1
|
Ospina-Jimenez AF, Gomez AP, Rincon-Monroy MA, Ortiz L, Perez DR, Peña M, Ramirez-Nieto G. Sequence-Based Antigenic Analyses of H1 Swine Influenza A Viruses from Colombia (2008-2021) Reveals Temporal and Geographical Antigenic Variations. Viruses 2023; 15:2030. [PMID: 37896808 PMCID: PMC10612065 DOI: 10.3390/v15102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Swine influenza is a respiratory disease that affects the pork industry and is a public health threat. It is caused by type A influenza virus (FLUAV), which continuously undergoes genetic and antigenic variations. A large amount of information regarding FLUAV in pigs is available worldwide, but it is limited in Latin America. The HA sequences of H1 subtype FLUAV-positive samples obtained from pigs in Colombia between 2008-2021 were analyzed using sequence-based antigenic cartography and N-Glycosylation analyses. Of the 12 predicted global antigenic groups, Colombia contained five: four corresponding to pandemic strains and one to the classical swine H1N1 clade. Circulation of these clusters was observed in some regions during specific years. Ca2 was the immunodominant epitope among Colombian viruses. The counts of N-Glycosylation motifs were associated with the antigenic cluster ranging from three to five. The results show for the first time the existence of antigenic diversity of FLUAV in Colombia and highlight the impact of spatial and temporal factors on this diversity. This study provides information about FLUAV variability in pigs under natural conditions in the absence of vaccination and emphasizes the need for surveillance of its phylogenetic and antigenic characteristics.
Collapse
Affiliation(s)
- Andres F. Ospina-Jimenez
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (A.F.O.-J.); (A.P.G.); (M.A.R.-M.)
| | - Arlen P. Gomez
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (A.F.O.-J.); (A.P.G.); (M.A.R.-M.)
| | - Maria A. Rincon-Monroy
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (A.F.O.-J.); (A.P.G.); (M.A.R.-M.)
- National Veterinary Diagnostics Laboratory, Colombian Agricultural Institute (ICA), Bogotá 110931, Colombia
| | - Lucia Ortiz
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (L.O.); (D.R.P.)
| | - Daniel R. Perez
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (L.O.); (D.R.P.)
| | - Mario Peña
- Asociación Colombiana de Porcicultores Porkcolombia—FNP, Bogotá 111311, Colombia;
| | - Gloria Ramirez-Nieto
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (A.F.O.-J.); (A.P.G.); (M.A.R.-M.)
| |
Collapse
|
2
|
Kim S, Carrel M, Kitchen A. Spatial genetic structure of 2009 H1N1 pandemic influenza established as a result of interaction with human populations in mainland China. PLoS One 2023; 18:e0284716. [PMID: 37196010 PMCID: PMC10191359 DOI: 10.1371/journal.pone.0284716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/06/2023] [Indexed: 05/19/2023] Open
Abstract
Identifying the spatial patterns of genetic structure of influenza A viruses is a key factor for understanding their spread and evolutionary dynamics. In this study, we used phylogenetic and Bayesian clustering analyses of genetic sequences of the A/H1N1pdm09 virus with district-level locations in mainland China to investigate the spatial genetic structure of the A/H1N1pdm09 virus across human population landscapes. Positive correlation between geographic and genetic distances indicates high degrees of genetic similarity among viruses within small geographic regions but broad-scale genetic differentiation, implying that local viral circulation was a more important driver in the formation of the spatial genetic structure of the A/H1N1pdm09 virus than even, countrywide viral mixing and gene flow. Geographic heterogeneity in the distribution of genetic subpopulations of A/H1N1pdm09 virus in mainland China indicates both local to local transmission as well as broad-range viral migration. This combination of both local and global structure suggests that both small-scale and large-scale population circulation in China is responsible for viral genetic structure. Our study provides implications for understanding the evolution and spread of A/H1N1pdm09 virus across the population landscape of mainland China, which can inform disease control strategies for future pandemics.
Collapse
Affiliation(s)
- Seungwon Kim
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Margaret Carrel
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, United States of America
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew Kitchen
- Department of Anthropology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
3
|
Yang J, Gong Y, Zhang C, Sun J, Wong G, Shi W, Liu W, Gao GF, Bi Y. Co-existence and co-infection of influenza A viruses and coronaviruses: Public health challenges. Innovation (N Y) 2022; 3:100306. [PMID: 35992368 PMCID: PMC9384331 DOI: 10.1016/j.xinn.2022.100306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/14/2022] [Indexed: 02/08/2023] Open
Abstract
Since the 20th century, humans have lived through five pandemics caused by influenza A viruses (IAVs) (H1N1/1918, H2N2/1957, H3N2/1968, and H1N1/2009) and the coronavirus (CoV) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IAVs and CoVs both have broad host ranges and share multiple hosts. Virus co-circulation and even co-infections facilitate genetic reassortment among IAVs and recombination among CoVs, further altering virus evolution dynamics and generating novel variants with increased cross-species transmission risk. Moreover, SARS-CoV-2 may maintain long-term circulation in humans as seasonal IAVs. Co-existence and co-infection of both viruses in humans could alter disease transmission patterns and aggravate disease burden. Herein, we demonstrate how virus-host ecology correlates with the co-existence and co-infection of IAVs and/or CoVs, further affecting virus evolution and disease dynamics and burden, calling for active virus surveillance and countermeasures for future public health challenges.
Collapse
Affiliation(s)
- Jing Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhuan Gong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunge Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Gary Wong
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - George F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Nabakooza G, Galiwango R, Frost SDW, Kateete DP, Kitayimbwa JM. Molecular Epidemiology and Evolutionary Dynamics of Human Influenza Type-A Viruses in Africa: A Systematic Review. Microorganisms 2022; 10:900. [PMID: 35630344 PMCID: PMC9145646 DOI: 10.3390/microorganisms10050900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Genomic characterization of circulating influenza type-A viruses (IAVs) directs the selection of appropriate vaccine formulations and early detection of potentially pandemic virus strains. However, longitudinal data on the genomic evolution and transmission of IAVs in Africa are scarce, limiting Africa's benefits from potential influenza control strategies. We searched seven databases: African Journals Online, Embase, Global Health, Google Scholar, PubMed, Scopus, and Web of Science according to the PRISMA guidelines for studies that sequenced and/or genomically characterized Africa IAVs. Our review highlights the emergence and diversification of IAVs in Africa since 1993. Circulating strains continuously acquired new amino acid substitutions at the major antigenic and potential N-linked glycosylation sites in their hemagglutinin proteins, which dramatically affected vaccine protectiveness. Africa IAVs phylogenetically mixed with global strains forming strong temporal and geographical evolution structures. Phylogeographic analyses confirmed that viral migration into Africa from abroad, especially South Asia, Europe, and North America, and extensive local viral mixing sustained the genomic diversity, antigenic drift, and persistence of IAVs in Africa. However, the role of reassortment and zoonosis remains unknown. Interestingly, we observed substitutions and clades and persistent viral lineages unique to Africa. Therefore, Africa's contribution to the global influenza ecology may be understated. Our results were geographically biased, with data from 63% (34/54) of African countries. Thus, there is a need to expand influenza surveillance across Africa and prioritize routine whole-genome sequencing and genomic analysis to detect new strains early for effective viral control.
Collapse
Affiliation(s)
- Grace Nabakooza
- Department of Immunology and Molecular Biology, Makerere University, Old Mulago Hill Road, P.O. Box 7072, Kampala 256, Uganda
- UVRI Centre of Excellence in Infection and Immunity Research and Training (MUII-Plus), Makerere University, Plot No: 51-59 Nakiwogo Road, P.O. Box 49, Entebbe 256, Uganda
| | - Ronald Galiwango
- UVRI Centre of Excellence in Infection and Immunity Research and Training (MUII-Plus), Makerere University, Plot No: 51-59 Nakiwogo Road, P.O. Box 49, Entebbe 256, Uganda
- Centre for Computational Biology, Uganda Christian University, Plot 67-173, Bishop Tucker Road, P.O. Box 4, Mukono 256, Uganda
- African Center of Excellence in Bioinformatics and Data Intensive Sciences, Infectious Diseases Institute, Makerere University, Kampala 256, Uganda
| | - Simon D W Frost
- Microsoft Research, Redmond, 14820 NE 36th Street, Washington, DC 98052, USA
- London School of Hygiene & Tropical Medicine (LSHTM), University of London, Keppel Street, Bloomsbury, London WC1E7HT, UK
| | - David P Kateete
- Department of Immunology and Molecular Biology, Makerere University, Old Mulago Hill Road, P.O. Box 7072, Kampala 256, Uganda
- UVRI Centre of Excellence in Infection and Immunity Research and Training (MUII-Plus), Makerere University, Plot No: 51-59 Nakiwogo Road, P.O. Box 49, Entebbe 256, Uganda
| | - John M Kitayimbwa
- UVRI Centre of Excellence in Infection and Immunity Research and Training (MUII-Plus), Makerere University, Plot No: 51-59 Nakiwogo Road, P.O. Box 49, Entebbe 256, Uganda
- Centre for Computational Biology, Uganda Christian University, Plot 67-173, Bishop Tucker Road, P.O. Box 4, Mukono 256, Uganda
| |
Collapse
|
5
|
Zolotarova O, Fesenko A, Holubka O, Radchenko L, Bortz E, Budzanivska I, Mironenko A. Genotypic Variants of Pandemic H1N1 Influenza A Viruses Isolated from Severe Acute Respiratory Infections in Ukraine during the 2015/16 Influenza Season. Viruses 2021; 13:2125. [PMID: 34834932 PMCID: PMC8619959 DOI: 10.3390/v13112125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 01/15/2023] Open
Abstract
Human type A influenza viruses A(H1N1)pdm09 have caused seasonal epidemics of influenza since the 2009-2010 pandemic. A(H1N1)pdm09 viruses had a leading role in the severe epidemic season of 2015/16 in the Northern Hemisphere and caused a high incidence of acute respiratory infection (ARI) in Ukraine. Serious complications of influenza-associated severe ARI (SARI) were observed in the very young and individuals at increased risk, and 391 fatal cases occurred in the 2015/16 epidemic season. We analyzed the genetic changes in the genomes of A(H1N1)pdm09 influenza viruses isolated from SARI cases in Ukraine during the 2015/16 season. The viral hemagglutinin (HA) fell in H1 group 6B.1 for all but four isolates, with known mutations affecting glycosylation, the Sa antigenic site (S162N in all 6B.1 isolates), or virulence (D222G/N in two isolates). Other mutations occurred in antigenic site Ca (A141P and S236P), and a subgroup of four strains were in group 6B.2, with potential alterations to antigenicity in A(H1N1)pdm09 viruses circulating in 2015/16 in Ukraine. A cluster of Ukrainian isolates exhibited novel D2E and N48S mutations in the RNA binding domain, and E125D in the effector domain, of immune evasion nonstructural protein 1 (NS1). The diverse spectrum of amino-acid substitutions in HA, NS1, and other viral proteins including nucleoprotein (NP) and the polymerase complex suggested the concurrent circulation of multiple lineages of A(H1N1)pdm09 influenza viruses in the human population in Ukraine, a country with low vaccination coverage, complicating public health measures against influenza.
Collapse
Affiliation(s)
- Oksana Zolotarova
- Educational Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine;
| | - Anna Fesenko
- Gromashevsky L.V. Institute of Epidemiology and Infectious Diseases, National Academy of Medical Sciences of Ukraine, 03680 Kyiv, Ukraine; (A.F.); (O.H.); (L.R.); (A.M.)
| | - Olga Holubka
- Gromashevsky L.V. Institute of Epidemiology and Infectious Diseases, National Academy of Medical Sciences of Ukraine, 03680 Kyiv, Ukraine; (A.F.); (O.H.); (L.R.); (A.M.)
| | - Larysa Radchenko
- Gromashevsky L.V. Institute of Epidemiology and Infectious Diseases, National Academy of Medical Sciences of Ukraine, 03680 Kyiv, Ukraine; (A.F.); (O.H.); (L.R.); (A.M.)
| | - Eric Bortz
- Department of Biological Sciences, University of Alaska, 3211 Providence Dr., Anchorage, AK 99508, USA;
| | - Iryna Budzanivska
- Educational Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine;
| | - Alla Mironenko
- Gromashevsky L.V. Institute of Epidemiology and Infectious Diseases, National Academy of Medical Sciences of Ukraine, 03680 Kyiv, Ukraine; (A.F.); (O.H.); (L.R.); (A.M.)
| |
Collapse
|
6
|
Owuor DC, de Laurent ZR, Kikwai GK, Mayieka LM, Ochieng M, Müller NF, Otieno NA, Emukule GO, Hunsperger EA, Garten R, Barnes JR, Chaves SS, Nokes DJ, Agoti CN. Characterizing the Countrywide Epidemic Spread of Influenza A(H1N1)pdm09 Virus in Kenya between 2009 and 2018. Viruses 2021; 13:1956. [PMID: 34696386 PMCID: PMC8539974 DOI: 10.3390/v13101956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022] Open
Abstract
The spatiotemporal patterns of spread of influenza A(H1N1)pdm09 viruses on a countrywide scale are unclear in many tropical/subtropical regions mainly because spatiotemporally representative sequence data are lacking. We isolated, sequenced, and analyzed 383 A(H1N1)pdm09 viral genomes from hospitalized patients between 2009 and 2018 from seven locations across Kenya. Using these genomes and contemporaneously sampled global sequences, we characterized the spread of the virus in Kenya over several seasons using phylodynamic methods. The transmission dynamics of A(H1N1)pdm09 virus in Kenya were characterized by (i) multiple virus introductions into Kenya over the study period, although only a few of those introductions instigated local seasonal epidemics that then established local transmission clusters, (ii) persistence of transmission clusters over several epidemic seasons across the country, (iii) seasonal fluctuations in effective reproduction number (Re) associated with lower number of infections and seasonal fluctuations in relative genetic diversity after an initial rapid increase during the early pandemic phase, which broadly corresponded to epidemic peaks in the northern and southern hemispheres, (iv) high virus genetic diversity with greater frequency of seasonal fluctuations in 2009-2011 and 2018 and low virus genetic diversity with relatively weaker seasonal fluctuations in 2012-2017, and (v) virus spread across Kenya. Considerable influenza virus diversity circulated within Kenya, including persistent viral lineages that were unique to the country, which may have been capable of dissemination to other continents through a globally migrating virus population. Further knowledge of the viral lineages that circulate within understudied low-to-middle-income tropical and subtropical regions is required to understand the full diversity and global ecology of influenza viruses in humans and to inform vaccination strategies within these regions.
Collapse
Affiliation(s)
- D. Collins Owuor
- Wellcome Trust Research Programme, Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI), Kilifi 230-80108, Kenya; (Z.R.d.L.); (D.J.N.); (C.N.A.)
| | - Zaydah R. de Laurent
- Wellcome Trust Research Programme, Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI), Kilifi 230-80108, Kenya; (Z.R.d.L.); (D.J.N.); (C.N.A.)
| | - Gilbert K. Kikwai
- Kenya Medical Research Institute (KEMRI), Nairobi 54840-00200, Kenya; (G.K.K.); (L.M.M.); (M.O.); (N.A.O.)
| | - Lillian M. Mayieka
- Kenya Medical Research Institute (KEMRI), Nairobi 54840-00200, Kenya; (G.K.K.); (L.M.M.); (M.O.); (N.A.O.)
| | - Melvin Ochieng
- Kenya Medical Research Institute (KEMRI), Nairobi 54840-00200, Kenya; (G.K.K.); (L.M.M.); (M.O.); (N.A.O.)
| | - Nicola F. Müller
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109, USA;
| | - Nancy A. Otieno
- Kenya Medical Research Institute (KEMRI), Nairobi 54840-00200, Kenya; (G.K.K.); (L.M.M.); (M.O.); (N.A.O.)
| | - Gideon O. Emukule
- Centers for Disease Control and Prevention (CDC), Influenza Division, Nairobi 606-00621, Kenya; (G.O.E.); (S.S.C.)
| | - Elizabeth A. Hunsperger
- Centers for Disease Control and Prevention, Division of Global Health Protection, Nairobi 606-00621, Kenya;
- Centers for Disease Control and Prevention, Division of Global Health Protection, Atlanta, GA 30333, USA
| | - Rebecca Garten
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.G.); (J.R.B.)
| | - John R. Barnes
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.G.); (J.R.B.)
| | - Sandra S. Chaves
- Centers for Disease Control and Prevention (CDC), Influenza Division, Nairobi 606-00621, Kenya; (G.O.E.); (S.S.C.)
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.G.); (J.R.B.)
| | - D. James Nokes
- Wellcome Trust Research Programme, Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI), Kilifi 230-80108, Kenya; (Z.R.d.L.); (D.J.N.); (C.N.A.)
- School of Life Sciences and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), Coventry CV4 7AL, UK
| | - Charles N. Agoti
- Wellcome Trust Research Programme, Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI), Kilifi 230-80108, Kenya; (Z.R.d.L.); (D.J.N.); (C.N.A.)
- School of Public Health and Human Sciences, Pwani University, Kilifi 195-80108, Kenya
| |
Collapse
|
7
|
Silent Infection of B and CD8 + T Lymphocytes by Influenza A Virus in Children with Tonsillar Hypertrophy. J Virol 2020; 94:JVI.01969-19. [PMID: 32075928 DOI: 10.1128/jvi.01969-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Influenza A viruses (IAVs) cause more than 2 million annual episodes of seasonal acute respiratory infections (ARI) and approximately 500,000 deaths worldwide. Depending on virus strain and host immune status, acute infections by IAV may reach sites other than the respiratory tract. In the present study, IAV RNA and antigens were searched for in tissues of palatine tonsils and adenoids removed from patients without ARI symptoms. A real-time reverse transcriptase PCR (RT-PCR) screening revealed that 8 tissue samples from 7 patients out of 103 were positive for IAV. Positive samples were subjected to next-generation sequencing (NGS) and 3 of 8 tissues yielded complete IAV pH1N1 genomes, whereas in 5 samples, the PB1 gene was not fully assembled. Phylogenetic analysis placed tonsil-derived IAV in clusters clearly segregated from contemporaneous Brazilian viruses. Flow cytometry of dispersed tissue fragments and serial immunohistochemistry of paraffin-embedded sections of naturally infected biopsies indicated that CD20+ B lymphocytes, CD8+ T lymphocytes, and CD11c+ cells are susceptible to IAV infection. We sought to investigate whether these lymphoid tissues could be sites of viral replication and sources of viable virus particles. MDCK cells were inoculated with tissue lysates, enabling recovery of one IAV isolate confirmed by immunofluorescence, reverse transcriptase quantitative PCR (RT-qPCR), and NGS. The data indicate that lymphoid tissues not only harbor expression of IAV proteins but also contain infectious virus. Asymptomatic long-term infection raises the possibility of IAV shedding from tonsils, which may have an impact on host-to-host transmission.IMPORTANCE Influenza A virus (IAV) infections are important threats to human health worldwide. Although extensively studied, some aspects of virus pathogenesis and tissue tropism remain unclear. Here, by different strategies, we describe the asymptomatic infection of human lymphoid organs by IAV in children. Our results indicate that IAV was not only detected and isolated from human tonsils but displayed unique genetic features in comparison with those of contemporaneous IAVs circulating in Brazil and detected in swabs and nasal washes. Inside the tissue microenvironment, immune cells were shown to be carrying IAV antigens, especially B and T CD8+ lymphocytes. Taken together, these results suggest that human lymphoid tissues can be sites of silent IAV infections with possible impact on virus shedding to the population.
Collapse
|
8
|
Comparison of the Pathogenicity in Mice of A(H1N1)pdm09 Viruses Isolated between 2009 and 2015 in Japan. Viruses 2020; 12:v12020155. [PMID: 32013144 PMCID: PMC7077310 DOI: 10.3390/v12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022] Open
Abstract
The A(H1N1)pdm09 virus emerged in 2009 and continues to circulate in human populations. Recent A(H1N1)pdm09 viruses, that is, A(H1N1)pdm09 viruses circulating in the post-pandemic era, can cause more or less severe infections than those caused by the initial pandemic viruses. To evaluate the changes in pathogenicity of the A(H1N1)pdm09 viruses during their continued circulation in humans, we compared the nucleotide and amino acid sequences of ten A(H1N1)pdm09 viruses isolated in Japan between 2009 and 2015, and experimentally infected mice with each virus. The severity of infection caused by these Japanese isolates ranged from milder to more severe than that caused by the prototypic pandemic strain A/California/04/2009 (CA04/09); however, specific mutations responsible for their pathogenicity have not yet been identified.
Collapse
|
9
|
Jones S, Nelson-Sathi S, Wang Y, Prasad R, Rayen S, Nandel V, Hu Y, Zhang W, Nair R, Dharmaseelan S, Chirundodh DV, Kumar R, Pillai RM. Evolutionary, genetic, structural characterization and its functional implications for the influenza A (H1N1) infection outbreak in India from 2009 to 2017. Sci Rep 2019; 9:14690. [PMID: 31604969 PMCID: PMC6789102 DOI: 10.1038/s41598-019-51097-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022] Open
Abstract
Influenza A (H1N1) continues to be a major public health threat due to possible emergence of a more virulent H1N1 strain resulting from dynamic changes in virus adaptability consequent to functional mutations and antigenic drift in the hemagglutinin (HA) and neuraminidase (NA) surface proteins. In this study, we describe the genetic and evolutionary characteristics of H1N1 strains that circulated in India over a period of nine years from 2009 to 2017 in relation to global strains. The finding is important from a global perspective since previous phylogenetic studies have suggested that the tropics contributed substantially to the global circulation of influenza viruses. Bayesian phylogenic analysis of HA sequences along with global strains indicated that there is a temporal pattern of H1N1 evolution and clustering of Indian isolates with globally circulating strains. Interestingly, we observed four new amino acid substitutions (S179N, I233T, S181T and I312V) in the HA sequence of H1N1 strains isolated during 2017 and two (S181T and I312V) were found to be unique in Indian isolates. Structurally these two unique mutations could lead to altered glycan specificity of the HA gene. Similarly, sequence and structural analysis of NA domain revealed that the presence of K432E mutation in H1N1 strains isolated after 2015 from India and in global strains found to induce a major loop shift in the vicinity of the catalytic site. The findings presented here offer an insight as to how these acquired mutations could be associated to an improved adaptability of the virus for efficient human transmissibility.
Collapse
Affiliation(s)
- Sara Jones
- Pathogen Biology Program, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Shijulal Nelson-Sathi
- Interdiciplinary Biology Program, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Yejun Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Raji Prasad
- Pathogen Biology Program, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Sabrina Rayen
- Interdiciplinary Biology Program, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Vibhuti Nandel
- Interdiciplinary Biology Program, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Yueming Hu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei Zhang
- Shenzhen Gen Read Technology, Shenzhen, 518000, China
| | - Radhakrishnan Nair
- Laboratory Medicine and Molecular Diagnostics Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Sanjai Dharmaseelan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | | | - Rakesh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India.
| | | |
Collapse
|
10
|
Andrés C, Peremiquel-Trillas P, Gimferrer L, Piñana M, Codina MG, Rodrigo-Pendás JÁ, Campins-Martí M, Carmen Martín M, Fuentes F, Rubio S, Pumarola T, Antón A. Molecular influenza surveillance at a tertiary university hospital during four consecutive seasons (2012-2016) in Catalonia, Spain. Vaccine 2019; 37:2470-2476. [PMID: 30926297 PMCID: PMC7173002 DOI: 10.1016/j.vaccine.2019.03.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Influenza viruses (FLUV) are continuously evolving, which explain the occurrence of seasonal influenza epidemics and the need to review the vaccine strain composition annually. The aim is to describe the genetic diversity and clinical outcomes of FLUV detected at a tertiary university hospital in Barcelona (Spain) during the 2012-2016 seasons. METHODS The detection of FLUV from patients attended at the Emergency Department or admitted to the hospital was performed by either immunofluorescence or PCR-based assays. A specific real-time one-step multiplex RT-PCR was performed for influenza A (FLUAV) subtyping. The complete coding haemagglutinin domain 1 (HA1) and neuraminidase (NA) (2015-2016) protein sequences from a representative sampling were molecular characterised. RESULTS A total 1774 (66.1%) FLUAV and 910 (33.9%) influenza B (FLUBV) cases were laboratory-confirmed. The hospitalisation rate was different between seasons, being the highest (81.4%) during the 2014-2015 season. FLUV were genetically close to vaccine strains except to the 2014-2015, in which most characterised A(H3N2) viruses belonged to a genetic group different from the vaccine strain. During the 2015-2016 season, B/Victoria-like viruses were the most predominant, but this component was not included in the trivalent vaccine used. Mutations D222G or D222N in HA1-domain were found in 3 A(H1N1)pdm09 strains from ICU-admitted cases. Three A(H1N1)pdm09 strains carried the NA H275Y (2) and S247N (1) mutations, respectively related to resistance or decreased susceptibility to oseltamivir. CONCLUSIONS The circulation of drifted A(H3N2) strains during the 2014-2015 season was related to the high hospitalisation rate due to the mismatch with the vaccine strains. The predominance of a FLUBV lineage not included in the trivalent influenza vaccine during the 2015-2016 season highlights the need to use a tetravalent influenza vaccine. Virological surveillance of viral variants carrying protein changes that alter tropism and susceptibility to antivirals features should be strengthened in hospital settings.
Collapse
Affiliation(s)
- Cristina Andrés
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Peremiquel-Trillas
- Preventive Medicine and Epidemiology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Vall Hebron Research Institute, Barcelona, Spain
| | - Laura Gimferrer
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Piñana
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Gema Codina
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Ángel Rodrigo-Pendás
- Preventive Medicine and Epidemiology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Vall Hebron Research Institute, Barcelona, Spain
| | - Magda Campins-Martí
- Preventive Medicine and Epidemiology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Vall Hebron Research Institute, Barcelona, Spain
| | - María Carmen Martín
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Fuentes
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Rubio
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tomàs Pumarola
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Andrés Antón
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Badar N, Salman M, Aamir UB, Ansari J, Ranjha MA, Khan MA, Ikram A, Nisar N, Mushtaq N, Mirza HA. Evolutionary analysis of influenza A(H1N1)pdm09 during the pandemic and post-pandemic period in Pakistan. J Infect Public Health 2019; 13:407-413. [PMID: 31000492 DOI: 10.1016/j.jiph.2019.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/08/2019] [Accepted: 03/11/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The first case of influenza A(H1N1)pdm09 was detected in Pakistan in June 2009. Since then, it has continued to circulate causing considerable morbidity and mortality. The purpose of this study was to evaluate the evolutionary changes in influenza A(H1N1)pdm09 viruses from 2009 to 2016 and their relevance to the current vaccine viruses. METHODS Respiratory specimens (throat or nasopharyngeal swabs) were collected from patients with influenza-like illness and severe acute respiratory illness. Samples were processed following the protocol of the US Centers for Disease Control and Prevention. Sequencing and phylogenetic analysis of Haemagglutinin and neuraminidase genes were carried out on representative isolates of Pakistan viruses. RESULTS Between January 2009 and February 2016, out of 16,024 samples analysed, 1950 (12%) were positive for influenza A. During the pandemic period (2009-2010), influenza A(H1N1)pdm09 was the dominant strain with 366 out of 808 (45%) total influenza positive cases. In the post-pandemic period (2011-2016), a total of 1078 out of 1911 (56%) cases were positive for influenza A(H1N1)pdm09 with co-circulation of different influenza A subtypes. The Pakistan A(H1N1)pdm09 viruses belonged to two genetic clades: clade 7 in the pandemic period, and clade 7 (2011) and clade 6B (2015) in the post-pandemic period. Sequence analysis of genes coding for surface glycoprotein's of Haemagglutinin and neuraminidase had a high degree of sequence similarity with corresponding genes of regional viruses circulating in South-East Asia. CONCLUSION Influenza A(H1N1)pdm09 viruses from Pakistan clustered into two genetic clades, with co-circulation of some variants. Key substitutions in the receptor binding site and a few changes indicative of virulence were also detected in the post-pandemic strains. Continued monitoring of the viruses is essential for early identification of potential variants of high virulence and their relevance to current vaccine strains.
Collapse
Affiliation(s)
- Nazish Badar
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan.
| | - Muhammad Salman
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Uzma B Aamir
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Jamil Ansari
- Department of Field Epidemiology & Disease Surveillance Unit, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Muazam A Ranjha
- Department of Field Epidemiology & Disease Surveillance Unit, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Mumtaz A Khan
- Department of Field Epidemiology & Disease Surveillance Unit, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Aamer Ikram
- Executive Director, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Nadia Nisar
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Nighat Mushtaq
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Hamza A Mirza
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| |
Collapse
|
12
|
Spatiotemporal Distribution and Evolution of the A/H1N1 2009 Pandemic Influenza Virus in Pigs in France from 2009 to 2017: Identification of a Potential Swine-Specific Lineage. J Virol 2018; 92:JVI.00988-18. [PMID: 30258006 DOI: 10.1128/jvi.00988-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/30/2018] [Indexed: 01/29/2023] Open
Abstract
The H1N1 influenza virus responsible for the most recent pandemic in 2009 (H1N1pdm) has spread to swine populations worldwide while it replaced the previous seasonal H1N1 virus in humans. In France, surveillance of swine influenza A viruses in pig herds with respiratory outbreaks led to the detection of 44 H1N1pdm strains between 2009 and 2017, regardless of the season, and findings were not correlated with pig density. From these isolates, 17 whole-genome sequences were obtained, as were 6 additional hemagglutinin (HA)/neuraminidase (NA) sequences, in order to perform spatial and temporal analyses of genetic diversity and to compare evolutionary patterns of H1N1pdm in pigs to patterns for human strains. Following mutation accumulation and fixation over time, phylogenetic analyses revealed for the first time the divergence of a swine-specific genogroup within the H1N1pdm lineage. The divergence is thought to have occurred around 2011, although this was demonstrated only through strains isolated in 2015 to 2016 in the southern half of France. To date, these H1N1pdm swine strains have not been related to any increased virulence in swine herds and have not exhibited any antigenic drift compared to seasonal human strains. However, further monitoring is encouraged, as diverging evolutionary patterns in these two species, i.e., swine and humans, may lead to the emergence of viruses with a potentially higher risk to both animal and human health.IMPORTANCE Pigs are a "mixing vessel" for influenza A viruses (IAVs) because of their ability to be infected by avian and human IAVs and their propensity to facilitate viral genomic reassortment events. Also, as IAVs may evolve differently in swine and humans, pigs can become a reservoir for old human strains against which the human population has become immunologically naive. Thus, viruses from the novel swine-specific H1N1pdm genogroup may continue to diverge from seasonal H1N1pdm strains and/or from other H1N1pdm viruses infecting pigs and lead to the emergence of viruses that would not be covered by human vaccines and/or swine vaccines based on antigens closely related to the original H1N1pdm virus. This discovery confirms the importance of encouraging swine IAV monitoring because H1N1pdm swine viruses could carry an increased risk to both human and swine health in the future as a whole H1N1pdm virus or gene provider in subsequent reassortant viruses.
Collapse
|
13
|
Moasser E, Moasser A, Zaraket H. Incidence of antiviral drug resistance markers among human influenza A viruses in the Eastern Mediterranean Region, 2005-2016. INFECTION GENETICS AND EVOLUTION 2018; 67:60-66. [PMID: 30389548 DOI: 10.1016/j.meegid.2018.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Two classes of antiviral drugs are available for influenza antiviral therapy: the adamantanes and the neuraminidase inhibitors (NAIs). Due to the emergence of adamantane-resistant variants, the use of these drugs has been largely limited in the world. The NAIs became the drugs of choice for treatment of influenza A infections. However, amino acid substitutions in the NA protein might lead to reduced sensitivity to NAIs. METHODS The frequency and distribution of matrix protein 2 (M2) and neuraminidase (NA) variants which confer resistance to antiviral drugs was investigated in the Eastern Mediterranean Region (EMR) between 2005 and 2016. A total of 314 M2 and 1209 NA protein sequences from influenza A/H1N1, A/H1N1pdm09, A/H3N2, and A/H5N1 available in the public database were analyzed. RESULTS Eighty-six percent of the influenza A viruses detected in the EMR were resistant to adamantanes, among which, H3 strains exhibited the highest (95.32%) level of adamantane resistance. Approximately 98.51% (265/269) of influenza A/H1N1 and H3N2 resistant viruses had the S31N substitution in their M2 sequences. The V27A mutation was the only resistance marker found in A/H5N1 viruses and was detected at a frequency of 7.40% among the investigated viruses. Other resistant mutations L26F, A30T, G34E, and L38F were not detected in any of the variants. We found that 2.81% (n = 34) of the detected NA sequences from influenza A viruses possessed at least one NAI-resistant mutation and the vast majority of resistant viruses 79.41% (27/34) bear the H274Y mutation. The frequency of NAI-resistant viruses was 3.29% (24/729) for the H1N1pdm09, 10.64% (5/47) for the seasonal H1N1, and 4.06% (5/123) for H5N1 viruses. None of the H3N2 viruses analyzed during the study period were resistant to NAIs. CONCLUSION Our study reveals the emergence and spread of antiviral drug resistant influenza A viruses in the EMR and emphasizes the importance of continuous surveillance to maintain the effective use of the current antivirals.
Collapse
Affiliation(s)
- Elham Moasser
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Moasser
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
14
|
Tivane A, Daniels R, Nguenha N, Machalele L, Nacoto A, Pale M, Mateonane E, Mavale S, Chilundo J, Muteto D, Salência J, Albati F, Gudo E, Mussá T, McCauley J. Antigenic and genetic characterization of influenza viruses isolated in Mozambique during the 2015 season. PLoS One 2018; 13:e0201248. [PMID: 30048502 PMCID: PMC6062064 DOI: 10.1371/journal.pone.0201248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Due to the high rate of antigenic variation of influenza virus, seasonal characterization of the virus is crucial to assess and monitor the emergence of new pathogenic variants and hence formulate effective control measures. However, no study has yet been conducted in Mozambique to assess genetic, antigenic and antiviral susceptibility profile of influenza virus. METHODS A subset of samples (n = 20) from influenza positive children detected in two hospitals in Maputo city during 2015 season as part of the implementation of influenza surveillance system, were selected. The following assays were performed on these samples: antigenic characterization by hemagglutination inhibition assay, genetic characterization by Sanger sequencing of hemagglutinin (HA) and neuraminidase (NA) and susceptibility to oseltamivir and zanamivir (NA inhibitors) by enzymatic assay. RESULTS The A(H1N1)pdm09 subtype viruses remained closely related antigenically and genetically to the 2016 vaccine virus A/California/7/2009 and other widely distributed viruses belonging to genetic group 6B. The majority of influenza A(H3N2) viruses studied were antigenically similar to the 2016-2017 vaccine virus, A/Hong Kong/4801/2014, and their HA and NA gene sequences fell into genetic subclade 3C.2a being closely related to viruses circulating in southern Africa. The influenza B viruses were antigenically similar to the 2016 season vaccine virus and HA sequences of all three fell into the B/Yamagata-lineage, clade 3, but contained NA genes of the B/Victoria-lineage. All tested viruses were sensitive to oseltamivir and zanamivir. CONCLUSION Overall, all Mozambican influenza A and B viruses were most closely related to Southern African viruses and all were sensitive to oseltamivir and zanamivir. These findings suggest the existence of an ecological niche of influenza viruses within the region and hence highlighting the need for joint epidemiologic and virologic surveillance to monitor the evolution of influenza viruses.
Collapse
MESH Headings
- Animals
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Child
- Child, Preschool
- Dogs
- Female
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Humans
- Infant
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H3N2 Subtype/drug effects
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A virus/drug effects
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza A virus/isolation & purification
- Influenza B virus/drug effects
- Influenza B virus/genetics
- Influenza B virus/immunology
- Influenza B virus/isolation & purification
- Influenza, Human/diagnosis
- Influenza, Human/drug therapy
- Influenza, Human/epidemiology
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Male
- Mozambique/epidemiology
- Neuraminidase/antagonists & inhibitors
- Neuraminidase/genetics
- Oseltamivir/pharmacology
- Oseltamivir/therapeutic use
- Phylogeny
- Viral Proteins/genetics
- Zanamivir/pharmacology
- Zanamivir/therapeutic use
Collapse
Affiliation(s)
- Almiro Tivane
- Department of Technologic Platforms, Instituto Nacional de Saúde, Ministry of Health, Maputo, Mozambique
| | - Rodney Daniels
- Francis Crick Institute, Worldwide Influenza Centre, London, United Kingdom
| | - Neuza Nguenha
- Department of Technologic Platforms, Instituto Nacional de Saúde, Ministry of Health, Maputo, Mozambique
| | - Loira Machalele
- Department of Technologic Platforms, Instituto Nacional de Saúde, Ministry of Health, Maputo, Mozambique
| | - Afonso Nacoto
- Department of Technologic Platforms, Instituto Nacional de Saúde, Ministry of Health, Maputo, Mozambique
| | - Mirela Pale
- Department of Technologic Platforms, Instituto Nacional de Saúde, Ministry of Health, Maputo, Mozambique
| | - Edirsse Mateonane
- Department of Technologic Platforms, Instituto Nacional de Saúde, Ministry of Health, Maputo, Mozambique
| | - Sandra Mavale
- Pediatric Department, Maputo Central Hospital, Maputo, Mozambique
| | - Josina Chilundo
- Pediatric Department, Maputo Central Hospital, Maputo, Mozambique
| | - Délcio Muteto
- Department of Technologic Platforms, Instituto Nacional de Saúde, Ministry of Health, Maputo, Mozambique
| | - Judite Salência
- Department of Technologic Platforms, Instituto Nacional de Saúde, Ministry of Health, Maputo, Mozambique
| | - Félix Albati
- Department of Technologic Platforms, Instituto Nacional de Saúde, Ministry of Health, Maputo, Mozambique
| | - Eduardo Gudo
- Department of Technologic Platforms, Instituto Nacional de Saúde, Ministry of Health, Maputo, Mozambique
| | - Tufária Mussá
- Department of Technologic Platforms, Instituto Nacional de Saúde, Ministry of Health, Maputo, Mozambique
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - John McCauley
- Francis Crick Institute, Worldwide Influenza Centre, London, United Kingdom
| |
Collapse
|
15
|
Geoghegan JL, Saavedra AF, Duchêne S, Sullivan S, Barr I, Holmes EC. Continental synchronicity of human influenza virus epidemics despite climatic variation. PLoS Pathog 2018; 14:e1006780. [PMID: 29324895 PMCID: PMC5764404 DOI: 10.1371/journal.ppat.1006780] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/29/2017] [Indexed: 01/26/2023] Open
Abstract
The factors that determine the pattern and rate of spread of influenza virus at a continental-scale are uncertain. Although recent work suggests that influenza epidemics in the United States exhibit a strong geographical correlation, the spatiotemporal dynamics of influenza in Australia, a country and continent of approximately similar size and climate complexity but with a far smaller population, are not known. Using a unique combination of large-scale laboratory-confirmed influenza surveillance comprising >450,000 entries and genomic sequence data we determined the local-level spatial diffusion of this important human pathogen nationwide in Australia. We used laboratory-confirmed influenza data to characterize the spread of influenza virus across Australia during 2007-2016. The onset of established epidemics varied across seasons, with highly synchronized epidemics coinciding with the emergence of antigenically distinct viruses, particularly during the 2009 A/H1N1 pandemic. The onset of epidemics was largely synchronized between the most populous cities, even those separated by distances of >3000 km and those that experience vastly diverse climates. In addition, by analyzing global phylogeographic patterns we show that the synchronized dissemination of influenza across Australian cities involved multiple introductions from the global influenza population, coupled with strong domestic connectivity, rather than through the distinct radial patterns of geographic dispersal that are driven by work-flow transmission as observed in the United States. In addition, by comparing the spatial structure of influenza A and B, we found that these viruses tended to occupy different geographic regions, and peak in different seasons, perhaps indicative of moderate cross-protective immunity or viral interference effects. The highly synchronized outbreaks of influenza virus at a continental-scale revealed here highlight the importance of coordinated public health responses in the event of the emergence of a novel, human-to-human transmissible, virus.
Collapse
Affiliation(s)
- Jemma L. Geoghegan
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Aldo F. Saavedra
- Centre for Translational Data Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Sebastián Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Sheena Sullivan
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, Melbourne, Victoria, Australia
| | - Ian Barr
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
- Faculty of Science and Technology, Federation University Australia, Gippsland Campus, Churchill, Victoria, Australia
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Characterization of the neuraminidase genes from human influenza A viruses circulating in Iran from 2010 to 2015. Arch Virol 2017; 163:391-400. [PMID: 29086107 DOI: 10.1007/s00705-017-3603-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Characterization of influenza viruses is critical for detection of new emerging variants. Herein, we analyzed the genetic diversity and drug susceptibility of the neuraminidase gene (NAs) expressed by influenza A/H1N1pdm09 and A/H3N2 viruses circulating in Iran from 2010 to 2015. METHODS We genetically analyzed the NAs of 38 influenza A/H1N1pdm09 and 35 A/H3N2 isolates. RESULTS The Iranian A/H1N1pdm09 viruses belonged to seven genogroups/subgenogroups, with the dominant groups being genogroups 6B and 6C. The A/H3N2 isolates fell into six gneogroups/subgenogroups, with the dominant genogroups being 3C and 3C.2a. The most common mutations detected among the A/H1N1pdm09 viruses included N44S, V106I, N200S, and N248D. All H1N1pdm09 viruses were genetically susceptible to the NAIs. However, one A/H1N1pdm09 virus from the 2013-2014 season possessed an NA-S247N mutation, which reduces the susceptibility to oseltamivir. In case of H3N2, none of the analyzed Iranian strains carried a substitution that might affect its susceptibility to NAIs. CONCLUSION The ongoing evolution of influenza viruses and the detect of influenza viruses with reduced susceptibility to NAIs warrants continuous monitoring of the circulating strains.
Collapse
|
17
|
Manito ACB, Gräf T, Lunge VR, Ikuta N. Spatiotemporal dynamics of influenza A(H1N1)pdm09 in Brazil during the pandemic and post-pandemic periods. Virus Res 2017; 238:69-74. [PMID: 28587867 DOI: 10.1016/j.virusres.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022]
Abstract
Influenza A(H1N1)pdm09 was responsible for the first global flu pandemic in 21st century affecting all the world. In Brazil, A(H1N1)pdm09 is still circulating as a seasonal virus, causing deaths every year. Nevertheless, the viral diffusion process that yearly seeds new influenza strains in the country was not investigated yet. The aim of the current study was to describe the phylodynamics and phylogeography of influenza A(H1N1)pdm09 in Brazil between 2009 and 2014. Neuraminidase sequences from Brazil and other regions of the World were retrieved and analyzed. Bayesian phylogeographic and phylodynamic model approaches were used to reconstruct the spatiotemporal and demographic history of influenza A(H1N1)pdm09 in Brazil (divided in subtropical and tropical regions) and related countries. Our analyses reveal that new influenza A(H1N1)pdm09 lineages are seeded in Brazil in almost each year and the main sources of viral diversity are North America, Europe and East Asia. The phylogeographic asymmetric model also revealed that Brazil, mainly the subtropical region, seeds viral lineages into other countries. Coalescent analysis of the compiled dataset reconstructed the peak of viral transmissions in the winter months of Southern hemisphere. The results presented in this study can be informative to public health, guide intervention strategies and in the understanding of flu virus migration, which helps to predict antigenic drift and consequently the developing of new vaccines.
Collapse
Affiliation(s)
- Alessandra C B Manito
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil, Av. Farroupilha, 8001, 92425-900, Canoas, Rio Grande do Sul, Brazil
| | - Tiago Gräf
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil, Av. Farroupilha, 8001, 92425-900, Canoas, Rio Grande do Sul, Brazil; College of Health Sciences, University of KwaZulu-Natal (UKZN), Durban, South Africa.
| | - Vagner R Lunge
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil, Av. Farroupilha, 8001, 92425-900, Canoas, Rio Grande do Sul, Brazil
| | - Nilo Ikuta
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil, Av. Farroupilha, 8001, 92425-900, Canoas, Rio Grande do Sul, Brazil
| |
Collapse
|
18
|
Moasser E, Behzadian F, Moattari A, Fotouhi F, Rahimi A, Zaraket H, Hosseini SY. Molecular characterization and phylogenetic analysis of human influenza A viruses isolated in Iran during the 2014-2015 season. Arch Virol 2017; 162:1975-1984. [PMID: 28331993 DOI: 10.1007/s00705-017-3323-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/02/2017] [Indexed: 10/19/2022]
Abstract
Influenza A viruses are an important cause of severe infectious diseases in humans and are characterized by their fast evolution rate. Global monitoring of these viruses is critical to detect newly emerging variants during annual epidemics. Here, we sought to genetically characterize influenza A/H1N1pdm09 and A/H3N2 viruses collected in Iran during the 2014-2015 influenza season. A total of 200 nasopharyngeal swabs were collected from patients with influenza-like illnesses. Swabs were screened for influenza A and B using real-time PCR. Furthermore, positive specimens with high virus load underwent virus isolation and genetic characterization of their hemagglutinin (HA) and M genes. Of the 200 specimens, 80 were influenza A-positive, including 44 A/H1N1pdm09 and 36 A/H3N2, while 18 were influenza B-positive. Phylogenetic analysis of the HA genes of the A/H1N1pdm09 viruses revealed the circulation of clade 6C, characterized by amino acid substitutions D97N, V234I and K283E. Analysis of the A/H3N2 viruses showed a genetic drift from the vaccine strain A/Texas/50/2012 with 5 mutations (T128A, R142G, N145S, P198S and S219F) belonging to the antigenic sites A, B, and D of the HA protein. The A/H3N2 viruses belonged to phylogenetic clades 3C.2 and 3C.3. The M gene trees of the Iranian A/H1N1pdm09 and A/H3N2 mirrored the clustering patterns of their corresponding HA trees. Our results reveal co-circulation of several influenza A virus strains in Iran during the 2014-2015 influenza season.
Collapse
Affiliation(s)
- Elham Moasser
- Department of Bioscience and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
| | - Farida Behzadian
- Department of Bioscience and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran.
| | - Afagh Moattari
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Fotouhi
- Influenza Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Rahimi
- Bioinformatics and Computational Biology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Seong MW, Cho SI, Park H, Seo SH, Lee SJ, Kim EC, Park SS. Genotyping Influenza Virus by Next-Generation Deep Sequencing in Clinical Specimens. Ann Lab Med 2017; 36:255-8. [PMID: 26915615 PMCID: PMC4773267 DOI: 10.3343/alm.2016.36.3.255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/09/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Rapid and accurate identification of an influenza outbreak is essential for patient care and treatment. We describe a next-generation sequencing (NGS)-based, unbiased deep sequencing method in clinical specimens to investigate an influenza outbreak. Nasopharyngeal swabs from patients were collected for molecular epidemiological analysis. Total RNA was sequenced by using the NGS technology as paired-end 250 bp reads. Total of 7 to 12 million reads were obtained. After mapping to the human reference genome, we analyzed the 3-4% of reads that originated from a non-human source. A BLAST search of the contigs reconstructed de novo revealed high sequence similarity with that of the pandemic H1N1 virus. In the phylogenetic analysis, the HA gene of our samples clustered closely with that of A/Senegal/VR785/2010(H1N1), A/Wisconsin/11/2013(H1N1), and A/Korea/01/2009(H1N1), and the NA gene of our samples clustered closely with A/Wisconsin/11/2013(H1N1). This study suggests that NGS-based unbiased sequencing can be effectively applied to investigate molecular characteristics of nosocomial influenza outbreak by using clinical specimens such as nasopharyngeal swabs.
Collapse
Affiliation(s)
- Moon Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Im Cho
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyunwoong Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Jun Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eui Chong Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
20
|
Molecular Evidence of Transmission of Influenza A/H1N1 2009 on a University Campus. PLoS One 2017; 12:e0168596. [PMID: 28060851 PMCID: PMC5218485 DOI: 10.1371/journal.pone.0168596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 12/03/2016] [Indexed: 01/10/2023] Open
Abstract
Background In the recent years, the data on the molecular epidemiology of influenza viruses have expanded enormously because of the availability of cutting-edge sequencing technologies. However, much of the information is from the temperate regions with few studies from tropical regions such as South-east Asia. Despite the fact that influenza has been known to transmit rapidly within semi-closed communities, such as military camps and educational institutions, data are limited from these communities. Objectives To determine the phylogeography of influenza viruses on a university campus, we examined the spatial distribution of influenza virus on the National University of Singapore (NUS) campus. Methods Consenting students from the NUS who sought medical attention at the UHC provided two nasopharyngeal swabs and demographic data. PCR was used for detection of influenza viruses. 34 full-genomes of pH1N1/09 viruses were successfully sequenced by Sanger method and concatenated using Geneious R7. Phylogenetic analysis was conducted using these 34 sequences and 1518 global sequences. Phylogeographic analysis was done using BaTS software and Association index and Fitch parsimony scores were determined. Results Integrating whole genome sequencing data with epidemiological data, we found strong evidence of influenza transmission on campus as isolates from students residing on-campus were highly similar to each other (AI, P value = 0.009; PS, P value = 0.04). There was also evidence of multiple introductions from the community. Conclusions Such data are useful in formulating pandemic preparedness plans which can use these communities as sentinel sites for detection and monitoring of emerging respiratory viral infections.
Collapse
|
21
|
Mukherjee A, Nayak MK, Dutta S, Panda S, Satpathi BR, Chawla-Sarkar M. Genetic Characterization of Circulating 2015 A(H1N1)pdm09 Influenza Viruses from Eastern India. PLoS One 2016; 11:e0168464. [PMID: 27997573 PMCID: PMC5172622 DOI: 10.1371/journal.pone.0168464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/01/2016] [Indexed: 01/13/2023] Open
Abstract
In 2015, the swine derived A(H1N1)pdm09 pandemic strain outbreak became widespread throughout the different states of India. The reported cases and deaths in 2015 surpassed the previous years with more than 39000 laboratory confirmed cases and a death toll of more than 2500 people. There are relatively limited complete genetic sequences available for this virus from Asian countries. In this study, we describe the full genome analysis of influenza 2015 A(H1N1)pdm09 viruses isolated from West Bengal between January through December 2015. The phylogenetic analysis of the haemagglutinin sequence revealed clustering with globally circulating strains of genogroup 6B. This was further confirmed by the constructed concatenated tree using all eight complete gene segments of Kolkata A(H1N1)pdm09 isolates with the other strains from different timeline and lineages. A study from Massachusetts Institute of Technology (MIT) in 2015 reported novel mutations T200A and D225N in haemagglutinin gene of a 2014 Indian strain (A/India/6427/2014). However, in all the pandemic strains of 2014-2015 reported from India, so far including A(H1N1)pdm09 strains from Kolkata, D225N mutation was not observed, though the T200A mutation was found to be conserved. Neuraminidase gene of the analyzed strains did not show any oseltamivir resistant mutation H275Y suggesting continuation of Tamiflu® as drug of choice. The amino acid sequences of the all gene segments from 2015 A(H1N1)pdm09 isolates identified several new mutations compared to the 2009 A(H1N1)pdm09 strains, which may have contributed towards enhanced virulence, compared to 2009 A(H1N1)pdm09 strains.
Collapse
MESH Headings
- Amino Acid Substitution
- Drug Resistance, Viral/genetics
- Genome, Viral
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Humans
- India/epidemiology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza, Human/drug therapy
- Influenza, Human/epidemiology
- Influenza, Human/genetics
- Mutation, Missense
- Neuraminidase/genetics
- Oseltamivir/therapeutic use
Collapse
Affiliation(s)
- Anupam Mukherjee
- Division of Molecular Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Mukti Kant Nayak
- Division of Molecular Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Samiran Panda
- Division of Epidemiology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Mamta Chawla-Sarkar
- Division of Molecular Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
22
|
|
23
|
Sonnberg S, Ducatez MF, DeBeauchamp J, Crumpton JC, Rubrum A, Sharp B, Hall RJ, Peacey M, Huang S, Webby RJ. Pandemic Seasonal H1N1 Reassortants Recovered from Patient Material Display a Phenotype Similar to That of the Seasonal Parent. J Virol 2016; 90:7647-56. [PMID: 27279619 PMCID: PMC4988147 DOI: 10.1128/jvi.00772-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We have previously shown that 11 patients became naturally coinfected with seasonal H1N1 (A/H1N1) and pandemic H1N1 (pdm/H1N1) during the Southern hemisphere winter of 2009 in New Zealand. Reassortment of influenza A viruses is readily observed during coinfection of host animals and in vitro; however, reports of reassortment occurring naturally in humans are rare. Using clinical specimen material, we show reassortment between the two coinfecting viruses occurred with high likelihood directly in one of the previously identified patients. Despite the lack of spread of these reassortants in the community, we did not find them to be attenuated in several model systems for viral replication and virus transmission: multistep growth curves in differentiated human bronchial epithelial cells revealed no growth deficiency in six recovered reassortants compared to A/H1N1 and pdm/H1N1 isolates. Two reassortant viruses were assessed in ferrets and showed transmission to aerosol contacts. This study demonstrates that influenza virus reassortants can arise in naturally coinfected patients. IMPORTANCE Reassortment of influenza A viruses is an important driver of virus evolution, but little has been done to address humans as hosts for the generation of novel influenza viruses. We show here that multiple reassortant viruses were generated during natural coinfection of a patient with pandemic H1N1 (2009) and seasonal H1N1 influenza A viruses. Though apparently fit in model systems, these reassortants did not become established in the wider population, presumably due to herd immunity against their seasonal H1 antigen.
Collapse
Affiliation(s)
| | | | | | | | - Adam Rubrum
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bridgett Sharp
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J Hall
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| | - Matthew Peacey
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| | - Sue Huang
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| | - Richard J Webby
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
24
|
Tinoco YO, Montgomery JM, Kasper MR, Nelson MI, Razuri H, Guezala MC, Azziz-Baumgartner E, Widdowson MA, Barnes J, Gilman RH, Bausch DG, Gonzalez AE. Transmission dynamics of pandemic influenza A(H1N1)pdm09 virus in humans and swine in backyard farms in Tumbes, Peru. Influenza Other Respir Viruses 2016; 10:47-56. [PMID: 26011186 PMCID: PMC4687498 DOI: 10.1111/irv.12329] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2015] [Indexed: 12/31/2022] Open
Abstract
Objectives We aimed to determine the frequency of pH1N1 transmission between humans and swine on backyard farms in Tumbes, Peru. Design Two‐year serial cross‐sectional study comprising four sampling periods: March 2009 (pre‐pandemic), October 2009 (peak of the pandemic in Peru), April 2010 (1st post‐pandemic period), and October 2011 (2nd post‐pandemic period). Sample Backyard swine serum, tracheal swabs, and lung sample were collected during each sampling period. Main outcome measures We assessed current and past pH1N1 infection in swine through serological testing, virus culture, and RT‐PCR and compared the results with human incidence data from a population‐based active surveillance cohort study in Peru. Results Among 1303 swine sampled, the antibody prevalence to pH1N1 was 0% pre‐pandemic, 8% at the peak of the human pandemic (October 2009), and 24% in April 2010 and 1% in October 2011 (post‐pandemic sampling periods). Trends in swine seropositivity paralleled those seen in humans in Tumbes. The pH1N1 virus was isolated from three pigs during the peak of the pandemic. Phylogenetic analysis revealed that these viruses likely represent two separate human‐to‐swine transmission events in backyard farm settings. Conclusions Our findings suggest that human‐to‐swine pH1N1 transmission occurred during the pandemic among backyard farms in Peru, emphasizing the importance of interspecies transmission in backyard pig populations. Continued surveillance for influenza viruses in backyard farms is warranted.
Collapse
Affiliation(s)
- Yeny O Tinoco
- U.S. Naval Medical Research Unit No. 6, Lima, Peru.,Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Joel M Montgomery
- U.S. Naval Medical Research Unit No. 6, Lima, Peru.,U.S. Centers for Disease Control and Prevention, Division of Global Health Protection, Nairobi, Kenya
| | | | - Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Hugo Razuri
- U.S. Naval Medical Research Unit No. 6, Lima, Peru
| | | | | | | | - John Barnes
- U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Daniel G Bausch
- U.S. Naval Medical Research Unit No. 6, Lima, Peru.,Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | | |
Collapse
|
25
|
Otte A, Marriott AC, Dreier C, Dove B, Mooren K, Klingen TR, Sauter M, Thompson KA, Bennett A, Klingel K, van Riel D, McHardy AC, Carroll MW, Gabriel G. Evolution of 2009 H1N1 influenza viruses during the pandemic correlates with increased viral pathogenicity and transmissibility in the ferret model. Sci Rep 2016; 6:28583. [PMID: 27339001 PMCID: PMC4919623 DOI: 10.1038/srep28583] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/07/2016] [Indexed: 12/31/2022] Open
Abstract
There is increasing evidence that 2009 pandemic H1N1 influenza viruses have evolved after pandemic onset giving rise to severe epidemics in subsequent waves. However, it still remains unclear which viral determinants might have contributed to disease severity after pandemic initiation. Here, we show that distinct mutations in the 2009 pandemic H1N1 virus genome have occurred with increased frequency after pandemic declaration. Among those, a mutation in the viral hemagglutinin was identified that increases 2009 pandemic H1N1 virus binding to human-like α2,6-linked sialic acids. Moreover, these mutations conferred increased viral replication in the respiratory tract and elevated respiratory droplet transmission between ferrets. Thus, our data show that 2009 H1N1 influenza viruses have evolved after pandemic onset giving rise to novel virus variants that enhance viral replicative fitness and respiratory droplet transmission in a mammalian animal model. These findings might help to improve surveillance efforts to assess the pandemic risk by emerging influenza viruses.
Collapse
Affiliation(s)
- Anna Otte
- Viral Zoonoses and Adaptation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Carola Dreier
- Viral Zoonoses and Adaptation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Brian Dove
- Public Health England, Porton Down, United Kingdom
| | - Kyra Mooren
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Thorsten R Klingen
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Martina Sauter
- Department for Molecular Pathology, Institute of Pathology, University Hospital Tübingen, Germany
| | | | | | - Karin Klingel
- Department for Molecular Pathology, Institute of Pathology, University Hospital Tübingen, Germany
| | - Debby van Riel
- Viral Zoonoses and Adaptation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alice C McHardy
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Gülsah Gabriel
- Viral Zoonoses and Adaptation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,Center for Structure and Cell Biology in Medicine, University of Lübeck, Germany
| |
Collapse
|
26
|
Whole genome characterization of human influenza A(H1N1)pdm09 viruses isolated from Kenya during the 2009 pandemic. INFECTION GENETICS AND EVOLUTION 2016; 40:98-103. [DOI: 10.1016/j.meegid.2016.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/16/2016] [Accepted: 02/23/2016] [Indexed: 11/23/2022]
|
27
|
Antón A, Marcos MA, Torner N, Isanta R, Camps M, Martínez A, Domínguez A, Jané M, Jiménez de Anta MT, Pumarola T. Virological surveillance of influenza and other respiratory viruses during six consecutive seasons from 2006 to 2012 in Catalonia, Spain. Clin Microbiol Infect 2016; 22:564.e1-9. [PMID: 26939538 PMCID: PMC7172104 DOI: 10.1016/j.cmi.2016.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/10/2016] [Accepted: 02/11/2016] [Indexed: 01/20/2023]
Abstract
Most attention is given to seasonal influenza and respiratory syncytial virus outbreaks, but the cumulative burden caused by other respiratory viruses (RV) is not widely considered. The aim of the present study is to describe the circulation of RV in the general population during six consecutive seasons from 2006 to 2012 in Catalonia, Spain. Cell culture, immunofluorescence and PCR-based assays were used for the RV laboratory-confirmation and influenza subtyping. Phylogenetic and molecular characterizations of viral haemagglutinin, partial neuraminidase and matrix 2 proteins were performed from a representative sampling of influenza viruses. A total of 6315 nasopharyngeal samples were collected, of which 64% were laboratory-confirmed, mainly as influenza A viruses and rhinoviruses. Results show the significant burden of viral aetiological agents in acute respiratory infection, particularly in the youngest cases. The study of influenza strains reveals their continuous evolution through either progressive mutations or by segment reassortments. Moreover, the predominant influenza B lineage was different from that included in the recommended vaccine in half of the studied seasons, supporting the formulation and use of a quadrivalent influenza vaccine. Regarding neuraminidase inhibitors resistance, with the exception of the 2007/08 H275Y seasonal A(H1N1) strains, no other circulating influenza strains carrying known resistance genetic markers were found. Moreover, all circulating A(H1N1)pdm09 and A(H3N2) strains finally became genetically resistant to adamantanes. A wide knowledge of the seasonality patterns of the RV in the general population is well-appreciated, but it is a challenge due to the unpredictable circulation of RV, highlighting the value of local and global RV surveillance.
Collapse
Affiliation(s)
- A Antón
- WHO National Influenza Centre, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Microbiology, Hospital Clinic Barcelona - ISGlobal - University of Barcelona, Barcelona, Spain.
| | - M A Marcos
- WHO National Influenza Centre, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Microbiology, Hospital Clinic Barcelona - ISGlobal - University of Barcelona, Barcelona, Spain
| | - N Torner
- Public Health Agency of Catalonia, Government of Catalonia, Barcelona, Spain; Public Health Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - R Isanta
- WHO National Influenza Centre, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Microbiology, Hospital Clinic Barcelona - ISGlobal - University of Barcelona, Barcelona, Spain
| | - M Camps
- WHO National Influenza Centre, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Microbiology, Hospital Clinic Barcelona - ISGlobal - University of Barcelona, Barcelona, Spain
| | - A Martínez
- Public Health Agency of Catalonia, Government of Catalonia, Barcelona, Spain; Public Health Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - A Domínguez
- Public Health Agency of Catalonia, Government of Catalonia, Barcelona, Spain; Public Health Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - M Jané
- Public Health Agency of Catalonia, Government of Catalonia, Barcelona, Spain
| | - M T Jiménez de Anta
- WHO National Influenza Centre, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Microbiology, Hospital Clinic Barcelona - ISGlobal - University of Barcelona, Barcelona, Spain
| | - T Pumarola
- WHO National Influenza Centre, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Microbiology, Hospital Clinic Barcelona - ISGlobal - University of Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Predicting the Mutating Distribution at Antigenic Sites of the Influenza Virus. Sci Rep 2016; 6:20239. [PMID: 26837263 PMCID: PMC4738307 DOI: 10.1038/srep20239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/29/2015] [Indexed: 11/13/2022] Open
Abstract
Mutations of the influenza virus lead to antigenic changes that cause recurrent epidemics and vaccine resistance. Preventive measures would benefit greatly from the ability to predict the potential distribution of new antigenic sites in future strains. By leveraging the extensive historical records of HA sequences for 90 years, we designed a computational model to simulate the dynamic evolution of antigenic sites in A/H1N1. With templates of antigenic sequences, the model can effectively predict the potential distribution of future antigenic mutants. Validation on 10932 HA sequences from the last 16 years showing that the mutated antigenic sites of over 94% of reported strains fell in our predicted profile. Meanwhile, our model can successfully capture 96% of antigenic sites in those dominant epitopes. Similar results are observed on the complete set of H3N2 historical data, supporting the general applicability of our model to multiple sub-types of influenza. Our results suggest that the mutational profile of future antigenic sites can be predicted based on historical evolutionary traces despite the widespread, random mutations in influenza. Coupled with closely monitored sequence data from influenza surveillance networks, our method can help to forecast changes in viral antigenicity for seasonal flu and inform public health interventions.
Collapse
|
29
|
Resende PC, Motta FC, Born PS, Machado D, Caetano BC, Brown D, Siqueira MM. Phylogenetic analyses of influenza A (H1N1)pdm09 hemagglutinin gene during and after the pandemic event in Brazil. INFECTION GENETICS AND EVOLUTION 2015; 36:147-155. [PMID: 26371065 DOI: 10.1016/j.meegid.2015.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/20/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022]
Abstract
Pandemic influenza A H1N1 [A(H1N1)pdm09] was first detected in Brazil in May 2009, and spread extensively throughout the country causing a peak of infection during June to August 2009. Since then, it has continued to circulate with a seasonal pattern, causing high rates of morbidity and mortality. Over this period, the virus has continually evolved with the accumulation of new mutations. In this study we analyze the phylogenetic relationship in a collection of 220 A(H1N1)pdm09 hemagglutinin (HA) gene sequences collected during and after the pandemic period (2009 to 2014) in Brazil. In addition, we have looked for evidence of viral polymorphisms associated with severe disease and compared the range of viral variants with the vaccine strain (A/California/7/2009) used throughout this period. The phylogenetic analyses in this study revealed the circulation of at least eight genetic groups in Brazil. Two (G6-pdm and G7-pdm) co-circulated during the pandemic period, showing an early pattern of viral diversification with a low genetic distance from vaccine strain. Other phylogenetic groups, G5, G6 (including 6B, 6C and 6D subgroups), and G7 were found in the subsequent epidemic seasons from 2011 to 2014. These viruses exhibited more amino acid differences from the vaccine strain with several substitutions at the antigenic sites. This is associated with a theoretical decrease in the vaccine efficacy. Furthermore, we observed that the presence of any polymorphism at residue 222 of the HA gene was significantly associated with severe/fatal cases, reinforcing previous reports that described this residue as a potential virulence marker. This study provides new information about the circulation of some viral variants in Brazil, follows up potential genetic markers associated with virulence and allows infer if the efficacy of the current vaccine against more recent A(H1N1)pdm09 strains may be reduced.
Collapse
Affiliation(s)
- Paola Cristina Resende
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Fernando Couto Motta
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Priscila Silva Born
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Daniela Machado
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil; Fondation Mérieux, Emerging Pathogens Laboratory, Centre International de Recherche en Infectologie (CIRI), Lyon, France
| | - Braulia Costa Caetano
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - David Brown
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Su YCF, Bahl J, Joseph U, Butt KM, Peck HA, Koay ESC, Oon LLE, Barr IG, Vijaykrishna D, Smith GJD. Phylodynamics of H1N1/2009 influenza reveals the transition from host adaptation to immune-driven selection. Nat Commun 2015; 6:7952. [PMID: 26245473 PMCID: PMC4918339 DOI: 10.1038/ncomms8952] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 06/30/2015] [Indexed: 11/25/2022] Open
Abstract
Influenza A H1N1/2009 virus that emerged from swine rapidly replaced the previous seasonal H1N1 virus. Although the early emergence and diversification of H1N1/2009 is well characterized, the ongoing evolutionary and global transmission dynamics of the virus remain poorly investigated. To address this we analyse >3,000 H1N1/2009 genomes, including 214 full genomes generated from our surveillance in Singapore, in conjunction with antigenic data. Here we show that natural selection acting on H1N1/2009 directly after introduction into humans was driven by adaptation to the new host. Since then, selection has been driven by immunological escape, with these changes corresponding to restricted antigenic diversity in the virus population. We also show that H1N1/2009 viruses have been subject to regular seasonal bottlenecks and a global reduction in antigenic and genetic diversity in 2014.
Collapse
Affiliation(s)
- Yvonne C. F. Su
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Justin Bahl
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
- Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas, Houston, Texas 77030, USA
| | - Udayan Joseph
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ka Man Butt
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Heidi A. Peck
- World Health Organisation Collaborating Centre for Reference and Research on Influenza, Melbourne, Victoria 3000, Australia
| | - Evelyn S. C. Koay
- Molecular Diagnosis Centre, Department of Laboratory Medicine, National University Hospital, Singapore 119074, Singapore
| | - Lynette L. E. Oon
- Department of Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Ian G. Barr
- World Health Organisation Collaborating Centre for Reference and Research on Influenza, Melbourne, Victoria 3000, Australia
| | - Dhanasekaran Vijaykrishna
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
- World Health Organisation Collaborating Centre for Reference and Research on Influenza, Melbourne, Victoria 3000, Australia
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Gavin J. D. Smith
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
- World Health Organisation Collaborating Centre for Reference and Research on Influenza, Melbourne, Victoria 3000, Australia
- Duke Global Health Institute, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
31
|
Patterson Ross Z, Komadina N, Deng YM, Spirason N, Kelly HA, Sullivan SG, Barr IG, Holmes EC. Inter-Seasonal Influenza is Characterized by Extended Virus Transmission and Persistence. PLoS Pathog 2015; 11:e1004991. [PMID: 26107631 PMCID: PMC4479464 DOI: 10.1371/journal.ppat.1004991] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/01/2015] [Indexed: 11/29/2022] Open
Abstract
The factors that determine the characteristic seasonality of influenza remain enigmatic. Current models predict that occurrences of influenza outside the normal surveillance season within a temperate region largely reflect the importation of viruses from the alternate hemisphere or from equatorial regions in Asia. To help reveal the drivers of seasonality we investigated the origins and evolution of influenza viruses sampled during inter-seasonal periods in Australia. To this end we conducted an expansive phylogenetic analysis of 9912, 3804, and 3941 hemagglutinnin (HA) sequences from influenza A/H1N1pdm, A/H3N2, and B, respectively, collected globally during the period 2009-2014. Of the 1475 viruses sampled from Australia, 396 (26.8% of Australian, or 2.2% of global set) were sampled outside the monitored temperate influenza surveillance season (1 May - 31 October). Notably, rather than simply reflecting short-lived importations of virus from global localities with higher influenza prevalence, we documented a variety of more complex inter-seasonal transmission patterns including "stragglers" from the preceding season and "heralds" of the forthcoming season, and which included viruses sampled from clearly temperate regions within Australia. We also provide evidence for the persistence of influenza B virus between epidemic seasons, in which transmission of a viral lineage begins in one season and continues throughout the inter-seasonal period into the following season. Strikingly, a disproportionately high number of inter-seasonal influenza transmission events occurred in tropical and subtropical regions of Australia, providing further evidence that climate plays an important role in shaping patterns of influenza seasonality.
Collapse
Affiliation(s)
- Zoe Patterson Ross
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences, and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Naomi Komadina
- World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Yi-Mo Deng
- World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Natalie Spirason
- World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Heath A. Kelly
- VIDRL, Peter Doherty Institute, Melbourne, Victoria, Australia
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Sheena G. Sullivan
- World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Ian G. Barr
- World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute, Melbourne, Victoria, Australia
- VIDRL, Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences, and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Abstract
The lungs are a major target for infection and a key battleground in the fight against the development of antimicrobial drug-resistant pathogens. Ventilator-associated pneumonia (VAP) is associated with mortality rates of 24-50%. The optimal duration of antibiotic therapy against VAP is unknown, but prolonged courses are associated with the emergence of bacterial resistance. De-escalation strategies in which treatment is discontinued based on signs of clinical resolution, fixed durations of therapy (generally 7-8 d), or serum procalcitonin responses have been shown to decrease antibiotic consumption. Outcomes are comparable to longer treatment courses, with the possible exception of VAP due to nonfermenting, gram-negative bacilli such as Pseudomonas aeruginosa. Staphylococcus aureus is a leading cause of VAP and other infections. Outcomes after S. aureus infection are shaped by the interplay between environmental, bacterial, and host genetic factors. It is increasingly clear that mechanisms of pathogenesis vary in different types of S. aureus infections. Genome-scale studies of S. aureus strains, host responses, and host genetics are redefining our understanding of the pathogenic mechanisms underlying VAP. Genome-sequencing technologies are also revolutionizing our understanding of the molecular epidemiology, evolution, and transmission of influenza. Deep sequencing using next-generation technology platforms is defining the remarkable genetic diversity of influenza strains within infected hosts. Investigators have demonstrated that antiviral drug-resistant influenza may be present prior to the initiation of treatment. Moreover, drug-resistant minor variant influenza strains can be transmitted from person to person in the absence of selection pressure. Studies of lung infections and the causative pathogens will remain at the cutting edge of clinical and basic medical research.
Collapse
|
33
|
Adaptive Mutations That Occurred during Circulation in Humans of H1N1 Influenza Virus in the 2009 Pandemic Enhance Virulence in Mice. J Virol 2015; 89:7329-37. [PMID: 25948752 DOI: 10.1128/jvi.00665-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED During the 2009 H1N1 influenza pandemic, infection attack rates were particularly high among young individuals who suffered from pneumonia with occasional death. Moreover, previously reported determinants of mammalian adaptation and pathogenicity were not present in 2009 pandemic H1N1 influenza A viruses. Thus, it was proposed that unknown viral factors might have contributed to disease severity in humans. In this study, we performed a comparative analysis of two clinical 2009 pandemic H1N1 strains that belong to the very early and later phases of the pandemic. We identified mutations in the viral hemagglutinin (HA) and the nucleoprotein (NP) that occurred during pandemic progression and mediate increased virulence in mice. Lethal disease outcome correlated with elevated viral replication in the alveolar epithelium, increased proinflammatory cytokine and chemokine responses, pneumonia, and lymphopenia in mice. These findings show that viral mutations that have occurred during pandemic circulation among humans are associated with severe disease in mice. IMPORTANCE In this study, novel determinants of 2009 pandemic H1N1 influenza pathogenicity were identified in the viral hemagglutinin (HA) and the nucleoprotein (NP) genes. In contrast to highly pathogenic avian influenza viruses, increased virulence in mice did not correlate with enhanced polymerase activity but with reduced activity. Lethal 2009 pandemic H1N1 infection in mice correlated with lymphopenia and severe pneumonia. These studies suggest that molecular mechanisms that mediate 2009 pandemic H1N1 influenza pathogenicity are distinct from those that mediate avian influenza virus pathogenicity in mice.
Collapse
|
34
|
Phylogenetic analysis of the neuraminidase gene of pandemic H1N1 influenza A virus circulating in the South American region. Virus Res 2015; 197:1-7. [PMID: 25479596 DOI: 10.1016/j.virusres.2014.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/30/2014] [Accepted: 11/08/2014] [Indexed: 11/22/2022]
Abstract
Molecular characterization of circulating influenza A viruses (IAV) in all regions of the world is essential to detect mutations potentially involved in increased virulence, anti-viral resistance and immune escape. In order to gain insight into these matters, a phylogenetic analysis of the neuraminidase (NA) gene of 146 pandemic H1N1 (H1N1pdm) influenza A virus strains isolated in Argentina, Brazil, Chile, Paraguay, Peru and Uruguay from 2009 to 2013 was performed. Comparison of vaccine strain A/California/7/2009 included in the influenza vaccine recommended for the Southern hemisphere from 2010 through 2013 influenza seasons and strains isolated in South America revealed several amino acid substitutions. Mapping of these substitutions revealed that most of them are located at the surface of the protein and do not interfere with the active site. 3.4% of the strains enrolled in these studies carried the H275Y substitution that confers resistance to oseltamivir. Strains isolated in South America differ from vaccine in two predicted B-cell epitope regions present at positions 102-103 and 351-352 of the NA protein. Moreover, vaccine and strains isolated in Paraguay differ also in an epitope present at position 229. These differences among strains isolated in South America and vaccine strain suggests that these epitopes may not be present in strains isolated in this region. A potential new N-linked glycosylation site was observed in the NA protein of an H1N1pdm IAV strain isolated in Brazil. The results of these studies revealed several genetic and antigenic differences in the NA of H1N1pdm IAV among vaccine and strains circulating in South America. All these findings contribute to our understanding of the course of genetic and antigenic evolution of H1N1pdm IAV populations circulating in the South American region and, consequently, contribute to the study and selection of future and more appropriate vaccines and anti-viral drugs.
Collapse
|
35
|
Horm SV, Mardy S, Rith S, Ly S, Heng S, Vong S, Kitsutani P, Ieng V, Tarantola A, Ly S, Sar B, Chea N, Sokhal B, Barr I, Kelso A, Horwood PF, Timmermans A, Hurt A, Lon C, Saunders D, Ung SA, Asgari N, Roces MC, Touch S, Komadina N, Buchy P. Epidemiological and virological characteristics of influenza viruses circulating in Cambodia from 2009 to 2011. PLoS One 2014; 9:e110713. [PMID: 25340711 PMCID: PMC4207757 DOI: 10.1371/journal.pone.0110713] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/16/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Cambodian National Influenza Center (NIC) monitored and characterized circulating influenza strains from 2009 to 2011. METHODOLOGY/PRINCIPAL FINDINGS Sentinel and study sites collected nasopharyngeal specimens for diagnostic detection, virus isolation, antigenic characterization, sequencing and antiviral susceptibility analysis from patients who fulfilled case definitions for influenza-like illness, acute lower respiratory infections and event-based surveillance. Each year in Cambodia, influenza viruses were detected mainly from June to November, during the rainy season. Antigenic analysis show that A/H1N1pdm09 isolates belonged to the A/California/7/2009-like group. Circulating A/H3N2 strains were A/Brisbane/10/2007-like in 2009 before drifting to A/Perth/16/2009-like in 2010 and 2011. The Cambodian influenza B isolates from 2009 to 2011 all belonged to the B/Victoria lineage represented by the vaccine strains B/Brisbane/60/2008 and B/Malaysia/2506/2004. Sequences of the M2 gene obtained from representative 2009-2011 A/H3N2 and A/H1N1pdm09 strains all contained the S31N mutation associated with adamantanes resistance except for one A/H1N1pdm09 strain isolated in 2011 that lacked this mutation. No reduction in the susceptibility to neuraminidase inhibitors was observed among the influenza viruses circulating from 2009 to 2011. Phylogenetic analysis revealed that A/H3N2 strains clustered each year to a distinct group while most A/H1N1pdm09 isolates belonged to the S203T clade. CONCLUSIONS/SIGNIFICANCE In Cambodia, from 2009 to 2011, influenza activity occurred throughout the year with peak seasonality during the rainy season from June to November. Seasonal influenza epidemics were due to multiple genetically distinct viruses, even though all of the isolates were antigenically similar to the reference vaccine strains. The drug susceptibility profile of Cambodian influenza strains revealed that neuraminidase inhibitors would be the drug of choice for influenza treatment and chemoprophylaxis in Cambodia, as adamantanes are no longer expected to be effective.
Collapse
MESH Headings
- Animals
- Antigens, Viral/immunology
- Cambodia/epidemiology
- Dogs
- Drug Resistance, Viral
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza B virus/genetics
- Influenza B virus/isolation & purification
- Influenza Vaccines/immunology
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Orthomyxoviridae/immunology
- Orthomyxoviridae/isolation & purification
- Orthomyxoviridae/physiology
- Phylogeny
- Seasons
Collapse
Affiliation(s)
- Srey Viseth Horm
- Institut Pasteur du Cambodge, Réseau International des Instituts Pasteur, Phnom Penh, Cambodia
| | - Sek Mardy
- Institut Pasteur du Cambodge, Réseau International des Instituts Pasteur, Phnom Penh, Cambodia
- World Health Organization, Phnom Penh, Cambodia
| | - Sareth Rith
- Institut Pasteur du Cambodge, Réseau International des Instituts Pasteur, Phnom Penh, Cambodia
| | - Sovann Ly
- Communicable Disease Control Department, Ministry of Health, Phnom Penh, Cambodia
| | - Seng Heng
- Communicable Disease Control Department, Ministry of Health, Phnom Penh, Cambodia
| | - Sirenda Vong
- Institut Pasteur du Cambodge, Réseau International des Instituts Pasteur, Phnom Penh, Cambodia
| | - Paul Kitsutani
- Influenza Division, National Center for Immunization and Respiratory Disease, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Vannra Ieng
- World Health Organization, Phnom Penh, Cambodia
| | - Arnaud Tarantola
- Institut Pasteur du Cambodge, Réseau International des Instituts Pasteur, Phnom Penh, Cambodia
| | - Sowath Ly
- Institut Pasteur du Cambodge, Réseau International des Instituts Pasteur, Phnom Penh, Cambodia
| | - Borann Sar
- Centers for Disease Control and Prevention, Cambodia Office, Phnom Penh, Cambodia
| | - Nora Chea
- Centers for Disease Control and Prevention, Cambodia Office, Phnom Penh, Cambodia
| | - Buth Sokhal
- National Institute of Public Health, Phnom Penh, Cambodia
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Australia
| | - Anne Kelso
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Australia
| | - Paul F. Horwood
- Institut Pasteur du Cambodge, Réseau International des Instituts Pasteur, Phnom Penh, Cambodia
| | - Ans Timmermans
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Aeron Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Australia
| | - Chanthap Lon
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - David Saunders
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sam An Ung
- National Institute of Public Health, Phnom Penh, Cambodia
| | - Nima Asgari
- World Health Organization, Phnom Penh, Cambodia
| | | | - Sok Touch
- Communicable Disease Control Department, Ministry of Health, Phnom Penh, Cambodia
| | - Naomi Komadina
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Australia
| | - Philippe Buchy
- Institut Pasteur du Cambodge, Réseau International des Instituts Pasteur, Phnom Penh, Cambodia
| |
Collapse
|
36
|
Oliveira MJC, Motta FDC, Siqueira MM, Resende PC, Born PDS, Souza TML, Mesquita M, Oliveira MDLA, Carney S, Mello WAD, Magalhães V. Molecular findings from influenza A(H1N1)pdm09 detected in patients from a Brazilian equatorial region during the pandemic period. Mem Inst Oswaldo Cruz 2014; 109:912-7. [PMID: 25410995 PMCID: PMC4296496 DOI: 10.1590/0074-0276140210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/08/2014] [Indexed: 12/16/2022] Open
Abstract
After the World Health Organization officially declared the end of the first pandemic
of the XXI century in August 2010, the influenza A(H1N1)pdm09 virus has been
disseminated in the human population. In spite of its sustained circulation, very
little on phylogenetic data or oseltamivir (OST) resistance is available for the
virus in equatorial regions of South America. In order to shed more light on this
topic, we analysed the haemagglutinin (HA) and neuraminidase (NA) genes of influenza
A(H1N1)pdm09 positive samples collected during the pandemic period in the Pernambuco
(PE), a northeastern Brazilian state. Complete HA sequences were compared and amino
acid changes were related to clinical outcome. In addition, the H275Y substitution in
NA, associated with OST resistance, was investigated by pyrosequencing. Samples from
PE were grouped in phylogenetic clades 6 and 7, being clustered together with
sequences from South and Southeast Brazil. The D222N/G HA gene mutation, associated
with severity, was found in one deceased patient that was pregnant. Additionally, the
HA mutation K308E, which appeared in Brazil in 2010 and was only detected worldwide
the following year, was identified in samples from hospitalised cases. The resistance
marker H275Y was not identified in samples tested. However, broader studies are
needed to establish the real frequency of resistance in this Brazilian region.
Collapse
Affiliation(s)
| | - Fernando do Couto Motta
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Marilda M Siqueira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Paola Cristina Resende
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Priscilla da Silva Born
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Thiago Moreno L Souza
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Milene Mesquita
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | | | - Sharon Carney
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | | | | |
Collapse
|
37
|
Squires RB, Pickett BE, Das S, Scheuermann RH. Toward a method for tracking virus evolutionary trajectory applied to the pandemic H1N1 2009 influenza virus. INFECTION GENETICS AND EVOLUTION 2014; 28:351-7. [PMID: 25064525 DOI: 10.1016/j.meegid.2014.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/06/2014] [Accepted: 07/15/2014] [Indexed: 11/28/2022]
Abstract
In 2009 a novel pandemic H1N1 influenza virus (H1N1pdm09) emerged as the first official influenza pandemic of the 21st century. Early genomic sequence analysis pointed to the swine origin of the virus. Here we report a novel computational approach to determine the evolutionary trajectory of viral sequences that uses data-driven estimations of nucleotide substitution rates to track the gradual accumulation of observed sequence alterations over time. Phylogenetic analysis and multiple sequence alignments show that sequences belonging to the resulting evolutionary trajectory of the H1N1pdm09 lineage exhibit a gradual accumulation of sequence variations and tight temporal correlations in the topological structure of the phylogenetic trees. These results suggest that our evolutionary trajectory analysis (ETA) can more effectively pinpoint the evolutionary history of viruses, including the host and geographical location traversed by each segment, when compared against either BLAST or traditional phylogenetic analysis alone.
Collapse
Affiliation(s)
- R Burke Squires
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Brett E Pickett
- Informatics, J. Craig Venter Institute (JCVI), La Jolla, CA, USA
| | - Sajal Das
- Department of Computer Science, Missouri University of Science and Technology, Rolla, MO, USA
| | - Richard H Scheuermann
- Informatics, J. Craig Venter Institute (JCVI), La Jolla, CA, USA; Department of Pathology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
38
|
Dangi T, Jain B, Singh AK, Singh J, Kumar R, Dwivedi M, Verma AK, Chadha MS, Jain A. Molecular characterization of circulating pandemic strains of influenza A virus during 2012 to 2013 in Lucknow (India). J Med Virol 2014; 86:2134-41. [DOI: 10.1002/jmv.23946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Tanushree Dangi
- Department of Microbiology; King George's Medical University; Lucknow India
| | - Bhawana Jain
- Department of Microbiology; King George's Medical University; Lucknow India
| | - Ajay Kumar Singh
- Department of Microbiology; King George's Medical University; Lucknow India
| | - J.V. Singh
- Department of Community Medicine; King George's Medical University; Lucknow India
| | - Rashmi Kumar
- Department of Paediatrics; King George's Medical University; Lucknow India
| | - Mukesh Dwivedi
- Department of Microbiology; King George's Medical University; Lucknow India
| | - Anil Kumar Verma
- Department of Microbiology; King George's Medical University; Lucknow India
| | | | - Amita Jain
- Department of Microbiology; King George's Medical University; Lucknow India
| |
Collapse
|
39
|
Mesquita M, Resende P, Marttorelli A, Machado V, Sacramento CQ, Fintelman-Rodrigues N, Abrantes JL, Tavares R, Schirmer M, Siqueira MM, Souza TML. Detection of the influenza A(H1N1)pdm09 virus carrying the K-15E, P83S and Q293H mutations in patients who have undergone bone marrow transplant. PLoS One 2014; 9:e94822. [PMID: 24740088 PMCID: PMC3989246 DOI: 10.1371/journal.pone.0094822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/20/2014] [Indexed: 12/17/2022] Open
Abstract
The 2009 pandemic influenza A(H1N1)pdm09 virus emerged and caused considerable morbidity and mortality in the third world, especially in Brazil. Although circulating strains of A(H1N1)pdm09 are A/California/04/2009-like (CA-04-like) viruses, various studies have suggested that some mutations in the viral hemagglutinin (HA) may be associated with enhanced severity and fatality. This phenomenon is particularly challenging for immunocompromised individuals, such as those who have undergone bone marrow transplant (BMT), because they are more likely to display worse clinical outcomes to influenza infection than non-immunocompromised individuals. We studied the clinical and viral aspects of post-BMT patients with confirmed A(H1N1)pdm09 diagnosis in the largest cancer hospital in Brazil. We found a viral strain with K-15E, P83S and Q293H polymorphisms in the HA, which is presumably more virulent, in these individuals. Despite that, these patients showed only mild symptoms of infection. Our findings complement the discovery of mild cases of infection with the A(H1N1)pdm09 virus with the K-15E, P83S and Q293H mutations in Brazil and oppose other studies that have linked these changes with increased disease severity. These results could be important for a better comprehension of the impact of the pandemic influenza in the context of BMT.
Collapse
Affiliation(s)
- Milene Mesquita
- Measles and Respiratory viruses Laboratory, WHO/NIC, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Paola Resende
- Measles and Respiratory viruses Laboratory, WHO/NIC, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andressa Marttorelli
- Measles and Respiratory viruses Laboratory, WHO/NIC, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Viviane Machado
- Measles and Respiratory viruses Laboratory, WHO/NIC, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Carolina Q. Sacramento
- Measles and Respiratory viruses Laboratory, WHO/NIC, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Natalia Fintelman-Rodrigues
- Measles and Respiratory viruses Laboratory, WHO/NIC, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Juliana L. Abrantes
- Measles and Respiratory viruses Laboratory, WHO/NIC, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Rita Tavares
- Center for Bone Marrow Transplantation (CEMO), National Cancer Institute (INCa), Rio de Janeiro, RJ, Brazil
| | - Marcelo Schirmer
- Center for Bone Marrow Transplantation (CEMO), National Cancer Institute (INCa), Rio de Janeiro, RJ, Brazil
| | - Marilda M. Siqueira
- Measles and Respiratory viruses Laboratory, WHO/NIC, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Thiago Moreno L. Souza
- Measles and Respiratory viruses Laboratory, WHO/NIC, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
40
|
Full Genome Analysis of Influenza A(H1N1)pdm09 Virus Isolated from Peru, 2013. GENOME ANNOUNCEMENTS 2014; 2:2/2/e00191-14. [PMID: 24744325 PMCID: PMC3990741 DOI: 10.1128/genomea.00191-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pandemic influenza A(H1N1)pdm09 virus has been reported in Peru since 2009. We report the whole-genome sequence analysis of a viral isolate from an infection case that occurred during an influenza outbreak in 2013. This strain shows novel hemagglutinin (HA) mutations that may cause an antigenic drift that diminishes the protective effect of the vaccine.
Collapse
|
41
|
Prieto D, Das TK. An operational epidemiological model for calibrating agent-based simulations of pandemic influenza outbreaks. Health Care Manag Sci 2014; 19:1-19. [PMID: 24710651 DOI: 10.1007/s10729-014-9273-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 02/12/2014] [Indexed: 12/20/2022]
Abstract
Uncertainty of pandemic influenza viruses continue to cause major preparedness challenges for public health policymakers. Decisions to mitigate influenza outbreaks often involve tradeoff between the social costs of interventions (e.g., school closure) and the cost of uncontrolled spread of the virus. To achieve a balance, policymakers must assess the impact of mitigation strategies once an outbreak begins and the virus characteristics are known. Agent-based (AB) simulation is a useful tool for building highly granular disease spread models incorporating the epidemiological features of the virus as well as the demographic and social behavioral attributes of tens of millions of affected people. Such disease spread models provide excellent basis on which various mitigation strategies can be tested, before they are adopted and implemented by the policymakers. However, to serve as a testbed for the mitigation strategies, the AB simulation models must be operational. A critical requirement for operational AB models is that they are amenable for quick and simple calibration. The calibration process works as follows: the AB model accepts information available from the field and uses those to update its parameters such that some of its outputs in turn replicate the field data. In this paper, we present our epidemiological model based calibration methodology that has a low computational complexity and is easy to interpret. Our model accepts a field estimate of the basic reproduction number, and then uses it to update (calibrate) the infection probabilities in a way that its effect combined with the effects of the given virus epidemiology, demographics, and social behavior results in an infection pattern yielding a similar value of the basic reproduction number. We evaluate the accuracy of the calibration methodology by applying it for an AB simulation model mimicking a regional outbreak in the US. The calibrated model is shown to yield infection patterns closely replicating the input estimates of the basic reproduction number. The calibration method is also tested to replicate an initial infection incidence trend for a H1N1 outbreak like that of 2009.
Collapse
Affiliation(s)
- D Prieto
- Department of Industrial and Manufacturing Engineering, Western Michigan University, 1903 W. Michigan Ave., Kalamazoo, MI, 49008-5336, USA.
| | - T K Das
- Department of Industrial and Management Systems Engineering, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
42
|
Purification of nucleic acids using isotachophoresis. J Chromatogr A 2014; 1335:105-20. [DOI: 10.1016/j.chroma.2013.12.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/04/2013] [Accepted: 12/07/2013] [Indexed: 12/30/2022]
|
43
|
Evolution trends of the 2009 pandemic influenza A (H1N1) viruses in different continents from March 2009 to April 2012. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0341-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Radomski JP, Płoński P, Zagórski-Ostoja W. The hemagglutinin mutation E391K of pandemic 2009 influenza revisited. Mol Phylogenet Evol 2014; 70:29-36. [DOI: 10.1016/j.ympev.2013.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 08/25/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
|
45
|
Viasus D, Antón A, Pumarola T, Carratalà J. Influenza A(H1N1)pdm09: beyond the pandemic. Enferm Infecc Microbiol Clin 2013; 30 Suppl 4:54-7. [PMID: 23116794 DOI: 10.1016/s0213-005x(12)70106-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On August 2010, the World Health Organization declared the end to the 2009 A(H1N1) pandemic. However, influenza A(H1N1)pdm09 continues to circulate as a seasonal virus. Different viruses have predominated in different parts of the world. To date, influenza A(H1N1)pdm09 has demonstrated little antigenic drift, and its oseltamivir resistance has remained low. In some countries, a higher number of severe cases of influenza A(H1N1)pdm09 infection were documented during the 2010-2011 season than during the pandemic period. In addition, delays in oseltamivir administration, higher ages and comorbidities and low vaccination rates in patients with influenza A(H1N1)pdm09 infection were found during the first postpandemic season. Therefore, physicians should carefully consider the pandemic virus as a possible causative agent in patients with influenza-like illnesses admitted to emergency departments. In addition, surveillance systems and vaccination campaigns should continue after the pandemic period.
Collapse
Affiliation(s)
- Diego Viasus
- Infectious Disease Department, Hospital Universitari de Bellvitge-IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
46
|
Towards multitarget testing in molecular microbiology. Int J Microbiol 2013; 2013:121057. [PMID: 24371441 PMCID: PMC3859022 DOI: 10.1155/2013/121057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/11/2013] [Indexed: 11/21/2022] Open
Abstract
Advantages of PCR assays over more conventional culture-based diagnostics include significantly higher sensitivities and shorter turnaround times. They are particularly useful when patient treatment has already been initiated or for specimens that may contain microorganisms that are slow-growing, difficult to culture, or for which culture methods do not exist. However, due to genome variability, single target testing might lead to false-negative results. This paper focuses on examples from our own experiences and the literature to provide insight into the limitations of single target testing in molecular biology. Lessons learned from these experiences include the careful design of diagnostic assays, preferably multitargeted, the importance of investigating the incidence and epidemiology of infection in detail, the frequent participation in appropriate quality assurance schemes, and the importance of continuous attentiveness by investigators when confronted with inconsistent results. In conclusion, multitargeted testing in microbiological molecular assays should be a rule.
Collapse
|
47
|
El Rhaffouli H, El Fahime EM, Laraqui A, Bajjou T, Melloul M, Obeid S, Fathallah L, Lahlou-Amine I. Evolution of the hemagglutinin gene of the influenza A(H1N1)pdm09 virus in Morocco during two influenza seasons 2009-2011. Curr Microbiol 2013; 68:372-80. [PMID: 24212335 DOI: 10.1007/s00284-013-0463-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/15/2013] [Indexed: 11/30/2022]
Abstract
To study genetic evolution of Moroccan influenza A(H1N1)pdm09 virus strains, we conducted a molecular characterization of the hemagglutinin gene subunit 1 (HA1) of 36 influenza A(H1N1)pdm09 virus strains. The stains were collected from patients in Rabat and Casablanca during two influenza seasons 2009-2010 and 2010-2011. Nucleotide and amino acid sequences of 14 influenza A(H1N1)pdm09 virus strains from 2009 to 2010 were ~97 and 99 %, respectively, similar to the reference strain A/California/07/2009 (H1N1). Phylogenetic analysis of 22 influenza A(H1N1)pdm09 virus strains from 2010 to 2011 revealed a co-circulation of three well-described different genetic groups. Most important, none of the identified groups showed significant changes at the antigenic site of the virus HA1 subunit which may alter the efficacy of California/07/2009 (H1N1) vaccine.
Collapse
Affiliation(s)
- Hicham El Rhaffouli
- Biosafety Level 3 and Research Laboratory (LRB-P3), Faculty of Medicine and Pharmacy, Mohammed V Military Teaching Hospital, University Mohammed V-Souissi, Hay Ryade, BP 190, Rabat, Morocco,
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Newly emerging mutations in the matrix genes of the human influenza A(H1N1)pdm09 and A(H3N2) viruses reduce the detection sensitivity of real-time reverse transcription-PCR. J Clin Microbiol 2013; 52:76-82. [PMID: 24153120 DOI: 10.1128/jcm.02467-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New variants of the influenza A(H1N1)pdm09 and A(H3N2) viruses were detected in Taiwan between 2012 and 2013. Some of these variants were not detected in clinical specimens using a common real-time reverse transcription-PCR (RT-PCR) assay that targeted the conserved regions of the viral matrix (M) genes. An analysis of the M gene sequences of the new variants revealed that several newly emerging mutations were located in the regions where the primers or probes of the real-time RT-PCR assay bind; these included three mutations (G225A, T228C, and G238A) in the A(H1N1)pdm09 virus, as well as one mutation (C163T) in the A(H3N2) virus. These accumulated mismatch mutations, together with the previously identified C154T mutation of the A(H1N1)pdm09 virus and the C153T and G189T mutations of the A(H3N2) virus, result in a reduced detection sensitivity for the real-time RT-PCR assay. To overcome the loss of assay sensitivity due to mismatch mutations, we established a real-time RT-PCR assay using degenerate nucleotide bases in both the primers and probe and successfully increased the sensitivity of the assay to detect circulating variants of the human influenza A viruses. Our observations highlight the importance of the simultaneous use of different gene-targeting real-time RT-PCR assays for the clinical diagnosis of influenza.
Collapse
|
49
|
Genomic analysis of pandemic and post-pandemic influenza A pH1N1 viruses isolated in Rio Grande do Sul, Brazil. Arch Virol 2013; 159:621-30. [PMID: 24114147 DOI: 10.1007/s00705-013-1855-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/14/2013] [Indexed: 01/23/2023]
Abstract
During the 2009 influenza A pH1N1 pandemics in Brazil, the state that was most affected was Rio Grande do Sul (RS), with over 3,000 confirmed cases, including 298 deaths. While no cases were confirmed in 2010, 103 infections with 14 deaths by pH1N1 were reported in 2011. Genomic analysis of the circulating viruses is fundamental for understanding viral evolution and supporting vaccine development against these pathogens. This study investigated whole genomes of six pH1N1 virus isolates from pandemic and post-pandemic periods in RS, Brazil. Phylogenetic analysis using the concatenated genome segments demonstrated that at least two lineages of the virus co-circulated in RS during the 2009 pandemic period. Moreover, our analysis showed that the post-pandemic pH1N1 virus from 2011 constitutes a distinct clade whose ancestor belongs to clade 7. All six isolates contained amino acid substitutions in their proteins when compared to the archetype strains California/04/2009 and California/07/2009. The 2011 isolates contained more amino acid substitutions, and most of their genes were under purifying selection. Based on the amino acid substitutions in HA epitopes from strains isolated in RS, Brazil, in silico analysis predicted a decrease in vaccine efficacy against post-pandemic strains (median 31.562 %) in relation to pandemic ones (median 39.735 %).
Collapse
|
50
|
Khandaker I, Suzuki A, Kamigaki T, Tohma K, Odagiri T, Okada T, Ohno A, Otani K, Sawayama R, Kawamura K, Okamoto M, Oshitani H. Molecular evolution of the hemagglutinin and neuraminidase genes of pandemic (H1N1) 2009 influenza viruses in Sendai, Japan, during 2009-2011. Virus Genes 2013; 47:456-466. [PMID: 24078044 PMCID: PMC3834170 DOI: 10.1007/s11262-013-0980-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/07/2013] [Indexed: 01/17/2023]
Abstract
Analyzing the evolutionary pattern of the influenza A(H1N1)pdm09 strain in different regions is important for understanding its diversification. We therefore conducted this study to elucidate the genetic variability and molecular evolution of the influenza A(H1N1)pdm09 strains that circulated during the 2009-2010 and 2010-2011 influenza seasons in Sendai, Japan. Nasopharyngeal swab specimens were collected from patients with influenza-like illnesses who visited outpatient clinics in Sendai City, Japan, from September 2009 to April 2011. A total of 75 isolates were selected from September 2009 to April 2011 to analyze the genetic changes in the entire hemagglutinin 1 (HA1) segment of the HA gene and the neuraminidase (NA) gene based on sequence analysis. Bayesian coalescent Markov chain Monte Carlo analyses of HA1 and NA gene sequences were performed for further analysis. High sequence identities were observed for HA1 and NA in influenza A(H1N1)pdm09, displaying 99.06 and 99.33 % nucleotide identities, respectively, with the A(H1N1)pdm09 vaccine strain A/California/07/2009. The substitution rates of nucleotides for HA1 in the 2009-2010 and 2010-2011 were 1.5 × 10-3 and 1.6 × 10-3 substitutions per site per year, respectively. Phylogenetic tree analysis demonstrated that Sendai isolates were clustered into global clade 7, which is characterized by an S203T mutation in the HA1 gene. Moreover, two distinct circulation clusters were present in the 2010-2011 season. Mutations were present in antigenic or receptor-binding domains of the HA1 segment, including A141V, S143G, S183P, S185T, and S203T. The Bayesian skyline plot model illustrated a steady rate for the maintenance of genetic diversity, followed by a slight increase in the later part of the 2010-2011 season. Selection analysis revealed that the HA1 (position 197) and NA (position 46) sites were under positive selection; however, no known mutation conferring resistance to NA inhibitors such as H275Y was observed. The effect on control of the influenza A(H1N1)pdm09 virus, including vaccine strain selection, requires continuous monitoring of the strain by genetic surveillance.
Collapse
Affiliation(s)
- Irona Khandaker
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba, Sendai, Miyagi 9807585 Japan
| | - Akira Suzuki
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba, Sendai, Miyagi 9807585 Japan
| | - Taro Kamigaki
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba, Sendai, Miyagi 9807585 Japan
| | - Kentaro Tohma
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba, Sendai, Miyagi 9807585 Japan
| | - Takashi Odagiri
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba, Sendai, Miyagi 9807585 Japan
| | - Takashi Okada
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba, Sendai, Miyagi 9807585 Japan
| | - Ayumu Ohno
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba, Sendai, Miyagi 9807585 Japan
| | - Kanako Otani
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba, Sendai, Miyagi 9807585 Japan
| | - Rumi Sawayama
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba, Sendai, Miyagi 9807585 Japan
| | - Kazuhisa Kawamura
- Kawamura Pediatric Clinic, 2-22-27, Saiwaicho, Miyagino-Ku, Sendai, Miyagi 983-0836 Japan
| | - Michiko Okamoto
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba, Sendai, Miyagi 9807585 Japan
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba, Sendai, Miyagi 9807585 Japan
| |
Collapse
|