1
|
Ruiz-Orera J, Miller DC, Greiner J, Genehr C, Grammatikaki A, Blachut S, Mbebi J, Patone G, Myronova A, Adami E, Dewani N, Liang N, Hummel O, Muecke MB, Hildebrandt TB, Fritsch G, Schrade L, Zimmermann WH, Kondova I, Diecke S, van Heesch S, Hübner N. Evolution of translational control and the emergence of genes and open reading frames in human and non-human primate hearts. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1217-1235. [PMID: 39317836 PMCID: PMC11473369 DOI: 10.1038/s44161-024-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
Evolutionary innovations can be driven by changes in the rates of RNA translation and the emergence of new genes and small open reading frames (sORFs). In this study, we characterized the transcriptional and translational landscape of the hearts of four primate and two rodent species through integrative ribosome and transcriptomic profiling, including adult left ventricle tissues and induced pluripotent stem cell-derived cardiomyocyte cell cultures. We show here that the translational efficiencies of subunits of the mitochondrial oxidative phosphorylation chain complexes IV and V evolved rapidly across mammalian evolution. Moreover, we discovered hundreds of species-specific and lineage-specific genomic innovations that emerged during primate evolution in the heart, including 551 genes, 504 sORFs and 76 evolutionarily conserved genes displaying human-specific cardiac-enriched expression. Overall, our work describes the evolutionary processes and mechanisms that have shaped cardiac transcription and translation in recent primate evolution and sheds light on how these can contribute to cardiac development and disease.
Collapse
Affiliation(s)
- Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Duncan C Miller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, Berlin, Germany
| | - Johannes Greiner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Carolin Genehr
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, Berlin, Germany
| | - Aliki Grammatikaki
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Susanne Blachut
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jeanne Mbebi
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anna Myronova
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Nikita Dewani
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ning Liang
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Oliver Hummel
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michael B Muecke
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thomas B Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Freie Universitaet Berlin, Berlin, Germany
| | - Guido Fritsch
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Lisa Schrade
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen, Germany
- DZNE (German Center for Neurodegenerative Diseases), Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
| | - Ivanela Kondova
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Charité-Universitätsmedizin, Berlin, Germany.
- Helmholtz Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Ferreira PMP, Ramos CLS, Filho JIAB, Conceição MLP, Almeida ML, do Nascimento Rodrigues DC, Porto JCS, de Castro E Sousa JM, Peron AP. Laboratory and physiological aspects of substitute metazoan models for in vivo pharmacotoxicological analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03437-5. [PMID: 39298017 DOI: 10.1007/s00210-024-03437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024]
Abstract
New methods are essential to characterize the performance of substitute procedures for detecting therapeutic action(s) of a chemical or key signal of toxicological events. Herein, it was discussed the applications and advantages of using arthropods, worms, and fishes in pharmacological and/or toxicology assessments. First of all, the illusion of similarity covers many differences between humans and mice, remarkably about liver injury and metabolism of xenobiotics. Using invertebrates, especially earthworms (Eisenia fetida), brine shrimps (Artemia salina, Daphnia magna), and insects (Drosophila melanogaster) and vertebrates as small fishes (Oryzias latipes, Pimephales promelas, Danio rerio) has countless advantages, including fewer ethical conflicts, short life cycle, high reproduction rate, simpler to handle, and less complex anatomy. They can be used to find contaminants in organic matters and water and are easier genetically engineered with orthologous-mutated genes to explore specific proteins involved in proliferative and hormonal disturbances, chemotherapy multidrug resistance, and carcinogenicity. As multicellular embryos, larvae, and mature organisms, they can be tested in bigger-sized replication platforms with 24-, 96-, or 384-multiwell plates as cheaper and faster ways to select hit compounds from drug-like libraries to predict acute, subacute or chronic toxicity, pharmacokinetics, and efficacy parameters of pharmaceutical, cosmetic, and personal care products. Meanwhile, sublethal exposures are designed to identify changes in reproduction, body weight, DNA damages, oxidation, and immune defense responses in earthworms and zebrafishes, and swimming behaviors in A. salina and D. rerio. Behavioral parameters also give specificities on sublethal effects that would not be detected in zebrafishes by OECD protocols.
Collapse
Affiliation(s)
- Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil.
| | - Carla Lorena Silva Ramos
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - José Ivo Araújo Beserra Filho
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Micaely Lorrana Pereira Conceição
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Mateus Lima Almeida
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | | | - Jhonatas Cley Santos Porto
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - João Marcelo de Castro E Sousa
- Toxicological Genetics Research Laboratory (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Ana Paula Peron
- Laboratory of Ecotoxicology (Labecotox), Department of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão, 87301-899, Brazil
| |
Collapse
|
3
|
Chen JH, Landback P, Arsala D, Guzzetta A, Xia S, Atlas J, Sosa D, Zhang YE, Cheng J, Shen B, Long M. Evolutionarily new genes in humans with disease phenotypes reveal functional enrichment patterns shaped by adaptive innovation and sexual selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.567139. [PMID: 38045239 PMCID: PMC10690195 DOI: 10.1101/2023.11.14.567139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
New genes (or young genes) are genetic novelties pivotal in mammalian evolution. However, their phenotypic impacts and evolutionary patterns over time remain elusive in humans due to the technical and ethical complexities of functional studies. Integrating gene age dating with Mendelian disease phenotyping, our research shows a gradual rise in disease gene proportion as gene age increases. Logistic regression modeling indicates that this increase in older genes may be related to their longer sequence lengths and higher burdens of deleterious de novo germline variants (DNVs). We also find a steady integration of new genes with biomedical phenotypes into the human genome over macroevolutionary timescales (~0.07% per million years). Despite this stable pace, we observe distinct patterns in phenotypic enrichment, pleiotropy, and selective pressures across gene ages. Notably, young genes show significant enrichment in diseases related to the male reproductive system, indicating strong sexual selection. Young genes also exhibit disease-related functions in tissues and systems potentially linked to human phenotypic innovations, such as increased brain size, musculoskeletal phenotypes, and color vision. We further reveal a logistic growth pattern of pleiotropy over evolutionary time, indicating a diminishing marginal growth of new functions for older genes due to intensifying selective constraints over time. We propose a "pleiotropy-barrier" model that delineates higher potentials for phenotypic innovation in young genes compared to older genes, a process that is subject to natural selection. Our study demonstrates that evolutionarily new genes are critical in influencing human reproductive evolution and adaptive phenotypic innovations driven by sexual and natural selection, with low pleiotropy as a selective advantage.
Collapse
Affiliation(s)
- Jian-Hai Chen
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Patrick Landback
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Alexander Guzzetta
- Department of Pathology, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Jared Atlas
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Dylan Sosa
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Yong E. Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingqiu Cheng
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| |
Collapse
|
4
|
Boucherie C, Alkailani M, Jossin Y, Ruiz-Reig N, Mahdi A, Aldaalis A, Aittaleb M, Tissir F. Auts2 enhances neurogenesis and promotes expansion of the cerebral cortex. J Adv Res 2024:S2090-1232(24)00296-0. [PMID: 39013538 DOI: 10.1016/j.jare.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 07/18/2024] Open
Abstract
INTRODUCTION The AUTS2 gene is associated with various neurodevelopmental and psychiatric disorders and has been suggested to play a role in acquiring human-specific traits. Functional analyses of Auts2 knockout mice have focused on postmitotic neurons, and the reported phenotypes do not faithfully recapitulate the whole spectrum of AUTS2-related human diseases. OBJECTIVE The objective of the study is to assess the role of AUTS2 in the biology of neural progenitor cells, cortical neurogenesis and expansion; and understand how its deregulation leads to neurological disorders. METHODS We screened the literature and conducted a time point analysis of AUTS2 expression during cortical development. We used in utero electroporation to acutely modulate the expression level of AUTS2 in the developing cerebral cortex in vivo, and thoroughly characterized cortical neurogenesis and morphogenesis using immunofluorescence, cell tracing and sorting, transcriptomic profiling, and gene ontology enrichment analyses. RESULTS In addition to its expression in postmitotic neurons, we showed that AUTS2 is also expressed in neural progenitor cells at the peak of neurogenesis. Upregulation of AUTS2 dramatically altered the differentiation program and fate determination of cortical progenitors. Notably, it increased the number of basal progenitors and neurons and changed the expression of hundreds of genes, among which 444 have not been implicated in mouse brain development or function. CONCLUSION The study provides evidence that AUTS2 is expressed in germinal zones and plays a key role in fate decision of neural progenitor cells with impact on corticogenesis. It also presents comprehensive lists of AUTS2 target genes thus advancing the molecular mechanisms underlying AUTS2-associated diseases and the evolutionary expansion of the cerebral cortex.
Collapse
Affiliation(s)
- Cédric Boucherie
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Maisa Alkailani
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Yves Jossin
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Nuria Ruiz-Reig
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Asma Mahdi
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Arwa Aldaalis
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Mohamed Aittaleb
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium; Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar.
| |
Collapse
|
5
|
Liu X, Xiao C, Xu X, Zhang J, Mo F, Chen JY, Delihas N, Zhang L, An NA, Li CY. Origin of functional de novo genes in humans from "hopeful monsters". WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1845. [PMID: 38605485 DOI: 10.1002/wrna.1845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
For a long time, it was believed that new genes arise only from modifications of preexisting genes, but the discovery of de novo protein-coding genes that originated from noncoding DNA regions demonstrates the existence of a "motherless" origination process for new genes. However, the features, distributions, expression profiles, and origin modes of these genes in humans seem to support the notion that their origin is not a purely "motherless" process; rather, these genes arise preferentially from genomic regions encoding preexisting precursors with gene-like features. In such a case, the gene loci are typically not brand new. In this short review, we will summarize the definition and features of human de novo genes and clarify their process of origination from ancestral non-coding genomic regions. In addition, we define the favored precursors, or "hopeful monsters," for the origin of de novo genes and present a discussion of the functional significance of these young genes in brain development and tumorigenesis in humans. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Xiaoge Liu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xinwei Xu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Nicholas Delihas
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Ni A An
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Southwest United Graduate School, Kunming, China
| |
Collapse
|
6
|
Zhuang XL, Shao Y, Chen CY, Zhou L, Yao YG, Cooper DN, Zhang GJ, Wang W, Wu DD. Divergent Evolutionary Rates of Primate Brain Regions as Revealed by Genomics and Transcriptomics. Genome Biol Evol 2024; 16:evae023. [PMID: 38314830 PMCID: PMC10881106 DOI: 10.1093/gbe/evae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
Although the primate brain contains numerous functionally distinct structures that have experienced diverse genetic changes during the course of evolution and development, these changes remain to be explored in detail. Here we utilize two classic metrics from evolutionary biology, the evolutionary rate index (ERI) and the transcriptome age index (TAI), to investigate the evolutionary alterations that have occurred in each area and developmental stage of the primate brain. We observed a higher evolutionary rate for those genes expressed in the non-cortical areas during primate evolution, particularly in human, with the highest rate of evolution being exhibited at brain developmental stages between late infancy and early childhood. Further, the transcriptome age of the non-cortical areas was lower than that of the cerebral cortex, with the youngest age apparent at brain developmental stages between late infancy and early childhood. Our exploration of the evolutionary patterns manifest in each brain area and developmental stage provides important reference points for further research into primate brain evolution.
Collapse
Affiliation(s)
- Xiao-Lin Zhuang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
| | - Yong Shao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
| | - Chun-Yan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Long Zhou
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310000, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310000, China
| | - Yong-Gang Yao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Guo-Jie Zhang
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310000, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310000, China
| | - Wen Wang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dong-Dong Wu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
7
|
Chen J. Evolutionarily new genes in humans with disease phenotypes reveal functional enrichment patterns shaped by adaptive innovation and sexual selection. RESEARCH SQUARE 2023:rs.3.rs-3632644. [PMID: 38045389 PMCID: PMC10690325 DOI: 10.21203/rs.3.rs-3632644/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
New genes (or young genes) are structural novelties pivotal in mammalian evolution. Their phenotypic impact on humans, however, remains elusive due to the technical and ethical complexities in functional studies. Through combining gene age dating with Mendelian disease phenotyping, our research reveals that new genes associated with disease phenotypes steadily integrate into the human genome at a rate of ~ 0.07% every million years over macroevolutionary timescales. Despite this stable pace, we observe distinct patterns in phenotypic enrichment, pleiotropy, and selective pressures between young and old genes. Notably, young genes show significant enrichment in the male reproductive system, indicating strong sexual selection. Young genes also exhibit functions in tissues and systems potentially linked to human phenotypic innovations, such as increased brain size, bipedal locomotion, and color vision. Our findings further reveal increasing levels of pleiotropy over evolutionary time, which accompanies stronger selective constraints. We propose a "pleiotropy-barrier" model that delineates different potentials for phenotypic innovation between young and older genes subject to natural selection. Our study demonstrates that evolutionary new genes are critical in influencing human reproductive evolution and adaptive phenotypic innovations driven by sexual and natural selection, with low pleiotropy as a selective advantage.
Collapse
|
8
|
Hao Y, Song G, Zhang YE, Zhai W, Jia C, Ji Y, Tang S, Lv H, Qu Y, Lei F. Divergent contributions of coding and noncoding sequences to initial high-altitude adaptation in passerine birds endemic to the Qinghai-Tibet Plateau. Mol Ecol 2023; 32:3524-3540. [PMID: 37000417 DOI: 10.1111/mec.16942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023]
Abstract
Early events in the evolution of an ancestral lineage can shape the adaptive patterns of descendant species, but the evolutionary mechanisms driving initial adaptation from an ancestor remain largely unexplored. High-altitude adaptations have been extensively explored from the viewpoint of protein-coding genes; however, the contribution of noncoding regions remains relatively neglected. Here, we integrate genomic and transcriptomic data to investigate adaptive evolution in the ancestor of three high-altitude snowfinch species endemic to the Qinghai-Tibet Plateau. Our genome-wide scan for adaptation in the snowfinch ancestor identifies strong adaptation signals in functions of development and metabolism for the coding genes, but in functions of the nervous system development for noncoding regions. This pattern is exclusive to the snowfinch ancestor compared to a control ancestral lineage subject to weak selection. Changes in noncoding regions in the snowfinch ancestor, especially those nearest to coding genes, may be disproportionately associated with the differential expression of genes in the brain tissue compared to other tissues. Extensive gene expression in the brain tissue can be further altered via genetic regulatory networks of transcription factors harbouring potential accelerated regulatory regions (e.g., the development-related transcription factor YEATS4). Altogether, our study provides new evidence concerning how coding and noncoding sequences work through decoupled pathways in initial adaptation to the selective pressure of high-altitude environments. The analysis highlights the idea that noncoding sequences may be promising elements in facilitating the rapid evolution and adaptation to high altitudes.
Collapse
Affiliation(s)
- Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanzhu Ji
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shiyu Tang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongrui Lv
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
9
|
Pretzsch CM, Ecker C. Structural neuroimaging phenotypes and associated molecular and genomic underpinnings in autism: a review. Front Neurosci 2023; 17:1172779. [PMID: 37457001 PMCID: PMC10347684 DOI: 10.3389/fnins.2023.1172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Autism has been associated with differences in the developmental trajectories of multiple neuroanatomical features, including cortical thickness, surface area, cortical volume, measures of gyrification, and the gray-white matter tissue contrast. These neuroimaging features have been proposed as intermediate phenotypes on the gradient from genomic variation to behavioral symptoms. Hence, examining what these proxy markers represent, i.e., disentangling their associated molecular and genomic underpinnings, could provide crucial insights into the etiology and pathophysiology of autism. In line with this, an increasing number of studies are exploring the association between neuroanatomical, cellular/molecular, and (epi)genetic variation in autism, both indirectly and directly in vivo and across age. In this review, we aim to summarize the existing literature in autism (and neurotypicals) to chart a putative pathway from (i) imaging-derived neuroanatomical cortical phenotypes to (ii) underlying (neuropathological) biological processes, and (iii) associated genomic variation.
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
10
|
Zhang L, Park JJ, Dong MB, Arsala D, Xia S, Chen J, Sosa D, Atlas JE, Long M, Chen S. Human gene age dating reveals an early and rapid evolutionary construction of the adaptive immune system. Genome Biol Evol 2023; 15:evad081. [PMID: 37170918 PMCID: PMC10210621 DOI: 10.1093/gbe/evad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
T cells are a type of white blood cell that play a critical role in the immune response against foreign pathogens through a process called T Cell Adaptive Immunity (TCAI). However, the evolution of the genes and nucleotide sequences involved in TCAI is not well understood. To investigate this, we performed comparative studies of gene annotations and genome assemblies of 28 vertebrate species and identified sets of human genes that are involved in TCAI, carcinogenesis, and ageing. We found that these gene sets share interaction pathways which may have contributed to the evolution of longevity in the vertebrate lineage leading to humans. Our human gene age dating analyses revealed that there was rapid origination of genes with TCAI-related functions prior to the Cretaceous eutherian radiation and these new genes mainly encode negative regulators. We identified no new TCAI-related genes after the divergence of placental mammals, but we did detect an extensive number of amino acid substitutions under strong positive selection in recently evolved human immunity genes suggesting they are co-evolving with adaptive immunity. More specifically, we observed that antigen processing and presentation and checkpoint genes are significantly enriched among new genes evolving under positive selection. These observations reveal an evolutionary process of T Cell Adaptive Immunity that were associated with rapid gene duplication in the early stages of vertebrates and subsequent sequence changes in TCAI-related genes. These processes together suggest an early genetic construction of the vertebrate immune system and subsequent molecular adaptation to diverse antigens.
Collapse
Affiliation(s)
- Li Zhang
- System Biology Institute, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Yale M.D.-Ph.D. Program, New Haven, Connecticut, USA
| | - Jonathan J Park
- System Biology Institute, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Yale M.D.-Ph.D. Program, New Haven, Connecticut, USA
| | - Matthew B Dong
- System Biology Institute, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Yale M.D.-Ph.D. Program, New Haven, Connecticut, USA
- Immunobiology Program, The Anlyan Center, New Haven, Connecticut, USA
- Department of Immunobiology, The Anlyan Center, New Haven, Connecticut, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Dylan Sosa
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Jared E Atlas
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Sidi Chen
- System Biology Institute, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Yale M.D.-Ph.D. Program, New Haven, Connecticut, USA
- Immunobiology Program, The Anlyan Center, New Haven, Connecticut, USA
- Yale Comprehensive Cancer Center, New Haven, Connecticut, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Evolution and implications of de novo genes in humans. Nat Ecol Evol 2023:10.1038/s41559-023-02014-y. [PMID: 36928843 DOI: 10.1038/s41559-023-02014-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023]
Abstract
Genes and translated open reading frames (ORFs) that emerged de novo from previously non-coding sequences provide species with opportunities for adaptation. When aberrantly activated, some human-specific de novo genes and ORFs have disease-promoting properties-for instance, driving tumour growth. Thousands of putative de novo coding sequences have been described in humans, but we still do not know what fraction of those ORFs has readily acquired a function. Here, we discuss the challenges and controversies surrounding the detection, mechanisms of origin, annotation, validation and characterization of de novo genes and ORFs. Through manual curation of literature and databases, we provide a thorough table with most de novo genes reported for humans to date. We re-evaluate each locus by tracing the enabling mutations and list proposed disease associations, protein characteristics and supporting evidence for translation and protein detection. This work will support future explorations of de novo genes and ORFs in humans.
Collapse
|
12
|
Qi J, Mo F, An NA, Mi T, Wang J, Qi J, Li X, Zhang B, Xia L, Lu Y, Sun G, Wang X, Li C, Hu B. A Human-Specific De Novo Gene Promotes Cortical Expansion and Folding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204140. [PMID: 36638273 PMCID: PMC9982566 DOI: 10.1002/advs.202204140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Newly originated de novo genes have been linked to the formation and function of the human brain. However, how a specific gene originates from ancestral noncoding DNAs and becomes involved in the preexisting network for functional outcomes remains elusive. Here, a human-specific de novo gene, SP0535, is identified that is preferentially expressed in the ventricular zone of the human fetal brain and plays an important role in cortical development and function. In human embryonic stem cell-derived cortical organoids, knockout of SP0535 compromises their growth and neurogenesis. In SP0535 transgenic (TG) mice, expression of SP0535 induces fetal cortex expansion and sulci and gyri-like structure formation. The progenitors and neurons in the SP0535 TG mouse cortex tend to proliferate and differentiate in ways that are unique to humans. SP0535 TG adult mice also exhibit improved cognitive ability and working memory. Mechanistically, SP0535 interacts with the membrane protein Na+ /K+ ATPase subunit alpha-1 (ATP1A1) and releases Src from the ATP1A1-Src complex, allowing increased level of Src phosphorylation that promotes cell proliferation. Thus, SP0535 is the first proven human-specific de novo gene that promotes cortical expansion and folding, and can function through incorporating into an existing conserved molecular network.
Collapse
Affiliation(s)
- Jianhuan Qi
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ni A. An
- Laboratory of Bioinformatics and Genomic MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijing100871China
| | - Tingwei Mi
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Jiaxin Wang
- Laboratory of Bioinformatics and Genomic MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijing100871China
| | - Jun‐Tian Qi
- Laboratory of Bioinformatics and Genomic MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijing100871China
| | - Xiangshang Li
- Laboratory of Bioinformatics and Genomic MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijing100871China
| | - Boya Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Longkuo Xia
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yingfei Lu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Gaoying Sun
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xinyue Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chuan‐Yun Li
- Laboratory of Bioinformatics and Genomic MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking UniversityBeijing100871China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
| |
Collapse
|
13
|
Immunity in Sea Turtles: Review of a Host-Pathogen Arms Race Millions of Years in the Running. Animals (Basel) 2023; 13:ani13040556. [PMID: 36830343 PMCID: PMC9951749 DOI: 10.3390/ani13040556] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
The immune system of sea turtles is not completely understood. Sea turtles (as reptiles) bridge a unique evolutionary gap, being ectothermic vertebrates like fish and amphibians and amniotes like birds and mammals. Turtles are ectotherms; thus, their immune system is influenced by environmental conditions like temperature and season. We aim to review the turtle immune system and note what studies have investigated sea turtles and the effect of the environment on the immune response. Turtles rely heavily on the nonspecific innate response rather than the specific adaptive response. Turtles' innate immune effectors include antimicrobial peptides, complement, and nonspecific leukocytes. The antiviral defense is understudied in terms of the diversity of pathogen receptors and interferon function. Turtles also mount adaptive responses to pathogens. Lymphoid structures responsible for lymphocyte activation and maturation are either missing in reptiles or function is affected by season. Turtles are a marker of health for their marine environment, and their immune system is commonly dysregulated because of disease or contaminants. Fibropapillomatosis (FP) is a tumorous disease that afflicts sea turtles and is thought to be caused by a virus and an environmental factor. We aim, by exploring the current understanding of the immune system in turtles, to aid the investigation of environmental factors that contribute to the pathogenesis of this disease and provide options for immunotherapy.
Collapse
|
14
|
An NA, Zhang J, Mo F, Luan X, Tian L, Shen QS, Li X, Li C, Zhou F, Zhang B, Ji M, Qi J, Zhou WZ, Ding W, Chen JY, Yu J, Zhang L, Shu S, Hu B, Li CY. De novo genes with an lncRNA origin encode unique human brain developmental functionality. Nat Ecol Evol 2023; 7:264-278. [PMID: 36593289 PMCID: PMC9911349 DOI: 10.1038/s41559-022-01925-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 10/04/2022] [Indexed: 01/03/2023]
Abstract
Human de novo genes can originate from neutral long non-coding RNA (lncRNA) loci and are evolutionarily significant in general, yet how and why this all-or-nothing transition to functionality happens remains unclear. Here, in 74 human/hominoid-specific de novo genes, we identified distinctive U1 elements and RNA splice-related sequences accounting for RNA nuclear export, differentiating mRNAs from lncRNAs, and driving the origin of de novo genes from lncRNA loci. The polymorphic sites facilitating the lncRNA-mRNA conversion through regulating nuclear export are selectively constrained, maintaining a boundary that differentiates mRNAs from lncRNAs. The functional new genes actively passing through it thus showed a mode of pre-adaptive origin, in that they acquire functions along with the achievement of their coding potential. As a proof of concept, we verified the regulations of splicing and U1 recognition on the nuclear export efficiency of one of these genes, the ENSG00000205704, in human neural progenitor cells. Notably, knock-out or over-expression of this gene in human embryonic stem cells accelerates or delays the neuronal maturation of cortical organoids, respectively. The transgenic mice with ectopically expressed ENSG00000205704 showed enlarged brains with cortical expansion. We thus demonstrate the key roles of nuclear export in de novo gene origin. These newly originated genes should reflect the novel uniqueness of human brain development.
Collapse
Affiliation(s)
- Ni A An
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jie Zhang
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuke Luan
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Lu Tian
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qing Sunny Shen
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiangshang Li
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chunqiong Li
- Chinese Institute for Brain Research, Beijing, China
| | - Fanqi Zhou
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Boya Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingjun Ji
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jianhuan Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Zhen Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqiu Ding
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Key Laboratory of RNA Regulation and Hematopoiesis, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, CAMS and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Shaokun Shu
- Peking University International Cancer Institute, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
15
|
Affiliation(s)
- April Rich
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Ma C, Li C, Ma H, Yu D, Zhang Y, Zhang D, Su T, Wu J, Wang X, Zhang L, Chen CL, Zhang YE. Pan-cancer surveys indicate cell cycle-related roles of primate-specific genes in tumors and embryonic cerebrum. Genome Biol 2022; 23:251. [PMID: 36474250 PMCID: PMC9724437 DOI: 10.1186/s13059-022-02821-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite having been extensively studied, it remains largely unclear why humans bear a particularly high risk of cancer. The antagonistic pleiotropy hypothesis predicts that primate-specific genes (PSGs) tend to promote tumorigenesis, while the molecular atavism hypothesis predicts that PSGs involved in tumors may represent recently derived duplicates of unicellular genes. However, these predictions have not been tested. RESULTS By taking advantage of pan-cancer genomic data, we find the upregulation of PSGs across 13 cancer types, which is facilitated by copy-number gain and promoter hypomethylation. Meta-analyses indicate that upregulated PSGs (uPSGs) tend to promote tumorigenesis and to play cell cycle-related roles. The cell cycle-related uPSGs predominantly represent derived duplicates of unicellular genes. We prioritize 15 uPSGs and perform an in-depth analysis of one unicellular gene-derived duplicate involved in the cell cycle, DDX11. Genome-wide screening data and knockdown experiments demonstrate that DDX11 is broadly essential across cancer cell lines. Importantly, non-neutral amino acid substitution patterns and increased expression indicate that DDX11 has been under positive selection. Finally, we find that cell cycle-related uPSGs are also preferentially upregulated in the highly proliferative embryonic cerebrum. CONCLUSIONS Consistent with the predictions of the atavism and antagonistic pleiotropy hypotheses, primate-specific genes, especially those PSGs derived from cell cycle-related genes that emerged in unicellular ancestors, contribute to the early proliferation of the human cerebrum at the cost of hitchhiking by similarly highly proliferative cancer cells.
Collapse
Affiliation(s)
- Chenyu Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Li
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Dan Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianhan Su
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Chun-Long Chen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, 75005, Paris, France
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
17
|
Jung YJ, Almasi A, Sun SH, Yunzab M, Cloherty SL, Bauquier SH, Renfree M, Meffin H, Ibbotson MR. Orientation pinwheels in primary visual cortex of a highly visual marsupial. SCIENCE ADVANCES 2022; 8:eabn0954. [PMID: 36179020 PMCID: PMC9524828 DOI: 10.1126/sciadv.abn0954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Primary visual cortices in many mammalian species exhibit modular and periodic orientation preference maps arranged in pinwheel-like layouts. The role of inherited traits as opposed to environmental influences in determining this organization remains unclear. Here, we characterize the cortical organization of an Australian marsupial, revealing pinwheel organization resembling that of eutherian carnivores and primates but distinctly different from the simpler salt-and-pepper arrangement of eutherian rodents and rabbits. The divergence of marsupials from eutherians 160 million years ago and the later emergence of rodents and rabbits suggest that the salt-and-pepper structure is not the primitive ancestral form. Rather, the genetic code that enables complex pinwheel formation is likely widespread, perhaps extending back to the common therian ancestors of modern mammals.
Collapse
Affiliation(s)
- Young Jun Jung
- National Vision Research Institute, Melbourne, VIC, Australia
| | - Ali Almasi
- Optalert Limited, Melbourne, VIC, Australia
| | - Shi H. Sun
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Molis Yunzab
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Sebastien H. Bauquier
- Veterinary Hospital, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Marilyn Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Hamish Meffin
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, Melbourne, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Legüe M. Relevancia de los mecanismos epigenéticos en el neurodesarrollo normal y consecuencias de sus perturbaciones. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
19
|
Espinós A, Fernández‐Ortuño E, Negri E, Borrell V. Evolution of genetic mechanisms regulating cortical neurogenesis. Dev Neurobiol 2022; 82:428-453. [PMID: 35670518 PMCID: PMC9543202 DOI: 10.1002/dneu.22891] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
The size of the cerebral cortex increases dramatically across amniotes, from reptiles to great apes. This is primarily due to different numbers of neurons and glial cells produced during embryonic development. The evolutionary expansion of cortical neurogenesis was linked to changes in neural stem and progenitor cells, which acquired increased capacity of self‐amplification and neuron production. Evolution works via changes in the genome, and recent studies have identified a small number of new genes that emerged in the recent human and primate lineages, promoting cortical progenitor proliferation and increased neurogenesis. However, most of the mammalian genome corresponds to noncoding DNA that contains gene‐regulatory elements, and recent evidence precisely points at changes in expression levels of conserved genes as key in the evolution of cortical neurogenesis. Here, we provide an overview of basic cellular mechanisms involved in cortical neurogenesis across amniotes, and discuss recent progress on genetic mechanisms that may have changed during evolution, including gene expression regulation, leading to the expansion of the cerebral cortex.
Collapse
Affiliation(s)
- Alexandre Espinós
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| | | | - Enrico Negri
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| | - Víctor Borrell
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| |
Collapse
|
20
|
Chen C, Yin Y, Li H, Zhou B, Zhou J, Zhou X, Li Z, Liu G, Pan X, Zhang R, Lin Z, Chen L, Qiu Q, Zhang YE, Wang W. Ruminant-specific genes identified using high-quality genome data and their roles in rumen evolution. Sci Bull (Beijing) 2022; 67:825-835. [PMID: 36546235 DOI: 10.1016/j.scib.2022.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023]
Abstract
Ruminants comprise a highly successful group of mammals with striking morphological innovations, including the presence of a rumen. Many studies have shown that species-specific or lineage-specific genes (referred to as new genes) play important roles in phenotypic evolution. In this study, we identified 1064 ruminant-specific genes based on the newly assembled high-quality genomes of representative members of two ruminant families and other publically available high-quality genomes. Ruminant-specific genes shared similar evolutionary and expression patterns with new genes found in other mammals, such as primates and rodents. Most new genes were derived from gene duplication and tended to be expressed in the testes or immune-related tissues, but were depleted in the adult brain. We also found that most genes expressed in the rumen were genes predating sheep-sperm whale split (referred to as old genes), but some new genes were also involved in the evolution of the rumen, and contributed more during rumen development than in the adult rumen. Notably, expression levels of members of the ruminant-specific PRD-SPRRII gene family, which are subject to positive selection, varied throughout rumen development and may thus play important roles in the development of the keratin-rich surface of the rumen. Overall, this study generated two novel ruminant genomes and also provided novel insights into the evolution of new mammalian organs.
Collapse
Affiliation(s)
- Chunyan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuan Yin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Botong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaofang Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Guichun Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiangyu Pan
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Ru Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zeshan Lin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
21
|
Li Z, Wang D, Liao H, Zhang S, Guo W, Chen L, Lu L, Huang T, Cai YD. Exploring the Genomic Patterns in Human and Mouse Cerebellums Via Single-Cell Sequencing and Machine Learning Method. Front Genet 2022; 13:857851. [PMID: 35309141 PMCID: PMC8930846 DOI: 10.3389/fgene.2022.857851] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 12/29/2022] Open
Abstract
In mammals, the cerebellum plays an important role in movement control. Cellular research reveals that the cerebellum involves a variety of sub-cell types, including Golgi, granule, interneuron, and unipolar brush cells. The functional characteristics of cerebellar cells exhibit considerable differences among diverse mammalian species, reflecting a potential development and evolution of nervous system. In this study, we aimed to recognize the transcriptional differences between human and mouse cerebellum in four cerebellar sub-cell types by using single-cell sequencing data and machine learning methods. A total of 321,387 single-cell sequencing data were used. The 321,387 cells included 4 cell types, i.e., Golgi (5,048, 1.57%), granule (250,307, 77.88%), interneuron (60,526, 18.83%), and unipolar brush (5,506, 1.72%) cells. Our results showed that by using gene expression profiles as features, the optimal classification model could achieve very high even perfect performance for Golgi, granule, interneuron, and unipolar brush cells, respectively, suggesting a remarkable difference between the genomic profiles of human and mouse. Furthermore, a group of related genes and rules contributing to the classification was identified, which might provide helpful information for deepening the understanding of cerebellar cell heterogeneity and evolution.
Collapse
Affiliation(s)
- ZhanDong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Deling Wang
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - HuiPing Liao
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - ShiQi Zhang
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York, NY, United States
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
22
|
Huang Y, Chen J, Dong C, Sosa D, Xia S, Ouyang Y, Fan C, Li D, Mortola E, Long M, Bergelson J. Species-specific partial gene duplication in Arabidopsis thaliana evolved novel phenotypic effects on morphological traits under strong positive selection. THE PLANT CELL 2022; 34:802-817. [PMID: 34875081 PMCID: PMC8824575 DOI: 10.1093/plcell/koab291] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/25/2021] [Indexed: 05/04/2023]
Abstract
Gene duplication is increasingly recognized as an important mechanism for the origination of new genes, as revealed by comparative genomic analysis. However, how new duplicate genes contribute to phenotypic evolution remains largely unknown, especially in plants. Here, we identified the new gene EXOV, derived from a partial gene duplication of its parental gene EXOVL in Arabidopsis thaliana. EXOV is a species-specific gene that originated within the last 3.5 million years and shows strong signals of positive selection. Unexpectedly, RNA-sequencing analyses revealed that, despite its young age, EXOV has acquired many novel direct and indirect interactions in which the parental gene does not engage. This observation is consistent with the high, selection-driven substitution rate of its encoded protein, in contrast to the slowly evolving EXOVL, suggesting an important role for EXOV in phenotypic evolution. We observed significant differentiation of morphological changes for all phenotypes assessed in genome-edited and T-DNA insertional single mutants and in double T-DNA insertion mutants in EXOV and EXOVL. We discovered a substantial divergence of phenotypic effects by principal component analyses, suggesting neofunctionalization of the new gene. These results reveal a young gene that plays critical roles in biological processes that underlie morphological evolution in A. thaliana.
Collapse
Affiliation(s)
- Yuan Huang
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Jiahui Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chuan Dong
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Dylan Sosa
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Chuanzhu Fan
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Dezhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Emily Mortola
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
23
|
New Genomic Signals Underlying the Emergence of Human Proto-Genes. Genes (Basel) 2022; 13:genes13020284. [PMID: 35205330 PMCID: PMC8871994 DOI: 10.3390/genes13020284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
De novo genes are novel genes which emerge from non-coding DNA. Until now, little is known about de novo genes’ properties, correlated to their age and mechanisms of emergence. In this study, we investigate four related properties: introns, upstream regulatory motifs, 5′ Untranslated regions (UTRs) and protein domains, in 23,135 human proto-genes. We found that proto-genes contain introns, whose number and position correlates with the genomic position of proto-gene emergence. The origin of these introns is debated, as our results suggest that 41% of proto-genes might have captured existing introns, and 13.7% of them do not splice the ORF. We show that proto-genes which emerged via overprinting tend to be more enriched in core promotor motifs, while intergenic and intronic genes are more enriched in enhancers, even if the TATA motif is most commonly found upstream in these genes. Intergenic and intronic 5′ UTRs of proto-genes have a lower potential to stabilise mRNA structures than exonic proto-genes and established human genes. Finally, we confirm that proteins expressed by proto-genes gain new putative domains with age. Overall, we find that regulatory motifs inducing transcription and translation of previously non-coding sequences may facilitate proto-gene emergence. Our study demonstrates that introns, 5′ UTRs, and domains have specific properties in proto-genes. We also emphasize that the genomic positions of de novo genes strongly impacts these properties.
Collapse
|
24
|
Cherezov RO, Vorontsova JE, Simonova OB. The Phenomenon of Evolutionary “De Novo Generation” of Genes. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Schmidt KE, Wolf F. Punctuated evolution of visual cortical circuits? Evidence from the large rodent Dasyprocta leporina, and the tiny primate Microcebus murinus. Curr Opin Neurobiol 2021; 71:110-118. [PMID: 34823047 DOI: 10.1016/j.conb.2021.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022]
Abstract
Recent reports of the lack of periodic orientation columns in a very large rodent species, the red-rumped agouti, and the existence of incompressible hypercolumns in the lineage of primates, as demonstrated in one of the smallest primates, the mouse lemur, strengthen the interpretation that salt-and-pepper and columns-and-pinwheel mosaics are two distinct functional layouts. These layouts do neither depend on lifestyle nor scale with body size, brain size, absolute neuron numbers, binocular overlap, or visual acuity, but are primarily distinguishable by phylogenetic traits. The predictive value of other biological signatures such as V1 neuronal surface density and the central-peripheral density ratio of retinal ganglion cells are reconsidered, and experiments elucidating the intracortical connectivity in rodents are proposed.
Collapse
Affiliation(s)
- Kerstin E Schmidt
- Neurobiology of Vision Lab, Brain Institute, Federal University of Rio Grande do Norte, 59078 970, Av. Sen. Salgado Filho, 3000, Lagoa Nova, Natal, RN, Brazil.
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks, Germany; Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany; Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany; Max Planck Institute of Experimental Medicine, Herrmann-Rein-Strasse, 37075 Göttingen, Germany
| |
Collapse
|
26
|
Libé-Philippot B, Vanderhaeghen P. Cellular and Molecular Mechanisms Linking Human Cortical Development and Evolution. Annu Rev Genet 2021; 55:555-581. [PMID: 34535062 DOI: 10.1146/annurev-genet-071719-020705] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cerebral cortex is at the core of brain functions that are thought to be particularly developed in the human species. Human cortex specificities stem from divergent features of corticogenesis, leading to increased cortical size and complexity. Underlying cellular mechanisms include prolonged patterns of neuronal generation and maturation, as well as the amplification of specific types of stem/progenitor cells. While the gene regulatory networks of corticogenesis appear to be largely conserved among all mammals including humans, they have evolved in primates, particularly in the human species, through the emergence of rapidly divergent transcriptional regulatory elements, as well as recently duplicated novel genes. These human-specific molecular features together control key cellular milestones of human corticogenesis and are often affected in neurodevelopmental disorders, thus linking human neural development, evolution, and diseases. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; .,Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; .,Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
27
|
Hu G, Li J, Wang GZ. Significant Evolutionary Constraints on Neuron Cells Revealed by Single-Cell Transcriptomics. Genome Biol Evol 2021; 12:300-308. [PMID: 32176293 PMCID: PMC7186789 DOI: 10.1093/gbe/evaa054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2020] [Indexed: 12/30/2022] Open
Abstract
Recent advances in single-cell RNA-sequencing technology have enabled us to characterize a variety of different cell types in each brain region. However, the evolutionary differences among these cell types remain unclear. Here, we analyzed single-cell RNA-seq data of >280,000 cells and developmental transcriptomes of bulk brain tissues. At the single-cell level, we found that the evolutionary constraints on the cell types of different organs significantly overlap with each other and the transcriptome of neuron cells is one of the most restricted evolutionarily. In addition, mature neurons are under more constraints than neuron stem cells as well as nascent neurons and the order of the constraints of various cell types of the brain is largely conserved in different subregions. We also found that although functionally similar brain regions have comparable evolutionary constraints, the early fetal brain is the least constrained and this pattern is conserved in the mouse, macaque, and humans. These results demonstrate the importance of maintaining the plasticity of early brain development during evolution. The delineation of evolutionary differences between brain cell types has great potential for an improved understanding of the pathogenesis of neurological diseases and drug development efforts aimed at the manipulation of molecular activities at the single-cell level.
Collapse
Affiliation(s)
- Ganlu Hu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
28
|
Zhang W, Wang W, Zhao M, Turck CW, Zhu Y, Wang GZ. Rapid Body-Wide Transcriptomic Turnover During Rhesus Macaque Perinatal Development. Front Physiol 2021; 12:690540. [PMID: 34177627 PMCID: PMC8223001 DOI: 10.3389/fphys.2021.690540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
An hourglass cup-shape pattern of regulation at the molecular level was detected during the development of the primate brain. Specifically, a peak of temporally differentially expressed genes around the time of birth has been observed in the human brain. However, to what extend this peak of regulation exists among species has not been investigated in great detail. Here, by integrating multiple large-scale transcriptome data from rhesus macaques, we confirmed that a similar differential expression peak exists during the development of the macaque brain. We also found that a similar peak exists during the development of other organs, such as liver, testis, kidney and heart. Furthermore, we found that distinct pathways are regulated in the peak period of those organs. Our results highlight the importance of co-evolution of diverse organs during critical periods of perinatal development in primates.
Collapse
Affiliation(s)
- Wenqian Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Wei Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Manman Zhao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Christoph W Turck
- Max Planck Institute of Psychiatry, Proteomics and Biomarkers, Munich, Germany
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Guang-Zhong Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, China.,CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
29
|
Brohard-Julien S, Frouin V, Meyer V, Chalabi S, Deleuze JF, Le Floch E, Battail C. Region-specific expression of young small-scale duplications in the human central nervous system. BMC Ecol Evol 2021; 21:59. [PMID: 33882820 PMCID: PMC8059171 DOI: 10.1186/s12862-021-01794-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The duplication of genes is one of the main genetic mechanisms that led to the gain in complexity of biological tissue. Although the implication of duplicated gene expression in brain evolution was extensively studied through comparisons between organs, their role in the regional specialization of the adult human central nervous system has not yet been well described. RESULTS Our work explored intra-organ expression properties of paralogs through multiple territories of the human central nervous system (CNS) using transcriptome data generated by the Genotype-Tissue Expression (GTEx) consortium. Interestingly, we found that paralogs were associated with region-specific expression in CNS, suggesting their involvement in the differentiation of these territories. Beside the influence of gene expression level on region-specificity, we observed the contribution of both duplication age and duplication type to the CNS region-specificity of paralogs. Indeed, we found that small scale duplicated genes (SSDs) and in particular ySSDs (SSDs younger than the 2 rounds of whole genome duplications) were more CNS region-specific than other paralogs. Next, by studying the two paralogs of ySSD pairs, we observed that when they were region-specific, they tend to be specific to the same region more often than for other paralogs, showing the high co-expression of ySSD pairs. The extension of this analysis to families of paralogs showed that the families with co-expressed gene members (i.e. homogeneous families) were enriched in ySSDs. Furthermore, these homogeneous families tended to be region-specific families, where the majority of their gene members were specifically expressed in the same region. CONCLUSIONS Overall, our study suggests the involvement of ySSDs in the differentiation of human central nervous system territories. Therefore, we show the relevance of exploring region-specific expression of paralogs at the intra-organ level.
Collapse
Affiliation(s)
- Solène Brohard-Julien
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut François Jacob, CEA, Université Paris-Saclay, Evry, France.
- UNATI, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France.
- Université Paris-Sud, Université Paris-Saclay, Orsay, France.
| | - Vincent Frouin
- UNATI, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Vincent Meyer
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Smahane Chalabi
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
- Centre d'Etude du Polymorphisme Humain, Fondation Jean Dausset, Paris, France
- Centre de Référence, d'Innovation, d'expertise et de transfert (CREFIX), Evry, France
| | - Edith Le Floch
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut François Jacob, CEA, Université Paris-Saclay, Evry, France.
| | - Christophe Battail
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut François Jacob, CEA, Université Paris-Saclay, Evry, France.
- CEA, Univ. Grenoble Alpes, INSERM, IRIG, Biology of Cancer and Infection UMR1292, 38000, Grenoble, France.
| |
Collapse
|
30
|
Ma Y, Liu S, Gao J, Chen C, Zhang X, Yuan H, Chen Z, Yin X, Sun C, Mao Y, Zhou F, Shao Y, Liu Q, Xu J, Cheng L, Yu D, Li P, Yi P, He J, Geng G, Guo Q, Si Y, Zhao H, Li H, Banes GL, Liu H, Nakamura Y, Kurita R, Huang Y, Wang X, Wang F, Fang G, Engel JD, Shi L, Zhang YE, Yu J. Genome-wide analysis of pseudogenes reveals HBBP1's human-specific essentiality in erythropoiesis and implication in β-thalassemia. Dev Cell 2021; 56:478-493.e11. [PMID: 33476555 DOI: 10.1016/j.devcel.2020.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/16/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023]
Abstract
The human genome harbors 14,000 duplicated or retroposed pseudogenes. Given their functionality as regulatory RNAs and low conservation, we hypothesized that pseudogenes could shape human-specific phenotypes. To test this, we performed co-expression analyses and found that pseudogene exhibited tissue-specific expression, especially in the bone marrow. By incorporating genetic data, we identified a bone-marrow-specific duplicated pseudogene, HBBP1 (η-globin), which has been implicated in β-thalassemia. Extensive functional assays demonstrated that HBBP1 is essential for erythropoiesis by binding the RNA-binding protein (RBP), HNRNPA1, to upregulate TAL1, a key regulator of erythropoiesis. The HBBP1/TAL1 interaction contributes to a milder symptom in β-thalassemia patients. Comparative studies further indicated that the HBBP1/TAL1 interaction is human-specific. Genome-wide analyses showed that duplicated pseudogenes are often bound by RBPs and less commonly bound by microRNAs compared with retropseudogenes. Taken together, we not only demonstrate that pseudogenes can drive human evolution but also provide insights on their functional landscapes.
Collapse
Affiliation(s)
- Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China.
| | - Siqi Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Chunyan Chen
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- Laboratory of Molecular Cardiology & Medical Molecular Imaging, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hao Yuan
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongyang Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xiaolin Yin
- 923rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Guangxi 530021, China
| | - Chenguang Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yanan Mao
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanqi Zhou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yi Shao
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- Shantou University Medical College, Shantou 515041, China
| | - Jiayue Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Li Cheng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China
| | - Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingping Li
- 923rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Guangxi 530021, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Jiahuan He
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Guangfeng Geng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Qing Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Hualu Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Haipeng Li
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Graham L Banes
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; Wisconsin National Primate Research Center, University of Wisconsin Madison, 1220 Capitol Court, Madison, WI 53715, USA
| | - He Liu
- Beijing Key Laboratory of Captive Wildlife Technology, Beijing Zoo, Beijing 100044, China
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo 105-8521, Japan
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Gang Fang
- NYU Shanghai, 1555 Century Avenue, Shanghai 20012, China; Department of Biology, 1009 Silver Center, New York University, New York, NY 10003, USA; School of Computer Science and Software Engineering, East China Normal University, Shanghai 200062, China
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
31
|
The new chimeric chiron genes evolved essential roles in zebrafish embryonic development by regulating NAD + levels. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1929-1948. [PMID: 33521859 DOI: 10.1007/s11427-020-1851-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
The origination of new genes is important for generating genetic novelties for adaptive evolution and biological diversity. However, their potential roles in embryonic development, evolutionary processes into ancient networks, and contributions to adaptive evolution remain poorly investigated. Here, we identified a novel chimeric gene family, the chiron family, and explored its genetic basis and functional evolution underlying the adaptive evolution of Danioninae fishes. The ancestral chiron gene originated through retroposition of nampt in Danioninae 48-54 million years ago (Mya) and expanded into five duplicates (chiron1-5) in zebrafish 1-4 Mya. The chiron genes (chirons) likely originated in embryonic development and gradually extended their expression in the testis. Functional experiments showed that chirons were essential for zebrafish embryo development. By integrating into the NAD+ synthesis pathway, chirons could directly catalyze the NAD+ rate-limiting reaction and probably impact two energy metabolism genes (nmnat1 and naprt) to be under positive selection in Danioninae fishes. Together, these results mainly demonstrated that the origin of new chimeric chiron genes may be involved in adaptive evolution by integrating and impacting the NAD+ biosynthetic pathway. This coevolution may contribute to the physiological adaptation of Danioninae fishes to widespread and varied biomes in Southeast Asian.
Collapse
|
32
|
Kershner JR. An Evolutionary Perspective of Dyslexia, Stress, and Brain Network Homeostasis. Front Hum Neurosci 2021; 14:575546. [PMID: 33551772 PMCID: PMC7859477 DOI: 10.3389/fnhum.2020.575546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Evolution fuels interindividual variability in neuroplasticity, reflected in brain anatomy and functional connectivity of the expanding neocortical regions subserving reading ability. Such variability is orchestrated by an evolutionarily conserved, competitive balance between epigenetic, stress-induced, and cognitive-growth gene expression programs. An evolutionary developmental model of dyslexia, suggests that prenatal and childhood subclinical stress becomes a risk factor for dyslexia when physiological adaptations to stress promoting adaptive fitness, may attenuate neuroplasticity in the brain regions recruited for reading. Stress has the potential to blunt the cognitive-growth functions of the predominantly right hemisphere Ventral and Dorsal attention networks, which are primed with high entropic levels of synaptic plasticity, and are critical for acquiring beginning reading skills. The attentional networks, in collaboration with the stress-responsive Default Mode network, modulate the entrainment and processing of the low frequency auditory oscillations (1-8 Hz) and visuospatial orienting linked etiologically to dyslexia. Thus, dyslexia may result from positive, but costly adaptations to stress system dysregulation: protective measures that reset the stress/growth balance of processing to favor the Default Mode network, compromising development of the attentional networks. Such a normal-variability conceptualization of dyslexia is at odds with the frequent assumption that dyslexia results from a neurological abnormality. To put the normal-variability model in the broader perspective of the state of the field, a traditional evolutionary account of dyslexia is presented to stimulate discussion of the scientific merits of the two approaches.
Collapse
Affiliation(s)
- John R. Kershner
- Department of Applied Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Amalgamated cross-species transcriptomes reveal organ-specific propensity in gene expression evolution. Nat Commun 2020; 11:4459. [PMID: 32900997 PMCID: PMC7479108 DOI: 10.1038/s41467-020-18090-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
The origins of multicellular physiology are tied to evolution of gene expression. Genes can shift expression as organisms evolve, but how ancestral expression influences altered descendant expression is not well understood. To examine this, we amalgamate 1,903 RNA-seq datasets from 182 research projects, including 6 organs in 21 vertebrate species. Quality control eliminates project-specific biases, and expression shifts are reconstructed using gene-family-wise phylogenetic Ornstein-Uhlenbeck models. Expression shifts following gene duplication result in more drastic changes in expression properties than shifts without gene duplication. The expression properties are tightly coupled with protein evolutionary rate, depending on whether and how gene duplication occurred. Fluxes in expression patterns among organs are nonrandom, forming modular connections that are reshaped by gene duplication. Thus, if expression shifts, ancestral expression in some organs induces a strong propensity for expression in particular organs in descendants. Regardless of whether the shifts are adaptive or not, this supports a major role for what might be termed preadaptive pathways of gene expression evolution.
Collapse
|
34
|
Powell SK, O'Shea CP, Shannon SR, Akbarian S, Brennand KJ. Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells. ADVANCES IN NEUROBIOLOGY 2020; 25:155-206. [PMID: 32578147 DOI: 10.1007/978-3-030-45493-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a chronic and severe neuropsychiatric condition manifested by cognitive, emotional, affective, perceptual, and behavioral abnormalities. Despite decades of research, the biological substrates driving the signs and symptoms of the disorder remain elusive, thus hampering progress in the development of treatments aimed at disease etiologies. The recent emergence of human induced pluripotent stem cell (hiPSC)-based models has provided the field with a highly innovative approach to generate, study, and manipulate living neural tissue derived from patients, making possible the exploration of fundamental roles of genes and early-life stressors in disease-relevant cell types. Here, we begin with a brief overview of the clinical, epidemiological, and genetic aspects of the condition, with a focus on schizophrenia as a neurodevelopmental disorder. We then highlight relevant technical advancements in hiPSC models and assess novel findings attained using hiPSC-based approaches and their implications for disease biology and treatment innovation. We close with a critical appraisal of the developments necessary for both further expanding knowledge of schizophrenia and the translation of new insights into therapeutic innovations.
Collapse
Affiliation(s)
- Samuel K Powell
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Callan P O'Shea
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Rose Shannon
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
35
|
Lee YCG, Ventura IM, Rice GR, Chen DY, Colmenares SU, Long M. Rapid Evolution of Gained Essential Developmental Functions of a Young Gene via Interactions with Other Essential Genes. Mol Biol Evol 2020; 36:2212-2226. [PMID: 31187122 DOI: 10.1093/molbev/msz137] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
New genes are of recent origin and only present in a subset of species in a phylogeny. Accumulated evidence suggests that new genes, like old genes that are conserved across species, can also take on important functions and be essential for the survival and reproductive success of organisms. Although there are detailed analyses of the mechanisms underlying new genes' gaining fertility functions, how new genes rapidly become essential for viability remains unclear. We focused on a young retro-duplicated gene (CG7804, which we named Cocoon) in Drosophila that originated between 4 and 10 Ma. We found that, unlike its evolutionarily conserved parental gene, Cocoon has evolved under positive selection and accumulated many amino acid differences at functional sites from the parental gene. Despite its young age, Cocoon is essential for the survival of Drosophila melanogaster at multiple developmental stages, including the critical embryonic stage, and its expression is essential in different tissues from those of its parental gene. Functional genomic analyses found that Cocoon acquired unique DNA-binding sites and has a contrasting effect on gene expression to that of its parental gene. Importantly, Cocoon binding predominantly locates at genes that have other essential functions and/or have multiple gene-gene interactions, suggesting that Cocoon acquired novel essential function to survival through forming interactions that have large impacts on the gene interaction network. Our study is an important step toward deciphering the evolutionary trajectory by which new genes functionally diverge from parental genes and become essential.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Iuri M Ventura
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL.,CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Gavin R Rice
- Department of Evolution and Ecology, University of California, Davis, Davis, CA.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Dong-Yuan Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Serafin U Colmenares
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL
| |
Collapse
|
36
|
Mordaunt CE, Park BY, Bakulski KM, Feinberg JI, Croen LA, Ladd-Acosta C, Newschaffer CJ, Volk HE, Ozonoff S, Hertz-Picciotto I, LaSalle JM, Schmidt RJ, Fallin MD. A meta-analysis of two high-risk prospective cohort studies reveals autism-specific transcriptional changes to chromatin, autoimmune, and environmental response genes in umbilical cord blood. Mol Autism 2019; 10:36. [PMID: 31673306 PMCID: PMC6814108 DOI: 10.1186/s13229-019-0287-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/08/2019] [Indexed: 12/17/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects more than 1% of children in the USA. ASD risk is thought to arise from both genetic and environmental factors, with the perinatal period as a critical window. Understanding early transcriptional changes in ASD would assist in clarifying disease pathogenesis and identifying biomarkers. However, little is known about umbilical cord blood gene expression profiles in babies later diagnosed with ASD compared to non-typically developing and non-ASD (Non-TD) or typically developing (TD) children. Methods Genome-wide transcript levels were measured by Affymetrix Human Gene 2.0 array in RNA from cord blood samples from both the Markers of Autism Risk in Babies-Learning Early Signs (MARBLES) and the Early Autism Risk Longitudinal Investigation (EARLI) high-risk pregnancy cohorts that enroll younger siblings of a child previously diagnosed with ASD. Younger siblings were diagnosed based on assessments at 36 months, and 59 ASD, 92 Non-TD, and 120 TD subjects were included. Using both differential expression analysis and weighted gene correlation network analysis, gene expression between ASD and TD, and between Non-TD and TD, was compared within each study and via meta-analysis. Results While cord blood gene expression differences comparing either ASD or Non-TD to TD did not reach genome-wide significance, 172 genes were nominally differentially expressed between ASD and TD cord blood (log2(fold change) > 0.1, p < 0.01). These genes were significantly enriched for functions in xenobiotic metabolism, chromatin regulation, and systemic lupus erythematosus (FDR q < 0.05). In contrast, 66 genes were nominally differentially expressed between Non-TD and TD, including 8 genes that were also differentially expressed in ASD. Gene coexpression modules were significantly correlated with demographic factors and cell type proportions. Limitations ASD-associated gene expression differences identified in this study are subtle, as cord blood is not the main affected tissue, it is composed of many cell types, and ASD is a heterogeneous disorder. Conclusions This is the first study to identify gene expression differences in cord blood specific to ASD through a meta-analysis across two prospective pregnancy cohorts. The enriched gene pathways support involvement of environmental, immune, and epigenetic mechanisms in ASD etiology.
Collapse
Affiliation(s)
- Charles E Mordaunt
- 1Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Bo Y Park
- 2Department of Public Health, California State University, Fullerton, CA USA
| | - Kelly M Bakulski
- 3Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Jason I Feinberg
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Lisa A Croen
- 5Division of Research and Autism Research Program, Kaiser Permanente Northern California, Oakland, CA USA
| | | | - Craig J Newschaffer
- 6Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, University Park, PA USA
| | - Heather E Volk
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Sally Ozonoff
- 7Psychiatry and Behavioral Sciences and MIND Institute, University of California, Davis, CA USA
| | - Irva Hertz-Picciotto
- 8Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - Janine M LaSalle
- 1Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Rebecca J Schmidt
- 8Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - M Daniele Fallin
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
37
|
Xu HB, Li YX, Li Y, Otecko NO, Zhang YP, Mao B, Wu DD. Origin of new genes after zygotic genome activation in vertebrate. J Mol Cell Biol 2019; 10:139-146. [PMID: 29281098 DOI: 10.1093/jmcb/mjx057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
New genes are drivers of evolutionary innovation and phenotypic evolution. Expression of new genes in early development raises the possibility that new genes could originate and be recruited for functions in embryonic development, but this remains undocumented. Here, based on temporal gene expression at different developmental stages in Xenopus tropicalis, we found that young protein-coding genes were significantly enriched for expression in developmental stages occurring after the midblastula transition (MBT), and displayed a decreasing trend in abundance in the subsequent stages after MBT. To complement the finding, we demonstrate essential functional attributes of a young orphan gene, named as Fog2, in morphological development. Our data indicate that new genes could originate after MBT and be recruited for functions in embryonic development, and thus provide insights for better understanding of the origin, evolution, and function of new genes.
Collapse
Affiliation(s)
- Hai-Bo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,College of Life Science, Anhui University, Hefei, China
| | - Yong-Xin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
38
|
Murphy E. No Country for Oldowan Men: Emerging Factors in Language Evolution. Front Psychol 2019; 10:1448. [PMID: 31275219 PMCID: PMC6594215 DOI: 10.3389/fpsyg.2019.01448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/06/2019] [Indexed: 01/14/2023] Open
Abstract
Language evolution has long been researched. I will review a number of broad, emerging research directions which arguably have the potential to contribute to our understanding of language evolution. Emerging topics in genomics and neurolinguistics are explored, and human-specific levels of braincase globularity - and the broader process of self-domestication within which globularity seems capable of being encapsulated - will be argued to be the central pillars of any satisfactory and interdisciplinary model of language evolution.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom
| |
Collapse
|
39
|
Affiliation(s)
- Stephen Branden Van Oss
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
40
|
Topological evolution of coexpression networks by new gene integration maintains the hierarchical and modular structures in human ancestors. SCIENCE CHINA-LIFE SCIENCES 2019; 62:594-608. [PMID: 30919280 DOI: 10.1007/s11427-019-9483-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 12/23/2022]
Abstract
We analyze the global structure and evolution of human gene coexpression networks driven by new gene integration. When the Pearson correlation coefficient is greater than or equal to 0.5, we find that the coexpression network consists of 334 small components and one "giant" connected subnet comprising of 6317 interacting genes. This network shows the properties of power-law degree distribution and small-world. The average clustering coefficient of younger genes is larger than that of the elderly genes (0.6685 vs. 0.5762). Particularly, we find that the younger genes with a larger degree also show a property of hierarchical architecture. The younger genes play an important role in the overall pivotability of the network and this network contains few redundant duplicate genes. Moreover, we find that gene duplication and orphan genes are two dominant evolutionary forces in shaping this network. Both the duplicate genes and orphan genes develop new links through a "rich-gets-richer" mechanism. With the gradual integration of new genes into the ancestral network, most of the topological structure features of the network would gradually increase. However, the exponent of degree distribution and modularity coefficient of the whole network do not change significantly, which implies that the evolution of coexpression networks maintains the hierarchical and modular structures in human ancestors.
Collapse
|
41
|
Shao Y, Chen C, Shen H, He BZ, Yu D, Jiang S, Zhao S, Gao Z, Zhu Z, Chen X, Fu Y, Chen H, Gao G, Long M, Zhang YE. GenTree, an integrated resource for analyzing the evolution and function of primate-specific coding genes. Genome Res 2019; 29:682-696. [PMID: 30862647 PMCID: PMC6442393 DOI: 10.1101/gr.238733.118] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
The origination of new genes contributes to phenotypic evolution in humans. Two major challenges in the study of new genes are the inference of gene ages and annotation of their protein-coding potential. To tackle these challenges, we created GenTree, an integrated online database that compiles age inferences from three major methods together with functional genomic data for new genes. Genome-wide comparison of the age inference methods revealed that the synteny-based pipeline (SBP) is most suited for recently duplicated genes, whereas the protein-family–based methods are useful for ancient genes. For SBP-dated primate-specific protein-coding genes (PSGs), we performed manual evaluation based on published PSG lists and showed that SBP generated a conservative data set of PSGs by masking less reliable syntenic regions. After assessing the coding potential based on evolutionary constraint and peptide evidence from proteomic data, we curated a list of 254 PSGs with different levels of protein evidence. This list also includes 41 candidate misannotated pseudogenes that encode primate-specific short proteins. Coexpression analysis showed that PSGs are preferentially recruited into organs with rapidly evolving pathways such as spermatogenesis, immune response, mother–fetus interaction, and brain development. For brain development, primate-specific KRAB zinc-finger proteins (KZNFs) are specifically up-regulated in the mid-fetal stage, which may have contributed to the evolution of this critical stage. Altogether, hundreds of PSGs are either recruited to processes under strong selection pressure or to processes supporting an evolving novel organ.
Collapse
Affiliation(s)
- Yi Shao
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Chen
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Shen
- College of Computers, Hunan University of Technology, Zhuzhou Hunan 412007, China
| | - Bin Z He
- FAS Center for Systems Biology and Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Bioinformatics, Peking University, Beijing 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Shilei Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiqiang Gao
- University of Chinese Academy of Sciences, Beijing 100049, China.,National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Xi Chen
- Wuhan Institute of Biotechnology, Wuhan 430072, China.,Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Yan Fu
- University of Chinese Academy of Sciences, Beijing 100049, China.,National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hua Chen
- University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Ge Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Bioinformatics, Peking University, Beijing 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
42
|
Rapid evolution of protein diversity by de novo origination in Oryza. Nat Ecol Evol 2019; 3:679-690. [PMID: 30858588 DOI: 10.1038/s41559-019-0822-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
New protein-coding genes that arise de novo from non-coding DNA sequences contribute to protein diversity. However, de novo gene origination is challenging to study as it requires high-quality reference genomes for closely related species, evidence for ancestral non-coding sequences, and transcription and translation of the new genes. High-quality genomes of 13 closely related Oryza species provide unprecedented opportunities to understand de novo origination events. Here, we identify a large number of young de novo genes with discernible recent ancestral non-coding sequences and evidence of translation. Using pipelines examining the synteny relationship between genomes and reciprocal-best whole-genome alignments, we detected at least 175 de novo open reading frames in the focal species O. sativa subspecies japonica, which were all detected in RNA sequencing-based transcriptomes. Mass spectrometry-based targeted proteomics and ribosomal profiling show translational evidence for 57% of the de novo genes. In recent divergence of Oryza, an average of 51.5 de novo genes per million years were generated and retained. We observed evolutionary patterns in which excess indels and early transcription were favoured in origination with a stepwise formation of gene structure. These data reveal that de novo genes contribute to the rapid evolution of protein diversity under positive selection.
Collapse
|
43
|
Exaptation at the molecular genetic level. SCIENCE CHINA-LIFE SCIENCES 2018; 62:437-452. [PMID: 30798493 DOI: 10.1007/s11427-018-9447-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
The realization that body parts of animals and plants can be recruited or coopted for novel functions dates back to, or even predates the observations of Darwin. S.J. Gould and E.S. Vrba recognized a mode of evolution of characters that differs from adaptation. The umbrella term aptation was supplemented with the concept of exaptation. Unlike adaptations, which are restricted to features built by selection for their current role, exaptations are features that currently enhance fitness, even though their present role was not a result of natural selection. Exaptations can also arise from nonaptations; these are characters which had previously been evolving neutrally. All nonaptations are potential exaptations. The concept of exaptation was expanded to the molecular genetic level which aided greatly in understanding the enormous potential of neutrally evolving repetitive DNA-including transposed elements, formerly considered junk DNA-for the evolution of genes and genomes. The distinction between adaptations and exaptations is outlined in this review and examples are given. Also elaborated on is the fact that such distinctions are sometimes more difficult to determine; this is a widespread phenomenon in biology, where continua abound and clear borders between states and definitions are rare.
Collapse
|
44
|
Human-Specific NOTCH2NL Genes Expand Cortical Neurogenesis through Delta/Notch Regulation. Cell 2018; 173:1370-1384.e16. [PMID: 29856955 PMCID: PMC6092419 DOI: 10.1016/j.cell.2018.03.067] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/16/2018] [Accepted: 03/26/2018] [Indexed: 12/03/2022]
Abstract
The cerebral cortex underwent rapid expansion and increased complexity during recent hominid evolution. Gene duplications constitute a major evolutionary force, but their impact on human brain development remains unclear. Using tailored RNA sequencing (RNA-seq), we profiled the spatial and temporal expression of hominid-specific duplicated (HS) genes in the human fetal cortex and identified a repertoire of 35 HS genes displaying robust and dynamic patterns during cortical neurogenesis. Among them NOTCH2NL, human-specific paralogs of the NOTCH2 receptor, stood out for their ability to promote cortical progenitor maintenance. NOTCH2NL promote the clonal expansion of human cortical progenitors, ultimately leading to higher neuronal output. At the molecular level, NOTCH2NL function by activating the Notch pathway through inhibition of cis Delta/Notch interactions. Our study uncovers a large repertoire of recently evolved genes active during human corticogenesis and reveals how human-specific NOTCH paralogs may have contributed to the expansion of the human cortex. Identification of >35 HS protein-coding genes expressed during human corticogenesis NOTCH2NL human-specific paralogs of NOTCH2 expressed in human cortical progenitors NOTCH2NL genes expand human cortical progenitors and their neuronal output NOTCH2NL promotes Notch signaling through cis-inhibition of Delta/Notch interactions
Collapse
|
45
|
Levchenko A, Kanapin A, Samsonova A, Gainetdinov RR. Human Accelerated Regions and Other Human-Specific Sequence Variations in the Context of Evolution and Their Relevance for Brain Development. Genome Biol Evol 2018; 10:166-188. [PMID: 29149249 PMCID: PMC5767953 DOI: 10.1093/gbe/evx240] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2017] [Indexed: 12/24/2022] Open
Abstract
The review discusses, in a format of a timeline, the studies of different types of genetic variants, present in Homo sapiens, but absent in all other primate, mammalian, or vertebrate species, tested so far. The main characteristic of these variants is that they are found in regions of high evolutionary conservation. These sequence variations include single nucleotide substitutions (called human accelerated regions), deletions, and segmental duplications. The rationale for finding such variations in the human genome is that they could be responsible for traits, specific to our species, of which the human brain is the most remarkable. As became obvious, the vast majority of human-specific single nucleotide substitutions are found in noncoding, likely regulatory regions. A number of genes, associated with these human-specific alleles, often through novel enhancer activity, were in fact shown to be implicated in human-specific development of certain brain areas, including the prefrontal cortex. Human-specific deletions may remove regulatory sequences, such as enhancers. Segmental duplications, because of their large size, create new coding sequences, like new functional paralogs. Further functional study of these variants will shed light on evolution of our species, as well as on the etiology of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
| | - Alexander Kanapin
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Department of Oncology, University of Oxford, United Kingdom
| | - Anastasia Samsonova
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Department of Oncology, University of Oxford, United Kingdom
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia
| |
Collapse
|
46
|
Using Human iPSC-Derived Neurons to Uncover Activity-Dependent Non-Coding RNAs. Genes (Basel) 2017; 8:genes8120401. [PMID: 29261115 PMCID: PMC5748719 DOI: 10.3390/genes8120401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/27/2022] Open
Abstract
Humans are arguably the most complex organisms present on Earth with their ability to imagine, create, and problem solve. As underlying mechanisms enabling these capacities reside in the brain, it is not surprising that the brain has undergone an extraordinary increase in size and complexity within the last few million years. Human induced pluripotent stem cells (hiPSCs) can be differentiated into many cell types that were virtually inaccessible historically, such as neurons. Here, we used hiPSC-derived neurons to investigate the cellular response to activation at the transcript level. Neuronal activation was performed with potassium chloride (KCl) and its effects were assessed by RNA sequencing. Our results revealed the involvement of long non-coding RNAs and human-specific genetic variants in response to neuronal activation and help validate hiPSCs as a valuable resource for the study of human neuronal networks. In summary, we find that genes affected by KCl-triggered activation are implicated in pathways that drive cell proliferation, differentiation, and the emergence of specialized morphological features. Interestingly, non-coding RNAs of various classes are amongst the most highly expressed genes in activated hiPSC-derived neurons, thus suggesting these play crucial roles in neural pathways and may significantly contribute to the unique functioning of the human brain.
Collapse
|
47
|
Zhang SJ, Wang C, Yan S, Fu A, Luan X, Li Y, Sunny Shen Q, Zhong X, Chen JY, Wang X, Chin-Ming Tan B, He A, Li CY. Isoform Evolution in Primates through Independent Combination of Alternative RNA Processing Events. Mol Biol Evol 2017; 34:2453-2468. [PMID: 28957512 PMCID: PMC5850651 DOI: 10.1093/molbev/msx212] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent RNA-seq technology revealed thousands of splicing events that are under rapid evolution in primates, whereas the reliability of these events, as well as their combination on the isoform level, have not been adequately addressed due to its limited sequencing length. Here, we performed comparative transcriptome analyses in human and rhesus macaque cerebellum using single molecule long-read sequencing (Iso-seq) and matched RNA-seq. Besides 359 million RNA-seq reads, 4,165,527 Iso-seq reads were generated with a mean length of 14,875 bp, covering 11,466 human genes, and 10,159 macaque genes. With Iso-seq data, we substantially expanded the repertoire of alternative RNA processing events in primates, and found that intron retention and alternative polyadenylation are surprisingly more prevalent in primates than previously estimated. We then investigated the combinatorial mode of these alternative events at the whole-transcript level, and found that the combination of these events is largely independent along the transcript, leading to thousands of novel isoforms missed by current annotations. Notably, these novel isoforms are selectively constrained in general, and 1,119 isoforms have even higher expression than the previously annotated major isoforms in human, indicating that the complexity of the human transcriptome is still significantly underestimated. Comparative transcriptome analysis further revealed 502 genes encoding selectively constrained, lineage-specific isoforms in human but not in rhesus macaque, linking them to some lineage-specific functions. Overall, we propose that the independent combination of alternative RNA processing events has contributed to complex isoform evolution in primates, which provides a new foundation for the study of phenotypic difference among primates.
Collapse
Affiliation(s)
- Shi-Jian Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.,Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Chenqu Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Science, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shouyu Yan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Aisi Fu
- Wuhan Institute of Biotechnology, Wuhan, Hubei, China
| | - Xuke Luan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Science, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yumei Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qing Sunny Shen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiaoming Zhong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jia-Yu Chen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences and Graduate Institute of Biomedical Sciences College of Medicine, Tao-Yuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Aibin He
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chuan-Yun Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
48
|
Kondo S, Vedanayagam J, Mohammed J, Eizadshenass S, Kan L, Pang N, Aradhya R, Siepel A, Steinhauer J, Lai EC. New genes often acquire male-specific functions but rarely become essential in Drosophila. Genes Dev 2017; 31:1841-1846. [PMID: 29051389 PMCID: PMC5695085 DOI: 10.1101/gad.303131.117] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022]
Abstract
In this study, Kondo et al. performed large-scale CRISPR/Cas9 mutagenesis of “conserved, essential” and “young, RNAi-lethal” genes and confirmed the lethality of conserved genes but not young genes. Additionally, two young gene mutants resulted in spermatogenesis and/or male sterility, indicating that young genes have a preferential impact on male reproductive system function. Relatively little is known about the in vivo functions of newly emerging genes, especially in metazoans. Although prior RNAi studies reported prevalent lethality among young gene knockdowns, our phylogenomic analyses reveal that young Drosophila genes are frequently restricted to the nonessential male reproductive system. We performed large-scale CRISPR/Cas9 mutagenesis of “conserved, essential” and “young, RNAi-lethal” genes and broadly confirmed the lethality of the former but the viability of the latter. Nevertheless, certain young gene mutants exhibit defective spermatogenesis and/or male sterility. Moreover, we detected widespread signatures of positive selection on young male-biased genes. Thus, young genes have a preferential impact on male reproductive system function.
Collapse
Affiliation(s)
- Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jeffrey Vedanayagam
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Jaaved Mohammed
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA.,Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA.,Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10021, USA
| | - Sogol Eizadshenass
- Department of Biology, Yeshiva University, New York, New York 10033, USA
| | - Lijuan Kan
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Nan Pang
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Rajaguru Aradhya
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Josefa Steinhauer
- Department of Biology, Yeshiva University, New York, New York 10033, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
49
|
Yao C, Yan H, Zhang X, Wang R. A database for orphan genes in Poaceae. Exp Ther Med 2017; 14:2917-2924. [PMID: 28966675 PMCID: PMC5615222 DOI: 10.3892/etm.2017.4918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/08/2017] [Indexed: 11/19/2022] Open
Abstract
Orphan genes refer to a group of protein-coding genes lacking recognizable homologs in the other organisms. Extensive studies have demonstrated that numerous newly sequenced genomes contain a significant number of orphan genes, which have important roles in plant's responses to the environment. Due to a lack of phylogenetic conservation, the origin of orphan genes and their functions are currently not well defined. In the present study, a Poaceae orphan genes database (POGD; http://bioinfo.ahau.edu.cn/pogd) was established to serve as a user-friendly web interface for entry browsing, searching and downloading orphan genes from various plants. Four Poaceae species, including Brachypodium distachyon, Oryza sativa, Sorghum bicolor and Zea mays, are included in the current version of POGD. The database provides gene descriptions (chromosome strands, physical location), gene product records (protein length, isoelectric point, molecular weight as well as gene and protein sequences) and functional annotations (cellular role, gene ontology category, subcellular localization prediction). Basic Local Alignment Search Tool and comparative analyses were also provided on the website. POGD will serve as a comprehensive and reliable repository, which will help uncover regulatory mechanisms of orphan genes and may assist in the development of comparative genomics in plant biology.
Collapse
Affiliation(s)
- Chensong Yao
- Graduate School, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Xiaodan Zhang
- School of Information and Computer Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Rongfu Wang
- Department of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| |
Collapse
|
50
|
Guschanski K, Warnefors M, Kaessmann H. The evolution of duplicate gene expression in mammalian organs. Genome Res 2017; 27:1461-1474. [PMID: 28743766 PMCID: PMC5580707 DOI: 10.1101/gr.215566.116] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 07/18/2017] [Indexed: 12/16/2022]
Abstract
Gene duplications generate genomic raw material that allows the emergence of novel functions, likely facilitating adaptive evolutionary innovations. However, global assessments of the functional and evolutionary relevance of duplicate genes in mammals were until recently limited by the lack of appropriate comparative data. Here, we report a large-scale study of the expression evolution of DNA-based functional gene duplicates in three major mammalian lineages (placental mammals, marsupials, egg-laying monotremes) and birds, on the basis of RNA sequencing (RNA-seq) data from nine species and eight organs. We observe dynamic changes in tissue expression preference of paralogs with different duplication ages, suggesting differential contribution of paralogs to specific organ functions during vertebrate evolution. Specifically, we show that paralogs that emerged in the common ancestor of bony vertebrates are enriched for genes with brain-specific expression and provide evidence for differential forces underlying the preferential emergence of young testis- and liver-specific expressed genes. Further analyses uncovered that the overall spatial expression profiles of gene families tend to be conserved, with several exceptions of pronounced tissue specificity shifts among lineage-specific gene family expansions. Finally, we trace new lineage-specific genes that may have contributed to the specific biology of mammalian organs, including the little-studied placenta. Overall, our study provides novel and taxonomically broad evidence for the differential contribution of duplicate genes to tissue-specific transcriptomes and for their importance for the phenotypic evolution of vertebrates.
Collapse
Affiliation(s)
- Katerina Guschanski
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, S-75105 Uppsala, Sweden
| | - Maria Warnefors
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| |
Collapse
|