/bc.2010.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractThe Atlantic bottlenose dolphin has been the focus of much attention owing to the considerable impact of environmental stress on its health and the associated implications for human health. Here, we used skin cells from the dolphin to investigate the protective role of the vitamin D pathway against environmental stressors. We previously reported that dolphin skin cells respond to 1,25-dihydroxyvitamin D3 (1,25D3), the bioactive metabolite of vitamin D3, by upregulation of the vitamin D receptor (VDR) and expression of several genes. Methylmercury is a highly bioaccumulative environmental stressor of relevance to the dolphin. We currently report that in dolphin cells sublethal concentrations of methylmercury compromise the ability of 1,25D3 to upregulate VDR, to transactivate a vitamin D-sensitive promoter, and to express specific target genes. These results help elucidate the effects of vitamin D and methylmercury on innate immunity in dolphin skin and potentially in human skin as well, considering similarities in the vitamin D pathway between the two species.
Collapse
Affiliation(s)
- Blake C. Ellis
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 331 Fort Johnson Road, Charleston, SC 29412, USA
| | - Sebastiano Gattoni-Celli
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 331 Fort Johnson Road, Charleston, SC 29412, USA
| | - Mark S. Kindy
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 331 Fort Johnson Road, Charleston, SC 29412, USA
| |
Collapse
|
26
|
Durante P, Romero F, Pérez M, Chávez M, Parra G. Effect of uric acid on nephrotoxicity induced by mercuric chloride in rats. Toxicol Ind Health 2010; 26:163-74. [PMID: 20176775 DOI: 10.1177/0748233710362377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oxidative stress is an important mechanism in mercury poisoning. We studied the effect of uric acid, a natural and potent reactive oxygen species and peroxynitrite scavenger, in HgCl( 2)-induced nephrotoxicity. Rats were injected with a unique dose of HgCl(2) (2.5 mg/kg body weight, subcutaneously) and then vehicle (for 3 days, twice daily) or HgCl(2) (unique dose) and intraperitoneal uric acid suspension (250 mg/kg body weight, twice daily, for 3 days), and then killed at 24, 48 and 72 hours after HgCl(2) administration (n = 5 for each group). At the end of the experimental study, kidneys and blood samples were taken. Tissues were prepared and examined under light microscopy. Uric acid significantly prevented the increase in plasma levels of creatinine and blood urea nitrogen (BUN); it helped maintain systemic nitrate/nitrite concentration and total antioxidant capacity. Uric acid attenuated the increase of renal lipid peroxidation and it markedly diminished nitrotyrosine signal and histopathological changes as early as 24 hours after HgCl(2) administration. Uric acid did not prevent a decrease in beta-actin signal caused by mercuric chloride, but it promoted a faster recovery when compared to the HgCl(2) alone group. Our results indicate that UA could play a beneficial role against HgCl(2) toxicity by preventing systemic and renal oxidative stress and tissue damage.
Collapse
Affiliation(s)
- Paula Durante
- Centro de Investigaciones Biomédicas, IVIC-Zulia, Maracaibo, Venezuela.
| | | | | | | | | |
Collapse
|
27
|
Stacchiotti A, Li Volti G, Lavazza A, Rezzani R, Rodella LF. Schisandrin B stimulates a cytoprotective response in rat liver exposed to mercuric chloride. Food Chem Toxicol 2009; 47:2834-40. [DOI: 10.1016/j.fct.2009.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 08/21/2009] [Accepted: 09/03/2009] [Indexed: 11/29/2022]
|
28
|
Piacenza F, Malavolta M, Cipriano C, Costarelli L, Giacconi R, Muti E, Tesei S, Pierpaoli S, Basso A, Bracci M, Bonacucina V, Santarelli L, Mocchegiani E. l-Arginine normalizes NOS activity and zinc-MT homeostasis in the kidney of mice chronically exposed to inorganic mercury. Toxicol Lett 2009; 189:200-5. [PMID: 19501138 DOI: 10.1016/j.toxlet.2009.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 05/22/2009] [Accepted: 05/25/2009] [Indexed: 11/15/2022]
Abstract
Inorganic mercury (HgCl2) exposure provokes damage in many organs, especially kidney. Inducible nitric oxide synthase (iNOS) expression, total NOS activity and the profiles of zinc (Zn), copper (Cu) and Hg as well as their distribution when bound to specific intracellular proteins, including metallothioneins (MT), were studied during HgCl2 exposure and after l-arginine treatment in C57BL/6 mouse kidney. HgCl2 exposure modulates differently iNOS expression and NOS activity, increasing iNOS expression but, conversely, decreasing total NOS activity in the mouse kidney. Moreover, during Hg exposure an increased MT production occurs. The kidney damage leads to a loss of urinary proteins, increased plasma creatinine and high Zn mobilization with consequent increased urinary Zn excretion. l-arginine treatment recovers NOS activity and induces a normalization of MT induction, plasma creatinine values and urinary proteins excretion, suggesting that l-arginine may limit kidney damages by Hg exposure.
Collapse
Affiliation(s)
- Francesco Piacenza
- Department of Molecular Pathology and Innovative Therapies, Occupational Medicine, Polytechnic University of Marche, Torrette, Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Szczurek EI, Bjornsson CS, Noto AD, Taylor CG. Renal metallothionein responds rapidly and site specifically to zinc repletion in growing rats. J Trace Elem Med Biol 2009; 23:176-82. [PMID: 19486827 DOI: 10.1016/j.jtemb.2009.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 03/04/2009] [Indexed: 11/26/2022]
Abstract
Metallothionein (MT) is important for heavy metals and free radical protection in the kidney. MT is responsive to zinc and primarily localized within the renal cortex. However, site-specific renal responses to dietary zinc repletion are understudied. The objective of this study was to examine the effects of dietary zinc deficiency and repletion on renal MT concentration and immunolocalization in rats. Weanling male Sprague Dawley rats were randomly assigned to either a zinc-deficient, zinc control, or pair-fed to zinc-deficient group. Half of the zinc-deficient and pair-fed rats were repleted with the control diet ad libitum for an additional 24h. Renal tissue samples were assessed for total zinc, MT concentrations and MT immunostaining. Dietary zinc deficiency reduced renal zinc and MT concentrations, and attenuated intensity and localization of MT. Dietary zinc repletion for 24h restored renal zinc and MT concentrations, the latter primarily in the proximal convoluted tubules of the cortex. Concentrations of renal MT, but not zinc, were elevated by diet restriction and MT (microg/mg protein) and partially normalized by 24h diet repletion. In conclusion, renal MT modification due to zinc deficiency or diet restriction can be rapidly normalized in a site-specific manner with normal dietary zinc intake. The results support a role for MT in kidney homeostasis, in particular at the level of the proximal tubules in the cortex. The speed of MT repletion may have clinical implications for dietary zinc in the treatment of acute and chronic renal pathology due to toxins and free radicals.
Collapse
Affiliation(s)
- Elzbieta I Szczurek
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | | |
Collapse
|
30
|
Butin-Israeli V, Uzi D, Abd-El-Latif M, Pizov G, Eden A, Haviv YS, Oppenheim A. DNA-free recombinant SV40 capsids protect mice from acute renal failure by inducing stress response, survival pathway and apoptotic arrest. PLoS One 2008; 3:e2998. [PMID: 18714386 PMCID: PMC2515219 DOI: 10.1371/journal.pone.0002998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 07/22/2008] [Indexed: 01/17/2023] Open
Abstract
Viruses induce signaling and host defense during infection. Employing these natural trigger mechanisms to combat organ or tissue failure is hampered by harmful effects of most viruses. Here we demonstrate that SV40 empty capsids (Virus Like Particles-VLPs), with no DNA, induce host Hsp/c70 and Akt-1 survival pathways, key players in cellular survival mechanisms. We postulated that this signaling might protect against organ damage in vivo. Acute kidney injury (AKI) was chosen as target. AKI is critical, prevalent disorder in humans, caused by nephrotoxic agents, sepsis or ischemia, via apoptosis/necrosis of renal tubular cells, with high morbidity and mortality. Systemic administration of VLPs activated Akt-1 and upregulated Hsp/c70 in vivo. Experiments in mercury-induced AKI mouse model demonstrated that apoptosis, oxidative stress and toxic renal failure were significantly attenuated by pretreatment with capsids prior to the mercury insult. Survival rate increased from 12% to >60%, with wide dose response. This study demonstrates that SV40 VLPs, devoid of DNA, may potentially be used as prophylactic agent for AKI. We anticipate that these finding may be projected to a wide range of organ failure, using empty capsids of SV40 as well as other viruses.
Collapse
Affiliation(s)
| | - Dotan Uzi
- Department of Hematology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Mahmoud Abd-El-Latif
- Department of Hematology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Galina Pizov
- Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Arieh Eden
- Department of Anesthesiology and Critical Care Medicine, Carmel Lady Davis Medical Center, Haifa, Israel
| | - Yosef S. Haviv
- Department of Nephrology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ariella Oppenheim
- Department of Hematology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
31
|
Abstract
Mitochondrial heat shock protein 70 (mtHsp70/Hsp75/Grp75/mortalin/TRAP-1/PBP74) is an essential mitochondrial chaperone and a member of the heat shock protein 70 (HSP70) family. Although many studies have shown the protective properties of overexpression of the cytosolic inducible member of the HSP70 family, Hsp72, few studies have investigated the protective potential of Hsp75 against ischemic injury. Mitochondria are one of the primary targets of ischemic injury in astrocytes. In this study, we analyzed the effects of Hsp75 overexpression on cellular levels of reactive oxygen species (ROS), mitochondrial membrane potential, ATP levels, and viability during the ischemia-like conditions of oxygen-glucose deprivation (OGD) or glucose deprivation (GD) in primary astrocytic cultures. We show that Hsp75 overexpression decreases ROS production and preserves mitochondrial membrane potential during GD, and preserves ATP levels and cell viability during OGD. These findings indicate that Hsp75 can provide protection against ischemia-like in vitro injury and suggest that it should be further studied as a potential candidate for protection against ischemic injury.
Collapse
|
32
|
Stacchiotti A, Lavazza A, Ferroni M, Sberveglieri G, Bianchi R, Rezzani R, Rodella LF. Effects of aluminium sulphate in the mouse liver: similarities to the aging process. Exp Gerontol 2008; 43:330-8. [PMID: 18337038 DOI: 10.1016/j.exger.2008.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/12/2007] [Accepted: 01/22/2008] [Indexed: 12/17/2022]
Abstract
Aluminium (Al) is a ubiquitous metal that is potentially toxic to the brain. Its effects on other fundamental organs are not completely understood. This morphological in vivo study sought to compare sublethal hepatotoxic changes and Al deposition in adult mice that orally ingested Al sulphate daily for 10 months, in age matched control mice that drank tap water and in senescent mice (24 months old). Livers were examined for collagen deposition using Sirius red and Masson, for iron accumulation using Perls' stain. Light, electron microscopy and morphometry were used to assess fibrosis and vascular changes. Scanning transmission electron microscopy and EDX microanalysis were used to detect in situ elemental Al. Iron deposition, transferrin receptor expression were significantly altered following Al exposure and in the aged liver but were unaffected in age matched control mice. In Al treated mice as in senescent mice, endothelial thickness was increased and porosity was decreased like perisinusoidal actin. Furthermore, Al stimulated the deposition of collagen and laminin, mainly in acinar zones 1 and 3. Pseudocapillarization and periportal laminin in senescent mice were similar to Al treated adult liver. In conclusion, prolonged Al sulphate intake accelerates features of senescence in the adult mice liver.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Department of Biomedical Sciences and Biotechnologies, Brescia University, Brescia, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
Massanyi P, Lukac N, Slivkova J, Kovacik J, Makarevich AV, Chrenek P, Toman R, Forgacs Z, Somosy Z, Stawarz R, Formicki G. Mercury-induced alterations in rat kidneys and testes in vivo. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2007; 42:865-70. [PMID: 17558766 DOI: 10.1080/10934520701370410] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this study effects of mercury administration on the kidney and testicular structure of adult rats were evaluated. Rats received mercury (HgCl2) in single intraperitoneal dose 20 mg HgCl2 (group A), 10 mg HgCl2 (group B) and 5 mg HgCl2 (group C) per kilogram of body weight and were killed after 48 hours following mercury administration. After the preparation of histological samples the results were compared with control group (K). In kidney decreased diameters of glomeruli and renal corpuscles, damaged tubules with affected quality of tubular cells and infiltration of interstitium were detected. Quantitative analysis demonstrated increased relative volume of tubules and renal corpuscles. Also the number of nuclei and glomeruli was increased in all experimental groups. The diameter of glomeruli and renal corpuscles was decreased. In testis undulation of basal membrane, dilatation of blood vessels in interstitium and occurrence of empty spaces in germinal epithelium were observed. Decreased relative volume of germinal epithelium, increased relative volume of interstitium and increased apoptosis occurrence suggest damaged interstitium and revealed occurrence of edemas. The relative volume of seminiferous tubules showed higher luminization. The number of nuclei was decreased in all experimental groups what is in positive relation with occurrence of empty spaces. Also other evaluated criteria demonstrated significant differences between control group and experimental groups. This study reports a negative effect of mercury on the structure and function of kidney and testes.
Collapse
Affiliation(s)
- Peter Massanyi
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak Agricultural University, Nitra, Slovak Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kaul SC, Deocaris CC, Wadhwa R. Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 2006; 42:263-74. [PMID: 17188442 DOI: 10.1016/j.exger.2006.10.020] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/05/2006] [Accepted: 10/24/2006] [Indexed: 11/23/2022]
Abstract
Mortalin was first cloned as a mortality factor that existed in the cytoplasmic fractions of normal, but not in immortal, mouse fibroblasts. A decade of efforts have expanded its persona from a house keeper protein involved in mitochondrial import, energy generation and chaperoning of misfolded proteins, to a guardian of stress that has multiple binding partners and to a killer protein that contributes to carcinogenesis on one hand and to old age disorders on the other. Being proved to be an attractive target for cancer therapy, it also warrants attention from the perspectives of management of old age diseases and healthy aging.
Collapse
Affiliation(s)
- Sunil C Kaul
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan
| | | | | |
Collapse
|