1
|
Takeichi M. Cell sorting in vitro and in vivo: How are cadherins involved? Semin Cell Dev Biol 2022; 147:2-11. [PMID: 36376196 DOI: 10.1016/j.semcdb.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Animal tissues are composed of heterogenous cells, and their sorting into different compartments of the tissue is a pivotal process for organogenesis. Cells accomplish sorting by themselves-it is well known that singly dispersed cells can self-organize into tissue-like structures in vitro. Cell sorting is regulated by both biochemical and physical mechanisms. Adhesive proteins connect cells together, selecting particular partners through their specific binding properties, while physical forces, such as cell-cortical tension, control the cohesiveness between cells and in turn cell assembly patterns in mechanical ways. These processes cooperate in determining the overall cell sorting behavior. This article focuses on the 'cadherin' family of adhesion molecules as a biochemical component of cell-cell interactions, addressing how they regulate cell sorting by themselves or by cooperating with other factors. New ideas beyond the classical models of cell sorting are also discussed.
Collapse
|
2
|
Serras F. The sooner, the better: ROS, kinases and nutrients at the onset of the damage response in Drosophila. Front Cell Dev Biol 2022; 10:1047823. [PMID: 36353511 PMCID: PMC9637634 DOI: 10.3389/fcell.2022.1047823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
One of the main topics in regeneration biology is the nature of the early signals that trigger the damage response. Recent advances in Drosophila point to the MAP3 kinase Ask1 as a molecular hub that integrates several signals at the onset of regeneration. It has been discovered that reactive oxygen species (ROS) produced in damaged imaginal discs and gut epithelia will activate the MAP3 kinase Ask1. Severely damaged and apoptotic cells produce an enormous amount of ROS, which ensures their elimination by activating Ask1 and in turn the pro-apoptotic function of JNK. However, this creates an oxidative stress environment with beneficial effects that is sensed by neighboring healthy cells. This environment, in addition to the Pi3K/Akt nutrient sensing pathway, can be integrated into Ask1 to launch regeneration. Ultimately the activity of Ask1 depends on these and other inputs and modulates its signaling to achieve moderate levels of p38 and low JNK signaling and thus promote survival and regeneration. This model based on the dual function of Ask1 for early response to damage is discussed here.
Collapse
Affiliation(s)
- Florenci Serras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Van De Bor V, Loreau V, Malbouyres M, Cerezo D, Placenti A, Ruggiero F, Noselli S. A dynamic and mosaic basement membrane controls cell intercalation in Drosophila ovaries. Development 2021; 148:dev.195511. [PMID: 33526583 DOI: 10.1242/dev.195511] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022]
Abstract
Basement membranes (BM) are extracellular matrices assembled into complex and highly organized networks essential for organ morphogenesis and function. However, little is known about the tissue origin of BM components and their dynamics in vivo Here, we unravel the assembly and role of the BM main component, Collagen type IV (ColIV), in Drosophila ovarian stalk morphogenesis. Stalks are short strings of cells assembled through cell intercalation that link adjacent follicles and maintain ovarian integrity. We show that stalk ColIV has multiple origins and is assembled following a regulated pattern leading to a unique BM organisation. Absence of ColIV leads to follicle fusion, as observed upon ablation of stalk cells. ColIV and integrins are both required to trigger cell intercalation and maintain mechanically strong cell-cell attachment within the stalk. These results show how the dynamic assembly of a mosaic BM controls complex tissue morphogenesis and integrity.
Collapse
Affiliation(s)
| | | | - Marilyne Malbouyres
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon - CNRS UMR 5242 - INRA USC 1370, 46, allée d'Italie, 69364 Lyon cedex 07, France
| | | | | | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon - CNRS UMR 5242 - INRA USC 1370, 46, allée d'Italie, 69364 Lyon cedex 07, France
| | | |
Collapse
|
4
|
Rothman J, Jarriault S. Developmental Plasticity and Cellular Reprogramming in Caenorhabditis elegans. Genetics 2019; 213:723-757. [PMID: 31685551 PMCID: PMC6827377 DOI: 10.1534/genetics.119.302333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
While Caenorhabditis elegans was originally regarded as a model for investigating determinate developmental programs, landmark studies have subsequently shown that the largely invariant pattern of development in the animal does not reflect irreversibility in rigidly fixed cell fates. Rather, cells at all stages of development, in both the soma and germline, have been shown to be capable of changing their fates through mutation or forced expression of fate-determining factors, as well as during the normal course of development. In this chapter, we review the basis for natural and induced cellular plasticity in C. elegans We describe the events that progressively restrict cellular differentiation during embryogenesis, starting with the multipotency-to-commitment transition (MCT) and subsequently through postembryonic development of the animal, and consider the range of molecular processes, including transcriptional and translational control systems, that contribute to cellular plasticity. These findings in the worm are discussed in the context of both classical and recent studies of cellular plasticity in vertebrate systems.
Collapse
Affiliation(s)
- Joel Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93111, and
| | - Sophie Jarriault
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Department of Development and Stem Cells, CNRS UMR7104, Inserm U1258, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| |
Collapse
|
5
|
Das Gupta PT, Narasimha M. Cytoskeletal tension and Bazooka tune interface geometry to ensure fusion fidelity and sheet integrity during dorsal closure. eLife 2019; 8:41091. [PMID: 30995201 PMCID: PMC6469929 DOI: 10.7554/elife.41091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/03/2019] [Indexed: 01/09/2023] Open
Abstract
Epithelial fusion establishes continuity between the separated flanks of epithelial sheets. Despite its importance in creating resilient barriers, the mechanisms that ensure stable continuity and preserve morphological and molecular symmetry upon fusion remain unclear. Using the segmented embryonic epidermis whose flanks fuse during Drosophila dorsal closure, we demonstrate that epidermal flanks modulate cell numbers and geometry of their fusing fronts to achieve fusion fidelity. While fusing flanks become more matched for both parameters before fusion, differences persisting at fusion are corrected by modulating fusing front width within each segment to ensure alignment of segment boundaries. We show that fusing cell interfaces are remodelled from en-face contacts at fusion to an interlocking arrangement after fusion, and demonstrate that changes in interface length and geometry are dependent on the spatiotemporal regulation of cytoskeletal tension and Bazooka/Par3. Our work uncovers genetically constrained and mechanically triggered adaptive mechanisms contributing to fusion fidelity and epithelial continuity.
Collapse
Affiliation(s)
- Piyal Taru Das Gupta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Maithreyi Narasimha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
6
|
Herrera SC, Bach EA. JNK signaling triggers spermatogonial dedifferentiation during chronic stress to maintain the germline stem cell pool in the Drosophila testis. eLife 2018; 7:e36095. [PMID: 29985130 PMCID: PMC6070334 DOI: 10.7554/elife.36095] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Exhaustion of stem cells is a hallmark of aging. In the Drosophila testis, dedifferentiated germline stem cells (GSCs) derived from spermatogonia increase during lifespan, leading to the model that dedifferentiation counteracts the decline of GSCs in aged males. To test this, we blocked dedifferentiation by mis-expressing the differentiation factor bag of marbles (bam) in spermatogonia while lineage-labeling these cells. Strikingly, blocking bam-lineage dedifferentiation under normal conditions in virgin males has no impact on the GSC pool. However, in mated males or challenging conditions, inhibiting bam-lineage dedifferentiation markedly reduces the number of GSCs and their ability to proliferate and differentiate. We find that bam-lineage derived GSCs have significantly higher proliferation rates than sibling GSCs in the same testis. We determined that Jun N-terminal kinase (JNK) activity is autonomously required for bam-lineage dedifferentiation. Overall, we show that dedifferentiation provides a mechanism to maintain the germline and ensure fertility under chronically stressful conditions.
Collapse
Affiliation(s)
| | - Erika A Bach
- New York University School of MedicineNew YorkUnited States
- Helen L. and Martin S. Kimmel Center for Stem Cell BiologyNew York University School of MedicineNew YorkUnited States
| |
Collapse
|
7
|
Kiehart DP, Crawford JM, Aristotelous A, Venakides S, Edwards GS. Cell Sheet Morphogenesis: Dorsal Closure in Drosophila melanogaster as a Model System. Annu Rev Cell Dev Biol 2018; 33:169-202. [PMID: 28992442 DOI: 10.1146/annurev-cellbio-111315-125357] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dorsal closure is a key process during Drosophila morphogenesis that models cell sheet movements in chordates, including neural tube closure, palate formation, and wound healing. Closure occurs midway through embryogenesis and entails circumferential elongation of lateral epidermal cell sheets that close a dorsal hole filled with amnioserosa cells. Signaling pathways regulate the function of cellular structures and processes, including Actomyosin and microtubule cytoskeletons, cell-cell/cell-matrix adhesion complexes, and endocytosis/vesicle trafficking. These orchestrate complex shape changes and movements that entail interactions between five distinct cell types. Genetic and laser perturbation studies establish that closure is robust, resilient, and the consequence of redundancy that contributes to four distinct biophysical processes: contraction of the amnioserosa, contraction of supracellular Actomyosin cables, elongation (stretching?) of the lateral epidermis, and zipping together of two converging cell sheets. What triggers closure and what the emergent properties are that give rise to its extraordinary resilience and fidelity remain key, extant questions.
Collapse
Affiliation(s)
- Daniel P Kiehart
- Department of Biology, Duke University, Durham, North Carolina 27708;
| | - Janice M Crawford
- Department of Biology, Duke University, Durham, North Carolina 27708;
| | - Andreas Aristotelous
- Department of Mathematics, West Chester University, West Chester, Pennsylvania 19383
| | | | - Glenn S Edwards
- Physics Department, Duke University, Durham, North Carolina 27708
| |
Collapse
|
8
|
Xu K, Liu X, Wang Y, Wong C, Song Y. Temporospatial induction of homeodomain gene cut dictates natural lineage reprogramming. eLife 2018; 7:33934. [PMID: 29714689 PMCID: PMC5986271 DOI: 10.7554/elife.33934] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Understanding how cellular identity naturally interconverts with high efficiency and temporospatial precision is crucial for regenerative medicine. Here, we revealed a natural midgut-to-renal lineage conversion event during Drosophila metamorphosis and identified the evolutionarily-conserved homeodomain protein Cut as a master switch in this process. A steep Wnt/Wingless morphogen gradient intersects with a pulse of steroid hormone ecdysone to induce cut expression in a subset of midgut progenitors and reprogram them into renal progenitors. Molecularly, ecdysone-induced temporal factor Broad physically interacts with cut enhancer-bound Wnt pathway effector TCF/β-catenin and likely bridges the distant enhancer and promoter region of cut through its self-association. Such long-range enhancer-promoter looping could subsequently trigger timely cut transcription. Our results therefore led us to propose an unexpected poising-and-bridging mechanism whereby spatial and temporal cues intersect, likely via chromatin looping, to turn on a master transcription factor and dictate efficient and precise lineage reprogramming. As an embryo develops, an organism transforms from a single cell into an organized collection of different cells, tissues and organs. Regulated by genes and messenger molecules, non-specialized cells known as precursor cells, move, divide and adapt to produce the different cells in the adult body. However, sometimes already-specialized adult cells can acquire a new role in a process known as lineage reprogramming. Finding ways to artificially induce and control lineage reprogramming could be useful in regenerative medicine. This would allow cells to be reprogrammed to replace those that are lost or damaged. So far, scientists have been unable to develop a clear view of how lineage reprogramming happens naturally. Here, Xu et al. identified a cell-conversion event in the developing fruit fly. As the fly larva develops into an adult, a group of cells in the midgut reprogramme to become renal cells – the equivalent to human kidney cells. The experiments revealed that a combination of signals from a cell messenger system important for cell specialization (called Wnt) and the hormone that controls molting in insects, activate a gene called cut, which controls the midgut-to-renal lineage reprogramming. Together, Wnt and the hormone ensure that cut is activated only in a small, specific group of midgut precursor cells at a precise time. The reprogrammed cells then move into the excretory organs, the renal tubes, where they give rise to renal cells. Midgut precursor cells in which cut had been experimentally removed, still traveled into the renal tubes. However, they failed to switch their identity and gave rise to midgut cells instead. Further examination revealed that both Wnt and the ecdysone hormone are needed to activate the cut gene. This is probably achieved by creating loops in the DNA to bring together the two distantly located key regulatory elements of cut gene expression. If this mechanism can be seen in other contexts it may be possible to adapt it for medical purposes. The ability to reprogramme groups of cells with high specificity could transform medicine. It would make it easier for our bodies to regenerate and repair.
Collapse
Affiliation(s)
- Ke Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Xiaodan Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yuchun Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Chouin Wong
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yan Song
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
9
|
Roumengous S, Rousset R, Noselli S. Polycomb and Hox Genes Control JNK-Induced Remodeling of the Segment Boundary during Drosophila Morphogenesis. Cell Rep 2017; 19:60-71. [PMID: 28380363 DOI: 10.1016/j.celrep.2017.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/03/2017] [Accepted: 03/09/2017] [Indexed: 12/24/2022] Open
Abstract
In segmented tissues, anterior and posterior compartments represent independent morphogenetic domains, which are made of distinct lineages separated by boundaries. During dorsal closure of the Drosophila embryo, specific "mixer cells" (MCs) are reprogrammed in a JNK-dependent manner to express the posterior determinant engrailed (en) and cross the segment boundary. Here, we show that JNK signaling induces de novo expression of en in the MCs through repression of Polycomb (Pc) and release of the en locus from the silencing PcG bodies. Whereas reprogramming occurs in MCs from all thoracic and abdominal segments, cell mixing is restricted to the central abdominal region. We demonstrate that this spatial control of MC remodeling depends on the antagonist activity of the Hox genes abdominal-A and Abdominal-B. Together, these results reveal an essential JNK/en/Pc/Hox gene regulatory network important in controlling both the plasticity of segment boundaries and developmental reprogramming.
Collapse
Affiliation(s)
| | - Raphaël Rousset
- Université Côte d'Azur, CNRS, INSERM, iBV, 06108 Nice, France.
| | | |
Collapse
|
10
|
Williams ML, Solnica-Krezel L. Regulation of gastrulation movements by emergent cell and tissue interactions. Curr Opin Cell Biol 2017; 48:33-39. [PMID: 28586710 DOI: 10.1016/j.ceb.2017.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/30/2017] [Indexed: 10/19/2022]
Abstract
It is during gastrulation that the primordial germ layers are specified, embryonic axes become morphologically manifest, and the embryonic body plan begins to take shape. As morphogenetic movements push and pull nascent tissues into position within the gastrula, new interactions are established between neighboring cells and tissues. These interactions represent an emergent property within gastrulating embryos, and serve to regulate and promote ensuing morphogenesis that establishes the next set of cell/tissue contacts, and so on. Several recent studies demonstrate the critical roles of such interactions during gastrulation, including those between germ layers, along embryonic axes, and at tissue boundaries. Emergent tissue interactions result from - and result in - morphogen signaling, cell contacts, and mechanical forces within the gastrula. Together, these comprise a dynamic and complex regulatory cascade that drives gastrulation morphogenesis.
Collapse
Affiliation(s)
- Margot Lk Williams
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Rousset R, Carballès F, Parassol N, Schaub S, Cérézo D, Noselli S. Signalling crosstalk at the leading edge controls tissue closure dynamics in the Drosophila embryo. PLoS Genet 2017; 13:e1006640. [PMID: 28231245 PMCID: PMC5344535 DOI: 10.1371/journal.pgen.1006640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/09/2017] [Accepted: 02/16/2017] [Indexed: 01/17/2023] Open
Abstract
Tissue morphogenesis relies on proper differentiation of morphogenetic domains, adopting specific cell behaviours. Yet, how signalling pathways interact to determine and coordinate these domains remains poorly understood. Dorsal closure (DC) of the Drosophila embryo represents a powerful model to study epithelial cell sheet sealing. In this process, JNK (JUN N-terminal Kinase) signalling controls leading edge (LE) differentiation generating local forces and cell shape changes essential for DC. The LE represents a key morphogenetic domain in which, in addition to JNK, a number of signalling pathways converges and interacts (anterior/posterior -AP- determination; segmentation genes, such as Wnt/Wingless; TGFβ/Decapentaplegic). To better characterize properties of the LE morphogenetic domain, we sought out new JNK target genes through a genomic approach: 25 were identified of which 8 are specifically expressed in the LE, similarly to decapentaplegic or puckered. Quantitative in situ gene profiling of this new set of LE genes reveals complex patterning of the LE along the AP axis, involving a three-way interplay between the JNK pathway, segmentation and HOX genes. Patterning of the LE into discrete domains appears essential for coordination of tissue sealing dynamics. Loss of anterior or posterior HOX gene function leads to strongly delayed and asymmetric DC, due to incorrect zipping in their respective functional domain. Therefore, in addition to significantly increasing the number of JNK target genes identified so far, our results reveal that the LE is a highly heterogeneous morphogenetic organizer, sculpted through crosstalk between JNK, segmental and AP signalling. This fine-tuning regulatory mechanism is essential to coordinate morphogenesis and dynamics of tissue sealing.
Collapse
|
12
|
Ducuing A, Vincent S. The actin cable is dispensable in directing dorsal closure dynamics but neutralizes mechanical stress to prevent scarring in the Drosophila embryo. Nat Cell Biol 2016; 18:1149-1160. [DOI: 10.1038/ncb3421] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 09/09/2016] [Indexed: 12/17/2022]
|
13
|
Becker SF, Jarriault S. Natural and induced direct reprogramming: mechanisms, concepts and general principles-from the worm to vertebrates. Curr Opin Genet Dev 2016; 40:154-163. [PMID: 27690213 DOI: 10.1016/j.gde.2016.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/31/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022]
Abstract
Elucidating the mechanisms underlying cell fate determination, cell identity maintenance and cell reprogramming in vivo is one of the main challenges in today's science. Such knowledge of fundamental importance will further provide new leads for early diagnostics and targeted therapy approaches both in regenerative medicine and cancer research. This review focuses on recent mechanistic findings and factors that influence the differentiated state of cells in direct reprogramming events, aka transdifferentiation. In particular, we will look at the mechanistic and conceptual advances brought by the use of the nematode Caenorhabditis elegans and highlight common themes across phyla.
Collapse
Affiliation(s)
- Sarah F Becker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Cu Strasbourg, France
| | - Sophie Jarriault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Cu Strasbourg, France.
| |
Collapse
|
14
|
Morata G, Herrera SC. Cell reprogramming during regeneration in Drosophila: transgression of compartment boundaries. Curr Opin Genet Dev 2016; 40:11-16. [PMID: 27266970 DOI: 10.1016/j.gde.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/11/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
We discuss recent work about cellular reprogramming during regeneration of the imaginal discs of Drosophila. These contain various lineage blocks, compartments, which express distinct genetic programmes. It has been found that after massive damage to a compartment cells from a neighbour compartment can transgress the compartment border and contribute to its regeneration. The transgressing cells are genetically reprogrammed and acquire a new identity, a process facilitated by up regulation of the JNK pathway and transient loss of epigenetic control by the Pc-G and trx-G genes. The final acquisition of the new identity appears to be mediated by induction by neighbour cells, a phenomenon akin the Community Effect described for the specification of amphibian muscle cells.
Collapse
Affiliation(s)
- Ginés Morata
- Centro de Biología Molecular, CSIC-UAM, Madrid, Spain
| | | |
Collapse
|
15
|
Persistence of RNAi-Mediated Knockdown in Drosophila Complicates Mosaic Analysis Yet Enables Highly Sensitive Lineage Tracing. Genetics 2016; 203:109-18. [PMID: 26984059 PMCID: PMC4858766 DOI: 10.1534/genetics.116.187062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/09/2016] [Indexed: 01/04/2023] Open
Abstract
RNA interference (RNAi) has emerged as a powerful way of reducing gene function in Drosophila melanogaster tissues. By expressing synthetic short hairpin RNAs (shRNAs) using the Gal4/UAS system, knockdown is efficiently achieved in specific tissues or in clones of marked cells. Here we show that knockdown by shRNAs is so potent and persistent that even transient exposure of cells to shRNAs can reduce gene function in their descendants. When using the FLP-out Gal4 method, in some instances we observed unmarked “shadow RNAi” clones adjacent to Gal4-expressing clones, which may have resulted from brief Gal4 expression following recombination but prior to cell division. Similarly, Gal4 driver lines with dynamic expression patterns can generate shadow RNAi cells after their activity has ceased in those cells. Importantly, these effects can lead to erroneous conclusions regarding the cell autonomy of knockdown phenotypes. We have investigated the basis of this phenomenon and suggested experimental designs for eliminating ambiguities in interpretation. We have also exploited the persistence of shRNA-mediated knockdown to design a sensitive lineage-tracing method, i-TRACE, which is capable of detecting even low levels of past reporter expression. Using i-TRACE, we demonstrate transient infidelities in the expression of some cell-identity markers near compartment boundaries in the wing imaginal disc.
Collapse
|
16
|
Taranis Protects Regenerating Tissue from Fate Changes Induced by the Wound Response in Drosophila. Dev Cell 2015; 34:119-28. [DOI: 10.1016/j.devcel.2015.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/25/2015] [Accepted: 04/23/2015] [Indexed: 12/15/2022]
|
17
|
Umetsu D, Dahmann C. Signals and mechanics shaping compartment boundaries in Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:407-17. [PMID: 25755098 DOI: 10.1002/wdev.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/18/2014] [Accepted: 01/22/2015] [Indexed: 11/06/2022]
Abstract
During animal development groups of cells with similar fates and functions often stay together and separate from cells with different fates. An example for this cellular behavior is the formation of compartments, groups of cells with similar fates that are separated by sharp boundaries from neighboring groups of cells. Compartments play important roles during patterning by serving as units of growth and gene expression. Boundaries between compartments are associated with organizers that secrete signaling molecules instructing growth and differentiation throughout the tissue. The straight shape of the boundary between compartments is important for maintaining the position and shape of the organizer and thus for precise patterning. The straight shape of compartment boundaries, however, is challenged by cell divisions and cell intercalations that take place in many developing tissues. Early work established a role for selector genes and signaling pathways in setting up and keeping boundaries straight. Recent work in Drosophila has now begun to further unravel the physical and cellular mechanisms that maintain compartment boundaries. Key to the separation of compartments is a local increase of actomyosin-dependent mechanical tension at cell junctions along the boundary. Increased mechanical tension acts as a barrier to cell mixing during cell division and influences cell rearrangements during cell intercalations along the compartment boundary in a way that the straight shape of the boundary is maintained. An important question for the future is how the signaling pathways that maintain the straight shape of compartment boundaries control mechanical tension along these boundaries.
Collapse
Affiliation(s)
- Daiki Umetsu
- RIKEN Center for Developmental Biology, Kobe, Japan
| | - Christian Dahmann
- Technische Universität Dresden, Institute of Genetics, Dresden, Germany
| |
Collapse
|
18
|
Local Increases in Mechanical Tension Shape Compartment Boundaries by Biasing Cell Intercalations. Curr Biol 2014; 24:1798-805. [DOI: 10.1016/j.cub.2014.06.052] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 05/28/2014] [Accepted: 06/19/2014] [Indexed: 01/01/2023]
|
19
|
Herrera SC, Morata G. Transgressions of compartment boundaries and cell reprogramming during regeneration in Drosophila. eLife 2014; 3:e01831. [PMID: 24755288 PMCID: PMC3989595 DOI: 10.7554/elife.01831] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals have developed mechanisms to reconstruct lost or damaged tissues. To regenerate those tissues the cells implicated have to undergo developmental reprogramming. The imaginal discs of Drosophila are subdivided into distinct compartments, which derive from different genetic programs. This feature makes them a convenient system to study reprogramming during regeneration. We find that massive damage inflicted to the posterior or the dorsal compartment of the wing disc causes a transient breakdown of compartment boundaries, which are quickly reconstructed. The cells involved in the reconstruction often modify their original identity, visualized by changes in the expression of developmental genes like engrailed or cubitus interruptus. This reprogramming is mediated by up regulation of the JNK pathway and transient debilitation of the epigenetic control mechanism. Our results also show that the local developmental context plays a role in the acquisition of new cell identities: cells expressing engrailed induce engrailed expression in neighbor cells. DOI:http://dx.doi.org/10.7554/eLife.01831.001 When cells or tissues are damaged, animals can often regenerate the affected tissues. In an effort to identify the genes and mechanisms that are involved in this regeneration process, researchers often perform experiments on relatively simple organisms or systems. These experiments frequently involve the amputation of specific cells or organs so the researchers can observe and manipulate the events that occur during the subsequent regeneration. One such model organism is the fruit-fly Drosophila. Inside the Drosophila larva are structures called imaginal discs, which are precursors to parts of the outer cuticle of the adult fly. Each imaginal disc contains two main boundaries, dividing it into anterior/posterior and dorsal/ventral compartments: posterior cells, for example, express a gene called engrailed to produce the relevant protein, whereas anterior cells do not; likewise, the gene apterous is expressed in dorsal cells but not ventral cells. These genes, engrailed and apterous, are the key factors that determine the developmental features–and hence the identity—of the posterior and the dorsal cells respectively. Herrera and Morata investigated how cells regenerate when parts of the imaginal disc are destroyed, using a genetic technique that causes high levels of programmed cell death in either the posterior or the dorsal compartments of the disc. Destroying most of the cells in either of these compartments in the imaginal disc leads to a temporary breakdown of the corresponding boundary, which is then rapidly reconstructed. During this reconstruction process, some of the imaginal disc cells are reprogrammed: for example, if the cells in the posterior compartment are destroyed, some anterior cells take on a posterior identity. This reprogramming occurs because the cell destruction disrupts the way that the expression of genes such as engrailed and apterous is controlled by other genes. Neighboring cells can also control gene expression, and therefore cell identity. Cells that express engrailed, for example, cause their neighbors to express engrailed too. This process is likely to involve group interactions that might help the distinct compartments in the imaginal disc to form by ensuring that adjacent cells develop in the same way. Similar processes may also occur as part of the normal development of organisms. DOI:http://dx.doi.org/10.7554/eLife.01831.002
Collapse
Affiliation(s)
- Salvador C Herrera
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|
20
|
Géminard C, González-Morales N, Coutelis JB, Noselli S. The myosin ID pathway and left-right asymmetry in Drosophila. Genesis 2014; 52:471-80. [PMID: 24585718 DOI: 10.1002/dvg.22763] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/12/2022]
Abstract
Drosophila is a classical model to study body patterning, however left-right (L/R) asymmetry had remained unexplored, until recently. The discovery of the conserved myosin ID gene as a major determinant of L/R asymmetry has revealed a novel L/R pathway involving the actin cytoskeleton and the adherens junction. In this process, the HOX gene Abdominal-B plays a major role through the control of myosin ID expression and therefore symmetry breaking. In this review, we present organs and markers showing L/R asymmetry in Drosophila and discuss our current understanding of the underlying molecular genetic mechanisms. Drosophila represents a valuable model system revealing novel strategies to establish L/R asymmetry in invertebrates and providing an evolutionary perspective to the problem of laterality in bilateria.
Collapse
Affiliation(s)
- Charles Géminard
- Université de Nice Sophia Antipolis, institut de Biologie Valrose, iBV, Parc Valrose, Nice cedex 2, France; CNRS, institut de Biologie Valrose, iBV, UMR 7277, Parc Valrose, Nice cedex 2, France; INSERM, institut de Biologie Valrose, iBV, U1091, Parc Valrose, Nice cedex 2, France
| | | | | | | |
Collapse
|
21
|
Ríos-Barrera LD, Riesgo-Escovar JR. Regulating cell morphogenesis: The drosophila jun N-terminal kinase pathway. Genesis 2012; 51:147-62. [DOI: 10.1002/dvg.22354] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 10/14/2012] [Accepted: 10/19/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Luis Daniel Ríos-Barrera
- Developmental Neurobioloy and Neurophysiology Department; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Boulevard Juriquilla #3001; Querétaro, Querétaro; México; c.p. 76230
| | - Juan Rafael Riesgo-Escovar
- Developmental Neurobioloy and Neurophysiology Department; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Boulevard Juriquilla #3001; Querétaro, Querétaro; México; c.p. 76230
| |
Collapse
|
22
|
Tursun B. Cellular reprogramming processes in Drosophila and C. elegans. Curr Opin Genet Dev 2012; 22:475-84. [PMID: 23063246 DOI: 10.1016/j.gde.2012.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 07/05/2012] [Accepted: 09/17/2012] [Indexed: 12/30/2022]
Abstract
The identity of individual cell types in a multicellular organism appears to be continuously maintained through active processes but is not irreversible. Changes in the identity of individual cell types can be brought about through ectopic mis-expression of regulatory factors, but in a number of cases also occurs in normal development. I will review here these natural cellular reprogramming processes occurring in the invertebrate model organisms Caenorhabditis elegans and Drosophila melanogaster. Furthermore, I will discuss the issue of why only certain cell types can be converted during induced reprogramming processes evoked by ectopic expression of regulatory factors and how recent work in model systems have shown that this cellular context-dependency can be manipulated.
Collapse
Affiliation(s)
- Baris Tursun
- Berlin Institute for Medical Systems Biology at Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin 13125, Germany.
| |
Collapse
|
23
|
Worley MI, Setiawan L, Hariharan IK. Regeneration and transdetermination in Drosophila imaginal discs. Annu Rev Genet 2012; 46:289-310. [PMID: 22934642 DOI: 10.1146/annurev-genet-110711-155637] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The study of regeneration in Drosophila imaginal discs provides an opportunity to use powerful genetic tools to address fundamental problems pertaining to tissue regeneration and cell plasticity. We present a historical overview of the field and describe how the application of modern methods has made the study of disc regeneration amenable to genetic analysis. Discs respond to tissue damage in several ways: (a) Removal of part of the disc elicits localized cell proliferation and regeneration of the missing tissue. (b) Damage at specific locations in the disc can cause cells to generate disc-inappropriate structures (e.g., wing instead of leg), a phenomenon known as transdetermination. (c) Diffuse damage to imaginal discs, results in compensatory proliferation of surviving cells. Candidate-gene approaches have implicated the JNK, Wingless, and Hippo pathways in regeneration. Recently developed systems will enable extensive genetic screens that could provide new insights into tissue regeneration, transdetermination and compensatory proliferation.
Collapse
Affiliation(s)
- Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA.
| | | | | |
Collapse
|
24
|
Almeida L, Demongeot J. Predictive power of "a minima" models in biology. Acta Biotheor 2012; 60:3-19. [PMID: 22318429 DOI: 10.1007/s10441-012-9146-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/11/2012] [Indexed: 12/19/2022]
Abstract
Many apparently complex mechanisms in biology, especially in embryology and molecular biology, can be explained easily by reasoning at the level of the "efficient cause" of the observed phenomenology: the mechanism can then be explained by a simple geometrical argument or a variational principle, leading to the solution of an optimization problem, for example, via the co-existence of a minimization and a maximization problem (a min-max principle). Passing from a microscopic (or cellular) level (optimal min-max solution of the simple mechanistic system) to the macroscopic level often involves an averaging effect (linked to the repetition of a large number of such microscopic systems with possible random choice of the parameters of each of them) that gives birth to a global functional feature (e.g. at the tissue level). We will illustrate these general principles by building in four different domains of application "a minima" models and showing the main properties of their solutions: (1) extraction of a minimal RNA structure functioning as the first "peptidic machine," a kind of ancestral ribosome; (2) study of a genetic regulatory network of Drosophila centred on Engrailed gene and expressing successively two genes inside a limit cycle; (3) study of a genetic network regulating neural activity and proliferation in mammals; and (4) study of a simple geometric model of epiboly in zebrafish.
Collapse
|
25
|
Transdifferentiation: a cell and molecular reprogramming process. Cell Tissue Res 2012; 348:379-96. [PMID: 22526624 DOI: 10.1007/s00441-012-1403-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 03/01/2012] [Indexed: 12/13/2022]
Abstract
Evidence has emerged recently indicating that differentiation is not entirely a one-way process, and that it is possible to convert one cell type to another, both in vitro and in vivo. This phenomenon is called transdifferentiation, and is generally defined as the stable switch of one cell type to another. Transdifferentiation plays critical roles during development and in regeneration pathways in nature. Although this phenomenon occurs rarely in nature, recent studies have been focused on transdifferentiation and the reprogramming ability of cells to produce specific cells with new phenotypes for use in cell therapy and regenerative medicine. Thus, understanding the principles and the mechanism of this process is important for producing desired cell types. Here some well-documented examples of transdifferentiation, and their significance in development and regeneration are reviewed. In addition, transdifferentiation pathways are considered and their potential molecular mechanisms, especially the role of master switch genes, are considered. Finally, the significance of transdifferentiation in regenerative medicine is discussed.
Collapse
|
26
|
Zuryn S, Daniele T, Jarriault S. Direct cellular reprogramming in Caenorhabditis elegans: facts, models, and promises for regenerative medicine. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:138-52. [PMID: 23801672 DOI: 10.1002/wdev.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In vitro systems of cellular reprogramming [induced pluripotent stem (iPS) cells and direct reprogramming or transdifferentiation] are rapidly improving our repertoire of molecular techniques that can force cells in culture to change into a desired identity. However, the new frontier for regenerative medicine is in vivo cellular reprogramming, which in light of concerns about the safety of in vitro cell manipulations, is an increasingly attractive approach for regenerative medicine. Powerful in vivo approaches are currently being undertaken in the genetic model Caenorhabditis elegans. Several very distinct cell types have been induced to change or have been discovered to transform naturally, into altogether different cell types. These examples have improved our understanding of the fundamental molecular and cellular mechanisms that permit cell identity changes in live animals. In addition, the combination of a stereotyped lineage with single cell analyses allows dissection of the early and intermediate mechanisms of reprogramming, as well as their kinetics. As a result, several important concepts on in vivo cellular reprogramming have been recently developed.
Collapse
Affiliation(s)
- Steven Zuryn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch Cu Strasbourg, France
| | | | | |
Collapse
|
27
|
Belacortu Y, Paricio N. Drosophila as a model of wound healing and tissue regeneration in vertebrates. Dev Dyn 2011; 240:2379-404. [PMID: 21953647 DOI: 10.1002/dvdy.22753] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2011] [Indexed: 11/11/2022] Open
Abstract
Understanding the molecular basis of wound healing and regeneration in vertebrates is one of the main challenges in biology and medicine. This understanding will lead to medical advances allowing accelerated tissue repair after wounding, rebuilding new tissues/organs and restoring homeostasis. Drosophila has emerged as a valuable model for studying these processes because the genetic networks and cytoskeletal machinery involved in epithelial movements occurring during embryonic dorsal closure, larval imaginal disc fusion/regeneration, and epithelial repair are similar to those acting during wound healing and regeneration in vertebrates. Recent studies have also focused on the use of Drosophila adult stem cells to maintain tissue homeostasis. Here, we review how Drosophila has contributed to our understanding of these processes, primarily through live-imaging and genetic tools that are impractical in mammals. Furthermore, we highlight future research areas where this insect may provide novel insights and potential therapeutic strategies for wound healing and regeneration.
Collapse
Affiliation(s)
- Yaiza Belacortu
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain
| | | |
Collapse
|
28
|
Jankovics F, Henn L, Bujna Á, Vilmos P, Kiss N, Erdélyi M. A functional genomic screen combined with time-lapse microscopy uncovers a novel set of genes involved in dorsal closure of Drosophila embryos. PLoS One 2011; 6:e22229. [PMID: 21799798 PMCID: PMC3140500 DOI: 10.1371/journal.pone.0022229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/17/2011] [Indexed: 11/19/2022] Open
Abstract
Morphogenesis, the establishment of the animal body, requires the coordinated rearrangement of cells and tissues regulated by a very strictly-determined genetic program. Dorsal closure of the epithelium in the Drosophila melanogaster embryo is one of the best models for such a complex morphogenetic event. To explore the genetic regulation of dorsal closure, we carried out a large-scale RNA interference-based screen in combination with in vivo time-lapse microscopy and identified several genes essential for the closure or affecting its dynamics. One of the novel dorsal closure genes, the small GTPase activator pebble (pbl), was selected for detailed analysis. We show that pbl regulates actin accumulation and protrusion dynamics in the leading edge of the migrating epithelial cells. In addition, pbl affects dorsal closure dynamics by regulating head involution, a morphogenetic process mechanically coupled with dorsal closure. Finally, we provide evidence that pbl is involved in closure of the adult thorax, suggesting its general requirement in epithelial closure processes.
Collapse
Affiliation(s)
- Ferenc Jankovics
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Differences between pulp repair and regeneration guide different strategic options. After mild carious dentin lesions, odontoblasts and Hoehl’s cells are implicated in the formation of reactionary dentin. Reparative dentin formation and/or pulp regeneration after partial degradation is under the control of pulp progenitors. A series of questions arise from recent researches on tissue engineering. In this series of questions, we compare the therapeutic potential of pluripotent embryonic and adult stem cells, both being used in cell-based dental therapies. Crucial questions arise on the origin of stem cells and the localization of niches of progenitors in adult teeth. Circulating progenitor cells may also be candidate for promoting pulp regeneration. Then, we focus on strategies allowing efficient progenitors recruitment. Along this line, we compare the potential of embryonic stem cells versus adult stem cells. Re-programming adult pulp cells to become induced pluripotent stem cells constitute another option. Genes, transcription factors and growth factors may be used to stimulate the differentiation cascade. Extracellular matrix molecules or some bioactive specific domains after enzymatic cleavage may also contribute to the formation of an artificial pulp and ultimately to its mineralization.
Collapse
Affiliation(s)
- M. Goldberg
- UMR-S 747, INSERM and Université Paris Descartes, UFR, Biomédicale des Saints Pères, 45 rue des Saints Pères, 75006 Paris, France
| |
Collapse
|
30
|
Sexually dimorphic regulation of the Wingless morphogen controls sex-specific segment number in Drosophila. Proc Natl Acad Sci U S A 2011; 108:11139-44. [PMID: 21690416 DOI: 10.1073/pnas.1108431108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sexual dimorphism is widespread throughout the metazoa and plays important roles in mate recognition and preference, sex-based niche partitioning, and sex-specific coadaptation. One notable example of sex-specific differences in insect body morphology is presented by the higher diptera, such as Drosophila, in which males develop fewer abdominal segments than females. Because diversity in segment number is a distinguishing feature of major arthropod clades, it is of fundamental interest to understand how different numbers of segments can be generated within the same species. Here we show that sex-specific and segment-specific regulation of the Wingless (Wg) morphogen underlies the development of sexually dimorphic adult segment number in Drosophila. Wg expression is repressed in the developing terminal male abdominal segment by the combination of the Hox protein Abdominal-B (Abd-B) and the sex-determination regulator Doublesex (Dsx). The subsequent loss of the terminal male abdominal segment during pupation occurs through a combination of developmental processes including segment compartmental transformation, apoptosis, and suppression of cell proliferation. Furthermore, we show that ectopic expression of Wg is sufficient to rescue this loss. We propose that dimorphic Wg regulation, in concert with monomorphic segment-specific programmed cell death, are the principal mechanisms of sculpting the sexually dimorphic abdomen of Drosophila.
Collapse
|
31
|
Repiso A, Bergantiños C, Corominas M, Serras F. Tissue repair and regeneration in Drosophila imaginal discs. Dev Growth Differ 2011; 53:177-85. [DOI: 10.1111/j.1440-169x.2010.01247.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Almeida L, Bagnerini P, Habbal A, Noselli S, Serman F. A mathematical model for dorsal closure. J Theor Biol 2011; 268:105-19. [DOI: 10.1016/j.jtbi.2010.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 09/17/2010] [Accepted: 09/17/2010] [Indexed: 01/29/2023]
|
33
|
Regeneration and transdetermination: the role of wingless and its regulation. Dev Biol 2010; 347:315-24. [PMID: 20816798 DOI: 10.1016/j.ydbio.2010.08.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/20/2010] [Accepted: 08/26/2010] [Indexed: 11/22/2022]
Abstract
Imaginal discs of Drosophila have the remarkable ability to regenerate. After fragmentation wound healing occurs, ectopic wg is induced and a blastema is formed. In some, but not all fragments, the blastema will replace missing structures and a few cells can become more plastic and transdetermine to structures of other discs. A series of systematic cuts through the first leg disc revealed that a cut must transect the dorsal-proximal disc area and that the fragment must also include wg-competent cells. Fragments that fail to both transdetermine and regenerate missing structures will do both when provided with exogenous Wg, demonstrating the necessity of Wg in regenerative processes. In intact leg discs ubiquitously expressed low levels of Wg also leads to blastema formation, regeneration and transdetermination. Two days after exogenous wg induction the endogenous gene is activated, leading to elevated levels of Wg in the dorsal aspect of the leg disc. We identified a wg enhancer that regulates ectopic wg expression. Deletion of this enhancer increases transdetermination, but lowers the amount of ectopic Wg. We speculate that this lessens repression of dpp dorsally, and thus creates a permissive condition under which the balance of ectopic Wg and Dpp is favorable for transdetermination.
Collapse
|