1
|
Waddell PJ, Bouckaert R. An independent base composition of each rate class for improved likelihood-based phylogeny estimation; the 5rf model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610719. [PMID: 39282393 PMCID: PMC11398347 DOI: 10.1101/2024.09.03.610719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The combination of a time reversible Markov process with a "hidden" mixture of gamma distributed relative site rates plus invariant sites have become the most favoured options for likelihood and other probabilistic models of nucleotide evolution (e.g., tr4gi which approximates a gamma with four rate classes). However, these models assume a homogeneous and stationary distribution of nucleotide (character or base) frequencies. Here, we explore the potential benefits and pitfalls of allowing each rate category (rate class) of a 4gi mixture model to have its own base frequencies. This is achieved by starting each of the five rate classes, at the tree's root, with its own free choice of nucleotide frequencies to create a 4gi5rf model or a 5rf model in shorthand. We assess the practical identifiability of this approach with a BEAST 2 implementation, aiming to determine if it can accurately estimate credibility intervals and expected values for a wide range of plausible parameter values. Practical identifiability, as distinguished from mathematical identifiability, gauges the model's ability to identify parameters in real-world scenarios, as opposed to theoretically with infinite data. One of the most common types of phylogenetic data is mitochondrial DNA (mtDNA) protein coding sequence. It is often assumed current models analyse robustly such data and that higher likelihood/posterior probability models do better. However, this abstract shows that vertebrate mtDNA remains a very difficult type of data to fully model, and that dramatically higher likelihoods do not mean a model is measurably more accurate with respect to recovering key parameters of biological interest (e.g., monophyletic groups, their support and their ages). The 4gi5rf model considerably improves marginal likelihoods and seems to reverse some apparent errors exacerbated by the 4gi model, while introducing others. Problems appear to be linked to non-stationary DNA repair processes that alter the mutation/substitution spectra across lineages and time. We also show such problems are not unique to mtDNA and are encountered in analysing nuclear sequences. Non-stationarity of DNA repair processes mutation/substitution spectra thus pose an active challenge to obtaining reliable inferences of relationships and divergence times near the root of placental mammals, for example. An open source implementation is available under the LGPL 3.0 license in the beastbooster package for BEAST 2, available from https://github.com/rbouckaert/beastbooster.
Collapse
Affiliation(s)
- Peter J. Waddell
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Remco Bouckaert
- Centre for Computational Evolution, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Varela L, Tambusso S, Fariña R. Femora nutrient foramina and aerobic capacity in giant extinct xenarthrans. PeerJ 2024; 12:e17815. [PMID: 39131616 PMCID: PMC11316464 DOI: 10.7717/peerj.17815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Nutrient foramina are small openings in the periosteal surface of the mid-shaft region of long bones that traverse the cortical layer and reach the medullary cavity. They are important for the delivery of nutrients and oxygen to bone tissue and are crucial for the repair and remodeling of bones over time. The nutrient foramina in the femur's diaphysis are related to the energetic needs of the femur and have been shown to be related to the maximum metabolic rate (MMR) of taxa. Here, we investigate the relationship between nutrient foramen size and body mass as a proxy to the aerobic capacity of taxa in living and extinct xenarthrans, including living sloths, anteaters, and armadillos, as well as extinct xenarthrans such as glyptodonts, pampatheres, and ground sloths. Seventy femora were sampled, including 20 from extant taxa and 50 from extinct taxa. We obtained the blood flow rate (Q̇) based on foramina area and performed PGLS and phylogenetic ANCOVA in order to explore differences among mammalian groups. Our results show that, among mammals, taxa commonly associated with lower metabolism like living xenarthrans showed relatively smaller foramina, while the foramina of giant extinct xenarthrans like ground sloths and glyptodonts overlapped with non-xenarthran placentals. Consequently, Q̇ estimations indicated aerobic capacities comparable to other placental giant taxa like elephants or some ungulates. Furthermore, the estimation of the MMR for fossil giant taxa showed similar results, with almost all taxa showing high values except for those for which strong semi-arboreal or fossorial habits have been proposed. Moreover, the results are compatible with the diets predicted for extinct taxa, which indicate a strong consumption of grass similar to ungulates and in contrast to the folivorous or insectivorous diets of extant xenarthrans. The ancestral reconstruction of the MMR values indicated a lack of a common pattern for all xenarthrans, strongly supporting the occurrence of low metabolic rates in extant forms due to their particular dietary preferences and arboreal or fossorial habits. Our results highlight the importance of considering different evidence beyond the phylogenetic position of extinct taxa, especially when extinct forms are exceptionally different from their extant relatives. Future studies evaluating the energetic needs of giant extinct xenarthrans should not assume lower metabolic rates for these extinct animals based solely on their phylogenetic position and the observations on their extant relatives.
Collapse
Affiliation(s)
- Luciano Varela
- Department of Paleontology, Universidad de la República, Montevideo, Uruguay
- Servicio Académico Universitario y Centro de Estudio Paleontológicos (SAUCE-P), Universidad de la República, Sauce, Canelones, Uruguay
| | - Sebastián Tambusso
- Department of Paleontology, Universidad de la República, Montevideo, Uruguay
- Servicio Académico Universitario y Centro de Estudio Paleontológicos (SAUCE-P), Universidad de la República, Sauce, Canelones, Uruguay
| | - Richard Fariña
- Department of Paleontology, Universidad de la República, Montevideo, Uruguay
- Servicio Académico Universitario y Centro de Estudio Paleontológicos (SAUCE-P), Universidad de la República, Sauce, Canelones, Uruguay
| |
Collapse
|
3
|
Kaucka M. Cis-regulatory landscapes in the evolution and development of the mammalian skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220079. [PMID: 37183897 PMCID: PMC10184250 DOI: 10.1098/rstb.2022.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Extensive morphological variation found in mammals reflects the wide spectrum of their ecological adaptations. The highest morphological diversity is present in the craniofacial region, where geometry is mainly dictated by the bony skull. Mammalian craniofacial development represents complex multistep processes governed by numerous conserved genes that require precise spatio-temporal control. A central question in contemporary evolutionary biology is how a defined set of conserved genes can orchestrate formation of fundamentally different structures, and therefore how morphological variability arises. In principle, differential gene expression patterns during development are the source of morphological variation. With the emergence of multicellular organisms, precise regulation of gene expression in time and space is attributed to cis-regulatory elements. These elements contribute to higher-order chromatin structure and together with trans-acting factors control transcriptional landscapes that underlie intricate morphogenetic processes. Consequently, divergence in cis-regulation is believed to rewire existing gene regulatory networks and form the core of morphological evolution. This review outlines the fundamental principles of the genetic code and genomic regulation interplay during development. Recent work that deepened our comprehension of cis-regulatory element origin, divergence and function is presented here to illustrate the state-of-the-art research that uncovered the principles of morphological novelty. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| |
Collapse
|
4
|
Peters LM, Howard J, Leeb T, Mevissen M, Graf R, Reding Graf T. Identification of regenerating island-derived protein 3E in dogs. Front Vet Sci 2022; 9:1010809. [PMID: 36387376 PMCID: PMC9650133 DOI: 10.3389/fvets.2022.1010809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Regenerating islet-derived protein (REG) 1A (aka pancreatic stone protein) and REG3A (aka pancreatitis-associated protein) are upregulated in humans with sepsis, pancreatitis, and gastrointestinal diseases, but little is known about this protein family in dogs. Our aim was to identify REG1 and REG3 family members in dogs. REG-family genes were computationally annotated in the canine genome and proteome, with verification of gene expression using publicly available RNA-seq data. The presence of the protein in canine pancreatic tissue and plasma was investigated with Western blot and immunohistochemistry, using anti-human REG1A and REG3A antibodies. Protein identity was confirmed with mass spectrometry. Two members of the REG3 subfamily were found in the canine genome, REG3E1 and REG3E2, both encoding for the same 176 AA protein, subsequently named REG3E. Anti-human REG3A antibodies demonstrated cross-reactivity with the canine REG3E protein in pancreas homogenates. In canine plasma, a protein band of approximately 17 kDa was apparent. Mass spectrometry confirmed this protein to be the product of the two annotated REG3E genes. Strong immunoreactivity to anti-human REG3A antibodies was found in sections of canine pancreas affected with acute pancreatitis, but it was weak in healthy pancreatic tissue. Recombinant canine REG3E protein underwent a selective trypsin digestion as described in other species. No evidence for the presence of a homolog of REG1A in dogs was found in any of the investigations. In conclusion, dogs express REG3E in the pancreas, whose role as biomarker merits further investigations. Homologs to human REG1A are not likely to exist in dogs.
Collapse
Affiliation(s)
- Laureen M. Peters
- Department of Clinical Veterinary Medicine, Clinical Diagnostic Laboratory, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- *Correspondence: Laureen M. Peters
| | - Judith Howard
- Department of Clinical Veterinary Medicine, Clinical Diagnostic Laboratory, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Meike Mevissen
- Division of Veterinary Pharmacology and Toxicology, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rolf Graf
- Department of Surgery and Transplantation, Pancreas Research Laboratory, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Theresia Reding Graf
- Department of Surgery and Transplantation, Pancreas Research Laboratory, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Doronina L, Feigin CY, Schmitz J. Reunion of Australasian Possums by Shared SINE Insertions. Syst Biol 2022; 71:1045-1053. [PMID: 35289914 PMCID: PMC9366447 DOI: 10.1093/sysbio/syac025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
Although first posited to be of a single origin, the two superfamilies of phalangeriform marsupial possums (Phalangeroidea: brushtail possums and cuscuses and Petauroidea: possums and gliders) have long been considered, based on multiple sequencing studies, to have evolved from two separate origins. However, previous data from these sequence analyses suggested a variety of conflicting trees. Therefore, we reinvestigated these relationships by screening $\sim$200,000 orthologous short interspersed element (SINE) loci across the newly available whole-genome sequences of phalangeriform species and their relatives. Compared to sequence data, SINE presence/absence patterns are evolutionarily almost neutral molecular markers of the phylogenetic history of species. Their random and highly complex genomic insertion ensures their virtually homoplasy-free nature and enables one to compare hundreds of shared unique orthologous events to determine the true species tree. Here, we identify 106 highly reliable phylogenetic SINE markers whose presence/absence patterns within multiple Australasian possum genomes unexpectedly provide the first significant evidence for the reunification of Australasian possums into one monophyletic group. Together, our findings indicate that nucleotide homoplasy and ancestral incomplete lineage sorting have most likely driven the conflicting signal distributions seen in previous sequence-based studies. [Ancestral incomplete lineage sorting; possum genomes; possum monophyly; retrophylogenomics; SINE presence/absence.].
Collapse
Affiliation(s)
- Liliya Doronina
- Institute of Experimental Pathology (ZMBE), University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Charles Y Feigin
- Department of Molecular Biology, Princeton University, 119 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544-1014, USA
- School of BioSciences, The University of Melbourne, BioSciences 4, Royal Pde, Parkville, VIC 3010, Australia
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| |
Collapse
|
6
|
SINEs as Credible Signs to Prove Common Ancestry in the Tree of Life: A Brief Review of Pioneering Case Studies in Retroposon Systematics. Genes (Basel) 2022; 13:genes13060989. [PMID: 35741751 PMCID: PMC9223172 DOI: 10.3390/genes13060989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 12/31/2022] Open
Abstract
Currently, the insertions of SINEs (and other retrotransposed elements) are regarded as one of the most reliable synapomorphies in molecular systematics. The methodological mainstream of molecular systematics is the calculation of nucleotide (or amino acid) sequence divergences under a suitable substitution model. In contrast, SINE insertion analysis does not require any complex model because SINE insertions are unidirectional and irreversible. This straightforward methodology was named the “SINE method,” which resolved various taxonomic issues that could not be settled by sequence comparison alone. The SINE method has challenged several traditional hypotheses proposed based on the fossil record and anatomy, prompting constructive discussions in the Evo/Devo era. Here, we review our pioneering SINE studies on salmon, cichlids, cetaceans, Afrotherian mammals, and birds. We emphasize the power of the SINE method in detecting incomplete lineage sorting by tracing the genealogy of specific genomic loci with minimal noise. Finally, in the context of the whole-genome era, we discuss how the SINE method can be applied to further our understanding of the tree of life.
Collapse
|
7
|
Doronina L, Reising O, Clawson H, Churakov G, Schmitz J. Euarchontoglires Challenged by Incomplete Lineage Sorting. Genes (Basel) 2022; 13:774. [PMID: 35627160 PMCID: PMC9141288 DOI: 10.3390/genes13050774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Euarchontoglires, once described as Supraprimates, comprise primates, colugos, tree shrews, rodents, and lagomorphs in a clade that evolved about 90 million years ago (mya) from a shared ancestor with Laurasiatheria. The rapid speciation of groups within Euarchontoglires, and the subsequent inherent incomplete marker fixation in ancestral lineages, led to challenged attempts at phylogenetic reconstructions, particularly for the phylogenetic position of tree shrews. To resolve this conundrum, we sampled genome-wide presence/absence patterns of transposed elements (TEs) from all representatives of Euarchontoglires. This specific marker system has the advantage that phylogenetic diagnostic characters can be extracted in a nearly unbiased fashion genome-wide from reference genomes. Their insertions are virtually free of homoplasy. We simultaneously employed two computational tools, the genome presence/absence compiler (GPAC) and 2-n-way, to find a maximum of diagnostic insertions from more than 3 million TE positions. From 361 extracted diagnostic TEs, 132 provide significant support for the current resolution of Primatomorpha (Primates plus Dermoptera), 94 support the union of Euarchonta (Primates, Dermoptera, plus Scandentia), and 135 marker insertion patterns support a variety of alternative phylogenetic scenarios. Thus, whole genome-level analysis and a virtually homoplasy-free marker system offer an opportunity to finally resolve the notorious phylogenetic challenges that nature produces in rapidly diversifying groups.
Collapse
Affiliation(s)
- Liliya Doronina
- Institute of Experimental Pathology, ZMBE, University of Münster, 48149 Münster, Germany; (O.R.); (G.C.); (J.S.)
| | - Olga Reising
- Institute of Experimental Pathology, ZMBE, University of Münster, 48149 Münster, Germany; (O.R.); (G.C.); (J.S.)
| | - Hiram Clawson
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA;
| | - Gennady Churakov
- Institute of Experimental Pathology, ZMBE, University of Münster, 48149 Münster, Germany; (O.R.); (G.C.); (J.S.)
| | - Jürgen Schmitz
- Institute of Experimental Pathology, ZMBE, University of Münster, 48149 Münster, Germany; (O.R.); (G.C.); (J.S.)
- EvoPAD-RTG, University of Münster, 48149 Münster, Germany
| |
Collapse
|
8
|
SINE-Based Phylogenomics Reveal Extensive Introgression and Incomplete Lineage Sorting in Myotis. Genes (Basel) 2022; 13:genes13030399. [PMID: 35327953 PMCID: PMC8951037 DOI: 10.3390/genes13030399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 01/08/2023] Open
Abstract
Using presence/absence data from over 10,000 Ves SINE insertions, we reconstructed a phylogeny for 11 Myotis species. With nearly one-third of individual Ves gene trees discordant with the overall species tree, phylogenetic conflict appears to be rampant in this genus. From the observed conflict, we infer that ILS is likely a major contributor to the discordance. Much of the discordance can be attributed to the hypothesized split between the Old World and New World Myotis clades and with the first radiation of Myotis within the New World. Quartet asymmetry tests reveal signs of introgression between Old and New World taxa that may have persisted until approximately 8 MYA. Our introgression tests also revealed evidence of both historic and more recent, perhaps even contemporary, gene flow among Myotis species of the New World. Our findings suggest that hybridization likely played an important role in the evolutionary history of Myotis and may still be happening in areas of sympatry. Despite limitations arising from extreme discordance, our SINE-based phylogeny better resolved deeper relationships (particularly the positioning of M. brandtii) and was able to identify potential introgression pathways among the Myotis species sampled.
Collapse
|
9
|
Lesciotto KM, Tomlinson L, Leonard S, Richtsmeier JT. Embryonic and Early Postnatal Cranial Bone Volume and Tissue Mineral Density Values for C57BL/6J Laboratory Mice. Dev Dyn 2022; 251:1196-1208. [PMID: 35092111 PMCID: PMC9250594 DOI: 10.1002/dvdy.458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022] Open
Abstract
Background Laboratory mice are routinely used in craniofacial research based on the relatively close genetic relationship and conservation of developmental pathways between humans and mice. Since genetic perturbations and disease states may have localized effects, data from individual cranial bones are valuable for the interpretation of experimental assays. We employ high‐resolution microcomputed tomography to characterize cranial bones of C57BL/6J mice at embryonic day (E) 15.5 and E17.5, day of birth (P0), and postnatal day 7 (P7) and provide estimates of individual bone volume and tissue mineral density (TMD). Results Average volume and TMD values are reported for individual bones. Significant differences in volume and TMD during embryonic ages likely reflect early mineralization of cranial neural crest‐derived and intramembranously forming bones. Although bones of the face and vault had higher TMD values during embryonic ages, bones of the braincase floor had significantly higher TMD values by P7. Conclusions These ontogenetic data on cranial bone volume and TMD serve as a reference standard for future studies using mice bred on a C57BL/6J genetic background. Our findings also highlight the importance of differentiating “control” data from mice that are presented as “unaffected” littermates, particularly when carrying a single copy of a cre‐recombinase gene. Higher average volume and density of cranial neural crest‐derived and intramembranously‐forming bones during embryonic development. Higher average density in bones of the braincase floor during early postnatal development. Ontogenetic data on cranial bone volume and TMD serve as a reference standard for mice bred on a C57BL/6J genetic background.
Collapse
Affiliation(s)
- Kate M Lesciotto
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, USA
| | | | - Steven Leonard
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
10
|
Wang A, Chen W, Tao S. Genome-wide characterization, evolution, structure, and expression analysis of the F-box genes in Caenorhabditis. BMC Genomics 2021; 22:889. [PMID: 34895149 PMCID: PMC8665587 DOI: 10.1186/s12864-021-08189-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/19/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND F-box proteins represent a diverse class of adaptor proteins of the ubiquitin-proteasome system (UPS) that play critical roles in the cell cycle, signal transduction, and immune response by removing or modifying cellular regulators. Among closely related organisms of the Caenorhabditis genus, remarkable divergence in F-box gene copy numbers was caused by sizeable species-specific expansion and contraction. Although F-box gene number expansion plays a vital role in shaping genomic diversity, little is known about molecular evolutionary mechanisms responsible for substantial differences in gene number of F-box genes and their functional diversification in Caenorhabditis. Here, we performed a comprehensive evolution and underlying mechanism analysis of F-box genes in five species of Caenorhabditis genus, including C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei. RESULTS Herein, we identified and characterized 594, 192, 377, 39, 1426 F-box homologs encoding putative F-box proteins in the genome of C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei, respectively. Our work suggested that extensive species-specific tandem duplication followed by a small amount of gene loss was the primary mechanism responsible for F-box gene number divergence in Caenorhabditis genus. After F-box gene duplication events occurred, multiple mechanisms have contributed to gene structure divergence, including exon/intron gain/loss, exonization/pseudoexonization, exon/intron boundaries alteration, exon splits, and intron elongation by tandem repeats. Based on high-throughput RNA sequencing data analysis, we proposed that F-box gene functions have diversified by sub-functionalization through highly divergent stage-specific expression patterns in Caenorhabditis species. CONCLUSIONS Massive species-specific tandem duplications and occasional gene loss drove the rapid evolution of the F-box gene family in Caenorhabditis, leading to complex gene structural variation and diversified functions affecting growth and development within and among Caenorhabditis species. In summary, our findings outline the evolution of F-box genes in the Caenorhabditis genome and lay the foundation for future functional studies.
Collapse
Affiliation(s)
- Ailan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi China
- Geneis (Beijing) Co., Beijing, China
| | - Wei Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
11
|
Hovlinc is a recently evolved class of ribozyme found in human lncRNA. Nat Chem Biol 2021; 17:601-607. [PMID: 33753927 DOI: 10.1038/s41589-021-00763-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 01/06/2021] [Accepted: 02/02/2021] [Indexed: 01/31/2023]
Abstract
Although naturally occurring catalytic RNA molecules-ribozymes-have attracted a great deal of research interest, very few have been identified in humans. Here, we developed a genome-wide approach to discovering self-cleaving ribozymes and identified a naturally occurring ribozyme in humans. The secondary structure and biochemical properties of this ribozyme indicate that it belongs to an unidentified class of small, self-cleaving ribozymes. The sequence of the ribozyme exhibits a clear evolutionary path, from its appearance between ~130 and ~65 million years ago (Ma), to acquiring self-cleavage activity very recently, ~13-10 Ma, in the common ancestors of humans, chimpanzees and gorillas. The ribozyme appears to be functional in vivo and is embedded within a long noncoding RNA belonging to a class of very long intergenic noncoding RNAs. The presence of a catalytic RNA enzyme in lncRNA creates the possibility that these transcripts could function by carrying catalytic RNA domains.
Collapse
|
12
|
Deformity Index: A Semi-Reference Clade-Based Quality Metric of Phylogenetic Trees. J Mol Evol 2021; 89:302-312. [PMID: 33811501 DOI: 10.1007/s00239-021-10006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Measuring the dissimilarity of a phylogenetic tree with respect to a reference tree or the hypotheses is a fundamental task in the phylogenetic study. A large number of methods have been proposed to compute the distance between the reference tree and the target tree. Due to the presence of unresolved relationships among the species, it is challenging to obtain a precise and an accurate reference tree for a selected dataset. As a result, the existing tree comparison methods may behave unexpectedly in various scenarios. In this paper, we introduce a novel scoring function, called the deformity index, to quantify the dissimilarity of a tree based on the list of clades of a reference tree. The strength of our proposed method is that it depends on the list of clades that can be acquired either from the reference tree or from the hypotheses. We investigate the distributions of different modules of the deformity index and perform different goodness-of-fit tests to understand the cumulative distribution. Then, we examine, in detail, the robustness as well as the scalability of our measure by performing different statistical tests under various models. Finally, we experiment on different biological datasets and show that our proposed scoring function overcomes the limitations of the conventional methods.
Collapse
|
13
|
Hao Y, Lee HJ, Baraboo M, Burch K, Maurer T, Somarelli JA, Conant GC. Baby Genomics: Tracing the Evolutionary Changes That Gave Rise to Placentation. Genome Biol Evol 2021; 12:35-47. [PMID: 32053193 PMCID: PMC7144826 DOI: 10.1093/gbe/evaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
It has long been challenging to uncover the molecular mechanisms behind striking morphological innovations such as mammalian pregnancy. We studied the power of a robust comparative orthology pipeline based on gene synteny to address such problems. We inferred orthology relations between human genes and genes from each of 43 other vertebrate genomes, resulting in ∼18,000 orthologous pairs for each genome comparison. By identifying genes that first appear coincident with origin of the placental mammals, we hypothesized that we would define a subset of the genome enriched for genes that played a role in placental evolution. We thus pinpointed orthologs that appeared before and after the divergence of eutherian mammals from marsupials. Reinforcing previous work, we found instead that much of the genetic toolkit of mammalian pregnancy evolved through the repurposing of preexisting genes to new roles. These genes acquired regulatory controls for their novel roles from a group of regulatory genes, many of which did in fact originate at the appearance of the eutherians. Thus, orthologs appearing at the origin of the eutherians are enriched in functions such as transcriptional regulation by Krüppel-associated box-zinc-finger proteins, innate immune responses, keratinization, and the melanoma-associated antigen protein class. Because the cellular mechanisms of invasive placentae are similar to those of metastatic cancers, we then used our orthology inferences to explore the association between placenta invasion and cancer metastasis. Again echoing previous work, we find that genes that are phylogenetically older are more likely to be implicated in cancer development.
Collapse
Affiliation(s)
- Yue Hao
- Bioinformatics Research Center, North Carolina State University
| | - Hyuk Jin Lee
- Division of Biological Sciences, University of Missouri-Columbia
| | | | | | | | - Jason A Somarelli
- Duke Cancer Institute, Duke University Medical Center.,Department of Medicine, Duke University School of Medicine
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University.,Division of Animal Sciences, University of Missouri-Columbia.,Program in Genetics, North Carolina State University.,Department of Biological Sciences, North Carolina State University
| |
Collapse
|
14
|
Phillips MJ, Shazwani Zakaria S. Enhancing mitogenomic phylogeny and resolving the relationships of extinct megafaunal placental mammals. Mol Phylogenet Evol 2021; 158:107082. [PMID: 33482383 DOI: 10.1016/j.ympev.2021.107082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Mitochondrial genomes provided the first widely used sequences that were sufficiently informative to resolve relationships among animals across a wide taxonomic domain, from within species to between phyla. However, mitogenome studies supported several anomalous relationships and fell partly out of favour as sequencing multiple, independent nuclear loci proved to be highly effective. A tendency to blame mitochondrial DNA (mtDNA) has overshadowed efforts to understand and ameliorate underlying model misspecification. Here we find that influential assessments of the infidelity of mitogenome phylogenies have often been overstated, but nevertheless, substitution saturation and compositional non-stationarity substantially mislead reconstruction. We show that RY coding the mtDNA, excluding protein-coding 3rd codon sites, partitioning models based on amino acid hydrophobicity and enhanced taxon sampling improve the accuracy of mitogenomic phylogeny reconstruction for placental mammals, almost to the level of multi-gene nuclear datasets. Indeed, combined analysis of mtDNA with 3-fold longer nuclear sequence data either maintained or improved upon the nuclear support for all generally accepted clades, even those that mtDNA alone did not favour, thus indicating "hidden support". Confident mtDNA phylogeny reconstruction is especially important for understanding the evolutionary dynamics of mitochondria themselves, and for merging extinct taxa into the tree of life, with ancient DNA often only accessible as mtDNA. Our ancient mtDNA analyses lend confidence to the relationships of three extinct megafaunal taxa: glyptodonts are nested within armadillos, the South American ungulate, Macrauchenia is sister to horses and rhinoceroses, and sabre-toothed and scimitar cats are the monophyletic sister-group of modern cats.
Collapse
Affiliation(s)
- Matthew J Phillips
- School of Biology and Environmental Science, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia.
| | - Sarah Shazwani Zakaria
- School of Biology and Environmental Science, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia; School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Caw. Negeri Sembilan, Kuala Pilah 72000, Malaysia
| |
Collapse
|
15
|
Geng WH, Wang XP, Che LF, Wang X, Liu R, Zhou T, Roos C, Irwin DM, Yu L. Convergent Evolution of Locomotory Modes in Euarchontoglires. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.615862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The research of phenotypic convergence is of increasing importance in adaptive evolution. Locomotory modes play important roles in the adaptive evolution of species in the Euarchontoglires, however, the investigation of convergent evolution of the locomotory modes across diverse Euarchontoglire orders is incomplete. We collected measurements of three phalangeal indices of manual digit III, including metacarpal of digit III (MC3), manus proximal phalanx of digit III (MPP3), and manus intermediate phalanx of digit III (MIP3), from 203 individuals of 122 Euarchontoglires species representing arboreal (orders Scandentia, Rodentia, and Primates), terrestrial (orders Scandentia and Rodentia), and gliding (orders Dermoptera and Rodentia) locomotory modes. This data can be separated into seven groups defined by order and locomotory mode. Based on combination of the three phalangeal indices, the Principle component analyses (PCA), phylomorphospace plot, and C-metrics analyses clustered the arboreal species of Scandentia, Rodentia, and Primates together and the terrestrial species of Scandentia and Rodentia together, showing the convergent signal in evolution of the arboreal (C1 = 0.424, P < 0.05) and terrestrial (C1 = 0.560, P < 0.05) locomotory modes in Euarchontoglires. Although the gliding species from Dermoptera and Rodentia did not cluster together, they also showed the convergent signal (C1 = 0.563, P < 0.05). Our work provides insight into the convergent evolution of locomotory modes in Euarchontoglires, and reveals that these three indices contribute valuable information to identify convergent evolution in Euarchontoglires.
Collapse
|
16
|
Nishihara H. Retrotransposons spread potential cis-regulatory elements during mammary gland evolution. Nucleic Acids Res 2020; 47:11551-11562. [PMID: 31642473 PMCID: PMC7145552 DOI: 10.1093/nar/gkz1003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Acquisition of cis-elements is a major driving force for rewiring a gene regulatory network. Several kinds of transposable elements (TEs), mostly retrotransposons that propagate via a copy-and-paste mechanism, are known to possess transcription factor binding motifs and have provided source sequences for enhancers/promoters. However, it remains largely unknown whether retrotransposons have spread the binding sites of master regulators of morphogenesis and accelerated cis-regulatory expansion involved in common mammalian morphological features during evolution. Here, I demonstrate that thousands of binding sites for estrogen receptor α (ERα) and three related pioneer factors (FoxA1, GATA3 and AP2γ) that are essential regulators of mammary gland development arose from a spreading of the binding motifs by retrotransposons. The TE-derived functional elements serve primarily as distal enhancers and are enriched around genes associated with mammary gland morphogenesis. The source TEs occurred via a two-phased expansion consisting of mainly L2/MIR in a eutherian ancestor and endogenous retrovirus 1 (ERV1) in simian primates and murines. Thus the build-up of potential sources for cis-elements by retrotransposons followed by their frequent utilization by the host (co-option/exaptation) may have a general accelerating effect on both establishing and diversifying a gene regulatory network, leading to morphological innovation.
Collapse
Affiliation(s)
- Hidenori Nishihara
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-S2-17, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
17
|
Ohishi K, Maruyama T, Seki F, Takeda M. Marine Morbilliviruses: Diversity and Interaction with Signaling Lymphocyte Activation Molecules. Viruses 2019; 11:E606. [PMID: 31277275 PMCID: PMC6669707 DOI: 10.3390/v11070606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 01/08/2023] Open
Abstract
Epidemiological reports of phocine distemper virus (PDV) and cetacean morbillivirus (CeMV) have accumulated since their discovery nearly 30 years ago. In this review, we focus on the interaction between these marine morbilliviruses and their major cellular receptor, the signaling lymphocyte activation molecule (SLAM). The three-dimensional crystal structure and homology models of SLAMs have demonstrated that 35 residues are important for binding to the morbillivirus hemagglutinin (H) protein and contribute to viral tropism. These 35 residues are essentially conserved among pinnipeds and highly conserved among the Caniformia, suggesting that PDV can infect these animals, but are less conserved among cetaceans. Because CeMV can infect various cetacean species, including toothed and baleen whales, the CeMV-H protein is postulated to have broader specificity to accommodate more divergent SLAM interfaces and may enable the virus to infect seals. In silico analysis of viral H protein and SLAM indicates that each residue of the H protein interacts with multiple residues of SLAM and vice versa. The integration of epidemiological, virological, structural, and computational studies should provide deeper insight into host specificity and switching of marine morbilliviruses.
Collapse
Affiliation(s)
- Kazue Ohishi
- Faculty of Engineering, Tokyo Polytechnic University, 1583, Iiyama, Atsugi, Kanagawa 243-0297, Japan.
| | - Tadashi Maruyama
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitazato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Fumio Seki
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| |
Collapse
|
18
|
Rey-Iglesia A, Gopalakrishan S, Carøe C, Alquezar-Planas DE, Ahlmann Nielsen A, Röder T, Bruhn Pedersen L, Naesborg-Nielsen C, Sinding MHS, Fredensborg Rath M, Li Z, Petersen B, Gilbert MTP, Bunce M, Mourier T, Hansen AJ. MobiSeq: De novo SNP discovery in model and non-model species through sequencing the flanking region of transposable elements. Mol Ecol Resour 2019; 19:512-525. [PMID: 30575257 DOI: 10.1111/1755-0998.12984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
Abstract
In recent years, the availability of reduced representation library (RRL) methods has catalysed an expansion of genome-scale studies to characterize both model and non-model organisms. Most of these methods rely on the use of restriction enzymes to obtain DNA sequences at a genome-wide level. These approaches have been widely used to sequence thousands of markers across individuals for many organisms at a reasonable cost, revolutionizing the field of population genomics. However, there are still some limitations associated with these methods, in particular the high molecular weight DNA required as starting material, the reduced number of common loci among investigated samples, and the short length of the sequenced site-associated DNA. Here, we present MobiSeq, a RRL protocol exploiting simple laboratory techniques, that generates genomic data based on PCR targeted enrichment of transposable elements and the sequencing of the associated flanking region. We validate its performance across 103 DNA extracts derived from three mammalian species: grey wolf (Canis lupus), red deer complex (Cervus sp.) and brown rat (Rattus norvegicus). MobiSeq enables the sequencing of hundreds of thousands loci across the genome and performs SNP discovery with relatively low rates of clonality. Given the ease and flexibility of MobiSeq protocol, the method has the potential to be implemented for marker discovery and population genomics across a wide range of organisms-enabling the exploration of diverse evolutionary and conservation questions.
Collapse
Affiliation(s)
- Alba Rey-Iglesia
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Shyam Gopalakrishan
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Christian Carøe
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - David E Alquezar-Planas
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Anne Ahlmann Nielsen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Timo Röder
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Lene Bruhn Pedersen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - Mikkel-Holger S Sinding
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Greenland Institute of Natural Resources, Nuuk, Greenland
| | | | - Zhipeng Li
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bent Petersen
- DTU Bioinformatics, Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark.,Faculty of Applied Sciences, Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
| | - M Thomas P Gilbert
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Tobias Mourier
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | |
Collapse
|
19
|
Donath A, Stadler PF. Split-inducing indels in phylogenomic analysis. Algorithms Mol Biol 2018; 13:12. [PMID: 30026791 PMCID: PMC6047143 DOI: 10.1186/s13015-018-0130-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/16/2018] [Indexed: 11/13/2022] Open
Abstract
Background Most phylogenetic studies using molecular data treat gaps in multiple sequence alignments as missing data or even completely exclude alignment columns that contain gaps. Results Here we show that gap patterns in large-scale, genome-wide alignments are themselves phylogenetically informative and can be used to infer reliable phylogenies provided the gap data are properly filtered to reduce noise introduced by the alignment method. We introduce here the notion of split-inducing indels (splids) that define an approximate bipartition of the taxon set. We show both in simulated data and in case studies on real-life data that splids can be efficiently extracted from phylogenomic data sets. Conclusions Suitably processed gap patterns extracted from genome-wide alignment provide a surprisingly clear phylogenetic signal and an allow the inference of accurate phylogenetic trees. Electronic supplementary material The online version of this article (10.1186/s13015-018-0130-7) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
|
21
|
Albuquerque TAF, Drummond do Val L, Doherty A, de Magalhães JP. From humans to hydra: patterns of cancer across the tree of life. Biol Rev Camb Philos Soc 2018; 93:1715-1734. [PMID: 29663630 PMCID: PMC6055669 DOI: 10.1111/brv.12415] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 03/18/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
Abstract
Cancer is a disease of multicellularity; it originates when cells become dysregulated due to mutations and grow out of control, invading other tissues and provoking discomfort, disability, and eventually death. Human life expectancy has greatly increased in the last two centuries, and consequently so has the incidence of cancer. However, how cancer patterns in humans compare to those of other species remains largely unknown. In this review, we search for clues about cancer and its evolutionary underpinnings across the tree of life. We discuss data from a wide range of species, drawing comparisons with humans when adequate, and interpret our findings from an evolutionary perspective. We conclude that certain cancers are uniquely common in humans, such as lung, prostate, and testicular cancer; while others are common across many species. Lymphomas appear in almost every animal analysed, including in young animals, which may be related to pathogens imposing selection on the immune system. Cancers unique to humans may be due to our modern environment or may be evolutionary accidents: random events in the evolution of our species. Finally, we find that cancer‐resistant animals such as whales and mole‐rats have evolved cellular mechanisms that help them avoid neoplasia, and we argue that there are multiple natural routes to cancer resistance.
Collapse
Affiliation(s)
- Thales A F Albuquerque
- Escola Superior de Ciências da Saúde, SMHN Quadra 03 conjunto A, Bloco 1 Edifício Fepecs CEP 70, 710-907, Brasilia, Brazil
| | - Luisa Drummond do Val
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Room 281, 6 West Derby Street, Liverpool, L7 8TX, U.K
| | - Aoife Doherty
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Room 281, 6 West Derby Street, Liverpool, L7 8TX, U.K
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Room 281, 6 West Derby Street, Liverpool, L7 8TX, U.K
| |
Collapse
|
22
|
Kay RF. 100 years of primate paleontology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:652-676. [DOI: 10.1002/ajpa.23429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Richard F. Kay
- Department of Evolutionary Anthropology and Division of Earth and Ocean Sciences; Duke University; Durham North Carolina 27708
| |
Collapse
|
23
|
Preoperative evaluation of cochlear implantation through the round window membrane in the facial recess using high-resolution computed tomography. Surg Radiol Anat 2018; 40:705-711. [DOI: 10.1007/s00276-018-1972-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|
24
|
Thalamic interactions of cerebellum and basal ganglia. Brain Struct Funct 2017; 223:569-587. [PMID: 29224175 DOI: 10.1007/s00429-017-1584-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/29/2017] [Indexed: 01/04/2023]
Abstract
Cerebellum and basal ganglia are reciprocally interconnected with the neocortex via oligosynaptic loops. The signal pathways of these loops predominantly converge in motor areas of the frontal cortex and are mainly segregated on subcortical level. Recent evidence, however, indicates subcortical interaction of these systems. We have reviewed literature that addresses the question whether, and to what extent, projections of main output nuclei of basal ganglia (reticular part of the substantia nigra, internal segment of the globus pallidus) and cerebellum (deep cerebellar nuclei) interact with each other in the thalamus. To this end, we compiled data from electrophysiological and anatomical studies in rats, cats, dogs, and non-human primates. Evidence suggests the existence of convergence of thalamic projections originating in basal ganglia and cerebellum, albeit sparse and restricted to certain regions. Four regions come into question to contain converging inputs: (1) lateral parts of medial dorsal nucleus (MD); (2) parts of anterior intralaminar nuclei and centromedian and parafascicular nuclei (CM/Pf); (3) ventromedial nucleus (VM); and (4) border regions of cerebellar and ganglia terminal territories in ventral anterior and ventral lateral nuclei (VA-VL). The amount of convergences was found to exhibit marked interspecies differences. To explain the rather sparse convergences of projection territories and to estimate their physiological relevance, we present two conceivable principles of anatomical organization: (1) a "core-and-shell" organization, in which a central core is exclusive to one projection system, while peripheral shell regions intermingle and occasionally converge with other projection systems and (2) convergences that are characteristic to distinct functional networks. The physiological relevance of these convergences is not yet clear. An oculomotor network proposed in this work is an interesting candidate to examine potential ganglia and cerebellar subcortical interactions.
Collapse
|
25
|
Rohozinski J. Lineage-independent retrotransposition of UTP14 associated with male fertility has occurred multiple times throughout mammalian evolution. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171049. [PMID: 29308242 PMCID: PMC5750009 DOI: 10.1098/rsos.171049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
In mammals, gamete production is essential for reproductive success. This is particularly true for males where large quantities of sperm are produced to fertilize a limited number of eggs released by the female. Because of this, new genes associated with increased spermatogenic efficiency have been accumulating throughout the evolution of therian mammals. Many of these new genes are testis-specific retrotransposed copies of housekeeping genes located on the X chromosome. Of particular interest are retrotransposed copies of UTP14 that are present in many distantly related eutherian mammals. Analysis of genomic data available in ENSEMBL indicates that these UTP14 retrogenes have arisen independently in the various eutherian clades. They represent an interesting aspect of evolution whereby new homologues of UTP14 have become independently fixed in multiple mammalian lineages due to the reproductive advantage that may be conferred to males. Surprisingly, these genes may also be lost, even after being present within a lineage for millions of years. This phenomenon may potentially be used to delineate evolutionary trees in closely related groups of mammals, particularly in the case of South American primates. Studying these retrogenes will yield new insights into the evolutionary history of male gamete production and the phylogeny of eutherian mammals.
Collapse
Affiliation(s)
- Jan Rohozinski
- Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Center for Reproductive Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Lammers F, Gallus S, Janke A, Nilsson MA. Phylogenetic Conflict in Bears Identified by Automated Discovery of Transposable Element Insertions in Low-Coverage Genomes. Genome Biol Evol 2017; 9:2862-2878. [PMID: 28985298 PMCID: PMC5737362 DOI: 10.1093/gbe/evx170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2017] [Indexed: 12/15/2022] Open
Abstract
Phylogenetic reconstruction from transposable elements (TEs) offers an additional perspective to study evolutionary processes. However, detecting phylogenetically informative TE insertions requires tedious experimental work, limiting the power of phylogenetic inference. Here, we analyzed the genomes of seven bear species using high-throughput sequencing data to detect thousands of TE insertions. The newly developed pipeline for TE detection called TeddyPi (TE detection and discovery for Phylogenetic Inference) identified 150,513 high-quality TE insertions in the genomes of ursine and tremarctine bears. By integrating different TE insertion callers and using a stringent filtering approach, the TeddyPi pipeline produced highly reliable TE insertion calls, which were confirmed by extensive in vitro validation experiments. Analysis of single nucleotide substitutions in the flanking regions of the TEs shows that these substitutions correlate with the phylogenetic signal from the TE insertions. Our phylogenomic analyses show that TEs are a major driver of genomic variation in bears and enabled phylogenetic reconstruction of a well-resolved species tree, despite strong signals for incomplete lineage sorting and introgression. The analyses show that the Asiatic black, sun, and sloth bear form a monophyletic clade, in which phylogenetic incongruence originates from incomplete lineage sorting. TeddyPi is open source and can be adapted to various TE and structural variation callers. The pipeline makes it possible to confidently extract thousands of TE insertions even from low-coverage genomes (∼10×) of nonmodel organisms. This opens new possibilities for biologists to study phylogenies and evolutionary processes as well as rates and patterns of (retro-)transposition and structural variation.
Collapse
Affiliation(s)
- Fritjof Lammers
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute for Ecology, Evolution & Diversity, Biologicum, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Susanne Gallus
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute for Ecology, Evolution & Diversity, Biologicum, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria A. Nilsson
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary. Proc Natl Acad Sci U S A 2017; 114:E7282-E7290. [PMID: 28808022 DOI: 10.1073/pnas.1616744114] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The timing of the diversification of placental mammals relative to the Cretaceous-Paleogene (KPg) boundary mass extinction remains highly controversial. In particular, there have been seemingly irreconcilable differences in the dating of the early placental radiation not only between fossil-based and molecular datasets but also among molecular datasets. To help resolve this discrepancy, we performed genome-scale analyses using 4,388 loci from 90 taxa, including representatives of all extant placental orders and transcriptome data from flying lemurs (Dermoptera) and pangolins (Pholidota). Depending on the gene partitioning scheme, molecular clock model, and genic deviation from molecular clock assumptions, extensive sensitivity analyses recovered widely varying diversification scenarios for placental mammals from a given gene set, ranging from a deep Cretaceous origin and diversification to a scenario spanning the KPg boundary, suggesting that the use of suboptimal molecular clock markers and methodologies is a major cause of controversies regarding placental diversification timing. We demonstrate that reconciliation between molecular and paleontological estimates of placental divergence times can be achieved using the appropriate clock model and gene partitioning scheme while accounting for the degree to which individual genes violate molecular clock assumptions. A birth-death-shift analysis suggests that placental mammals underwent a continuous radiation across the KPg boundary without apparent interruption by the mass extinction, paralleling a genus-level radiation of multituberculates and ecomorphological diversification of both multituberculates and therians. These findings suggest that the KPg catastrophe evidently played a limited role in placental diversification, which, instead, was likely a delayed response to the slightly earlier radiation of angiosperms.
Collapse
|
28
|
Mason VC, Li G, Minx P, Schmitz J, Churakov G, Doronina L, Melin AD, Dominy NJ, Lim NTL, Springer MS, Wilson RK, Warren WC, Helgen KM, Murphy WJ. Genomic analysis reveals hidden biodiversity within colugos, the sister group to primates. SCIENCE ADVANCES 2016; 2:e1600633. [PMID: 27532052 PMCID: PMC4980104 DOI: 10.1126/sciadv.1600633] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/13/2016] [Indexed: 05/25/2023]
Abstract
Colugos are among the most poorly studied mammals despite their centrality to resolving supraordinal primate relationships. Two described species of these gliding mammals are the sole living members of the order Dermoptera, distributed throughout Southeast Asia. We generated a draft genome sequence for a Sunda colugo and a Philippine colugo reference alignment, and used these to identify colugo-specific genetic changes that were enriched in sensory and musculoskeletal-related genes that likely underlie their nocturnal and gliding adaptations. Phylogenomic analysis and catalogs of rare genomic changes overwhelmingly support the contested hypothesis that colugos are the sister group to primates (Primatomorpha), to the exclusion of treeshrews. We captured ~140 kb of orthologous sequence data from colugo museum specimens sampled across their range and identified large genetic differences between many geographically isolated populations that may result in a >300% increase in the number of recognized colugo species. Our results identify conservation units to mitigate future losses of this enigmatic mammalian order.
Collapse
Affiliation(s)
- Victor C. Mason
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA
| | - Gang Li
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany
| | - Gennady Churakov
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany
- Institute of Evolution and Biodiversity, University of Münster, D-48149 Münster, Germany
| | - Liliya Doronina
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany
| | | | - Nathaniel J. Dominy
- Departments of Anthropology and Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Norman T-L. Lim
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377 , Singapore
| | - Mark S. Springer
- Department of Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Richard K. Wilson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Wesley C. Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Kristofer M. Helgen
- Division of Mammals, Smithsonian Institution, National Museum of Natural History, Washington, DC 20013, USA
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
29
|
Foley NM, Springer MS, Teeling EC. Mammal madness: is the mammal tree of life not yet resolved? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150140. [PMID: 27325836 PMCID: PMC4920340 DOI: 10.1098/rstb.2015.0140] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 11/12/2022] Open
Abstract
Most molecular phylogenetic studies place all placental mammals into four superordinal groups, Laurasiatheria (e.g. dogs, bats, whales), Euarchontoglires (e.g. humans, rodents, colugos), Xenarthra (e.g. armadillos, anteaters) and Afrotheria (e.g. elephants, sea cows, tenrecs), and estimate that these clades last shared a common ancestor 90-110 million years ago. This phylogeny has provided a framework for numerous functional and comparative studies. Despite the high level of congruence among most molecular studies, questions still remain regarding the position and divergence time of the root of placental mammals, and certain 'hard nodes' such as the Laurasiatheria polytomy and Paenungulata that seem impossible to resolve. Here, we explore recent consensus and conflict among mammalian phylogenetic studies and explore the reasons for the remaining conflicts. The question of whether the mammal tree of life is or can be ever resolved is also addressed.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.
Collapse
Affiliation(s)
- Nicole M Foley
- School of Biology and Environmental Science, Science Centre East, University College Dublin, Dublin 4, Ireland
| | - Mark S Springer
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Emma C Teeling
- School of Biology and Environmental Science, Science Centre East, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
30
|
Reyes LD, Harland T, Reep RL, Sherwood CC, Jacobs B. Golgi Analysis of Neuron Morphology in the Presumptive Somatosensory Cortex and Visual Cortex of the Florida Manatee (Trichechus manatus latirostris). BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:105-16. [PMID: 27166161 DOI: 10.1159/000445495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/15/2016] [Indexed: 11/19/2022]
Abstract
The current study investigates neuron morphology in presumptive primary somatosensory (S1) and primary visual (V1) cortices of the Florida manatee (Trichechus manatus latirostris) as revealed by Golgi impregnation. Sirenians, including manatees, have an aquatic lifestyle, a large body size, and a relatively large lissencephalic brain. The present study examines neuron morphology in 3 cortical areas: in S1, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2) and in V1, dorsolateral cortex area 4 (DL4). Neurons exhibited a variety of morphological types, with pyramidal neurons being the most common. The large variety of neuron types present in the manatee cortex was comparable to that seen in other eutherian mammals, except for rodents and primates, where pyramid-shaped neurons predominate. A comparison between pyramidal neurons in S1 and V1 indicated relatively greater dendritic branching in S1. Across all 3 areas, the dendritic arborization pattern of pyramidal neurons was also similar to that observed previously in the afrotherian rock hyrax, cetartiodactyls, opossums, and echidnas but did not resemble the widely bifurcated dendrites seen in the large-brained African elephant. Despite adaptations for an aquatic environment, manatees did not share specific neuron types such as tritufted and star-like neurons that have been found in cetaceans. Manatees exhibit an evolutionarily primitive pattern of cortical neuron morphology shared with most other mammals and do not appear to have neuronal specializations for an aquatic niche.
Collapse
Affiliation(s)
- Laura D Reyes
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, D.C., USA
| | | | | | | | | |
Collapse
|
31
|
Buckley M. Ancient collagen reveals evolutionary history of the endemic South American 'ungulates'. Proc Biol Sci 2016; 282:20142671. [PMID: 25833851 PMCID: PMC4426609 DOI: 10.1098/rspb.2014.2671] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since the late eighteenth century, fossils of bizarre extinct creatures have been described from the Americas, revealing a previously unimagined chapter in the history of mammals. The most bizarre of these are the ‘native’ South American ungulates thought to represent a group of mammals that evolved in relative isolation on South America, but with an uncertain affinity to any particular placental lineage. Many authors have considered them descended from Laurasian ‘condylarths’, which also includes the probable ancestors of perissodactyls and artiodactyls, whereas others have placed them either closer to the uniquely South American xenarthrans (anteaters, armadillos and sloths) or the basal afrotherians (e.g. elephants and hyraxes). These hypotheses have been debated owing to conflicting morphological characteristics and the hitherto inability to retrieve molecular information. Of the ‘native’ South American mammals, only the toxodonts and litopterns persisted until the Late Pleistocene–Early Holocene. Owing to known difficulties in retrieving ancient DNA (aDNA) from specimens from warm climates, this research presents a molecular phylogeny for both Macrauchenia patachonica (Litopterna) and Toxodon platensis (Notoungulata) recovered using proteomics-based (liquid chromatography–tandem mass spectrometry) sequencing analyses of bone collagen. The results place both taxa in a clade that is monophyletic with the perissodactyls, which today are represented by horses, rhinoceroses and tapirs.
Collapse
Affiliation(s)
- Michael Buckley
- Faculty of Life Sciences, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
32
|
Kuritzin A, Kischka T, Schmitz J, Churakov G. Incomplete Lineage Sorting and Hybridization Statistics for Large-Scale Retroposon Insertion Data. PLoS Comput Biol 2016; 12:e1004812. [PMID: 26967525 PMCID: PMC4788455 DOI: 10.1371/journal.pcbi.1004812] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 02/13/2016] [Indexed: 01/25/2023] Open
Abstract
Ancient retroposon insertions can be used as virtually homoplasy-free markers to reconstruct the phylogenetic history of species. Inherited, orthologous insertions in related species offer reliable signals of a common origin of the given species. One prerequisite for such a phylogenetically informative insertion is that the inserted element was fixed in the ancestral population before speciation; if not, polymorphically inserted elements may lead to random distributions of presence/absence states during speciation and possibly to apparently conflicting reconstructions of their ancestry. Fortunately, such misleading fixed cases are relatively rare but nevertheless, need to be considered. Here, we present novel, comprehensive statistical models applicable for (1) analyzing any pattern of rare genomic changes, (2) testing and differentiating conflicting phylogenetic reconstructions based on rare genomic changes caused by incomplete lineage sorting or/and ancestral hybridization, and (3) differentiating between search strategies involving genome information from one or several lineages. When the new statistics are applied, in non-conflicting cases a minimum of three elements present in both of two species and absent in a third group are considered significant support (p<0.05) for the branching of the third from the other two, if all three of the given species are screened equally for genome or experimental data. Five elements are necessary for significant support (p<0.05) if a diagnostic locus derived from only one of three species is screened, and no conflicting markers are detected. Most potentially conflicting patterns can be evaluated for their significance and ancestral hybridization can be distinguished from incomplete lineage sorting by considering symmetric or asymmetric distribution of rare genomic changes among possible tree configurations. Additionally, we provide an R-application to make the new KKSC insertion significance test available for the scientific community at http://retrogenomics.uni-muenster.de:3838/KKSC_significance_test/. The presence/absence patterns of transposed elements, so called jumping genes, provide invaluable information about evolution. Unfortunately, there is still no clear all-encompassing analysis of the statistical significance of insertion patterns, and the single existing model of insertion data is no longer sufficient for the emerging genomic era. Here, we have provided a comprehensive statistical framework for testing the significance of support for phylogenetic hypotheses derived from genome-level presence/absence data such as retroposon insertions and for evaluating such data for different evolutionary scenarios, including polytomy, incomplete lineage sorting, and ancestral hybridization. This statistical framework is especially important for high-throughput applications of current and upcoming genome projects due to its treatment of unlimited numbers of testable markers, and is embedded in a user-friendly R-application available to the scientific community online. Finally, a reliable, adaptable calculation for the significance of support for phylogenetic trees derived from retroposon presence/absence data is now available.
Collapse
Affiliation(s)
- Andrej Kuritzin
- Department of System Analysis, Saint Petersburg State Institute of Technology, St. Petersburg, Russia
| | - Tabea Kischka
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
- * E-mail: (JS); (GC)
| | - Gennady Churakov
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
- Institute of Evolution and Biodiversity, University of Münster, Münster, Germany
- * E-mail: (JS); (GC)
| |
Collapse
|
33
|
Tarver JE, Dos Reis M, Mirarab S, Moran RJ, Parker S, O'Reilly JE, King BL, O'Connell MJ, Asher RJ, Warnow T, Peterson KJ, Donoghue PCJ, Pisani D. The Interrelationships of Placental Mammals and the Limits of Phylogenetic Inference. Genome Biol Evol 2016; 8:330-44. [PMID: 26733575 PMCID: PMC4779606 DOI: 10.1093/gbe/evv261] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Placental mammals comprise three principal clades: Afrotheria (e.g., elephants and tenrecs), Xenarthra (e.g., armadillos and sloths), and Boreoeutheria (all other placental mammals), the relationships among which are the subject of controversy and a touchstone for debate on the limits of phylogenetic inference. Previous analyses have found support for all three hypotheses, leading some to conclude that this phylogenetic problem might be impossible to resolve due to the compounded effects of incomplete lineage sorting (ILS) and a rapid radiation. Here we show, using a genome scale nucleotide data set, microRNAs, and the reanalysis of the three largest previously published amino acid data sets, that the root of Placentalia lies between Atlantogenata and Boreoeutheria. Although we found evidence for ILS in early placental evolution, we are able to reject previous conclusions that the placental root is a hard polytomy that cannot be resolved. Reanalyses of previous data sets recover Atlantogenata + Boreoeutheria and show that contradictory results are a consequence of poorly fitting evolutionary models; instead, when the evolutionary process is better-modeled, all data sets converge on Atlantogenata. Our Bayesian molecular clock analysis estimates that marsupials diverged from placentals 157-170 Ma, crown Placentalia diverged 86-100 Ma, and crown Atlantogenata diverged 84-97 Ma. Our results are compatible with placental diversification being driven by dispersal rather than vicariance mechanisms, postdating early phases in the protracted opening of the Atlantic Ocean.
Collapse
Affiliation(s)
- James E Tarver
- Department of Biology, The National University of Ireland, Maynooth, Ireland School of Earth Sciences, University of Bristol, United Kingdom
| | - Mario Dos Reis
- Department of Genetics, Evolution and Environment, University College London, United Kingdom School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Siavash Mirarab
- Department of Computer Science, University of Texas at Austin Department of Electrical and Computer Engineering, University of California, San Diego
| | - Raymond J Moran
- Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Life Sciences, University of Leeds
| | - Sean Parker
- School of Earth Sciences, University of Bristol, United Kingdom
| | | | - Benjamin L King
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Life Sciences, University of Leeds
| | - Robert J Asher
- Museum of Zoology, University of Cambridge, United Kingdom
| | - Tandy Warnow
- Department of Computer Science, University of Texas at Austin Department of Electrical and Computer Engineering, University of California, San Diego Departments of Bioengineering and Computer Science, University of Illinois at Urbana-Champaign
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | | | - Davide Pisani
- School of Earth Sciences, University of Bristol, United Kingdom School of Biological Sciences, University of Bristol, United Kingdom
| |
Collapse
|
34
|
Springer MS, Gatesy J. The gene tree delusion. Mol Phylogenet Evol 2016; 94:1-33. [DOI: 10.1016/j.ympev.2015.07.018] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/04/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
|
35
|
Reyes LD, Stimpson CD, Gupta K, Raghanti MA, Hof PR, Reep RL, Sherwood CC. Neuron Types in the Presumptive Primary Somatosensory Cortex of the Florida Manatee (Trichechus manatus latirostris). BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:210-31. [PMID: 26613530 DOI: 10.1159/000441964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/25/2015] [Indexed: 11/19/2022]
Abstract
Within afrotherians, sirenians are unusual due to their aquatic lifestyle, large body size and relatively large lissencephalic brain. However, little is known about the neuron type distributions of the cerebral cortex in sirenians within the context of other afrotherians and aquatic mammals. The present study investigated two cortical regions, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2), in the presumptive primary somatosensory cortex (S1) in Florida manatees (Trichechus manatus latirostris) to characterize cyto- and chemoarchitecture. The mean neuron density for both cortical regions was 35,617 neurons/mm(3) and fell within the 95% prediction intervals relative to brain mass based on a reference group of afrotherians and xenarthrans. Densities of inhibitory interneuron subtypes labeled against calcium-binding proteins and neuropeptide Y were relatively low compared to afrotherians and xenarthrans and also formed a small percentage of the overall population of inhibitory interneurons as revealed by GAD67 immunoreactivity. Nonphosphorylated neurofilament protein-immunoreactive (NPNFP-ir) neurons comprised a mean of 60% of neurons in layer V across DL1 and CL2. DL1 contained a higher percentage of NPNFP-ir neurons than CL2, although CL2 had a higher variety of morphological types. The mean percentage of NPNFP-ir neurons in the two regions of the presumptive S1 were low compared to other afrotherians and xenarthrans but were within the 95% prediction intervals relative to brain mass, and their morphologies were comparable to those found in other afrotherians and xenarthrans. Although this specific pattern of neuron types and densities sets the manatee apart from other afrotherians and xenarthrans, the manatee isocortex does not appear to be explicitly adapted for an aquatic habitat. Many of the features that are shared between manatees and cetaceans are also shared with a diverse array of terrestrial mammals and likely represent highly conserved neural features. A comparative study across manatees and dugongs is necessary to determine whether these traits are specific to one or more of the manatee species, or can be generalized to all sirenians.
Collapse
Affiliation(s)
- Laura D Reyes
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, D.C., USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Kuramoto T, Nishihara H, Watanabe M, Okada N. Determining the Position of Storks on the Phylogenetic Tree of Waterbirds by Retroposon Insertion Analysis. Genome Biol Evol 2015; 7:3180-9. [PMID: 26527652 PMCID: PMC4700946 DOI: 10.1093/gbe/evv213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Despite many studies on avian phylogenetics in recent decades that used morphology, mitochondrial genomes, and/or nuclear genes, the phylogenetic positions of several birds (e.g., storks) remain unsettled. In addition to the aforementioned approaches, analysis of retroposon insertions, which are nearly homoplasy-free phylogenetic markers, has also been used in avian phylogenetics. However, the first step in the analysis of retroposon insertions, that is, isolation of retroposons from genomic libraries, is a costly and time-consuming procedure. Therefore, we developed a high-throughput and cost-effective protocol to collect retroposon insertion information based on next-generation sequencing technology, which we call here the STRONG (Screening of Transposons Obtained by Next Generation Sequencing) method, and applied it to 3 waterbird species, for which we identified 35,470 loci containing chicken repeat 1 retroposons (CR1). Our analysis of the presence/absence of 30 CR1 insertions demonstrated the intra- and interordinal phylogenetic relationships in the waterbird assemblage, namely 1) Loons diverged first among the waterbirds, 2) penguins (Sphenisciformes) and petrels (Procellariiformes) diverged next, and 3) among the remaining families of waterbirds traditionally classified in Ciconiiformes/Pelecaniformes, storks (Ciconiidae) diverged first. Furthermore, our genome-scale, in silico retroposon analysis based on published genome data uncovered a complex divergence history among pelican, heron, and ibis lineages, presumably involving ancient interspecies hybridization between the heron and ibis lineages. Thus, our retroposon-based waterbird phylogeny and the established phylogenetic position of storks will help to understand the evolutionary processes of aquatic adaptation and related morphological convergent evolution.
Collapse
Affiliation(s)
- Tae Kuramoto
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hidenori Nishihara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Maiko Watanabe
- Division of Microbiology, National Institute of Health Sciences, Setagaya, Tokyo, Japan
| | - Norihiro Okada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan Foundation for Advancement of International Science, Tsukuba, Ibaraki, Japan Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
37
|
Schottdorf M, Keil W, Coppola D, White LE, Wolf F. Random Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex. PLoS Comput Biol 2015; 11:e1004602. [PMID: 26575467 PMCID: PMC4648540 DOI: 10.1371/journal.pcbi.1004602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/14/2015] [Indexed: 12/11/2022] Open
Abstract
The architecture of iso-orientation domains in the primary visual cortex (V1) of placental carnivores and primates apparently follows species invariant quantitative laws. Dynamical optimization models assuming that neurons coordinate their stimulus preferences throughout cortical circuits linking millions of cells specifically predict these invariants. This might indicate that V1's intrinsic connectome and its functional architecture adhere to a single optimization principle with high precision and robustness. To validate this hypothesis, it is critical to closely examine the quantitative predictions of alternative candidate theories. Random feedforward wiring within the retino-cortical pathway represents a conceptually appealing alternative to dynamical circuit optimization because random dimension-expanding projections are believed to generically exhibit computationally favorable properties for stimulus representations. Here, we ask whether the quantitative invariants of V1 architecture can be explained as a generic emergent property of random wiring. We generalize and examine the stochastic wiring model proposed by Ringach and coworkers, in which iso-orientation domains in the visual cortex arise through random feedforward connections between semi-regular mosaics of retinal ganglion cells (RGCs) and visual cortical neurons. We derive closed-form expressions for cortical receptive fields and domain layouts predicted by the model for perfectly hexagonal RGC mosaics. Including spatial disorder in the RGC positions considerably changes the domain layout properties as a function of disorder parameters such as position scatter and its correlations across the retina. However, independent of parameter choice, we find that the model predictions substantially deviate from the layout laws of iso-orientation domains observed experimentally. Considering random wiring with the currently most realistic model of RGC mosaic layouts, a pairwise interacting point process, the predicted layouts remain distinct from experimental observations and resemble Gaussian random fields. We conclude that V1 layout invariants are specific quantitative signatures of visual cortical optimization, which cannot be explained by generic random feedforward-wiring models.
Collapse
Affiliation(s)
- Manuel Schottdorf
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Bernstein Focus for Neurotechnology, Göttingen, Germany
- Faculty of Physics, University of Göttingen, Göttingen, Germany
- Institute for Theoretical Physics, University of Würzburg, Würzburg, Germany
| | - Wolfgang Keil
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Bernstein Focus for Neurotechnology, Göttingen, Germany
- Faculty of Physics, University of Göttingen, Göttingen, Germany
- Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, United States of America
| | - David Coppola
- Department of Biology, Randolph-Macon College, Ashland, Virginia, United States of America
| | - Leonard E. White
- Department of Orthopaedic Surgery, Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, United States of America
| | - Fred Wolf
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Bernstein Focus for Neurotechnology, Göttingen, Germany
- Faculty of Physics, University of Göttingen, Göttingen, Germany
- Kavli Institute for Theoretical Physics, Santa Barbara, California, United States of America
| |
Collapse
|
38
|
Doronina L, Churakov G, Shi J, Brosius J, Baertsch R, Clawson H, Schmitz J. Exploring Massive Incomplete Lineage Sorting in Arctoids (Laurasiatheria, Carnivora). Mol Biol Evol 2015; 32:3194-204. [PMID: 26337548 DOI: 10.1093/molbev/msv188] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Freed from the competition of large raptors, Paleocene carnivores could expand their newly acquired habitats in search of prey. Such changing conditions might have led to their successful distribution and rapid radiation. Today, molecular evolutionary biologists are faced, however, with the consequences of such accelerated adaptive radiations, because they led to sequential speciation more rapidly than phylogenetic markers could be fixed. The repercussions being that current genealogies based on such markers are incongruent with species trees.Our aim was to explore such conflicting phylogenetic zones of evolution during the early arctoid radiation, especially to distinguish diagnostic from misleading phylogenetic signals, and to examine other carnivore-related speciation events. We applied a combination of high-throughput computational strategies to screen carnivore and related genomes in silico for randomly inserted retroposed elements that we then used to identify inconsistent phylogenetic patterns in the Arctoidea group, which is well known for phylogenetic discordances.Our combined retrophylogenomic and in vitro wet lab approach detected hundreds of carnivore-specific insertions, many of them confirming well-established splits or identifying and solving conflicting species distributions. Our systematic genome-wide screens for Long INterspersed Elements detected homoplasy-free markers with insertion-specific truncation points that we used to distinguish phylogenetically informative markers from conflicting signals. The results were independently confirmed by phylogenetic diagnostic Short INterspersed Elements. As statistical analysis ruled out ancestral hybridization, these doubly verified but still conflicting patterns were statistically determined to be genomic remnants from a time of ancestral incomplete lineage sorting that especially accompanied large parts of Arctoidea evolution.
Collapse
Affiliation(s)
- Liliya Doronina
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| | - Gennady Churakov
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jingjing Shi
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| | - Jürgen Brosius
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany Institute of Evolutionary and Medical Genomics, Brandenburg Medical School (MHB), Neuruppin, Germany
| | - Robert Baertsch
- Department of Biomolecular Engineering, University of California, Santa Cruz
| | - Hiram Clawson
- Department of Biomolecular Engineering, University of California, Santa Cruz
| | - Jürgen Schmitz
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| |
Collapse
|
39
|
Gallus S, Hallström BM, Kumar V, Dodt WG, Janke A, Schumann GG, Nilsson MA. Evolutionary histories of transposable elements in the genome of the largest living marsupial carnivore, the Tasmanian devil. Mol Biol Evol 2015; 32:1268-83. [PMID: 25633377 PMCID: PMC4408412 DOI: 10.1093/molbev/msv017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The largest living carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii), is the sole survivor of a lineage originating about 12 Ma. We set out to investigate the spectrum of transposable elements found in the Tasmanian devil genome, the first high-coverage genome of an Australian marsupial. Marsupial genomes have been shown to have the highest amount of transposable elements among vertebrates. We analyzed the horizontally transmitted DNA transposons OC1 and hAT-1_MEu in the Tasmanian devil genome. OC1 is present in all carnivorous marsupials, while having a very limited distribution among the remaining Australian marsupial orders. In contrast, hAT-1_MEu is present in all Australian marsupial orders, and has so far only been identified in a few placental mammals. We screened 158 introns for phylogenetically informative retrotransposons in the order Dasyuromorphia, and found that the youngest SINE (Short INterspersed Element), WSINE1, is no longer active in the subfamily Dasyuridae. The lack of detectable WSINE1 activity in this group may be due to a retrotransposon inactivation event approximately 30 Ma. We found that the Tasmanian devil genome contains a relatively low number of continuous full-length LINE-1 (Long INterspersed Element 1, L1) retrotransposons compared with the opossum genome. Furthermore, all L1 elements in the Tasmanian devil appeared to be nonfunctional. Hidden Markov Model approaches suggested that other potential sources of functional reverse transcriptase are absent from the genome. We discuss the issues associated with assembling long, highly similar L1 copies from short read Illumina data and describe how assembly artifacts can potentially lead to erroneous conclusions.
Collapse
Affiliation(s)
- Susanne Gallus
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany LOEWE Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Björn M Hallström
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany LOEWE Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Vikas Kumar
- LOEWE Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - William G Dodt
- LOEWE Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Qld, Australia
| | - Axel Janke
- LOEWE Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany Institute for Ecology, Evolution & Diversity, Biologicum, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Maria A Nilsson
- LOEWE Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| |
Collapse
|
40
|
Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, Suh A, Weber CC, da Fonseca RR, Li J, Zhang F, Li H, Zhou L, Narula N, Liu L, Ganapathy G, Boussau B, Bayzid MS, Zavidovych V, Subramanian S, Gabaldón T, Capella-Gutiérrez S, Huerta-Cepas J, Rekepalli B, Munch K, Schierup M, Lindow B, Warren WC, Ray D, Green RE, Bruford MW, Zhan X, Dixon A, Li S, Li N, Huang Y, Derryberry EP, Bertelsen MF, Sheldon FH, Brumfield RT, Mello CV, Lovell PV, Wirthlin M, Schneider MPC, Prosdocimi F, Samaniego JA, Vargas Velazquez AM, Alfaro-Núñez A, Campos PF, Petersen B, Sicheritz-Ponten T, Pas A, Bailey T, Scofield P, Bunce M, Lambert DM, Zhou Q, Perelman P, Driskell AC, Shapiro B, Xiong Z, Zeng Y, Liu S, Li Z, Liu B, Wu K, Xiao J, Yinqi X, Zheng Q, Zhang Y, Yang H, Wang J, Smeds L, Rheindt FE, Braun M, Fjeldsa J, Orlando L, Barker FK, Jønsson KA, Johnson W, Koepfli KP, O'Brien S, Haussler D, Ryder OA, Rahbek C, Willerslev E, Graves GR, Glenn TC, McCormack J, Burt D, Ellegren H, Alström P, Edwards SV, Stamatakis A, Mindell DP, Cracraft J, Braun EL, Warnow T, Jun W, Gilbert MTP, Zhang G. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 2014; 346:1320-31. [PMID: 25504713 PMCID: PMC4405904 DOI: 10.1126/science.1253451] [Citation(s) in RCA: 1135] [Impact Index Per Article: 103.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.
Collapse
Affiliation(s)
- Erich D Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute (HHMI), and Duke University Medical Center, Durham, NC 27710, USA.
| | - Siavash Mirarab
- Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andre J Aberer
- Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Bo Li
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. College of Medicine and Forensics, Xi'an Jiaotong University Xi'an 710061, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Peter Houde
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Cai Li
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Brant C Faircloth
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Benoit Nabholz
- CNRS UMR 5554, Institut des Sciences de l'Evolution de Montpellier, Université Montpellier II Montpellier, France
| | - Jason T Howard
- Department of Neurobiology, Howard Hughes Medical Institute (HHMI), and Duke University Medical Center, Durham, NC 27710, USA
| | - Alexander Suh
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala Sweden
| | - Claudia C Weber
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala Sweden
| | - Rute R da Fonseca
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Jianwen Li
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Fang Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Hui Li
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Long Zhou
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Nitish Narula
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Onna-son, Okinawa 904-0495, Japan
| | - Liang Liu
- Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Ganesh Ganapathy
- Department of Neurobiology, Howard Hughes Medical Institute (HHMI), and Duke University Medical Center, Durham, NC 27710, USA
| | - Bastien Boussau
- Laboratoire de Biométrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Université de Lyon, F-69622 Villeurbanne, France
| | - Md Shamsuzzoha Bayzid
- Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA
| | - Volodymyr Zavidovych
- Department of Neurobiology, Howard Hughes Medical Institute (HHMI), and Duke University Medical Center, Durham, NC 27710, USA
| | - Sankar Subramanian
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Barcelona, Spain. Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Salvador Capella-Gutiérrez
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Barcelona, Spain
| | - Jaime Huerta-Cepas
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Barcelona, Spain
| | - Bhanu Rekepalli
- Joint Institute for Computational Sciences, The University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kasper Munch
- Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mikkel Schierup
- Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bent Lindow
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, St Louis, MI 63108, USA
| | - David Ray
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Richard E Green
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz (UCSC), Santa Cruz, CA 95064, USA
| | - Michael W Bruford
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University Cardiff CF10 3AX, Wales, UK
| | - Xiangjiang Zhan
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University Cardiff CF10 3AX, Wales, UK. Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Andrew Dixon
- International Wildlife Consultants, Carmarthen SA33 5YL, Wales, UK
| | - Shengbin Li
- College of Medicine and Forensics, Xi'an Jiaotong University Xi'an, 710061, China
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China
| | - Yinhua Huang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA. Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mads Frost Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo Roskildevej 38, DK-2000 Frederiksberg, Denmark
| | - Frederick H Sheldon
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Robb T Brumfield
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA. Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil
| | - Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Morgan Wirthlin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Maria Paula Cruz Schneider
- Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil. Institute of Biological Sciences, Federal University of Para, Belem, Para, Brazil
| | - Francisco Prosdocimi
- Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil. Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil
| | - José Alfredo Samaniego
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Amhed Missael Vargas Velazquez
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Alonzo Alfaro-Núñez
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Paula F Campos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Bent Petersen
- Centre for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark Kemitorvet 208, 2800 Kgs Lyngby, Denmark
| | - Thomas Sicheritz-Ponten
- Centre for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark Kemitorvet 208, 2800 Kgs Lyngby, Denmark
| | - An Pas
- Breeding Centre for Endangered Arabian Wildlife, Sharjah, United Arab Emirates
| | - Tom Bailey
- Dubai Falcon Hospital, Dubai, United Arab Emirates
| | - Paul Scofield
- Canterbury Museum Rolleston Avenue, Christchurch 8050, New Zealand
| | - Michael Bunce
- Trace and Environmental DNA Laboratory Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia
| | - David M Lambert
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - Qi Zhou
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Polina Perelman
- Laboratory of Genomic Diversity, National Cancer Institute Frederick, MD 21702, USA. Institute of Molecular and Cellular Biology, SB RAS and Novosibirsk State University, Novosibirsk, Russia
| | - Amy C Driskell
- Smithsonian Institution National Museum of Natural History, Washington, DC 20013, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz (UCSC), Santa Cruz, CA 95064, USA
| | - Zijun Xiong
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Yongli Zeng
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Shiping Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhenyu Li
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Binghang Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Kui Wu
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Jin Xiao
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Xiong Yinqi
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Qiuemei Zheng
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Yong Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | | | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Linnea Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala Sweden
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Republic of Singapore
| | - Michael Braun
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Suitland, MD 20746, USA
| | - Jon Fjeldsa
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - F Keith Barker
- Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55108, USA
| | - Knud Andreas Jønsson
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark. Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Warren Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
| | - Klaus-Peter Koepfli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | - Stephen O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004. Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33004, USA
| | - David Haussler
- Center for Biomolecular Science and Engineering, UCSC, Santa Cruz, CA 95064, USA
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, Escondido, CA 92027, USA
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark. Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Gary R Graves
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark. Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - John McCormack
- Moore Laboratory of Zoology and Department of Biology, Occidental College, Los Angeles, CA 90041, USA
| | - Dave Burt
- Department of Genomics and Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala Sweden
| | - Per Alström
- Swedish Species Information Centre, Swedish University of Agricultural Sciences Box 7007, SE-750 07 Uppsala, Sweden. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Alexandros Stamatakis
- Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany. Institute of Theoretical Informatics, Department of Informatics, Karlsruhe Institute of Technology, D- 76131 Karlsruhe, Germany
| | - David P Mindell
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Joel Cracraft
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA
| | - Edward L Braun
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Tandy Warnow
- Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA. Departments of Bioengineering and Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Wang Jun
- BGI-Shenzhen, Shenzhen 518083, China. Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Medicine, University of Hong Kong, Hong Kong.
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia.
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
41
|
Averianov AO, Lopatin AV. High-level systematics of placental mammals: Current status of the problem. BIOL BULL+ 2014. [DOI: 10.1134/s1062359014090039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Krmpotic CM, Carlini AA, Galliari FC, Favaron P, Miglino MA, Scarano AC, Barbeito CG. Ontogenetic variation in the stratum granulosum of the epidermis of Chaetophractus vellerosus (Xenarthra, Dasypodidae) in relation to the development of cornified scales. ZOOLOGY 2014; 117:392-7. [DOI: 10.1016/j.zool.2014.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 05/26/2014] [Accepted: 06/26/2014] [Indexed: 01/23/2023]
|
43
|
Abstract
Retroposon presence/absence patterns in orthologous genomic loci are known to be strong and almost homoplasy-free phylogenetic markers of common ancestry. This is evidenced by the comprehensive reconstruction of various species trees of vertebrate lineages in recent years, as well as the inference of the evolution of genes via retroposon-based gene trees of paralogous genes. Recently, it has been shown that retroposon markers are also suitable for the inference of differentiation events of gametologous genes, i.e., homologous genes on opposite sex chromosomes. This is because sex chromosomes evolved via stepwise cessation of recombination, making the presence or absence of a particular retroposon insertion among the two different gametologs in more or less closely related species a clear-cut indicator of the timing of differentiation events. Here, I examine the advantages and current limitations of this novel perspective for understanding avian sex chromosome evolution, compare the retroposon-based and sequence-based insights into gametolog differentiation and show that retroposons promise to be equally applicable to other sex chromosomal systems, such as the human X and Y chromosomes.
Collapse
Affiliation(s)
- Alexander Suh
- Institute of Experimental Pathology (ZMBE); University of Münster; Münster, Germany
| |
Collapse
|
44
|
Placental Evolution within the Supraordinal Clades of Eutheria with the Perspective of Alternative Animal Models for Human Placentation. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/639274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Here a survey of placental evolution is conducted. Placentation is a key factor for the evolution of placental mammals that had evolved an astonishing diversity. As a temporary organ that does not allow easy access, it is still not well understood. The lack of data also is a restriction for better understanding of placental development, structure, and function in the human. Animal models are essential, because experimental access to the human placenta is naturally restricted. However, there is not a single ideal model that is entirely similar to humans. It is particularly important to establish other models than the mouse, which is characterised by a short gestation period and poorly developed neonates that may provide insights only for early human pregnancy. In conclusion, current evolutionary studies have contributed essentially to providing a pool of experimental models for recent and future approaches that may also meet the requirements of a long gestation period and advanced developmental status of the newborn in the human. Suitability and limitations of taxa as alternative animal models are discussed. However, further investigations especially in wildlife taxa should be conducted in order to learn more about the full evolutionary plasticity of the placenta system.
Collapse
|
45
|
Martins D, Pinheiro L, Ferreira V, Costa A, Lima A, Ricci R, Miglino M, Branco E. Tongue papillae morphology of brown-throated sloth Bradypus variegatus (SCHINZ, 1825). ARQ BRAS MED VET ZOO 2014. [DOI: 10.1590/1678-6343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Bradypusvariegatus inhabits the forests of South America and feeds from leaves, branches and sprouts from different plants. Due to its diet and the lack of literature on the morphological aspect of Xenarthras, five Bradypusvariegatus tongues from animals which died from natural causes were evaluated, and they came from Pará State Museum Emílio Goeldi and were donated to the Laboratory of Animal Morphological Research (LaPMA) from UFRA, for revealing the different types of papillae and epithelial-connective tissue. Macroscopically, the tongues presented elongated shape, rounded apex, body, root, median sulcus in the root's apex, and two vallate papillae. The mucous membrane of the tongue revealed a keratinized stratified pavement epithelium, while the ventral surface of the tongue was thin and smooth, not provided with any type of papillae. However, the dorsal surface of the tongue was irregular with the presence of three types of papillae: filiform, fungiform and vallate papillae. The filiform papillae found were of a simple type, presenting a rounded base, irregularly distributed with a larger concentration and development on the tongue's apex and body. The fungiform papilla showed a practically smooth surface with irregular format, with the presence of gustatory pores; these were found all over the dorsal surface, with larger concentration at the rostral part of the apex. Only two vallate papillae were observed disposed in the root of the tongue, surrounded by a deep groove, and revealing several taste buds. The tongues from Bradypusvariegatus presented gustatory papillae similar to the ones described for other Xenarthras species and wild mammals.
Collapse
Affiliation(s)
| | | | | | | | - A.R. Lima
- Universidade Federal Rural da Amazônia
| | | | | | - E. Branco
- Universidade Federal Rural da Amazônia
| |
Collapse
|
46
|
Noll A, Grundmann N, Churakov G, Brosius J, Makałowski W, Schmitz J. GPAC-genome presence/absence compiler: a web application to comparatively visualize multiple genome-level changes. Mol Biol Evol 2014; 32:275-86. [PMID: 25261406 DOI: 10.1093/molbev/msu276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Our understanding of genome-wide and comparative sequence information has been broadened considerably by the databases available from the University of California Santa Cruz (UCSC) Genome Bioinformatics Department. In particular, the identification and visualization of genomic sequences, present in some species but absent in others, led to fundamental insights into gene and genome evolution. However, the UCSC tools currently enable one to visualize orthologous genomic loci for a range of species in only a single locus. For large-scale comparative analyses of such presence/absence patterns a multilocus view would be more desirable. Such a tool would enable us to compare thousands of relevant loci simultaneously and to resolve many different questions about, for example, phylogeny, specific aspects of genome and gene evolution, such as the gain or loss of exons and introns, the emergence of novel transposed elements, nonprotein-coding RNAs, and viral genomic particles. Here, we present the first tool to facilitate the parallel analysis of thousands of genomic loci for cross-species presence/absence patterns based on multiway genome alignments. This genome presence/absence compiler uses annotated or other compilations of coordinates of genomic locations and compiles all presence/absence patterns in a flexible, color-coded table linked to the individual UCSC Genome Browser alignments. We provide examples of the versatile information content of such a screening system especially for 7SL-derived transposed elements, nuclear mitochondrial DNA, DNA transposons, and miRNAs in primates (http://www.bioinformatics.uni-muenster.de/tools/gpac, last accessed October 1, 2014).
Collapse
Affiliation(s)
- Angela Noll
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| | - Norbert Grundmann
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Gennady Churakov
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| | - Jürgen Brosius
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| | - Wojciech Makałowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| |
Collapse
|
47
|
Identification and characterization of twenty-seven short interspersed elements from three cetaceans. J Genet 2014. [DOI: 10.1007/s12041-014-0367-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
LINE-1 retrotransposons: from 'parasite' sequences to functional elements. J Appl Genet 2014; 56:133-45. [PMID: 25106509 DOI: 10.1007/s13353-014-0241-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
Abstract
Long interspersed nuclear elements-1 (LINE-1) are the most abundant and active retrotransposons in the mammalian genomes. Traditionally, the occurrence of LINE-1 sequences in the genome of mammals has been explained by the selfish DNA hypothesis. Nevertheless, recently, it has also been argued that these sequences could play important roles in these genomes, as in the regulation of gene expression, genome modelling and X-chromosome inactivation. The non-random chromosomal distribution is a striking feature of these retroelements that somehow reflects its functionality. In the present study, we have isolated and analysed a fraction of the open reading frame 2 (ORF2) LINE-1 sequence from three rodent species, Cricetus cricetus, Peromyscus eremicus and Praomys tullbergi. Physical mapping of the isolated sequences revealed an interspersed longitudinal AT pattern of distribution along all the chromosomes of the complement in the three genomes. A detailed analysis shows that these sequences are preferentially located in the euchromatic regions, although some signals could be detected in the heterochromatin. In addition, a coincidence between the location of imprinted gene regions (as Xist and Tsix gene regions) and the LINE-1 retroelements was also observed. According to these results, we propose an involvement of LINE-1 sequences in different genomic events as gene imprinting, X-chromosome inactivation and evolution of repetitive sequences located at the heterochromatic regions (e.g. satellite DNA sequences) of the rodents' genomes analysed.
Collapse
|
49
|
Xin AJ, Cheng L, Diao H, Wang P, Gu YH, Wu B, Wu YC, Chen GW, Zhou SM, Guo SJ, Shi HJ, Tao SC. Comprehensive profiling of accessible surface glycans of mammalian sperm using a lectin microarray. Clin Proteomics 2014; 11:10. [PMID: 24629138 PMCID: PMC4003823 DOI: 10.1186/1559-0275-11-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/04/2014] [Indexed: 11/10/2022] Open
Abstract
It is well known that cell surface glycans or glycocalyx play important roles in sperm motility, maturation and fertilization. A comprehensive profile of the sperm surface glycans will greatly facilitate both basic research (sperm glycobiology) and clinical studies, such as diagnostics of infertility. As a group of natural glycan binders, lectin is an ideal tool for cell surface glycan profiling. However, because of the lack of effective technology, only a few lectins have been tested for lectin-sperm binding profiles. To address this challenge, we have developed a procedure for high-throughput probing of mammalian sperm with 91 lectins on lectin microarrays. Normal sperm from human, boar, bull, goat and rabbit were collected and analyzed on the lectin microarrays. Positive bindings of a set of ~50 lectins were observed for all the sperm of 5 species, which indicated a wide range of glycans are on the surface of mammalian sperm. Species specific lectin bindings were also observed. Clustering analysis revealed that the distances of the five species according to the lectin binding profiles are consistent with that of the genome sequence based phylogenetic tree except for rabbit. The procedure that we established in this study could be generally applicable for sperm from other species or defect sperm from the same species. We believe the lectin binding profiles of the mammalian sperm that we established in this study are valuable for both basic research and clinical studies.
Collapse
Affiliation(s)
- Ai-Jie Xin
- Shanghai Jiai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 20037, China
| | - Li Cheng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Diao
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Peng Wang
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Yi-Hua Gu
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Bin Wu
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Yan-Cheng Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 20037, China
| | - Guo-Wu Chen
- Shanghai Jiai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| | - Shu-Min Zhou
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China
| | - Shu-Juan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Juan Shi
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
50
|
Hu JY, Zhang YP, Yu L. Summary of Laurasiatheria (mammalia) phylogeny. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2013; 33:E65-74. [PMID: 23266984 DOI: 10.3724/sp.j.1141.2012.e05-06e65] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Laurasiatheria is one of the richest and most diverse superorders of placental mammals. Because this group had a rapid evolutionary radiation, the phylogenetic relationships among the six orders of Laurasiatheria remain a subject of heated debate and several issues related to its phylogeny remain open. Reconstructing the true phylogenetic relationships of Laurasiatheria is a significant case study in evolutionary biology due to the diversity of this suborder and such research will have significant implications for biodiversity conservation. We review the higher-level (inter-ordinal) phylogenies of Laurasiatheria based on previous cytogenetic, morphological and molecular data, and discuss the controversies of its phylogenetic relationship. This review aims to outline future researches on Laurasiatheria phylogeny and adaptive evolution.
Collapse
|