1
|
Liu H, Li X, Shi Y, Ye Z, Cheng X. Protein Tyrosine Phosphatase PRL-3: A Key Player in Cancer Signaling. Biomolecules 2024; 14:342. [PMID: 38540761 PMCID: PMC10967961 DOI: 10.3390/biom14030342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 07/02/2024] Open
Abstract
Protein phosphatases are primarily responsible for dephosphorylation modification within signal transduction pathways. Phosphatase of regenerating liver-3 (PRL-3) is a dual-specific phosphatase implicated in cancer pathogenesis. Understanding PRL-3's intricate functions and developing targeted therapies is crucial for advancing cancer treatment. This review highlights its regulatory mechanisms, expression patterns, and multifaceted roles in cancer progression. PRL-3's involvement in proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance is discussed. Regulatory mechanisms encompass transcriptional control, alternative splicing, and post-translational modifications. PRL-3 exhibits selective expressions in specific cancer types, making it a potential target for therapy. Despite advances in small molecule inhibitors, further research is needed for clinical application. PRL-3-zumab, a humanized antibody, shows promise in preclinical studies and clinical trials. Our review summarizes the current understanding of the cancer-related cellular function of PRL-3, its prognostic value, and the research progress of therapeutic inhibitors.
Collapse
Affiliation(s)
- Haidong Liu
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Xiao Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Zu Ye
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
2
|
Sani F, Sani M, Moayedfard Z, Darayee M, Tayebi L, Azarpira N. Potential advantages of genetically modified mesenchymal stem cells in the treatment of acute and chronic liver diseases. Stem Cell Res Ther 2023; 14:138. [PMID: 37226279 DOI: 10.1186/s13287-023-03364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Liver damage caused by toxicity can lead to various severe conditions, such as acute liver failure (ALF), fibrogenesis, and cirrhosis. Among these, liver cirrhosis (LC) is recognized as the leading cause of liver-related deaths globally. Unfortunately, patients with progressive cirrhosis are often on a waiting list, with limited donor organs, postoperative complications, immune system side effects, and high financial costs being some of the factors restricting transplantation. Although the liver has some capacity for self-renewal due to the presence of stem cells, it is usually insufficient to prevent the progression of LC and ALF. One potential therapeutic approach to improving liver function is the transplantation of gene-engineered stem cells. Several types of mesenchymal stem cells from various sources have been suggested for stem cell therapy for liver disease. Genetic engineering is an effective strategy that enhances the regenerative potential of stem cells by releasing growth factors and cytokines. In this review, we primarily focus on the genetic engineering of stem cells to improve their ability to treat damaged liver function. We also recommend further research into accurate treatment methods that involve safe gene modification and long-term follow-up of patients to increase the effectiveness and reliability of these therapeutic strategies.
Collapse
Affiliation(s)
- Farnaz Sani
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darayee
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Street, P.O. Box: 7193711351, Shiraz, Iran.
| |
Collapse
|
3
|
Park H, Seok J, You JH, Kim JY, Lim JY, Kim GJ. Increased phosphatase regenerating liver-1 trigger vascular remodeling in injured ovary via platelet-derived growth factor signaling pathway. Stem Cell Res Ther 2022; 13:95. [PMID: 35255961 PMCID: PMC8900363 DOI: 10.1186/s13287-022-02772-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Vascular abnormalities in the ovary cause infertility accompanied by ovarian insufficiency due to a microenvironment of barren ovarian tissues. Placenta-derived mesenchymal stem cells (PD-MSCs, Naïve) treatment in ovarian dysfunction shows angiogenic effect, however, the therapeutic mechanism between ovarian function and vascular remodeling still unclear. Therefore, we examined whether by phosphatase regenerating liver-1 (PRL-1), which is correlated with angiogenesis in reproductive systems, overexpressed PD-MSCs could maximize the angiogenic effects in an ovarian tissues injured of rat model with partial ovariectomy and their therapeutic mechanism by enhanced vascular function via PDGF signaling.
Methods PD-MSCsPRL-1 (PRL-1) were generated by nonviral AMAXA gene delivery system and analyzed the vascular remodeling and follicular development in ovary. One week after Sprague–Dawley (SD) rats ovariectomy, Naïve and PRL-1 was transplanted. The animals were sacrificed at 1, 3 and 5 weeks after transplantation and vascular remodeling and follicular development were analyzed. Also, human umbilical vein endothelial cells (HUVECs) and ovarian explantation culture were performed to prove the specific effects and mechanism of PRL-1.
Results Vascular structures in ovarian tissues (e.g., number of vessels, thickness and lumen area) showed changes in the Naïve and PRL-1-overexpressed PD-MSC (PRL-1) transplantation (Tx) groups compared to the nontransplantation (NTx) group. Especially, PRL-1 induce to increase the expression of platelet-derived growth factor (PDGF), which plays a role in vascular remodeling as well as follicular development, compared to the NTx. Also, the expression of genes related to pericyte and vascular permeability in arteries was significantly enhanced in the PRL-1 compared to the NTx (p < 0.05). PRL-1 enhanced the vascular formation and permeability of human umbilical vein endothelial cells (HUVECs) via activated the PDGF signaling pathway. Conclusions Our results show that PRL-1 restored ovarian function by enhanced vascular function via PDGF signaling pathway. These findings offer new insight into the effects of functionally enhanced stem cell therapy for reproductive systems and should provide new avenues to develop more efficient therapies in degenerative medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02772-9.
Collapse
Affiliation(s)
- Hyeri Park
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea
| | - Jin Seok
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea.,Research Institute of Placenta Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jun Hyeong You
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea
| | - Jae Yeon Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea.,Research Institute of Placenta Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Ja-Yun Lim
- Department of Health and Environmental Science, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02481, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea. .,Research Institute of Placenta Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
4
|
Choi JH, Park S, Kim GD, Kim JY, Jun JH, Bae SH, Baik SK, Hwang SG, Kim GJ. Increased Phosphatase of Regenerating Liver-1 by Placental Stem Cells Promotes Hepatic Regeneration in a Bile-Duct-Ligated Rat Model. Cells 2021; 10:cells10102530. [PMID: 34685509 PMCID: PMC8533985 DOI: 10.3390/cells10102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Phosphatase of regenerating liver-1 (PRL-1) controls various cellular processes and liver regeneration. However, the roles of PRL-1 in liver regeneration induced by chorionic-plate-derived mesenchymal stem cells (CP-MSCs) transplantation remain unknown. Here, we found that increased PRL-1 expression by CP-MSC transplantation enhanced liver regeneration in a bile duct ligation (BDL) rat model by promoting the migration and proliferation of hepatocytes. Engrafted CP-MSCs promoted liver function via enhanced hepatocyte proliferation through increased PRL-1 expression in vivo and in vitro. Moreover, higher increased expression of PRL-1 regulated CP-MSC migration into BDL-injured rat liver through enhancement of migration-related signals by increasing Rho family proteins. The dual effects of PRL-1 on proliferation of hepatocytes and migration of CP-MSCs were substantially reduced when PRL-1 was silenced with siRNA-PRL-1 treatment. These findings suggest that PRL-1 may serve as a multifunctional enhancer for therapeutic applications of CP-MSC transplantation.
Collapse
Affiliation(s)
- Jong Ho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si 25457, Korea;
| | - Sohae Park
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
- Research Institute of Placental Science, CHA University, Seongnam-si 13488, Korea
| | - Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Changwon-si 51767, Korea;
| | - Jae Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
| | - Ji Hye Jun
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
- Research Institute of Placental Science, CHA University, Seongnam-si 13488, Korea
| | - Si Hyun Bae
- Department of Internal Medicine, Catholic University Medical College, Seoul 03312, Korea;
| | - Soon Koo Baik
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Seong-Gyu Hwang
- CHA Bundang Medical Center, Department of Internal Medicine, Division of Gastroenterology, CHA University School of Medicine, Seongnam-si 13496, Korea;
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
- Research Institute of Placental Science, CHA University, Seongnam-si 13488, Korea
- Correspondence: ; Tel.: +82-31-881-7145
| |
Collapse
|
5
|
An N, Bassil K, Al Jowf GI, Steinbusch HWM, Rothermel M, de Nijs L, Rutten BPF. Dual-specificity phosphatases in mental and neurological disorders. Prog Neurobiol 2020; 198:101906. [PMID: 32905807 DOI: 10.1016/j.pneurobio.2020.101906] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023]
Abstract
The dual-specificity phosphatase (DUSP) family includes a heterogeneous group of protein phosphatases that dephosphorylate both phospho-tyrosine and phospho-serine/phospho-threonine residues within a single substrate. These protein phosphatases have many substrates and modulate diverse neural functions, such as neurogenesis, differentiation, and apoptosis. DUSP genes have furthermore been associated with mental disorders such as depression and neurological disorders such as Alzheimer's disease. Herein, we review the current literature on the DUSP family of genes concerning mental and neurological disorders. This review i) outlines the structure and general functions of DUSP genes, and ii) overviews the literature on DUSP genes concerning mental and neurological disorders, including model systems, while furthermore providing perspectives for future research.
Collapse
Affiliation(s)
- Ning An
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ghazi I Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; College of Applied Medical Sciences, Department of Public Health, King Faisal University, Al-Ahsa, Saudi Arabia; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Harry W M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Markus Rothermel
- European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Chemosensation - AG Neuromodulation, RWTH Aachen University, Aachen, Germany
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
6
|
Du X, Zhang Y, Li X, Li Q, Wu C, Chen G, Guo X, Weng Y, Wang Z. PRL2 serves as a negative regulator in cell adaptation to oxidative stress. Cell Biosci 2019; 9:96. [PMID: 31798830 PMCID: PMC6884919 DOI: 10.1186/s13578-019-0358-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/21/2019] [Indexed: 12/02/2022] Open
Abstract
High levels of ROS cause oxidative stress, which plays a critical role in cell death. As a ROS effector protein, PRL2 senses ROS and controls phagocyte bactericidal activity during infection. Here we report PRL2 regulates oxidative stress induced cell death. PRL2 senses oxidative stress via highly reactive cysteine residues at 46 and 101. The oxidation of PRL2 causes protein degradation and supports pro-survival PDK1/AKT signal which in turn to protect cells against oxidative stress. As a result, PRL2 levels have a high correlation with oxidative stress induced cell death. In vivo experiments showed PRL2 deficient cells survive better in inflammatory oxidative environment and resist to ionizing radiation. Our finding suggests PRL2 serves as a negative regulator in cell adaptation to oxidative stress. Therefore, PRL2 could be targeted to modulate cell viability in inflammation or irradiation associated therapy.
Collapse
Affiliation(s)
- Xinyue Du
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Yang Zhang
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Xiao Li
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Qi Li
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Chenyun Wu
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Guangjie Chen
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - XiaoKui Guo
- 3Institute for Global Health, Shanghai Jiao Tong University School of Medicine-Chinese Center for Tropical Diseases Research, Shanghai, 200025 People's Republic of China
| | - Yongqiang Weng
- 2Department of General Surgery, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040 People's Republic of China
| | - Zhaojun Wang
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| |
Collapse
|
7
|
Yin C, Wu C, Du X, Fang Y, Pu J, Wu J, Tang L, Zhao W, Weng Y, Guo X, Chen G, Wang Z. PRL2 Controls Phagocyte Bactericidal Activity by Sensing and Regulating ROS. Front Immunol 2018; 9:2609. [PMID: 30483267 PMCID: PMC6244668 DOI: 10.3389/fimmu.2018.02609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023] Open
Abstract
Although it is well-recognized that inflammation enhances leukocyte bactericidal activity, the underlying mechanisms are not clear. Here we report that PRL2 is sensitive to oxidative stress at inflamed sites. Reduced PRL2 in phagocytes causes increased respiratory burst activity and enhances phagocyte bactericidal activity. PRL2 (Phosphatase Regenerating Liver 2) is highly expressed in resting immune cells, but is markedly downregulated by inflammation. in vitro experiments showed that PRL2 was sensitive to hydrogen peroxide (H2O2), a common damage signal at inflamed sites. In response to infection, PRL2 knockout (KO) phagocytes were hyper activated, produced more reactive oxygen species (ROS) and exhibited enhanced bactericidal activity. Mice with PRL2 deficiency in the myeloid cell compartment were resistant to lethal listeria infection and cleared the bacteria more rapidly and effectively. Moreover, in vitro experiments demonstrated that PRL2 binds to GTPase Rac and regulates ROS production. Rac GTPases were more active in PRL2 (KO) phagocytes than in wild type cells after bacterium infection. Our findings indicate that PRL2 senses ROS at inflamed sites and regulates ROS production in phagocytes. This positive feedback mechanism promotes bactericidal activity of phagocytes and may play an important role in innate anti-bacterial immunity.
Collapse
Affiliation(s)
- Cennan Yin
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenyun Wu
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinyue Du
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Fang
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juebiao Pu
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianhua Wu
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lili Tang
- Department of Basic Medicine, Guangxi Medical University, Nanning, China
| | - Wei Zhao
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongqiang Weng
- Department of General Surgery, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaokui Guo
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Castro-Sánchez P, Ramirez-Munoz R, Martín-Cófreces NB, Aguilar-Sopeña O, Alegre-Gomez S, Hernández-Pérez S, Reyes R, Zeng Q, Cabañas C, Sánchez-Madrid F, Roda-Navarro P. Phosphatase of Regenerating Liver-1 (PRL-1) Regulates Actin Dynamics During Immunological Synapse Assembly and T Cell Effector Function. Front Immunol 2018; 9:2655. [PMID: 30515156 PMCID: PMC6255827 DOI: 10.3389/fimmu.2018.02655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/29/2018] [Indexed: 12/30/2022] Open
Abstract
The regulatory role of most dual specific phosphatases during T cell activation remains unknown. Here, we have studied the expression and function of phosphatases of regenerating liver (PRLs: PRL-1, PRL-2, and PRL-3) during T cell activation, as well as, the dynamic delivery of PRL-1 to the Immunological Synapse (IS). We found that T cell activation downregulates the expression of PRL-2, resulting in an increased PRL-1/PRL-2 ratio. PRL-1 redistributed at the IS in two stages: Initially, it was transiently accumulated at scanning membranes enriched in CD3 and actin, and at later times, it was delivered at the contact site from pericentriolar, CD3ζ-containing, vesicles. Once at the established IS, PRL-1 distributed to LFA-1 and CD3ε sites. Remarkably, PRL-1 was found to regulate actin dynamics during IS assembly and the secretion of IL-2. Moreover, pharmacological inhibition of the catalytic activity of the three PRLs reduced the secretion of IL-2. These results provide evidence indicating a regulatory role of PRL-1 during IS assembly and highlight the involvement of PRLs in immune responses by mature T cells.
Collapse
Affiliation(s)
- Patricia Castro-Sánchez
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Rocío Ramirez-Munoz
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Noa B Martín-Cófreces
- Servicio de Inmunología. Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Oscar Aguilar-Sopeña
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Sergio Alegre-Gomez
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Sara Hernández-Pérez
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Raquel Reyes
- Department of Cell Biology and Immunology, Center for Molecular Biology Severo Ochoa (CBM-SO), Mayor Council of Scientific Research (CSIC), Madrid, Spain
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Carlos Cabañas
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Department of Cell Biology and Immunology, Center for Molecular Biology Severo Ochoa (CBM-SO), Mayor Council of Scientific Research (CSIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología. Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,12 de Octubre Health Research Institute (imas12), Madrid, Spain
| |
Collapse
|
9
|
Abstract
The phosphatase of regenerating liver (PRL) family, also known as protein tyrosine phosphatase 4A (PTP4A), are dual-specificity phosphatases with largely unknown cellular functions. However, accumulating evidence indicates that PRLs are oncogenic across a broad variety of human cancers. PRLs are highly expressed in advanced tumors and metastases compared to early stage cancers or matched healthy tissue, and high expression of PRLs often correlates with poor patient prognosis. Consequentially, PRLs have been considered potential therapeutic targets in cancer. Persistent efforts have been made to define their role and mechanism in cancer progression and to create specific PRL inhibitors for basic research and drug development. However, targeting PRLs with small molecules remains challenging due to the highly conserved active site of protein tyrosine phosphatases and a high degree of sequence similarity between the PRL protein families. Here, we review the current PRL inhibitors, including the strategies used for their identification, their biological efficacy, potency, and selectivity, with a special focus on how PRL structure can inform future efforts to develop specific PRL inhibitors.
Collapse
Affiliation(s)
- Min Wei
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Jessica S Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
10
|
Uetani N, Hardy S, Gravel SP, Kiessling S, Pietrobon A, Wong NN, Chénard V, Cermakian N, St-Pierre J, Tremblay ML. PRL2 links magnesium flux and sex-dependent circadian metabolic rhythms. JCI Insight 2017; 2:91722. [PMID: 28679948 DOI: 10.1172/jci.insight.91722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/23/2017] [Indexed: 11/17/2022] Open
Abstract
Magnesium (Mg2+) plays pleiotropic roles in cellular biology, and it is essentially required for all living organisms. Although previous studies demonstrated intracellular Mg2+ levels were regulated by the complex of phosphatase of regenerating liver 2 (PRL2) and Mg2+ transporter of cyclin M (CNNMs), physiological functions of PRL2 in whole animals remain unclear. Interestingly, Mg2+ was recently identified as a regulator of circadian rhythm-dependent metabolism; however, no mechanism was found to explain the clock-dependent Mg2+ oscillation. Herein, we report PRL2 as a missing link between sex and metabolism, as well as clock genes and daily cycles of Mg2+ fluxes. Our results unveil that PRL2-null animals displayed sex-dependent alterations in body composition, and expression of PRLs and CNNMs were sex- and circadian time-dependently regulated in brown adipose tissues. Consistently, PRL2-KO mice showed sex-dependent alterations in thermogenesis and in circadian energy metabolism. These physiological changes were associated with an increased rate of uncoupled respiration with lower intracellular Mg2+ in PRL2-KO cells. Moreover, PRL2 deficiency causes inhibition of the ATP citrate lyase axis, which is involved in fatty acid synthesis. Overall, our findings support that sex- and circadian-dependent PRL2 expression alter intracellular Mg2+ levels, which accordingly controls energy metabolism status.
Collapse
Affiliation(s)
| | - Serge Hardy
- Rosalind and Morris Goodman Cancer Research Centre
| | | | - Silke Kiessling
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, and
| | | | - Nau Nau Wong
- Rosalind and Morris Goodman Cancer Research Centre
| | | | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, and
| | - Julie St-Pierre
- Rosalind and Morris Goodman Cancer Research Centre.,Department of Biochemistry
| | - Michel L Tremblay
- Rosalind and Morris Goodman Cancer Research Centre.,Department of Biochemistry.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
11
|
Role of phosphatase of regenerating liver 1 (PRL1) in spermatogenesis. Sci Rep 2016; 6:34211. [PMID: 27666520 PMCID: PMC5035919 DOI: 10.1038/srep34211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/09/2016] [Indexed: 01/08/2023] Open
Abstract
The PRL phosphatases are oncogenic when overexpressed but their in vivo biological function is less well understood. Previous gene deletion study revealed a role for PRL2 in spermatogenesis. We report here the first knockout mice lacking PRL1, the most related homolog of PRL2. We found that loss of PRL1 does not affect spermatogenesis and reproductive ability of male mice, likely due to functional compensation by the relatively higher expression of PRL2 in the testes. However, PRL1-/-/PRL2+/- male mice show testicular atrophy phenotype similar to PRL2-/- mice. More strikingly, deletion of one PRL1 allele in PRL2-/- male mice causes complete infertility. Mechanistically, the total level of PRL1 and PRL2 is negatively correlated with the PTEN protein level in the testis and PRL1+/-/PRL2-/- mice have the highest level of PTEN, leading to attenuated Akt activation and increased germ cell apoptosis, effectively halting spermatozoa production. These results provide the first evidence that in addition to PRL2, PRL1 is also required for spermatogenesis by downregulating PTEN and promoting Akt signaling. The ability of the PRLs to suppress PTEN expression underscores the biochemical basis for their oncogenic potential.
Collapse
|
12
|
Gungabeesoon J, Tremblay ML, Uetani N. Localizing PRL-2 expression and determining the effects of dietary Mg(2+) on expression levels. Histochem Cell Biol 2016; 146:99-111. [PMID: 27015884 DOI: 10.1007/s00418-016-1427-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2016] [Indexed: 11/30/2022]
Abstract
The phosphatase of regenerating liver (PRL) is a group of protein tyrosine phosphatases that play a key role in cancer progression and metastasis. We previously showed that PRL-2 modulates intracellular Mg(2+) levels and sustains cancer phenotypes by binding to the Mg(2+) transporter CNNM3. However, the physiological functions of PRL-2 in animals remain largely unknown. To better understand which cell types are associated with PRL-2 function, we characterized its expression in mouse tissues using a PRL-2 β-galactosidase reporter mouse model. Our results demonstrated that PRL-2 was ubiquitously expressed, with the highest expression levels observed in the hippocampal pyramidal neurons, ependymal cells, cone and rod photoreceptor cells, endocardium, vascular and bronchial smooth muscle, and collecting ducts in the kidney. On the other hand, PRL-2 expression was undetectable or very low in the parenchymal cells of the liver and pancreas. Our results also indicated that PRL-2 is involved in cell-type-specific Mg(2+) homeostasis and that PRL-2 expression is potentially inversely regulated by dietary Mg(2+) levels.
Collapse
Affiliation(s)
- Jeremy Gungabeesoon
- Department of Microbiology and Immunology, 3775 University Street, Montreal, QC, H3A 2B4, Canada
| | - Michel L Tremblay
- Department of Microbiology and Immunology, 3775 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Cancer Research Building, 1160 Pine Avenue West, Room 618, Montreal, QC, H3A 1A3, Canada
| | - Noriko Uetani
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Cancer Research Building, 1160 Pine Avenue West, Room 618, Montreal, QC, H3A 1A3, Canada.
| |
Collapse
|
13
|
Li L, Shi H, Zhang M, Guo X, Tong F, Zhang W, Zhou J, Wang H, Yang S. Upregulation of metastasis-associated PRL-3 initiates chordoma in zebrafish. Int J Oncol 2016; 48:1541-52. [PMID: 26846972 DOI: 10.3892/ijo.2016.3363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/15/2016] [Indexed: 11/06/2022] Open
Abstract
The metastasis-associated phosphatase of regenerating liver-3 (PRL-3) plays multiple roles in progression of various human cancers; however, significance of its role during development has not been addressed. Here we cloned and characterized the expression pattern of zebrafish prl-3 transcript and showed that it is ubiquitiously expressed in the first 24 h of development with both maternal and zygotic expressions. The transcripts become progressively restricted to the notochord, vessels and the intestine by 96 h post-fertilization. Notably, overexpression of zebrafish Prl-3 (zPrl-3) and human PRL-3 induces notochord malformation in zebrafish. This phenotype resembles chordoma and is confirmed by associated misexpression of notochord-specific markers. Clinical significance of the PRL-3 in chordoma is strongly suggested by detection of PRL-3 antigen in clinical chordoma specimens. Collectively, our results uncovered that aberrant overexpression of PRL-3 could initiate chordoma in early development and suggest the use of PRL-3 could be used as a predictor and a therapeutic target for chordoma.
Collapse
Affiliation(s)
- Li Li
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong CPZN 510080, P.R. China
| | - Hongshun Shi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong CPZN 510080, P.R. China
| | - Mingming Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong CPZN 510080, P.R. China
| | - Xiaoling Guo
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong CPZN 510080, P.R. China
| | - Fang Tong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong CPZN 510080, P.R. China
| | - Wenliang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong CPZN 510080, P.R. China
| | - Junyi Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong CPZN 510080, P.R. China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong CPZN 510080, P.R. China
| | - Shulan Yang
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong CPZN 510080, P.R. China
| |
Collapse
|
14
|
Kobayashi M, Chen S, Gao R, Bai Y, Zhang ZY, Liu Y. Phosphatase of regenerating liver in hematopoietic stem cells and hematological malignancies. Cell Cycle 2015; 13:2827-35. [PMID: 25486470 DOI: 10.4161/15384101.2014.954448] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The phosphatases of regenerating liver (PRLs), consisting PRL1, PRL2 and PRL3, are dual-specificity protein phosphatases that have been implicated as biomarkers and therapeutic targets in several solid tumors. However, their roles in hematological malignancies are largely unknown. Recent findings demonstrate that PRL2 is important for hematopoietic stem cell self-renewal and proliferation. In addition, both PRL2 and PRL3 are highly expressed in some hematological malignancies, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), multiple myeloma (MM) and acute lymphoblastic leukemia (ALL). Moreover, PRL deficiency impairs the proliferation and survival of leukemia cells through regulating oncogenic signaling pathways. While PRLs are potential novel therapeutic targets in hematological malignancies, their exact biological function and cellular substrates remain unclear. This review will discuss how PRLs regulate hematopoietic stem cell behavior, what signaling pathways are regulated by PRLs, and how to target PRLs in hematological malignancies. An improved understanding of how PRLs function and how they are regulated may facilitate the development of PRL inhibitors that are effective in cancer treatment.
Collapse
Affiliation(s)
- Michihiro Kobayashi
- a Department of Pediatrics, Herman B Wells Center for Pediatric Research; Department of Biochemistry and Molecular Biology , Indiana University School of Medicine ; Indianapolis , IN USA
| | | | | | | | | | | |
Collapse
|
15
|
Zuo L, Tan Y, Zhang X, Wang X, Krystal J, Tabakoff B, Zhong C, Luo X. A New Genomewide Association Meta-Analysis of Alcohol Dependence. Alcohol Clin Exp Res 2015; 39:1388-95. [PMID: 26173551 PMCID: PMC5587504 DOI: 10.1111/acer.12786] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 05/18/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Conventional meta-analysis based on genetic markers may be less powerful for heterogeneous samples. In this study, we introduced a new meta-analysis for 4 genomewide association studies on alcohol dependence that integrated the information of putative causal variants. METHODS A total of 12,481 subjects in 4 independent cohorts were analyzed, including 1 European American cohort (1,409 cases with alcohol dependence and 1,518 controls), 1 European Australian cohort (a total of 6,438 family subjects with 1,645 probands), 1 African American cohort from SAGE + COGA (681 cases and 508 controls), and 1 African American cohort from Yale (1,429 cases and 498 controls). The genomewide association analysis was conducted for each cohort, and then, a new meta-analysis was performed to derive the combined p-values. cis-Acting expression of quantitative locus (cis-eQTL) analysis of each risk variant in human tissues and RNA expression analysis of each risk gene in rat brain served as functional validation. RESULTS In meta-analysis of European American and European Australian cohorts, we found 10 top-ranked single nucleotide polymorphisms (SNPs) (p < 10(-6) ) that were associated with alcohol dependence. They included 6 at SERINC2 (3.1 × 10(-8) ≤ p ≤ 9.6 × 10(-8) ), 1 at STK40 (p = 1.3 × 10(-7) ), 2 at KIAA0040 (3.3 × 10(-7) ≤ p ≤ 5.2 × 10(-7) ), and 1 at IPO11 (p = 6.9 × 10(-7) ). In meta-analysis of 2 African American cohorts, we found 2 top-ranked SNPs including 1 at SLC6A11 (p = 2.7 × 10(-7) ) and 1 at CBLN2 (p = 7.4 × 10(-7) ). In meta-analysis of all 4 cohorts, we found 2 top-ranked SNPs in PTP4A1-PHF3 locus (6.0 × 10(-7) ≤ p ≤ 7.2 × 10(-7) ). In an African American cohort only, we found 1 top-ranked SNP at PLD1 (p = 8.3 × 10(-7) ; OR = 1.56). Many risk SNPs had positive cis-eQTL signals, and all these risk genes except KIAA0040 were found to express in both rat and mouse brains. CONCLUSIONS We found multiple genes that were significantly or suggestively associated with alcohol dependence. They are among the most appropriate for follow-up as contributors to risk for alcohol dependence.
Collapse
Affiliation(s)
- Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Xiangyang Zhang
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoping Wang
- Department of Neurology, First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - John Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Boris Tabakoff
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Chunlong Zhong
- Department of Neurosurgery, Dongfang Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
16
|
Kiris E, Nuss JE, Stanford SM, Wanner LM, Cazares L, Maestre MF, Du HT, Gomba GY, Burnett JC, Gussio R, Bottini N, Panchal RG, Kane CD, Tessarollo L, Bavari S. Phosphatase Inhibitors Function as Novel, Broad Spectrum Botulinum Neurotoxin Antagonists in Mouse and Human Embryonic Stem Cell-Derived Motor Neuron-Based Assays. PLoS One 2015; 10:e0129264. [PMID: 26061731 PMCID: PMC4462581 DOI: 10.1371/journal.pone.0129264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/06/2015] [Indexed: 12/05/2022] Open
Abstract
There is an urgent need to develop novel treatments to counter Botulinum neurotoxin (BoNT) poisoning. Currently, the majority of BoNT drug development efforts focus on directly inhibiting the proteolytic components of BoNT, i.e. light chains (LC). Although this is a rational approach, previous research has shown that LCs are extremely difficult drug targets and that inhibiting multi-serotype BoNTs with a single LC inhibitor may not be feasible. An alternative approach would target neuronal pathways involved in intoxication/recovery, rather than the LC itself. Phosphorylation-related mechanisms have been implicated in the intoxication pathway(s) of BoNTs. However, the effects of phosphatase inhibitors upon BoNT activity in the physiological target of BoNTs, i.e. motor neurons, have not been investigated. In this study, a small library of phosphatase inhibitors was screened for BoNT antagonism in the context of mouse embryonic stem cell-derived motor neurons (ES-MNs). Four inhibitors were found to function as BoNT/A antagonists. Subsequently, we confirmed that these inhibitors protect against BoNT/A in a dose-dependent manner in human ES-MNs. Additionally, these compounds provide protection when administered in post-intoxication scenario. Importantly, the inhibitors were also effective against BoNT serotypes B and E. To the best of our knowledge, this is the first study showing phosphatase inhibitors as broad-spectrum BoNT antagonists.
Collapse
Affiliation(s)
- Erkan Kiris
- Geneva Foundation, Tacoma, WA, United States of America
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, United States of America
| | - Jonathan E. Nuss
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Stephanie M. Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Laura M. Wanner
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Lisa Cazares
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Michael F. Maestre
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Hao T. Du
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Glenn Y. Gomba
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - James C. Burnett
- Leidos Biomedical Research, Inc., Computational Drug Development Group (CDDG), NCI, Frederick, MD, United States of America
- CDDG, Developmental Therapeutics Program, NCI, Frederick, MD, United States of America
| | - Rick Gussio
- CDDG, Developmental Therapeutics Program, NCI, Frederick, MD, United States of America
| | - Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Rekha G. Panchal
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Christopher D. Kane
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
- DoD Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center (TATRC), US Army Medical Research and Materiel Command (USAMRMC), Frederick, MD, United States of America
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, United States of America
| | - Sina Bavari
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| |
Collapse
|
17
|
Kobayashi M, Bai Y, Dong Y, Yu H, Chen S, Gao R, Zhang L, Yoder MC, Kapur R, Zhang ZY, Liu Y. PRL2/PTP4A2 phosphatase is important for hematopoietic stem cell self-renewal. Stem Cells 2015; 32:1956-67. [PMID: 24753135 DOI: 10.1002/stem.1672] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/20/2013] [Accepted: 01/18/2014] [Indexed: 01/19/2023]
Abstract
Hematopoietic stem cell (HSC) self-renewal is tightly controlled by cytokines and other signals in the microenvironment. While stem cell factor (SCF) is an early acting cytokine that activates the receptor tyrosine kinase KIT and promotes HSC maintenance, how SCF/KIT signaling is regulated in HSCs is poorly understood. The protein tyrosine phosphatase 4A (PTP4A) family (aka PRL [phosphatase of regenerating liver] phosphatases), consisting of PTP4A1/PRL1, PTP4A2/PRL2, and PTP4A3/PRL3, represents an intriguing group of phosphatases implicated in cell proliferation and tumorigenesis. However, the role of PTP4A in hematopoiesis remains elusive. To define the role of PTP4A in hematopoiesis, we analyzed HSC behavior in Ptp4a2 (Prl2) deficient mice. We found that Ptp4a2 deficiency impairs HSC self-renewal as revealed by serial bone marrow transplantation assays. Moreover, we observed that Ptp4a2 null hematopoietic stem and progenitor cells (HSPCs) are more quiescent and show reduced activation of the AKT and ERK signaling. Importantly, we discovered that the ability of PTP4A2 to enhance HSPC proliferation and activation of AKT and ERK signaling depends on its phosphatase activity. Furthermore, we found that PTP4A2 is important for SCF-mediated HSPC proliferation and loss of Ptp4a2 decreased the ability of oncogenic KIT/D814V mutant in promoting hematopoietic progenitor cell proliferation. Thus, PTP4A2 plays critical roles in regulating HSC self-renewal and mediating SCF/KIT signaling.
Collapse
Affiliation(s)
- Michihiro Kobayashi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research and Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jiao Y, Ye DZ, Li Z, Teta-Bissett M, Peng Y, Taub R, Greenbaum LE, Kaestner KH. Protein tyrosine phosphatase of liver regeneration-1 is required for normal timing of cell cycle progression during liver regeneration. Am J Physiol Gastrointest Liver Physiol 2015; 308:G85-91. [PMID: 25377314 PMCID: PMC4380483 DOI: 10.1152/ajpgi.00084.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Protein tyrosine phosphatase of liver regeneration-1 (Prl-1) is an immediate-early gene that is significantly induced during liver regeneration. Several in vitro studies have suggested that Prl-1 is important for the regulation of cell cycle progression. To evaluate its function in liver regeneration, we ablated the Prl-1 gene specifically in mouse hepatocytes using the Cre-loxP system. Prl-1 mutant mice (Prl-1(loxP/loxP);AlfpCre) appeared normal and fertile. Liver size and metabolic function in Prl-1 mutants were comparable to controls, indicating that Prl-1 is dispensable for liver development, postnatal growth, and hepatocyte differentiation. Mutant mice demonstrated a delay in DNA synthesis after 70% partial hepatectomy, although ultimate liver mass restoration was not affected. At 40 h posthepatectomy, reduced protein levels of the cell cycle regulators cyclin E, cyclin A2, cyclin B1, and cyclin-dependent kinase 1 were observed in Prl-1 mutant liver. Investigation of the major signaling pathways involved in liver regeneration demonstrated that phosphorylation of protein kinase B (AKT) and signal transducer and activator of transcription (STAT) 3 were significantly reduced at 40 h posthepatectomy in Prl-1 mutants. Taken together, this study provides evidence that Prl-1 is required for proper timing of liver regeneration after partial hepatectomy. Prl-1 promotes G1/S progression via modulating expression of several cell cycle regulators through activation of the AKT and STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yang Jiao
- 1Department of Genetics and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania;
| | - Diana Z. Ye
- 1Department of Genetics and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania;
| | - Zhaoyu Li
- 1Department of Genetics and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania;
| | - Monica Teta-Bissett
- 1Department of Genetics and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania;
| | - Yong Peng
- 1Department of Genetics and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania;
| | - Rebecca Taub
- 3VIA Pharmaceuticals, Fort Washington, Pennsylvania
| | - Linda E. Greenbaum
- 2Department of Cancer Biology, School of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Klaus H. Kaestner
- 1Department of Genetics and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania;
| |
Collapse
|
19
|
Ríos P, Nunes-Xavier CE, Tabernero L, Köhn M, Pulido R. Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxid Redox Signal 2014; 20:2251-73. [PMID: 24206177 DOI: 10.1089/ars.2013.5709] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE The dual-specificity phosphatases (DUSPs) constitute a heterogeneous group of cysteine-based protein tyrosine phosphatases, whose members exert a pivotal role in cell physiology by dephosphorylation of phosphoserine, phosphothreonine, and phosphotyrosine residues from proteins, as well as other non-proteinaceous substrates. RECENT ADVANCES A picture is emerging in which a selected group of DUSP enzymes display overexpression or hyperactivity that is associated with human disease, especially human cancer, making feasible targeted therapy approaches based on their inhibition. A panoply of molecular and functional studies on DUSPs have been performed in the previous years, and drug-discovery efforts are ongoing to develop specific and efficient DUSP enzyme inhibitors. This review summarizes the current status on inhibitory compounds targeting DUSPs that belong to the MAP kinase phosphatases-, small-sized atypical-, and phosphatases of regenerating liver subfamilies, whose inhibition could be beneficial for the prevention or mitigation of human disease. CRITICAL ISSUES Achieving specificity, potency, and bioavailability are the major challenges in the discovery of DUSP inhibitors for the clinics. Clinical validation of compounds or alternative inhibitory strategies of DUSP inhibition has yet to come. FUTURE DIRECTIONS Further work is required to understand the dual role of many DUSPs in human cancer, their function-structure properties, and to identify their physiologic substrates. This will help in the implementation of therapies based on DUSPs inhibition.
Collapse
Affiliation(s)
- Pablo Ríos
- 1 Genome Biology Unit, European Molecular Biology Laboratory , Heidelberg, Germany
| | | | | | | | | |
Collapse
|
20
|
Hardy S, Uetani N, Wong N, Kostantin E, Labbé DP, Bégin LR, Mes-Masson A, Miranda-Saavedra D, Tremblay ML. The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis. Oncogene 2014; 34:986-95. [DOI: 10.1038/onc.2014.33] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/11/2013] [Accepted: 01/06/2014] [Indexed: 01/07/2023]
|
21
|
Campbell AM, Zhang ZY. Phosphatase of regenerating liver: a novel target for cancer therapy. Expert Opin Ther Targets 2014; 18:555-69. [PMID: 24579927 DOI: 10.1517/14728222.2014.892926] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Phosphatases of regenerating livers (PRLs) are novel oncogenes that interact with many well-established cell signaling pathways that are misregulated in cancer, and are known to drive cancer metastasis when overexpressed. AREAS COVERED This review covers basic information of the discovery and characteristics of the PRL family. We also report findings on the role of PRL in cancer, cell functions and cell signaling. Furthermore, PRL's suitability as a novel drug target is discussed along with current methods being developed to facilitate PRL inhibition. EXPERT OPINION PRLs show great potential as novel drug targets for anticancer therapeutics. Studies indicate that PRL can perturb major cancer pathways such as Src/ERK1/2 and PTEN/PI3K/Akt. Upregulation of PRLs has also been shown to drive cancer metastasis. However, in order to fully realize its therapeutic potential, a deeper understanding of the function of PRL in normal tissue and in cancer must be obtained. Novel and integrated biochemical, chemical, biological, and genetic approaches will be needed to identify PRL substrate(s) and to provide proof-of-concept data on the druggability of the PRL phosphatases.
Collapse
Affiliation(s)
- Amanda M Campbell
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology , John D. Van Nuys Medical Science Building, Room 4053A, 635 Barnhill Drive, Indianapolis, IN 46202-5126 , USA
| | | |
Collapse
|
22
|
Dong Y, Zhang L, Bai Y, Zhou HM, Campbell AM, Chen H, Yong W, Zhang W, Zeng Q, Shou W, Zhang ZY. Phosphatase of regenerating liver 2 (PRL2) deficiency impairs Kit signaling and spermatogenesis. J Biol Chem 2013; 289:3799-810. [PMID: 24371141 DOI: 10.1074/jbc.m113.512079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Phosphatase of Regenerating Liver (PRL) proteins promote cell signaling and are oncogenic when overexpressed. However, our understanding of PRL function came primarily from studies with cultured cell lines aberrantly or ectopically expressing PRLs. To define the physiological roles of the PRLs, we generated PRL2 knock-out mice to study the effects of PRL deletion in a genetically controlled, organismal model. PRL2-deficient male mice exhibit testicular hypotrophy and impaired spermatogenesis, leading to decreased reproductive capacity. Mechanistically, PRL2 deficiency results in elevated PTEN level in the testis, which attenuates the Kit-PI3K-Akt pathway, resulting in increased germ cell apoptosis. Conversely, increased PRL2 expression in GC-1 cells reduces PTEN level and promotes Akt activation. Our analyses of PRL2-deficient animals suggest that PRL2 is required for spermatogenesis during testis development. The study also reveals that PRL2 promotes Kit-mediated PI3K/Akt signaling by reducing the level of PTEN that normally antagonizes the pathway. Given the strong cancer susceptibility to subtle variations in PTEN level, the ability of PRL2 to repress PTEN expression qualifies it as an oncogene and a novel target for developing anti-cancer agents.
Collapse
Affiliation(s)
- Yuanshu Dong
- From the Department of Biochemistry and Molecular Biology, and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hamilton-Williams EE, Rainbow DB, Cheung J, Christensen M, Lyons PA, Peterson LB, Steward CA, Sherman LA, Wicker LS. Fine mapping of type 1 diabetes regions Idd9.1 and Idd9.2 reveals genetic complexity. Mamm Genome 2013; 24:358-75. [PMID: 23934554 PMCID: PMC3824839 DOI: 10.1007/s00335-013-9466-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/02/2013] [Indexed: 12/01/2022]
Abstract
Nonobese diabetic (NOD) mice congenic for C57BL/10 (B10)-derived genes in the Idd9 region of chromosome 4 are highly protected from type 1 diabetes (T1D). Idd9 has been divided into three protective subregions (Idd9.1, 9.2, and 9.3), each of which partially prevents disease. In this study we have fine-mapped the Idd9.1 and Idd9.2 regions, revealing further genetic complexity with at least two additional subregions contributing to protection from T1D. Using the NOD sequence from bacterial artificial chromosome clones of the Idd9.1 and Idd9.2 regions as well as whole-genome sequence data recently made available, sequence polymorphisms within the regions highlight a high degree of polymorphism between the NOD and B10 strains in the Idd9 regions. Among numerous candidate genes are several with immunological importance. The Idd9.1 region has been separated into Idd9.1 and Idd9.4, with Lck remaining a candidate gene within Idd9.1. One of the Idd9.2 regions contains the candidate genes Masp2 (encoding mannan-binding lectin serine peptidase 2) and Mtor (encoding mammalian target of rapamycin). From mRNA expression analyses, we have also identified several other differentially expressed candidate genes within the Idd9.1 and Idd9.2 regions. These findings highlight that multiple, relatively small genetic effects combine and interact to produce significant changes in immune tolerance and diabetes onset.
Collapse
Affiliation(s)
- Emma E Hamilton-Williams
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lin MD, Lee HT, Wang SC, Li HR, Hsien HL, Cheng KW, Chang YD, Huang ML, Yu JK, Chen YH. Expression of phosphatase of regenerating liver family genes during embryogenesis: an evolutionary developmental analysis among Drosophila, amphioxus, and zebrafish. BMC DEVELOPMENTAL BIOLOGY 2013; 13:18. [PMID: 23641863 PMCID: PMC3663695 DOI: 10.1186/1471-213x-13-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/29/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Phosphatase of regenerating liver (PRL) family is classified as class IVa of protein tyrosine phosphatase (PTP4A) that removes phosphate groups from phosphorylated tyrosine residues on proteins. PRL phosphatases have been implicated in a number of tumorigenesis and metastasis processes and are highly conserved. However, the understanding of PRL expression profiles during embryonic development is very limited. RESULTS In this study, we demonstrated and characterized the comprehensive expression pattern of Drosophila PRL, amphioxus PRL, and zebrafish PRLs during embryonic development by either whole mount immunostaining or in situ hybridization. Our results indicate that Drosophila PRL is mainly enriched in developing mid-guts and central nervous system (CNS) in embryogenesis. In amphioxus, initially PRL gene is expressed ubiquitously during early embryogenesis, but its expression become restricted to the anterior neural tube in the cerebral vesicle. In zebrafish, PRL-1 and PRL-2 share similar expression patterns, most of which are neuronal lineages. In contrast, the expression of zebrafish PRL-3 is more specific and preferential in muscle. CONCLUSIONS This study, for the first time, elucidated the embryonic expression pattern of Drosophila, amphioxus, and zebrafish PRL genes. The shared PRL expression pattern in the developing CNS among diverse animals suggests that PRL may play conserved roles in these animals for CNS development.
Collapse
Affiliation(s)
- Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No,701, Zhongyang Rd,, Sec 3, Hualien 97004, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dong Y, Zhang L, Zhang S, Bai Y, Chen H, Sun X, Yong W, Li W, Colvin SC, Rhodes SJ, Shou W, Zhang ZY. Phosphatase of regenerating liver 2 (PRL2) is essential for placental development by down-regulating PTEN (Phosphatase and Tensin Homologue Deleted on Chromosome 10) and activating Akt protein. J Biol Chem 2012; 287:32172-9. [PMID: 22791713 DOI: 10.1074/jbc.m112.393462] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PRL (phosphatase of regenerating liver) phosphatases are implicated in the control of cell proliferation and invasion. Aberrant PRL expression is associated with progression and metastasis of multiple cancers. However, the specific in vivo function of the PRLs remains elusive. Here we show that deletion of PRL2, the most ubiquitously expressed PRL family member, leads to impaired placental development and retarded growth at both embryonic and adult stages. Ablation of PRL2 inactivates Akt and blocks glycogen cell proliferation, resulting in reduced spongiotrophoblast and decidual layers in the placenta. These structural defects cause placental hypotrophy and insufficiency, leading to fetal growth retardation. We demonstrate that the tumor suppressor PTEN is elevated in PRL2-deficient placenta. Biochemical analyses indicate that PRL2 promotes Akt activation by down-regulating PTEN through the proteasome pathway. This study provides the first evidence that PRL2 is required for extra-embryonic development and associates the oncogenic properties of PRL2 with its ability to negatively regulate PTEN, thereby activating the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Yuanshu Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Increased expression of PRL-1 protein correlates with shortened patient survival in human hepatocellular carcinoma. Clin Transl Oncol 2012; 14:287-93. [DOI: 10.1007/s12094-012-0797-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
|
28
|
Dumaual CM, Sandusky GE, Soo HW, Werner SR, Crowell PL, Randall SK. Tissue-specific alterations of PRL-1 and PRL-2 expression in cancer. Am J Transl Res 2012; 4:83-101. [PMID: 22347524 PMCID: PMC3276379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/30/2011] [Indexed: 05/31/2023]
Abstract
The PRL-1 and PRL-2 phosphatases have been implicated as oncogenic, however the involvement of these molecules in human neoplasms is not well understood. To increase understanding of the role PRL-1 and PRL-2 play in the neoplastic process, in situ hybridization was used to examine PRL-1 and PRL-2 mRNA expression in 285 normal, benign, and malignant human tissues of diverse origin. Immunohistochemical analysis was performed on a subset of these. PRL-1 and PRL-2 mRNA expression was also assessed in a small set of samples from a variety of diseases other than cancer. Where possible, associations with clinicopathological characteristics were evaluated. Alterations in PRL-1 or -2 expression were a frequent event, but the nature of those alterations was highly tumor type specific. PRL-1 was significantly overexpressed in 100% of hepatocellular and gastric carcinomas, but significantly under-expressed in 100% of ovarian, 80% of breast, and 75% of lung tumors. PRL-2 expression was significantly increased in 100% of hepatocellular carcinomas, yet significantly downregulated in 54% of kidney carcinomas. PRL-1 expression was correlated to patient gender in the bladder and to patient age in the brain and skeletal muscle. PRL-1 expression was also associated with tumor grade in the prostate, ovary, and uterus. These results suggest a pleiotropic role for PRL-1 and PRL-2 in the neoplastic process. These molecules may associate with tumor progression and serve as clinical markers of tumor aggressiveness in some tissues, but be involved in inhibition of tumor formation or growth in others.
Collapse
Affiliation(s)
- Carmen M Dumaual
- Department of Biology, Indiana University-Purdue University Indianapolis723 West Michigan St., Room SL306, Indianapolis, Indiana, 46202, USA
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of MedicineVan Nuys Medical Science Building, 635 Barnhill Drive, Room A128, Indianapolis, IN, 46202, USA
| | - Han Weng Soo
- Ministry of DefenceSingapore, MINDEF building, 303 Gombak Drive #Bl-36, Singapore 669645, Singapore
| | - Sean R Werner
- Cook Medical Inc., 750 North Daniels WayBloomington, IN, 47404, USA
| | - Pamela L Crowell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University4600 Sunset Ave., Indianapolis, IN, 46208, USA
| | - Stephen K Randall
- Department of Biology, Indiana University-Purdue University Indianapolis723 West Michigan St., Room SL306, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
29
|
Al-Aidaroos AQO, Zeng Q. PRL-3 phosphatase and cancer metastasis. J Cell Biochem 2011; 111:1087-98. [PMID: 21053359 DOI: 10.1002/jcb.22913] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The deregulated expression of members of the phosphatase of regenerating liver (PRL) family has been implicated in the metastatic progression of multiple human cancers. Importantly, PRL-1 and PRL-3 both possess the capacity to drive key steps in metastatic progression. Yet, little is known about the regulation and oncogenic mechanisms of this emerging class of dual-specificity phosphatases. This prospect article details the involvement of PRLs in the metastatic cascade, the regulatory mechanisms controlling PRL expression, and recent efforts in the characterization of PRL-modulated pathways and substrates using biochemical and high-throughput approaches. Current advances and future prospects in anti-cancer therapy targeting this family are also discussed.
Collapse
Affiliation(s)
- Abdul Qader O Al-Aidaroos
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore 138648, Republic of Singapore
| | | |
Collapse
|
30
|
Dai N, Lu AP, Shou CC, Li JY. Expression of phosphatase regenerating liver 3 is an independent prognostic indicator for gastric cancer. World J Gastroenterol 2009; 15:1499-505. [PMID: 19322925 PMCID: PMC2665146 DOI: 10.3748/wjg.15.1499] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the prognostic significance of phosphatase regenerating liver 3 (PRL-3) protein expression in gastric cancer.
METHODS: PRL-3 expression in paraffin-embedded tumor specimens from 293 patients with gastric cancer was studied retrospectively by immunohistochemistry. Monoclonal antibody specifically against PRL-3, 3B6, was obtained with hybridoma technique.
RESULTS: Positive PRL-3 expression was detected in 43.3% (127 of 293) of gastric cancer cases. High expression of PRL-3 was positively correlated with tumor size, depth of invasion, vascular/lymphatic invasion, lymph node metastasis, high TNM stage and tumor recurrence. Patients with positive PRL-3 expression had a significantly lower 5-year survival rate than those with negative expression (28.3% vs 51.9%, P < 0.0001). Patients who received curative surgery, and with positive PRL-3 expression had a significant shorter overall survival and disease-free disadvantage over patients with negative expression (hazard ratio of 16.7 and 16.6, respectively; P < 0.0001 for both). Multivariate analysis revealed that PRL-3 expression was an independent prognostic indicator for overall and disease-free survival of gastric cancer patients, particularly for survival in TNM stage III patients.
CONCLUSION: PRL-3 expression is a new independent prognostic indicator to predict the potential of recurrence and survival in patients with gastric cancer at the time of tumor resection.
Collapse
|
31
|
Abstract
DUSPs (dual-specificity phosphatases) are a heterogeneous group of protein phosphatases that can dephosphorylate both phosphotyrosine and phosphoserine/phosphothreonine residues within the one substrate. DUSPs have been implicated as major modulators of critical signalling pathways that are dysregulated in various diseases. DUSPs can be divided into six subgroups on the basis of sequence similarity that include slingshots, PRLs (phosphatases of regenerating liver), Cdc14 phosphatases (Cdc is cell division cycle), PTENs (phosphatase and tensin homologues deleted on chromosome 10), myotubularins, MKPs (mitogen-activated protein kinase phosphatases) and atypical DUSPs. Of these subgroups, a great deal of research has focused on the characterization of the MKPs. As their name suggests, MKPs dephosphorylate MAPK (mitogen-activated protein kinase) proteins ERK (extracellular-signal-regulated kinase), JNK (c-Jun N-terminal kinase) and p38 with specificity distinct from that of individual MKP proteins. Atypical DUSPs are mostly of low-molecular-mass and lack the N-terminal CH2 (Cdc25 homology 2) domain common to MKPs. The discovery of most atypical DUSPs has occurred in the last 6 years, which has initiated a large amount of interest in their role and regulation. In the past, atypical DUSPs have generally been grouped together with the MKPs and characterized for their role in MAPK signalling cascades. Indeed, some have been shown to dephosphorylate MAPKs. The current literature hints at the potential of the atypical DUSPs as important signalling regulators, but is crowded with conflicting reports. The present review provides an overview of the DUSP family before focusing on atypical DUSPs, emerging as a group of proteins with vastly diverse substrate specificity and function.
Collapse
|
32
|
|
33
|
Abstract
Aberrant protein tyrosine phosphorylation resulting from the altered activity of protein tyrosine phosphatases (PTPs) is increasingly being implicated in the genesis and progression of human cancer. Accumulating evidence indicates that the dysregulated expression of members of the phosphatase of regenerating liver (PRL) subgroup of PTPs is linked to these processes. Enhanced expression of the PRLs, notably PRL-1 and PRL-3, promotes the acquisition of cellular properties that confer tumorigenic and metastatic abilities. Up-regulation of PRL-3 is associated with the progression and eventual metastasis of several types of human cancer. Indeed, PRL-3 shows promise as a biomarker and prognostic indicator in colorectal, breast, and gastric cancers. However, the substrates and molecular mechanisms of action of the PRLs have remained elusive. Recent findings indicate that PRLs may function in regulating cell adhesion structures to effect epithelial-mesenchymal transition. The identification of PRL substrates is key to understanding their roles in cancer progression and exploiting their potential as exciting new therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Darrell C Bessette
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|