1
|
Abstract
The human brain possesses neural networks and mechanisms enabling the representation of numbers, basic arithmetic operations, and mathematical reasoning. Without the ability to represent numerical quantity and perform calculations, our scientifically and technically advanced culture would not exist. However, the origins of numerical abilities are grounded in an intuitive understanding of quantity deeply rooted in biology. Nevertheless, more advanced symbolic arithmetic skills require a cultural background with formal mathematical education. In the past two decades, cognitive neuroscience has seen significant progress in understanding the workings of the calculating brain through various methods and model systems. This review begins by exploring the mental and neuronal representations of nonsymbolic numerical quantity and then progresses to symbolic representations acquired in childhood. During arithmetic operations (addition, subtraction, multiplication, and division), these representations are processed and transformed according to arithmetic rules and principles, leveraging different mental strategies and types of arithmetic knowledge that can be dissociated in the brain. Although it was once believed that number processing and calculation originated from the language faculty, it is now evident that mathematical and linguistic abilities are primarily processed independently in the brain. Understanding how the healthy brain processes numerical information is crucial for gaining insights into debilitating numerical disorders, including acquired conditions like acalculia and learning-related calculation disorders such as developmental dyscalculia.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Dolfi S, Testolin A, Cutini S, Zorzi M. Measuring temporal bias in sequential numerosity comparison. Behav Res Methods 2024; 56:7561-7573. [PMID: 38750387 PMCID: PMC11362239 DOI: 10.3758/s13428-024-02436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 08/30/2024]
Abstract
While several methods have been proposed to assess the influence of continuous visual cues in parallel numerosity estimation, the impact of temporal magnitudes on sequential numerosity judgments has been largely ignored. To overcome this issue, we extend a recently proposed framework that makes it possible to separate the contribution of numerical and non-numerical information in numerosity comparison by introducing a novel stimulus space designed for sequential tasks. Our method systematically varies the temporal magnitudes embedded into event sequences through the orthogonal manipulation of numerosity and two latent factors, which we designate as "duration" and "temporal spacing". This allows us to measure the contribution of finer-grained temporal features on numerosity judgments in several sensory modalities. We validate the proposed method on two different experiments in both visual and auditory modalities: results show that adult participants discriminated sequences primarily by relying on numerosity, with similar acuity in the visual and auditory modality. However, participants were similarly influenced by non-numerical cues, such as the total duration of the stimuli, suggesting that temporal cues can significantly bias numerical processing. Our findings highlight the need to carefully consider the continuous properties of numerical stimuli in a sequential mode of presentation as well, with particular relevance in multimodal and cross-modal investigations. We provide the complete code for creating sequential stimuli and analyzing participants' responses.
Collapse
Affiliation(s)
- Serena Dolfi
- Department of Developmental Psychology and Socialization, University of Padova, Via Venezia 8, 35131, Padova, Italy.
| | - Alberto Testolin
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy
- Department of Mathematics, University of Padova, Padova, Italy
| | - Simone Cutini
- Department of Developmental Psychology and Socialization, University of Padova, Via Venezia 8, 35131, Padova, Italy
| | - Marco Zorzi
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy
- IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
3
|
Okuyama S, Kuki T, Mushiake H. Recruitment of the premotor cortex during arithmetic operations by the monkey. Sci Rep 2024; 14:6450. [PMID: 38548764 PMCID: PMC10978941 DOI: 10.1038/s41598-024-56755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
Arithmetic operations are complex mental processes rooted in the abstract concept of numerosity. Despite the significance, the neural architecture responsible for these operations has remained largely uncharted. In this study, we explored the presence of specific neuronal activity in the dorsal premotor cortex of the monkey dedicated to numerical addition and subtraction. Our findings reveal that many of these neural activities undergo a transformation, shifting their coding from arithmetic to motor representations. These motor representations include information about which hand to use and the number of steps involved in the action. We consistently observed that cells related to the right-hand encoded addition, while those linked to the left-hand encoded subtraction, suggesting that arithmetic operations and motor commands are intertwining with each other. Furthermore, we used a multivariate decoding technique to predict the monkey's behaviour based on the activity of these arithmetic-related cells. The classifier trained to discern arithmetic operations, including addition and subtraction, not only predicted the arithmetic decisions but also the subsequent motor actions of the right and left-hand. These findings imply a cognitive extension of the motor cortex's function, where inherent neural systems are repurposed to facilitate arithmetic operations.
Collapse
Affiliation(s)
- Sumito Okuyama
- Department of Physiology, Tohoku University School of Medicine, Sendai, 980-8575, Japan
- Department of Neurosurgery, Southern Tohoku General Hospital, Miyagi, 989-2483, Japan
| | - Toshinobu Kuki
- Department of Physiology, Tohoku University School of Medicine, Sendai, 980-8575, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
4
|
Morton NJ, Hooson-Smith C, Stuart K, Kemp S, Grace RC. Perceptual addition of continuous magnitudes in an 'artificial algebra'. Cognition 2024; 244:105710. [PMID: 38159525 DOI: 10.1016/j.cognition.2023.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Although there is substantial evidence for an innate 'number sense' that scaffolds learning about mathematics, whether the underlying representations are based on discrete or continuous perceptual magnitudes has been controversial. Yet the nature of the computations supported by these representations has been neglected in this debate. While basic computation of discrete non-symbolic quantities has been reliably demonstrated in adults, infants, and non-humans, far less consideration has been given to the capacity for computation of continuous perceptual magnitudes. Here we used a novel experimental task to ask if humans can learn to add non-symbolic, continuous magnitudes in accord with the properties of an algebraic group, by feedback and without explicit instruction. Three pairs of experiments tested perceptual addition under the group properties of commutativity (Experiments 1a-b), identity and inverses (Experiments 2a-b) and associativity (Experiments 3a-b), with both line length and brightness modalities. Transfer designs were used in which participants responded on trials with feedback based on sums of magnitudes and later were tested with novel stimulus configurations. In all experiments, correlations of average responses with magnitude sums were high on trials with feedback. Responding on transfer trials was accurate and provided strong support for addition under all of the group axioms with line length, and for all except associativity with brightness. Our results confirm that adult human subjects can implicitly add continuous quantities in a manner consistent with symbolic addition over the integers, and that an 'artificial algebra' task can be used to study implicit computation.
Collapse
Affiliation(s)
| | | | - Kate Stuart
- University of Canterbury, Christchurch, New Zealand
| | - Simon Kemp
- University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
5
|
Czajko S, Vignaud A, Eger E. Human brain representations of internally generated outcomes of approximate calculation revealed by ultra-high-field brain imaging. Nat Commun 2024; 15:572. [PMID: 38233387 PMCID: PMC10794709 DOI: 10.1038/s41467-024-44810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Much of human culture's advanced technology owes its existence to the ability to mentally manipulate quantities. Neuroscience has described the brain regions overall recruited by numerical tasks and the neuronal codes representing individual quantities during perceptual tasks. Nevertheless, it remains unknown how quantity representations are combined or transformed during mental computations and how specific quantities are coded in the brain when generated as the result of internal computations rather than evoked by a stimulus. Here, we imaged the brains of adult human subjects at 7 Tesla during an approximate calculation task designed to disentangle in- and outputs of the computation from the operation itself. While physically presented sample numerosities were distinguished in activity patterns along the dorsal visual pathway and within frontal and occipito-temporal regions, a representation of the internally generated result was most prominently detected in higher order regions such as angular gyrus and lateral prefrontal cortex. Behavioral precision in the task was related to cross-decoding performance between sample and result representations in medial IPS regions. This suggests the transformation of sample into result may be carried out within dorsal stream sensory-motor integration regions, and resulting outputs maintained for task purposes in higher-level regions in a format possibly detached from sensory-evoked inputs.
Collapse
Affiliation(s)
- Sébastien Czajko
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, Gif-sur-Yvette, France
- EDUWELL team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - Alexandre Vignaud
- UNIRS, CEA, Université Paris-Saclay, NeuroSpin center, Gif-sur-Yvette, France
| | - Evelyn Eger
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Bahreini N, Artemenko C, Plewnia C, Nuerk HC. tDCS effects in basic symbolic number magnitude processing are not significantly lateralized. Sci Rep 2023; 13:21515. [PMID: 38057342 PMCID: PMC10700326 DOI: 10.1038/s41598-023-48189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
Functional lateralization was previously established for various cognitive domains-but not for number processing. Although numbers are considered to be bilaterally represented in the intraparietal sulcus (IPS), there are some indications of different functional roles of the left vs. right IPS in processing number pairs with small vs. large distance, respectively. This raises the question whether number size plays a distinct role in the lateralization within the IPS. In our preregistered study, we applied anodal transcranial direct current stimulation (tDCS) over the left vs. right IPS to investigate the effect of stimulation as compared to sham on small vs. large distance, in both single-digit and two-digit number comparison. We expected that anodal tDCS over the left IPS facilitates number comparison with small distance, while anodal tDCS over the right IPS facilitates number comparison with large distance. Results indicated no effect of stimulation; however, exploratory analyses revealed that tDCS over the right IPS slowed down single-digit number processing after controlling for the training effect. In conclusion, number magnitude processing might be bilaterally represented in the IPS, however, our exploratory analyses emphasise the need for further investigation on functional lateralization of number processing.
Collapse
Affiliation(s)
- Narjes Bahreini
- Department of Psychology, University of Tuebingen, Tuebingen, Germany.
| | | | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, Neurophysiology and Interventional Neuropsychiatry, University Hospital of Tuebingen, Tuebingen, Germany
- German Centre for Mental Health (DZPG), Jena, Germany
| | - Hans-Christoph Nuerk
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- German Centre for Mental Health (DZPG), Jena, Germany
| |
Collapse
|
7
|
Passive Grouping Enhances Proto-Arithmetic Calculation for Leftward Correct Responses. Symmetry (Basel) 2023. [DOI: 10.3390/sym15030719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Baby chicks and other animals including human infants master simple arithmetic. They discriminate 2 vs. 3 (1 + 1 vs. 1 + 1 + 1) but fail with 3 vs. 4 (1 + 1 + 1 vs. 1 + 1 + 1 + 1). Performance is restored when elements are grouped as 2 + 1 vs. 2 + 2. Here, we address whether grouping could lead to asymmetric response bias. We recoded behavioural data from a previous study, in which separate groups of four-day-old domestic chicks underwent an arithmetic task: when the objects were presented one-by-one (1 + 1 + 1 vs. 1 + 1 + 1 + 1), chicks failed in locating the larger group irrespective of its position and did not show any side bias; Experiment 1. When the objects were presented as grouped (2 + 1 vs. 2 + 2), chicks succeeded, performing better when the larger set was on their left; Experiment 2. A similar leftward bias was also observed with harder discriminations (4 vs. 5: 3 + 1 vs. 3 + 2), with baby chicks succeeding in the task only when the larger set was on the left (Experiments 3 and 4). A previous study showed a rightward bias, with tasks enhancing individual processing. Despite a similar effect in boosting proto-arithmetic calculations, individual processing (eliciting a right bias) and grouping (eliciting a left bias) seem to depend on distinct cognitive mechanisms.
Collapse
|
8
|
Rugani R, Zhang Y, Ahmed N, Brannon E. Children perform better on left than right targets in an ordinal task. Acta Psychol (Amst) 2022; 226:103560. [PMID: 35338831 DOI: 10.1016/j.actpsy.2022.103560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/01/2022] Open
Abstract
Francis Galton first reported that humans mentally organize numbers from left to right on a mental number line (1880). This spatial-numerical association was long considered to result from writing and reading habits. More recently though, newborns and animals showed a left-to-right oriented spatial numerical association challenging the primary role assigned to culture in determining the link between number and space. Despite growing evidence supporting the intrinsic association between number and space in different species, its adaptive value is still largely unknown. Here we tested for an advantage in identification of left versus right target positions in 3- to 6-year-old children. Children watched as a toy was hidden under one of 10 linearly arranged identical cups and were then asked to help a stuffed animal retrieve the toy. On each trial, the toy was hidden in the 2nd, 3rd, or 4th cup, from the left or right. To prevent children from staring at the target cup, they were asked to pick up the stuffed animal from under their chair after witnessing the hiding of the toy and then to help the stuffed animal find the toy. Older children were more accurate than younger children. Children exhibited a serial position effect, with performance higher for more exterior targets. Remarkably, children also showed a left bias: they remembered the left targets better than the right targets. Only the youngest children were dramatically influenced by the location of the experimenter during search. Additional analyses support the hypothesis that children used a left-to-right oriented searching strategy in this spatial/ordinal task.
Collapse
|
9
|
Eckert J, Bohn M, Spaethe J. Does quantity matter to a stingless bee? Anim Cogn 2022; 25:617-629. [PMID: 34812987 PMCID: PMC9107420 DOI: 10.1007/s10071-021-01581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022]
Abstract
Quantitative information is omnipresent in the world and a wide range of species has been shown to use quantities to optimize their decisions. While most studies have focused on vertebrates, a growing body of research demonstrates that also insects such as honeybees possess basic quantitative abilities that might aid them in finding profitable flower patches. However, it remains unclear if for insects, quantity is a salient feature relative to other stimulus dimensions, or if it is only used as a "last resort" strategy in case other stimulus dimensions are inconclusive. Here, we tested the stingless bee Trigona fuscipennis, a species representative of a vastly understudied group of tropical pollinators, in a quantity discrimination task. In four experiments, we trained wild, free-flying bees on stimuli that depicted either one or four elements. Subsequently, bees were confronted with a choice between stimuli that matched the training stimulus either in terms of quantity or another stimulus dimension. We found that bees were able to discriminate between the two quantities, but performance differed depending on which quantity was rewarded. Furthermore, quantity was more salient than was shape. However, quantity did not measurably influence the bees' decisions when contrasted with color or surface area. Our results demonstrate that just as honeybees, small-brained stingless bees also possess basic quantitative abilities. Moreover, invertebrate pollinators seem to utilize quantity not only as "last resort" but as a salient stimulus dimension. Our study contributes to the growing body of knowledge on quantitative cognition in invertebrate species and adds to our understanding of the evolution of numerical cognition.
Collapse
Affiliation(s)
- Johanna Eckert
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Manuel Bohn
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
10
|
Kuzmina Y, Antipkina I. The Association between Approximate Number Sense (ANS) and Math Achievement Depends on the Format of the ANS Test. JOURNAL OF COGNITION AND DEVELOPMENT 2022. [DOI: 10.1080/15248372.2022.2063293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
On the usefulness of graph-theoretic properties in the study of perceived numerosity. Behav Res Methods 2022; 54:2381-2397. [PMID: 35352300 PMCID: PMC9579069 DOI: 10.3758/s13428-021-01733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 11/22/2022]
Abstract
Observers can quickly estimate the quantity of sets of visual elements. Many aspects of this ability have been studied and the underlying system has been called the Approximate Number Sense (Dehaene, 2011). Specific visual properties, such as size and clustering of the elements, can bias an estimate. For intermediate numerical quantities at low density (above five, but before texturization), human performance is predicted by a model based on the region of influence of elements (occupancy model: Allïk & Tuulmets, 1991). For random 2D configurations we computed ten indices based on graph theory, and we compared them with the occupancy model: independence number, domination, connected components, local clustering coefficient, global clustering coefficient, random walk, eigenvector centrality, maximum clique, total degree of connectivity, and total edge length. We made comparisons across a range of parameters, and we varied the size of the region of influence around each element. The analysis of the pattern of correlations suggests two main groups of graph-based measures. The first group is sensitive to the presence of local clustering of elements, the second seems more sensitive to density and the way information spreads in graphs. Empirical work on perception of numerosity may benefit from comparing, or controlling for, these properties.
Collapse
|
12
|
Bryer MAH, Koopman SE, Cantlon JF, Piantadosi ST, MacLean EL, Baker JM, Beran MJ, Jones SM, Jordan KE, Mahamane S, Nieder A, Perdue BM, Range F, Stevens JR, Tomonaga M, Ujfalussy DJ, Vonk J. The evolution of quantitative sensitivity. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200529. [PMID: 34957840 PMCID: PMC8710878 DOI: 10.1098/rstb.2020.0529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The ability to represent approximate quantities appears to be phylogenetically widespread, but the selective pressures and proximate mechanisms favouring this ability remain unknown. We analysed quantity discrimination data from 672 subjects across 33 bird and mammal species, using a novel Bayesian model that combined phylogenetic regression with a model of number psychophysics and random effect components. This allowed us to combine data from 49 studies and calculate the Weber fraction (a measure of quantity representation precision) for each species. We then examined which cognitive, socioecological and biological factors were related to variance in Weber fraction. We found contributions of phylogeny to quantity discrimination performance across taxa. Of the neural, socioecological and general cognitive factors we tested, cortical neuron density and domain-general cognition were the strongest predictors of Weber fraction, controlling for phylogeny. Our study is a new demonstration of evolutionary constraints on cognition, as well as of a relation between species-specific neuron density and a particular cognitive ability. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.
Collapse
Affiliation(s)
- Margaret A H Bryer
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Psychology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Sarah E Koopman
- School of Psychology and Neuroscience, University of St. Andrews, St Andrews KY16 9AJ, UK
| | - Jessica F Cantlon
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Steven T Piantadosi
- Department of Psychology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ 85719, USA.,College of Veterinary Medicine, University of Arizona, Tucson, AZ 85719, USA
| | - Joseph M Baker
- Center for Interdisciplinary Brain Sciences Research, Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michael J Beran
- Department of Psychology and Language Research Center, Georgia State University, Atlanta, GA 30302, USA
| | - Sarah M Jones
- Psychology Program, Berea College, Berea, KY 40403, USA
| | - Kerry E Jordan
- Department of Psychology, Utah State University, Logan, UT 84322, USA
| | - Salif Mahamane
- Behavioral and Social Sciences Department, Western Colorado University, Gunnison, CO 81231, USA
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Bonnie M Perdue
- Department of Psychology, Agnes Scott College, Decatur, GA 30030, USA
| | - Friederike Range
- Domestication Lab, Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, Vienna 1160, Austria
| | - Jeffrey R Stevens
- Department of Psychology and Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | - Dorottya J Ujfalussy
- MTA-ELTE Comparative Ethology Research Group, Eötvös Loránd University of Sciences (ELTE), Budapest 1117, Hungary.,Department of Ethology, Eötvös Loránd University of Sciences (ELTE), Budapest 1117, Hungary
| | - Jennifer Vonk
- Department of Psychology, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
13
|
Abstract
Animals show vast numerical competence in tasks that require both ordinal and cardinal numerical representations, but few studies have addressed whether animals can identify the numerical middle in a sequence. Two rhesus monkeys (Macaca mulatta) learned to select the middle dot in a horizontal sequence of three dots on a touchscreen. When subsequently presented with longer sequences composed of 5, 7 or 9 items, monkeys transferred the middle rule. Accuracy decreased as the length of the sequence increased. In a second test, we presented monkeys with asymmetrical sequences composed of nine items, where the numerical and spatial middle were distinct and both monkeys selected the numerical middle over the spatial middle. Our results demonstrate that rhesus macaques can extract an abstract numerical rule to bisect a discrete set of items.
Collapse
Affiliation(s)
- Rosa Rugani
- Department of General Psychology, University of Padua, Padua, Italy.,Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Marketing Department, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhaoying Chen
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth M Brannon
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Messina A, Potrich D, Schiona I, Sovrano VA, Vallortigara G. The Sense of Number in Fish, with Particular Reference to Its Neurobiological Bases. Animals (Basel) 2021; 11:ani11113072. [PMID: 34827804 PMCID: PMC8614421 DOI: 10.3390/ani11113072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary The ability to deal with quantity, both discrete (numerosities) and continuous (spatial or temporal extent) developed from an evolutionarily conserved system for approximating numerical magnitude. Non-symbolic number cognition based on an approximate sense of magnitude has been documented in a variety of vertebrate species, including fish. Fish, in particular zebrafish, are widely used as models for the investigation of the genetics and molecular mechanisms of behavior, and thus may be instrumental to development of a neurobiology of number cognition. We review here the behavioural studies that have permitted to identify numerical abilities in fish, and the current status of the research related to the neurobiological bases of these abilities with special reference to zebrafish. Combining behavioural tasks with molecular genetics, molecular biology and confocal microscopy, a role of the retina and optic tectum in the encoding of continuous magnitude in larval zebrafish has been reported, while the thalamus and the dorso-central subdivision of pallium in the encoding of discrete magnitude (number) has been documented in adult zebrafish. Research in fish, in particular zebrafish, may reveal instrumental for identifying and characterizing the molecular signature of neurons involved in quantity discrimination processes of all vertebrates, including humans. Abstract It is widely acknowledged that vertebrates can discriminate non-symbolic numerosity using an evolutionarily conserved system dubbed Approximate Number System (ANS). Two main approaches have been used to assess behaviourally numerosity in fish: spontaneous choice tests and operant training procedures. In the first, animals spontaneously choose between sets of biologically-relevant stimuli (e.g., conspecifics, food) differing in quantities (smaller or larger). In the second, animals are trained to associate a numerosity with a reward. Although the ability of fish to discriminate numerosity has been widely documented with these methods, the molecular bases of quantities estimation and ANS are largely unknown. Recently, we combined behavioral tasks with molecular biology assays (e.g c-fos and egr1 and other early genes expression) showing that the thalamus and the caudal region of dorso-central part of the telencephalon seem to be activated upon change in numerousness in visual stimuli. In contrast, the retina and the optic tectum mainly responded to changes in continuous magnitude such as stimulus size. We here provide a review and synthesis of these findings.
Collapse
Affiliation(s)
- Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Correspondence: (A.M.); (G.V.)
| | - Davide Potrich
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
| | - Ilaria Schiona
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
| | - Valeria Anna Sovrano
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Giorgio Vallortigara
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Correspondence: (A.M.); (G.V.)
| |
Collapse
|
15
|
Neural substrates involved in the cognitive information processing in teleost fish. Anim Cogn 2021; 24:923-946. [PMID: 33907938 PMCID: PMC8360893 DOI: 10.1007/s10071-021-01514-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 02/04/2023]
Abstract
Over the last few decades, it has been shown that fish, comprising the largest group of vertebrates and in many respects one of the least well studied, possess many cognitive abilities comparable to those of birds and mammals. Despite a plethora of behavioural studies assessing cognition abilities and an abundance of neuroanatomical studies, only few studies have aimed to or in fact identified the neural substrates involved in the processing of cognitive information. In this review, an overview of the currently available studies addressing the joint research topics of cognitive behaviour and neuroscience in teleosts (and elasmobranchs wherever possible) is provided, primarily focusing on two fundamentally different but complementary approaches, i.e. ablation studies and Immediate Early Gene (IEG) analyses. More recently, the latter technique has become one of the most promising methods to visualize neuronal populations activated in specific brain areas, both during a variety of cognitive as well as non-cognition-related tasks. While IEG studies may be more elegant and potentially easier to conduct, only lesion studies can help researchers find out what information animals can learn or recall prior to and following ablation of a particular brain area.
Collapse
|
16
|
Malykh S, Kuzmina Y, Tikhomirova T. Developmental Changes in ANS Precision Across Grades 1-9: Different Patterns of Accuracy and Reaction Time. Front Psychol 2021; 12:589305. [PMID: 33841232 PMCID: PMC8024480 DOI: 10.3389/fpsyg.2021.589305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/03/2021] [Indexed: 01/29/2023] Open
Abstract
The main aim of this study was to analyze the patterns of changes in Approximate Number Sense (ANS) precision from grade 1 (mean age: 7.84 years) to grade 9 (mean age: 15.82 years) in a sample of Russian schoolchildren. To fulfill this aim, the data from a longitudinal study of two cohorts of children were used. The first cohort was assessed at grades 1-5 (elementary school education plus the first year of secondary education), and the second cohort was assessed at grades 5-9 (secondary school education). ANS precision was assessed by accuracy and reaction time (RT) in a non-symbolic comparison test ("blue-yellow dots" test). The patterns of change were estimated via mixed-effect growth models. The results revealed that in the first cohort, the average accuracy increased from grade 1 to grade 5 following a non-linear pattern and that the rate of growth slowed after grade 3 (7-9 years old). The non-linear pattern of changes in the second cohort indicated that accuracy started to increase from grade 7 to grade 9 (13-15 years old), while there were no changes from grade 5 to grade 7. However, the RT in the non-symbolic comparison test decreased evenly from grade 1 to grade 7 (7-13 years old), and the rate of processing non-symbolic information tended to stabilize from grade 7 to grade 9. Moreover, the changes in the rate of processing non-symbolic information were not explained by the changes in general processing speed. The results also demonstrated that accuracy and RT were positively correlated across all grades. These results indicate that accuracy and the rate of non-symbolic processing reflect two different processes, namely, the maturation and development of a non-symbolic representation system.
Collapse
Affiliation(s)
- Sergey Malykh
- Department of Psychology, Lomonosov Moscow State University, Moscow, Russia.,Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - Yulia Kuzmina
- Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - Tatiana Tikhomirova
- Department of Psychology, Lomonosov Moscow State University, Moscow, Russia.,Psychological Institute of Russian Academy of Education, Moscow, Russia
| |
Collapse
|
17
|
Sensitivity to geometric shape regularity in humans and baboons: A putative signature of human singularity. Proc Natl Acad Sci U S A 2021; 118:2023123118. [PMID: 33846254 DOI: 10.1073/pnas.2023123118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Among primates, humans are special in their ability to create and manipulate highly elaborate structures of language, mathematics, and music. Here we show that this sensitivity to abstract structure is already present in a much simpler domain: the visual perception of regular geometric shapes such as squares, rectangles, and parallelograms. We asked human subjects to detect an intruder shape among six quadrilaterals. Although the intruder was always defined by an identical amount of displacement of a single vertex, the results revealed a geometric regularity effect: detection was considerably easier when either the base shape or the intruder was a regular figure comprising right angles, parallelism, or symmetry rather than a more irregular shape. This effect was replicated in several tasks and in all human populations tested, including uneducated Himba adults and French kindergartners. Baboons, however, showed no such geometric regularity effect, even after extensive training. Baboon behavior was captured by convolutional neural networks (CNNs), but neither CNNs nor a variational autoencoder captured the human geometric regularity effect. However, a symbolic model, based on exact properties of Euclidean geometry, closely fitted human behavior. Our results indicate that the human propensity for symbolic abstraction permeates even elementary shape perception. They suggest a putative signature of human singularity and provide a challenge for nonsymbolic models of human shape perception.
Collapse
|
18
|
Application of an abstract concept across magnitude dimensions by fish. Sci Rep 2020; 10:16935. [PMID: 33037309 PMCID: PMC7547013 DOI: 10.1038/s41598-020-74037-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 11/26/2022] Open
Abstract
Mastering relational concepts and applying them to different contexts presupposes abstraction capacities and implies a high level of cognitive sophistication. One way to investigate extrapolative abilities is to assess cross-dimensional application of an abstract relational magnitude rule to new domains. Here we show that angelfish initially trained to choose either the shorter of two lines in a spatial task (line-length discrimination task) or the array with “fewer” items (numerical discrimination task) spontaneously transferred the learnt rule to novel stimuli belonging to the previously unseen dimension demonstrating knowledge of the abstract concept of “smaller”. Our finding challenges the idea that the ability to master abstract magnitude concepts across domains is unique to humans and suggests that the circuits involved in rule learning and magnitude processing might be evolutionary conserved.
Collapse
|
19
|
Individually distinctive features facilitate numerical discrimination of sets of objects in domestic chicks. Sci Rep 2020; 10:16408. [PMID: 33009471 PMCID: PMC7532216 DOI: 10.1038/s41598-020-73431-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/16/2020] [Indexed: 11/24/2022] Open
Abstract
Day-old domestic chicks approach the larger of two groups of identical objects, but in a 3 vs 4 comparison, their performance is random. Here we investigated whether adding individually distinctive features to each object would facilitate such discrimination. Chicks reared with 7 objects were presented with the operation 1 + 1 + 1 vs 1 + 1 + 1 + 1. When objects were all identical, chicks performed randomly, as expected (Experiment 1). In the remaining experiments, objects differed from one another due to additional features. Chicks succeeded when those features were differently oriented segments (Experiment 2) but failed when the features were arranged to depict individually different face-like displays (Experiment 3). Discrimination was restored if the face-like stimuli were presented upside-down, disrupting global processing (Experiment 4). Our results support the claim that numerical discrimination in 3 vs 4 comparison benefits from the presence of distinctive features that enhance object individuation due to individual processing. Interestingly, when the distinctive features are arranged into upright face-like displays, the process is susceptible to global over local interference due to configural processing. This study was aimed at assessing whether individual object processing affects numerical discrimination. We hypothesise that in humans similar strategies aimed at improving performance at the non-symbolic level may have positive effects on symbolic mathematical abilities.
Collapse
|
20
|
Cheyette SJ, Piantadosi ST. A unified account of numerosity perception. Nat Hum Behav 2020; 4:1265-1272. [PMID: 32929205 DOI: 10.1038/s41562-020-00946-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 08/07/2020] [Indexed: 01/29/2023]
Abstract
People can identify the number of objects in sets of four or fewer items with near-perfect accuracy but exhibit linearly increasing error for larger sets. Some researchers have taken this discontinuity as evidence of two distinct representational systems. Here, we present a mathematical derivation showing that this behaviour is an optimal representation of cardinalities under a limited informational capacity, indicating that this behaviour can emerge from a single system. Our derivation predicts how the amount of information accessible to viewers should influence the perception of quantity for both large and small sets. In a series of four preregistered experiments (N = 100 each), we varied the amount of information accessible to participants in number estimation. We find tight alignment between the model and human performance for both small and large quantities, implicating efficient representation as the common origin behind key phenomena of human and animal numerical cognition.
Collapse
|
21
|
Nieder A. Absolute Numerosity Discrimination as a Case Study in Comparative Vertebrate Intelligence. Front Psychol 2020; 11:1843. [PMID: 32849085 PMCID: PMC7426444 DOI: 10.3389/fpsyg.2020.01843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/06/2020] [Indexed: 01/29/2023] Open
Abstract
The question of whether some non-human animal species are more intelligent than others is a reoccurring theme in comparative psychology. To convincingly address this question, exact comparability of behavioral methodology and data across species is required. The current article explores one of the rare cases in which three vertebrate species (humans, macaques, and crows) experienced identical experimental conditions during the investigation of a core cognitive capability – the abstract categorization of absolute numerical quantity. We found that not every vertebrate species studied in numerical cognition were able to flexibly discriminate absolute numerosity, which suggests qualitative differences in numerical intelligence are present between vertebrates. Additionally, systematic differences in numerosity judgment accuracy exist among those species that could master abstract and flexible judgments of absolute numerosity, thus arguing for quantitative differences between vertebrates. These results demonstrate that Macphail’s Null Hypotheses – which suggests that all non-human vertebrates are qualitatively and quantitatively of equal intelligence – is untenable.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Does Brain Lateralization Affect the Performance in Binary Choice Tasks? A Study in the Animal Model Danio rerio. Symmetry (Basel) 2020. [DOI: 10.3390/sym12081294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Researchers in behavioral neuroscience commonly observe the behavior of animal subjects in the presence of two alternative stimuli. However, this type of binary choice introduces a potential confound related to side biases. Understanding whether subjects exhibit this bias, and the origin of it (pre-existent or acquired throughout the experimental sessions), is particularly important to interpreting the results. Here, we tested the hypothesis according to which brain lateralization may influence the emergence of side biases in a well-known model of neuroscience, the zebrafish. As a measure of lateralization, individuals were observed in their spontaneous tendencies to monitor a potential predator with either the left or the right eye. Subjects also underwent an operant conditioning task requiring discrimination between two colors placed on the left–right axis. Although the low performance exhibited in the operant conditioning task prevents firm conclusions from being drawn, a positive correlation was found between the direction of lateralization and the tendency to select the stimulus presented on one specific side (e.g., right). The choice for this preferred side did not change throughout the experimental sessions, meaning that this side bias was not the result of the prolonged training. Overall, our study calls for a wider investigation of pre-existing lateralization biases in animal models to set up methodological counterstrategies to test individuals that do not properly work in a binary choice task with stimuli arranged on the left–right axis.
Collapse
|
23
|
Professional mathematicians do not differ from others in the symbolic numerical distance and size effects. Sci Rep 2020; 10:11531. [PMID: 32661271 PMCID: PMC7359336 DOI: 10.1038/s41598-020-68202-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/11/2020] [Indexed: 01/29/2023] Open
Abstract
The numerical distance effect (it is easier to compare numbers that are further apart) and size effect (for a constant distance, it is easier to compare smaller numbers) characterize symbolic number processing. However, evidence for a relationship between these two basic phenomena and more complex mathematical skills is mixed. Previously this relationship has only been studied in participants with normal or poor mathematical skills, not in mathematicians. Furthermore, the prevalence of these effects at the individual level is not known. Here we compared professional mathematicians, engineers, social scientists, and a reference group using the symbolic magnitude classification task with single-digit Arabic numbers. The groups did not differ with respect to symbolic numerical distance and size effects in either frequentist or Bayesian analyses. Moreover, we looked at their prevalence at the individual level using the bootstrapping method: while a reliable numerical distance effect was present in almost all participants, the prevalence of a reliable numerical size effect was much lower. Again, prevalence did not differ between groups. In summary, the phenomena were neither more pronounced nor more prevalent in mathematicians, suggesting that extremely high mathematical skills neither rely on nor have special consequences for analogue processing of symbolic numerical magnitudes.
Collapse
|
24
|
Reigosa-Crespo V, Castro-Cañizares D, Estévez-Pérez N, Santos E, Torres R, Mosquera R, Álvarez A, Recio B, González E, Amor V, Ontivero M, Valdés-Sosa M. Numerical skills and dyscalculia. From basic research to practice in Cuba (Habilidades numéricas y discalculia. De la investigación básica a la práctica en Cuba). STUDIES IN PSYCHOLOGY 2020. [DOI: 10.1080/02109395.2020.1749502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
| | - Danilka Castro-Cañizares
- Centro de Investigación Avanzada en Educación (CIAE) , Universidad de Chile
- Escuela de Psicología, Universidad Mayor de Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Miletto Petrazzini ME, Mantese F, Prato-Previde E. Food quantity discrimination in puppies (Canis lupus familiaris). Anim Cogn 2020; 23:703-710. [PMID: 32253517 DOI: 10.1007/s10071-020-01378-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/29/2023]
Abstract
There is considerable evidence that animals are able to discriminate between quantities. Despite the fact that quantitative skills have been extensively studied in adult individuals, research on their development in early life is restricted to a limited number of species. We, therefore, investigated whether 2-month-old puppies could spontaneously discriminate between different quantities of food items. We used a simultaneous two-choice task in which puppies were presented with three numerical combinations of pieces of food (1 vs. 8, 1 vs. 6 and 1 vs. 4), and they were allowed to select only one option. The subjects chose the larger of the two quantities in the 1 vs. 8 and the 1 vs. 6 combinations but not in the 1 vs. 4 combination. Furthermore, the last quantity the puppies looked at before making their choice and the time spent looking at the larger/smaller amounts of food were predictive of the choices they made. Since adult dogs are capable of discriminating between more difficult numerical contrasts when tested with similar tasks, our findings suggest that the capacity to discriminate between quantities is already present at an early age, but that it is limited to very easy discriminations.
Collapse
Affiliation(s)
| | - Fabio Mantese
- Department of Animal and Human Biology, University of Turin, Turin, Italy
| | | |
Collapse
|
26
|
Messina A, Potrich D, Schiona I, Sovrano VA, Fraser SE, Brennan CH, Vallortigara G. Response to change in the number of visual stimuli in zebrafish:A behavioural and molecular study. Sci Rep 2020; 10:5769. [PMID: 32238844 PMCID: PMC7113307 DOI: 10.1038/s41598-020-62608-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/13/2020] [Indexed: 11/29/2022] Open
Abstract
Evidence has shown that a variety of vertebrates, including fish, can discriminate collections of visual items on the basis of their numerousness using an evolutionarily conserved system for approximating numerical magnitude (the so-called Approximate Number System, ANS). Here we combine a habituation/dishabituation behavioural task with molecular biology assays to start investigating the neural bases of the ANS in zebrafish. Separate groups of zebrafish underwent a habituation phase with a set of 3 or 9 small red dots, associated with a food reward. The dots changed in size, position and density from trial to trial but maintained their numerousness, and the overall areas of the stimuli was kept constant. During the subsequent dishabituation test, zebrafish faced a change (i) in number (from 3 to 9 or vice versa with the same overall surface), or (ii) in shape (with the same overall surface and number), or (iii) in size (with the same shape and number). A control group of zebrafish was shown the same stimuli as during the habituation. RT-qPCR revealed that the telencephalon and thalamus were characterized by the most consistent modulation of the expression of the immediate early genes c-fos and egr-1 upon change in numerousness; in contrast, the retina and optic tectum responded mainly to changes in stimulus size.
Collapse
Affiliation(s)
- Andrea Messina
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
| | - Davide Potrich
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Ilaria Schiona
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Valeria Anna Sovrano
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Scott E Fraser
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, USA
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University, London, UK
| | | |
Collapse
|
27
|
Pecunioso A, Miletto Petrazzini ME, Agrillo C. Anisotropy of perceived numerosity: Evidence for a horizontal-vertical numerosity illusion. Acta Psychol (Amst) 2020; 205:103053. [PMID: 32151792 DOI: 10.1016/j.actpsy.2020.103053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/20/2020] [Accepted: 02/27/2020] [Indexed: 01/29/2023] Open
Abstract
Many studies have investigated whether numerical and spatial abilities share similar cognitive systems. A novel approach to this issue consists of investigating whether the same perceptual biases underlying size illusions can be identified in numerical estimation tasks. In this study, we required adult participants to estimate the number of white dots in arrays made of white and black dots displayed in such a way as to generate horizontal-vertical illusions with inverted T and L configurations. In agreement with previous literature, we found that participants tended to underestimate the target numbers. However, in the presence of the illusory patterns, participants were less inclined to underestimate the number of vertically aligned white dots. This reflects the perceptual biases underlying horizontal-vertical illusions. In addition, we identified an enhanced illusory effect when participants observed vertically aligned white dots in the T shape compared to the L shape, a result that resembles the length bisection bias reported in the spatial domain. Overall, we found the first evidence that numerical estimation differs as a function of the vertical or horizontal displacement of the stimuli. In addition, the involvement of the same perceptual biases observed in spatial tasks supports the idea that spatial and numerical abilities share similar cognitive processes.
Collapse
Affiliation(s)
| | | | - Christian Agrillo
- Department of General Psychology, University of Padova, Italy; Padua Neuroscience Center, University of Padova, Italy.
| |
Collapse
|
28
|
Domain-general cognitive functions fully explained growth in nonsymbolic magnitude representation but not in symbolic representation in elementary school children. PLoS One 2020; 15:e0228960. [PMID: 32045454 PMCID: PMC7012440 DOI: 10.1371/journal.pone.0228960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/27/2020] [Indexed: 01/29/2023] Open
Abstract
In this study, we aimed to compare developmental changes in nonsymbolic and symbolic magnitude representations across the elementary school years. For this aim, we used a four-wave longitudinal study with a one-year interval in schoolchildren in grades 1-4 in Russia and Kyrgyzstan (N = 490, mean age was 7.65 years at grade 1). The results of mixed-effects growth models revealed that growth in the precision of symbolic representation was larger than in the nonsymbolic representation. Moreover, growth in nonsymbolic representation was fully explained by growth in fluid intelligence (FI), visuospatial working memory (VSWM) and processing speed (PS). The analysis demonstrated that growth in nonsymbolic magnitude representation was significant only for pupils with a high level of FI and PS, whereas growth in precision of symbolic representation did not significantly vary across pupils with different levels of FI or VSWM.
Collapse
|
29
|
Friederici AD. Hierarchy processing in human neurobiology: how specific is it? Philos Trans R Soc Lond B Biol Sci 2020; 375:20180391. [PMID: 31735144 PMCID: PMC6895560 DOI: 10.1098/rstb.2018.0391] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
Although human and non-human animals share a number of perceptual and cognitive abilities, they differ in their ability to process hierarchically structured sequences. This becomes most evident in the human capacity to process natural language characterized by structural hierarchies. This capacity is neuroanatomically grounded in the posterior part of left Broca's area (Brodmann area (BA) 44), located in the inferior frontal gyrus, and its dorsal white matter fibre connection to the temporal cortex. Within this neural network, BA 44 itself subserves hierarchy building and the strength of its connection to the temporal cortex correlates with the processing of syntactically complex sentences. Whether these brain structures are also relevant for other human cognitive abilities is a current debate. Here, this question will be evaluated with respect to those human cognitive abilities that are assumed to require hierarchy building, such as music, mathematics and Theory of Mind. Rather than supporting a domain-general view, the data indicate domain-selective neural networks as the neurobiological basis for processing hierarchy in different cognitive domains. Recent cross-species white matter comparisons suggest that particular connections within the networks may make the crucial difference in the brain structure of human and non-human primates, thereby enabling cognitive functions specific to humans. This article is part of the theme issue 'What can animal communication teach us about human language?'
Collapse
Affiliation(s)
- Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
| |
Collapse
|
30
|
Tikhomirova T, Kuzmina Y, Lysenkova I, Malykh S. The Relationship Between Non-symbolic and Symbolic Numerosity Representations in Elementary School: The Role of Intelligence. Front Psychol 2019; 10:2724. [PMID: 31866910 PMCID: PMC6906201 DOI: 10.3389/fpsyg.2019.02724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/18/2019] [Indexed: 01/29/2023] Open
Abstract
This study aimed to estimate the extent to which the development of symbolic numerosity representations relies on pre-existing non-symbolic numerosity representations that refer to the Approximate Number System. To achieve this aim, we estimated the longitudinal relationships between accuracy in the Number Line (NL) test and “blue–yellow dots” test across elementary school children. Data from a four-wave longitudinal study involving schoolchildren in grades 1–4 in Russia and Kyrgyzstan (N = 490, mean age 7.65 years in grade 1) were analyzed. We applied structural equation modeling and tested several competing models. The results revealed that at the start of schooling, the accuracy in the NL test predicted subsequent accuracy in the “blue–yellow dots” test, whereas subsequently, non-symbolic representation in grades 2 and 3 predicted subsequent symbolic representation. These results indicate that the effect of non-symbolic representation on symbolic representation emerges after a child masters the basics of symbolic number knowledge, such as counting in the range of twenty and simple arithmetic. We also examined the extent to which the relationships between non-symbolic and symbolic representations might be explained by fluid intelligence, which was measured by Raven’s Standard Progressive Matrices test. The results revealed that the effect of symbolic representation on non-symbolic representation was explained by fluid intelligence, whereas at the end of elementary school, non-symbolic representation predicted subsequent symbolic representation independently of fluid intelligence.
Collapse
Affiliation(s)
- Tatiana Tikhomirova
- Department of Psychology, Lomonosov Moscow State University, Moscow, Russia.,Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - Yulia Kuzmina
- Department of Psychology, Lomonosov Moscow State University, Moscow, Russia.,Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - Irina Lysenkova
- Department of Psychology, Kyrgyz-Russian Slavic University, Bishkek, Kyrgyzstan
| | - Sergey Malykh
- Department of Psychology, Lomonosov Moscow State University, Moscow, Russia.,Psychological Institute of Russian Academy of Education, Moscow, Russia
| |
Collapse
|
31
|
Koopman SE, Arre AM, Piantadosi ST, Cantlon JF. One-to-one correspondence without language. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190495. [PMID: 31824689 PMCID: PMC6837223 DOI: 10.1098/rsos.190495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/01/2019] [Indexed: 05/10/2023]
Abstract
A logical rule important in counting and representing exact number is one-to-one correspondence, the understanding that two sets are equal if each item in one set corresponds to exactly one item in the second set. The role of this rule in children's development of counting remains unclear, possibly due to individual differences in the development of language. We report that non-human primates, which do not have language, have at least a partial understanding of this principle. Baboons were given a quantity discrimination task where two caches were baited with different quantities of food. When the quantities were baited in a manner that highlighted the one-to-one relation between those quantities, baboons performed significantly better than when one-to-one correspondence cues were not provided. The implication is that one-to-one correspondence, which requires intuitions about equality and is a possible building block of counting, has a pre-linguistic origin.
Collapse
Affiliation(s)
- Sarah E. Koopman
- Brain and Cognitive Sciences, University of Rochester, 500 Wilson Boulevard, Rochester, NY, USA
| | | | - Steven T. Piantadosi
- Brain and Cognitive Sciences, University of Rochester, 500 Wilson Boulevard, Rochester, NY, USA
- Psychology, University of California, Berkeley, CA, USA
| | - Jessica F. Cantlon
- Brain and Cognitive Sciences, University of Rochester, 500 Wilson Boulevard, Rochester, NY, USA
- Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Gazzola A, Vallortigara G, Pellitteri-Rosa D. Continuous and discrete quantity discrimination in tortoises. Biol Lett 2019; 14:20180649. [PMID: 30958247 DOI: 10.1098/rsbl.2018.0649] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability to estimate quantity, which is crucially important in several aspects of animal behaviour (e.g. foraging), has been extensively investigated in most taxa, with the exception of reptiles. The few studies available, in lizards, report lack of spontaneous discrimination of quantity, which may suggest that reptiles could represent an exception in numerical abilities among vertebrates. We investigated the spontaneous ability of Hermann's tortoises ( Testudo hermanni) to select the larger quantity of food items. Tortoises were able to choose the larger food item when exposed to two options differing in size, but equal in numerousness (0.25, 0.50, 0.67 and 0.75 ratio) and when presented with two groups differing in numerousness, but equal in size (1 versus 4, 2 versus 4, 2 versus 3 and 3 versus 4 items). The tortoises succeeded in both size and numerousness discrimination, and their performance appeared to depend on the ratio of items to be discriminated (thus following Weber's Law). These findings in chelonians provide evidence of an ancient system for the extrapolation of numerical magnitudes from given sets of elements, shared among vertebrates.
Collapse
Affiliation(s)
- Andrea Gazzola
- 1 Laboratorio di Eco-Etologia, Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia , 27100 Pavia , Italy
| | | | - Daniele Pellitteri-Rosa
- 1 Laboratorio di Eco-Etologia, Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia , 27100 Pavia , Italy
| |
Collapse
|
33
|
Nemati F. The role of nature and brain in demystifying the “unreasonable effectiveness of mathematics”. PHILOSOPHICAL PSYCHOLOGY 2019. [DOI: 10.1080/09515089.2019.1646895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Farshad Nemati
- Canadian Centre for Behavioral Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
34
|
Abstract
Typically, animals' food preferences are tested manually, which can be both time-consuming and vulnerable to experimenter biases. Given the utility of ascertaining animals' food preferences for research and husbandry protocols, developing a quick, reliable, and flexible paradigm would be valuable for expediting many research protocols. Therefore, we evaluated the efficacy of using a touchscreen interface to test nonhuman primates' food preferences and valuations, adapting previously validated manual methods. We tested a nonhuman primate subject with four foods (carrot, cucumber, grape, and turnip). Preference testing followed a pairwise forced choice protocol with pairs of food images presented on a touchscreen: The subject was rewarded with whichever food was selected. All six possible pairwise combinations were presented, with 90 trials per pairing. Second, we measured how hard the subject was willing to work to obtain each of the four foods, allowing us to generate demand curves. For this phase, a single image of a food item was presented on the touchscreen that the subject had to select in order to receive the food, and the number of selections required increased following a quarter-log scale, with ten trials per cost level (1, 2, 3, 6, 10, and 18). These methods allowed us to ascertain the subject's relative preferences and valuations of the four foods. The success of this touchscreen protocol for testing the subject's food preferences, from both a practical and a theoretical standpoint, suggests that the protocol should be further validated with other foods with this subject, with other subjects, and with other test items.
Collapse
|
35
|
Affiliation(s)
- Elia Gatto
- Department of General Psychology University of Padua Padua Italy
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences Queen Mary University of London London UK
| | - Daniele Carlesso
- Department of General Psychology University of Padua Padua Italy
| |
Collapse
|
36
|
Tsouli A, Dumoulin SO, te Pas SF, van der Smagt MJ. Adaptation reveals unbalanced interaction between numerosity and time. Cortex 2019; 114:5-16. [DOI: 10.1016/j.cortex.2018.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/17/2022]
|
37
|
Di Giorgio E, Lunghi M, Rugani R, Regolin L, Dalla Barba B, Vallortigara G, Simion F. A mental number line in human newborns. Dev Sci 2019; 22:e12801. [DOI: 10.1111/desc.12801] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 12/19/2018] [Accepted: 01/15/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Elisa Di Giorgio
- Department of Developmental and Social Psychology University of Padova Padova Italy
| | - Marco Lunghi
- Department of Developmental and Social Psychology University of Padova Padova Italy
| | - Rosa Rugani
- Department of General Psychology University of Padova Padova Italy
- Department of Psychology University of Pennsylvania Philadelphia PA
| | - Lucia Regolin
- Department of General Psychology University of Padova Padova Italy
| | | | | | - Francesca Simion
- Department of Developmental and Social Psychology University of Padova Padova Italy
| |
Collapse
|
38
|
Precise relative-quantity judgement in the striped field mouse Apodemus agrarius Pallas. Anim Cogn 2019; 22:277-289. [PMID: 30707366 DOI: 10.1007/s10071-019-01244-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/14/2019] [Accepted: 01/23/2019] [Indexed: 02/03/2023]
Abstract
Applying the classical experimental scheme of training animals with food rewards to discriminate between quantities of visual stimuli, we demonstrated that not only can striped field mice Apodemus agrarius discriminate between clearly distinctive quantities such as 5 and 10, but some of these mice also exhibit high accuracy in discriminating between quantities that differ only by one. The latter include both small (such as 2 versus 3) and relatively large (such as 5 versus 6, and 8 versus 9) quantities of elements. This is the first evidence of precise relative-quantity judgement in wild rodents. We found striking individual variation in cognitive performance among striped field mice, which possibly reflects individual cognitive variation in natural populations. We speculate that high accuracy in differentiating large quantities is based on the adaptive ability of wild rodents to capture subtle changes in their environment. We suggest that the striped field mouse may be a powerful model species to develop advanced cognitive tests for comparative studies of numerical competence in animals and for understanding evolutionary roots of quantity processing.
Collapse
|
39
|
Number, time, and space are not singularly represented: Evidence against a common magnitude system beyond early childhood. Psychon Bull Rev 2019; 26:833-854. [PMID: 30684249 DOI: 10.3758/s13423-018-1561-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our ability to represent temporal, spatial, and numerical information is critical for understanding the world around us. Given the prominence of quantitative representations in the natural world, numerous cognitive, neurobiological, and developmental models have been proposed as a means of describing how we track quantity. One prominent theory posits that time, space, and number are represented by a common magnitude system, or a common neural locus (i.e., Bonn & Cantlon in Cognitive Neuropsychology, 29(1/2), 149-173, 2012; Cantlon, Platt, & Brannon in Trends in Cognitive Sciences, 13(2), 83-91, 2009; Meck & Church in Animal Behavior Processes, 9(3), 320, 1983; Walsh in Trends in Cognitive Sciences, 7(11), 483-488, 2003). Despite numerous similarities in representations of time, space, and number, an increasing body of literature reveals striking dissociations in how each quantity is processed, particularly later in development. These findings have led many researchers to consider the possibility that separate systems may be responsible for processing each quantity. This review will analyze evidence in favor of a common magnitude system, particularly in infancy, which will be tempered by counter evidence, the majority of which comes from experiments with children and adult participants. After reviewing the current data, we argue that although the common magnitude system may account for quantity representations in infancy, the data do not provide support for this system throughout the life span. We also identify future directions for the field and discuss the likelihood of the developmental divergence model of quantity representation, like that of Newcombe (Ecological Psychology, 2, 147-157, 2014), as a more plausible account of quantity development.
Collapse
|
40
|
Starr A, Tomlinson RC, Brannon EM. The Acuity and Manipulability of the ANS Have Separable Influences on Preschoolers' Symbolic Math Achievement. Front Psychol 2019; 9:2554. [PMID: 30618975 PMCID: PMC6297384 DOI: 10.3389/fpsyg.2018.02554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/28/2018] [Indexed: 11/13/2022] Open
Abstract
The approximate number system (ANS) is widely considered to be a foundation for the acquisition of uniquely human symbolic numerical capabilities. However, the mechanism by which the ANS may support symbolic number representations and mathematical thought remains poorly understood. In the present study, we investigated two pathways by which the ANS may influence early math abilities: variability in the acuity of the ANS representations, and children's' ability to manipulate ANS representations. We assessed the relation between 4-year-old children's performance on a non-symbolic numerical comparison task, a non-symbolic approximate addition task, and a standardized symbolic math assessment. Our results indicate that ANS acuity and ANS manipulability each contribute unique variance to preschooler's early math achievement, and this result holds after controlling for both IQ and executive functions. These findings suggest that there are multiple routes by which the ANS influences math achievement. Therefore, interventions that target both the precision and manipulability of the ANS may prove to be more beneficial for improving symbolic math skills compared to interventions that target only one of these factors.
Collapse
Affiliation(s)
- Ariel Starr
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Rachel C Tomlinson
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Elizabeth M Brannon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
41
|
Carvalho C, Gaspar A, Knight A, Vicente L. Ethical and Scientific Pitfalls Concerning Laboratory Research with Non-Human Primates, and Possible Solutions. Animals (Basel) 2018; 9:E12. [PMID: 30597951 PMCID: PMC6356609 DOI: 10.3390/ani9010012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/18/2018] [Accepted: 12/24/2018] [Indexed: 12/13/2022] Open
Abstract
Basic and applied laboratory research, whenever intrusive or invasive, presents substantial ethical challenges for ethical committees, be it with human beings or with non-human animals. In this paper we discuss the use of non-human primates (NHPs), mostly as animal models, in laboratory based research. We examine the two ethical frameworks that support current legislation and guidelines: deontology and utilitarianism. While human based research is regulated under deontological principles, guidelines for laboratory animal research rely on utilitarianism. We argue that the utilitarian framework is inadequate for this purpose: on the one hand, it is almost impossible to accurately predict the benefits of a study for all potential stakeholders; and on the other hand, harm inflicted on NHPs (and other animals) used in laboratory research is extensive despite the increasing efforts of ethics committees and the research community to address this. Although deontology and utilitarianism are both valid ethical frameworks, we advocate that a deontological approach is more suitable, since we arguably have moral duties to NHPs. We provide suggestions on how to ensure that research currently conducted in laboratory settings shifts towards approaches that abide by deontological principles. We assert that this would not impede reasonable scientific research.
Collapse
Affiliation(s)
- Constança Carvalho
- Centre for Philosophy of Science of the University of Lisbon, Department Animal Biology, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal.
| | - Augusta Gaspar
- Catolica Research Center for Psychological, Family and Social Wellbeing (CRC-W), Universidade Católica Portuguesa, Palma de Cima, Lisboa 1649-023, Portugal.
| | - Andrew Knight
- Centre for Animal Welfare, Faculty of Humanities and Social Sciences, University of Winchester, Winchester SO22 4NR, UK.
| | - Luís Vicente
- Centre for Philosophy of Science of the University of Lisbon, Department Animal Biology, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal.
| |
Collapse
|
42
|
Arcara G, Franzon F, Gastaldon S, Brotto S, Semenza C, Peressotti F, Zanini C. One can be some but some cannot be one: ERP correlates of numerosity incongruence are different for singular and plural. Cortex 2018; 116:104-121. [PMID: 30545602 DOI: 10.1016/j.cortex.2018.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/20/2018] [Accepted: 10/24/2018] [Indexed: 01/29/2023]
Abstract
Humans can communicate information on numerosity by means of number words (e.g., one hundred, a couple), but also through Number morphology (e.g., through the singular vs the plural forms of a noun). Agreement violations involving Number morphology (e.g., *one apples) are well known to elicit specific ERP components such as the Left Anterior Negativity (LAN); yet, the relationship between a morphological Number value (e.g., singular vs plural) and its referential numerosity has rarely been considered in the literature. Moreover, even if agreement violations have been proven to be very useful, they do not typically characterise everyday language usage, thus narrowing the scope of the results. In this study we investigated Number morphology from a different perspective, by focusing on the ERP correlates of congruence and incongruence between a depicted numerosity and noun phrases. To this aim we designed a picture-phrase matching paradigm in Italian. In each trial, a picture depicting one or four objects was followed by a grammatically well-formed phrase made up of a quantifier and a content noun inflected either in the singular or in the plural. When analysing ERP time-locked to the content noun, plural phrases after pictures presenting one object elicited a larger negativity, similar to a LAN effect. No significant congruence effect was found in the case of the phrases whose morphological Number value conveyed a numerosity of one. Our results suggest that: 1) incongruence elicits a LAN-like negativity independently from the grammaticality of the utterances and irrespectively of the P600 component; 2) the reference to a numerosity can be partially encoded in an incremental way when processing Number morphology; and, most importantly, 3) the processing of the morphological Number value of plural is different from that of singular as the former shows a narrower interpretability than the latter.
Collapse
Affiliation(s)
| | - Francesca Franzon
- Department of Neuroscience DNS, University of Padova, Padova, Italia; Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italia
| | - Simone Gastaldon
- Department of Devolopmental and Social Psychology, University of Padova, Padova, Italia
| | - Silvia Brotto
- Department of Neuroscience DNS, University of Padova, Padova, Italia
| | - Carlo Semenza
- Fondazione Ospedale San Camillo IRCCS, Venezia, Italia; Department of Neuroscience DNS, University of Padova, Padova, Italia; Padova Neuroscience Center, University of Padova, Padova, Italia
| | - Francesca Peressotti
- Department of Devolopmental and Social Psychology, University of Padova, Padova, Italia; Padova Neuroscience Center, University of Padova, Padova, Italia
| | - Chiara Zanini
- Department of Neuroscience DNS, University of Padova, Padova, Italia; Romanisches Seminar, University of Zürich, Zürich, Switzerland
| |
Collapse
|
43
|
Fischer MH, Shaki S. Number concepts: abstract and embodied. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170125. [PMID: 29914993 PMCID: PMC6015824 DOI: 10.1098/rstb.2017.0125] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 01/29/2023] Open
Abstract
Numerical knowledge, including number concepts and arithmetic procedures, seems to be a clear-cut case for abstract symbol manipulation. Yet, evidence from perceptual and motor behaviour reveals that natural number knowledge and simple arithmetic also remain closely associated with modal experiences. Following a review of behavioural, animal and neuroscience studies of number processing, we propose a revised understanding of psychological number concepts as grounded in physical constraints, embodied in experience and situated through task-specific intentions. The idea that number concepts occupy a range of positions on the continuum between abstract and modal conceptual knowledge also accounts for systematic heuristics and biases in mental arithmetic, thus inviting psycho-logical approaches to the study of the mathematical mind.This article is part of the theme issue 'Varieties of abstract concepts: development, use and representation in the brain'.
Collapse
Affiliation(s)
- Martin H Fischer
- Division of Cognitive Sciences, Department of Psychology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, House 14, 14476 Potsdam OT Golm, Germany
- Department of Behavioral Sciences, Ariel University, Ariel 40700, Israel
| | - Samuel Shaki
- Department of Behavioral Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
44
|
d'Errico F, Doyon L, Colagé I, Queffelec A, Le Vraux E, Giacobini G, Vandermeersch B, Maureille B. From number sense to number symbols. An archaeological perspective. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0518. [PMID: 29292345 DOI: 10.1098/rstb.2016.0518] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 11/12/2022] Open
Abstract
How and when did hominins move from the numerical cognition that we share with the rest of the animal world to number symbols? Objects with sequential markings have been used to store and retrieve numerical information since the beginning of the European Upper Palaeolithic (42 ka). An increase in the number of markings and complexity of coding is observed towards the end of this period. The application of new analytical techniques to a 44-42 ka old notched baboon fibula from Border Cave, South Africa, shows that notches were added to this bone at different times, suggesting that devices to store numerical information were in use before the Upper Palaeolithic. Analysis of a set of incisions on a 72-60 ka old hyena femur from the Les Pradelles Mousterian site, France, indicates, by comparison with markings produced by modern subjects under similar constraints, that the incisions on the Les Pradelles bone may have been produced to record, in a single session, homologous units of numerical information. This finding supports the view that numerical notations were in use among archaic hominins. Based on these findings, a testable five-stage scenario is proposed to establish how prehistoric cultures have moved from number sense to the use of number symbols.This article is part of a discussion meeting issue 'The origins of numerical abilities'.
Collapse
Affiliation(s)
- Francesco d'Errico
- Centre National de la Recherche Scientifique, UMR 5199 - PACEA, Université de Bordeaux, Pessac, France .,SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Øysteinsgate 3, Postboks 7805, 5020, Bergen, Norway
| | - Luc Doyon
- Centre National de la Recherche Scientifique, UMR 5199 - PACEA, Université de Bordeaux, Pessac, France.,Department of Anthropology, Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Ivan Colagé
- Faculty of Philosophy, Pontifical Antonianum University, Via Merulana 124, 00185 Rome, Italy
| | - Alain Queffelec
- Centre National de la Recherche Scientifique, UMR 5199 - PACEA, Université de Bordeaux, Pessac, France
| | - Emma Le Vraux
- Centre National de la Recherche Scientifique, UMR 5199 - PACEA, Université de Bordeaux, Pessac, France
| | - Giacomo Giacobini
- Department of Neurosciences, University of Turin, 52 corso Massimo d'Azeglio, 10126 Turin, Italy
| | - Bernard Vandermeersch
- Centre National de la Recherche Scientifique, UMR 5199 - PACEA, Université de Bordeaux, Pessac, France
| | - Bruno Maureille
- Centre National de la Recherche Scientifique, UMR 5199 - PACEA, Université de Bordeaux, Pessac, France
| |
Collapse
|
45
|
Hannagan T, Nieder A, Viswanathan P, Dehaene S. A random-matrix theory of the number sense. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0253. [PMID: 29292354 DOI: 10.1098/rstb.2017.0253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 01/29/2023] Open
Abstract
Number sense, a spontaneous ability to process approximate numbers, has been documented in human adults, infants and newborns, and many other animals. Species as distant as monkeys and crows exhibit very similar neurons tuned to specific numerosities. How number sense can emerge in the absence of learning or fine tuning is currently unknown. We introduce a random-matrix theory of self-organized neural states where numbers are coded by vectors of activation across multiple units, and where the vector codes for successive integers are obtained through multiplication by a fixed but random matrix. This cortical implementation of the 'von Mises' algorithm explains many otherwise disconnected observations ranging from neural tuning curves in monkeys to looking times in neonates and cortical numerotopy in adults. The theory clarifies the origin of Weber-Fechner's Law and yields a novel and empirically validated prediction of multi-peak number neurons. Random matrices constitute a novel mechanism for the emergence of brain states coding for quantity.This article is part of a discussion meeting issue 'The origins of numerical abilities'.
Collapse
Affiliation(s)
- T Hannagan
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| | - A Nieder
- Animal Physiology, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - P Viswanathan
- Animal Physiology, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - S Dehaene
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France.,Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
46
|
Pinheiro-Chagas P, Didino D, Haase VG, Wood G, Knops A. The Developmental Trajectory of the Operational Momentum Effect. Front Psychol 2018; 9:1062. [PMID: 30065673 PMCID: PMC6056750 DOI: 10.3389/fpsyg.2018.01062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/06/2018] [Indexed: 11/20/2022] Open
Abstract
Mental calculation is thought to be tightly related to visuospatial abilities. One of the strongest evidence for this link is the widely replicated operational momentum (OM) effect: the tendency to overestimate the result of additions and to underestimate the result of subtractions. Although the OM effect has been found in both infants and adults, no study has directly investigated its developmental trajectory until now. However, to fully understand the cognitive mechanisms lying at the core of the OM effect it is important to investigate its developmental dynamics. In the present study, we investigated the development of the OM effect in a group of 162 children from 8 to 12 years old. Participants had to select among five response alternatives the correct result of approximate addition and subtraction problems. Response alternatives were simultaneously presented on the screen at different locations. While no effect was observed for the youngest age group, children aged 9 and older showed a clear OM effect. Interestingly, the OM effect monotonically increased with age. The increase of the OM effect was accompanied by an increase in overall accuracy. That is, while younger children made more and non-systematic errors, older children made less but systematic errors. This monotonous increase of the OM effect with age is not predicted by the compression account (i.e., linear calculation performed on a compressed code). The attentional shift account, however, provides a possible explanation of these results based on the functional relationship between visuospatial attention and mental calculation and on the influence of formal schooling. We propose that the acquisition of arithmetical skills could reinforce the systematic reliance on the spatial mental number line and attentional mechanisms that control the displacement along this metric. Our results provide a step in the understanding of the mechanisms underlying approximate calculation and an important empirical constraint for current accounts on the origin of the OM effect.
Collapse
Affiliation(s)
- Pedro Pinheiro-Chagas
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Orsay, France
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Daniele Didino
- Department of Psychology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vitor G. Haase
- Developmental Neuropsychology Laboratory (LND), Department of Psychology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Psychology, Graduate Program in Psychology, Cognition and Behavior – Graduate Program in Neuroscience, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia sobre Comportamento, Cognição e Ensino, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Guilherme Wood
- Department of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, University of Graz, Graz, Austria
| | - André Knops
- Department of Psychology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- CNRS UMR 8240, Laboratory for the Psychology of Child Development and Education, Paris, France
- University Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
47
|
Eckert J, Call J, Hermes J, Herrmann E, Rakoczy H. Intuitive statistical inferences in chimpanzees and humans follow Weber's law. Cognition 2018; 180:99-107. [PMID: 30015211 DOI: 10.1016/j.cognition.2018.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023]
Abstract
Humans and nonhuman great apes share a sense for intuitive statistical reasoning, making intuitive probability judgments based on proportional information. This ability is of fundamental importance, in particular for inferring general regularities from finite numbers of observations and, vice versa, for predicting the outcome of single events using prior information. To date it remains unclear which cognitive mechanism underlies and enables this capacity. The aim of the present study was to gain deeper insights into the cognitive structure of intuitive statistics by probing its signatures in chimpanzees and humans. We tested 24 sanctuary-living chimpanzees in a previously established paradigm which required them to reason from populations of food items with different ratios of preferred (peanuts) and non-preferred items (carrot pieces) to randomly drawn samples. In a series of eight test conditions, the ratio between the two ratios to be discriminated (ROR) was systematically varied ranging from 1 (same proportions in both populations) to 16 (high magnitude of difference between populations). One hundred and forty-four human adults were tested in a computerized version of the same task. The main result was that both chimpanzee and human performance varied as a function of the log(ROR) and thus followed Weber's law. This suggests that intuitive statistical reasoning relies on the same cognitive mechanism that is used for comparing absolute quantities, namely the analogue magnitude system.
Collapse
Affiliation(s)
- Johanna Eckert
- Department of Developmental and Comparative Psychology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Developmental Psychology, University of Goettingen, Waldweg 26, 37073 Goettingen, Germany; Leibniz ScienceCampus "Primate Cognition", German Primate Center/Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Goettingen, Germany.
| | - Josep Call
- Department of Developmental and Comparative Psychology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Jonas Hermes
- Department of Developmental Psychology, University of Goettingen, Waldweg 26, 37073 Goettingen, Germany; Leibniz ScienceCampus "Primate Cognition", German Primate Center/Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Goettingen, Germany
| | - Esther Herrmann
- Department of Developmental and Comparative Psychology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Hannes Rakoczy
- Department of Developmental Psychology, University of Goettingen, Waldweg 26, 37073 Goettingen, Germany; Leibniz ScienceCampus "Primate Cognition", German Primate Center/Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Goettingen, Germany
| |
Collapse
|
48
|
Kersey AJ, Braham EJ, Csumitta KD, Libertus ME, Cantlon JF. No intrinsic gender differences in children's earliest numerical abilities. NPJ SCIENCE OF LEARNING 2018; 3:12. [PMID: 30631473 PMCID: PMC6220191 DOI: 10.1038/s41539-018-0028-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/07/2018] [Accepted: 06/20/2018] [Indexed: 05/28/2023]
Abstract
Recent public discussions have suggested that the under-representation of women in science and mathematics careers can be traced back to intrinsic differences in aptitude. However, true gender differences are difficult to assess because sociocultural influences enter at an early point in childhood. If these claims of intrinsic differences are true, then gender differences in quantitative and mathematical abilities should emerge early in human development. We examined cross-sectional gender differences in mathematical cognition from over 500 children aged 6 months to 8 years by compiling data from five published studies with unpublished data from longitudinal records. We targeted three key milestones of numerical development: numerosity perception, culturally trained counting, and formal and informal elementary mathematics concepts. In addition to testing for statistical differences between boys' and girls' mean performance and variability, we also tested for statistical equivalence between boys' and girls' performance. Across all stages of numerical development, analyses consistently revealed that boys and girls do not differ in early quantitative and mathematical ability. These findings indicate that boys and girls are equally equipped to reason about mathematics during early childhood.
Collapse
Affiliation(s)
- Alyssa J. Kersey
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627 USA
- Rochester Center for Brain Imaging, University of Rochester Medical Center, Rochester, NY 14620 USA
| | - Emily J. Braham
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260 USA
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Kelsey D. Csumitta
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627 USA
| | - Melissa E. Libertus
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260 USA
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Jessica F. Cantlon
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627 USA
- Rochester Center for Brain Imaging, University of Rochester Medical Center, Rochester, NY 14620 USA
| |
Collapse
|
49
|
Fischer B, Wegener D. Emphasizing the "positive" in positive reinforcement: using nonbinary rewarding for training monkeys on cognitive tasks. J Neurophysiol 2018; 120:115-128. [PMID: 29617217 DOI: 10.1152/jn.00572.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nonhuman primates constitute an indispensable model system for studying higher brain functions at the neurophysiological level. Studies involving these animals elucidated the neuronal mechanisms of various cognitive and executive functions, such as visual attention, working memory, and decision-making. Positive reinforcement training (PRT) constitutes the gold standard for training animals on the cognitive tasks employed in these studies. In the laboratory, PRT is usually based on application of a liquid reward as the reinforcer to strengthen the desired behavior and absence of the reward if the animal's response is wrong. By trial and error, the monkey may adapt its behavior and successfully reduce the number of error trials, and eventually learn even very sophisticated tasks. However, progress and success of the training strongly depend on reasonable error rates. If errors get too frequent, they may cause a drop in the animal's motivation to cooperate or its adaptation to high error rates and poor overall performance. We introduce in this report an alternative training regime to minimize errors and base the critical information for learning on graded rewarding. For every new task rule, the feedback to the animal is provided by different amounts of reward to distinguish the desired, optimal behavior from less optimal behavior. We applied this regime in different situations during training of visual attention tasks and analyzed behavioral performance and reaction times to evaluate its effectiveness. For both simple and complex behaviors, graded rewarding was found to constitute a powerful technique allowing for effective training without trade-off in accessible task difficulty or task performance. NEW & NOTEWORTHY Laboratory training of monkeys usually builds on providing a fixed amount of reward for the desired behavior, and no reward otherwise. We present a nonbinary, graded reward schedule to emphasize the positive, desired behavior and to keep errors on a moderate level. Using data from typical training situations, we demonstrate that graded rewards help to effectively guide the animal by success rather than errors and provide a powerful new tool for positive reinforcement training.
Collapse
Affiliation(s)
- Benjamin Fischer
- Brain Research Institute, Center for Cognitive Sciences, University of Bremen , Bremen , Germany
| | - Detlef Wegener
- Brain Research Institute, Center for Cognitive Sciences, University of Bremen , Bremen , Germany
| |
Collapse
|
50
|
DeWind NK, Peng J, Luo A, Brannon EM, Platt ML. Pharmacological inactivation does not support a unique causal role for intraparietal sulcus in the discrimination of visual number. PLoS One 2017; 12:e0188820. [PMID: 29240774 PMCID: PMC5730202 DOI: 10.1371/journal.pone.0188820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 11/14/2017] [Indexed: 01/29/2023] Open
Abstract
The "number sense" describes the intuitive ability to quantify without counting. Single neuron recordings in non-human primates and functional imaging in humans suggest the intraparietal sulcus is an important neuroanatomical locus of numerical estimation. Other lines of inquiry implicate the IPS in numerous other functions, including attention and decision making. Here we provide a direct test of whether IPS has functional specificity for numerosity judgments. We used muscimol to reversibly and independently inactivate the ventral and lateral intraparietal areas in two monkeys performing a numerical discrimination task and a color discrimination task, roughly equilibrated for difficulty. Inactivation of either area caused parallel impairments in both tasks and no evidence of a selective deficit in numerical processing. These findings do not support a causal role for the IPS in numerical discrimination, except insofar as it also has a role in the discrimination of color. We discuss our findings in light of several alternative hypotheses of IPS function, including a role in orienting responses, a general cognitive role in attention and decision making processes and a more specific role in ordinal comparison that encompasses both number and color judgments.
Collapse
Affiliation(s)
- Nicholas K. DeWind
- Psychology Department, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jiyun Peng
- Neurology Department, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andrew Luo
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Elizabeth M. Brannon
- Psychology Department, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael L. Platt
- Psychology Department, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Marketing Department, the Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|