1
|
Grüninger SL, Frommlet F. Half the price, twice the gain: How to simultaneously decrease animal numbers and increase precision with good experimental design. Lab Anim 2024; 58:411-418. [PMID: 39315538 PMCID: PMC11528980 DOI: 10.1177/00236772241260905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Animal research often involves experiments in which the effect of several factors on a particular outcome is of scientific interest. Many researchers approach such experiments by varying just one factor at a time. As a consequence, they design and analyze the experiments based on a pairwise comparison between two groups. However, this approach uses unreasonably large numbers of animals and leads to severe limitations in terms of the research questions that can be answered. Factorial designs and analyses offer a more efficient way to perform and assess experiments with multiple factors of interest. We will illustrate the basic principles behind these designs, discussing a simple example with only two factors before suggesting how to design and analyze more complex experiments involving larger numbers of factors based on multiway analysis of variance.
Collapse
Affiliation(s)
- Servan Luciano Grüninger
- Department of Mathematics, University of Zurich, Zurich, Switzerland
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland
| | - Florian Frommlet
- Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Kelter R. Reducing the false discovery rate of preclinical animal research with Bayesian statistical decision criteria. Stat Methods Med Res 2023; 32:1880-1901. [PMID: 37519294 PMCID: PMC10563376 DOI: 10.1177/09622802231184636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The success of preclinical research hinges on exploratory and confirmatory animal studies. Traditional null hypothesis significance testing is a common approach to eliminate the chaff from a collection of drugs, so that only the most promising treatments are funneled through to clinical research phases. Balancing the number of false discoveries and false omissions is an important aspect to consider during this process. In this paper, we compare several preclinical research pipelines, either based on null hypothesis significance testing or based on Bayesian statistical decision criteria. We build on a recently published large-scale meta-analysis of reported effect sizes in preclinical animal research and elicit a non-informative prior distribution under which both approaches are compared. After correcting for publication bias and shrinkage of effect sizes in replication studies, simulations show that (i) a shift towards statistical approaches which explicitly incorporate the minimum clinically important difference reduces the false discovery rate of frequentist approaches and (ii) a shift towards Bayesian statistical decision criteria can improve the reliability of preclinical animal research by reducing the number of false-positive findings. It is shown that these benefits hold while keeping the number of experimental units low which are required for a confirmatory follow-up study. Results show that Bayesian statistical decision criteria can help in improving the reliability of preclinical animal research and should be considered more frequently in practice.
Collapse
Affiliation(s)
- Riko Kelter
- Department of Mathematics, University of Siegen, Germany
| |
Collapse
|
3
|
Gonçalves S, Hathway GJ, Woodhams SG, Chapman V, Bast T. No Evidence for Cognitive Impairment in an Experimental Rat Model of Knee Osteoarthritis and Associated Chronic Pain. THE JOURNAL OF PAIN 2023; 24:1478-1492. [PMID: 37044295 DOI: 10.1016/j.jpain.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Although chronic pain states have been associated with impaired cognitive functions, including memory and cognitive flexibility, the cognitive effects of osteoarthritis (OA) pain remain to be clarified. The aim of this study was to measure cognitive function in the mono-iodoacetate (MIA) rat model of chronic OA-like knee pain. We used young adult male Lister hooded rats, which are well-suited for cognitive testing. Rats received either a unilateral knee injection of MIA (3 mg/50 µL) or saline as control. Joint pain at rest was assessed for up to 12 weeks, using weight-bearing asymmetry, and referred pain at a distal site, using determination of hindpaw withdrawal thresholds. The watermaze delayed-matching-to-place test of rapid place learning, novel object recognition memory assay, and an operant response-shift and -reversal task were used to measure memory and behavioral flexibility. Open-field locomotor activity, startle response, and prepulse inhibition were also measured for comparison. MIA-injected rats showed markedly reduced weight-bearing on the injured limb, as well as pronounced cartilage damage and synovitis, but interestingly no changes in paw withdrawal threshold. Rearing was reduced, but otherwise, locomotor activity was normal and no changes in startle and prepulse inhibition were detected. MIA-injected rats had intact watermaze delayed-matching-to-place performance, suggesting no substantial change in hippocampal function, and there were no changes in novel object recognition memory or performance on the operant task of behavioral flexibility. Our finding that OA-like pain does not alter hippocampal function, unlike other chronic pain conditions, is consistent with human neuroimaging findings. PERSPECTIVE: Young adult rats with OA-like knee pain showed no impairments in hippocampal memory function and behavioral flexibility, suggesting that OA pain impacts cognitive functions less than other chronic pain conditions. In patients, OA pain may interact with other factors (e.g., age, socio-economic factors, and medication) to impair cognition.
Collapse
Affiliation(s)
- Sara Gonçalves
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Gareth J Hathway
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Stephen G Woodhams
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Victoria Chapman
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Tobias Bast
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; School of Psychology and Neuroscience at Nottingham, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
4
|
Piper SK, Zocholl D, Toelch U, Roehle R, Stroux A, Hoessler J, Zinke A, Konietschke F. Statistical review of animal trials-A guideline. Biom J 2023; 65:e2200061. [PMID: 36071025 DOI: 10.1002/bimj.202200061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/25/2022] [Accepted: 08/14/2022] [Indexed: 11/11/2022]
Abstract
Any experiment involving living organisms requires justification of the need and moral defensibleness of the study. Statistical planning, design, and sample size calculation of the experiment are no less important review criteria than general medical and ethical points to consider. Errors made in the statistical planning and data evaluation phase can have severe consequences on both results and conclusions. They might proliferate and thus impact future trials-an unintended outcome of fundamental research with profound ethical consequences. Unified statistical standards are currently missing for animal review boards in Germany. In order to accompany, we developed a biometric form to be filled and handed in with the proposal at the concerned local authority on animal welfare. It addresses relevant points to consider for biostatistical planning of animal experiments and can help both the applicants and the reviewers in overseeing the entire experiment(s) planned. Furthermore, the form might also aid in meeting the current standards set by the 3+3R's principle of animal experimentation: Replacement, Reduction, Refinement as well as Robustness, Registration, and Reporting. The form has already been in use by the concerned local authority of animal welfare in Berlin, Germany. In addition, we provide reference to our user guide giving more detailed explanation and examples for each section of the biometric form. Unifying the set of biostatistical aspects will help both the applicants and the reviewers to equal standards and increase quality of preclinical research projects, also for translational, multicenter, or international studies.
Collapse
Affiliation(s)
- Sophie K Piper
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Informatics, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dario Zocholl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulf Toelch
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, QUEST Center for Responsible Research, Berlin, Germany
| | - Robert Roehle
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinical Trial Office, Berlin, Germany
| | - Andrea Stroux
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johanna Hoessler
- Landesamt für Gesundheit und Soziales, Referat für gesundheitlichen Verbraucherschutz, Berlin, Germany
| | - Anne Zinke
- Landesamt für Gesundheit und Soziales, Referat für gesundheitlichen Verbraucherschutz, Berlin, Germany
| | - Frank Konietschke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Jain MR, Patel RB, Prajapati KD, Vyas P, Bandyopadhyay D, Prajapati V, Bahekar R, Patel PN, Kawade HM, Kokare DM, Pawar V, Desai R. ZYKR1, a novel, potent, and peripherally selective kappa opioid receptor agonist reduces visceral pain and pruritus in animal models. Eur J Pharmacol 2022; 924:174961. [PMID: 35443192 DOI: 10.1016/j.ejphar.2022.174961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023]
Abstract
Opioid receptor agonists are effective analgesic agents. Central activation of the mu and/or kappa opioid receptors (KOR) is associated with CNS side effects, which limits their effectiveness. Recent studies indicated that peripherally restricted, selective KOR agonists were potent analgesics and devoid of CNS-related side effects. To confirm this hypothesis, we designed a novel, potent, and peripherally restricted KOR-selective agonist, ZYKR1. The analgesic efficacy, brain penetration and safety of ZYKR1 were assessed in pre-clinical models. ZYKR1 showed KOR agonistic activity in the cAMP assay, with an EC50 of 0.061 nM and more than 105-fold selectivity over the mu and delta opioid receptors (EC50 > 10 μM). ZYKR1 was not found to bind mu, delta opioid, and NOP receptors in radioligand binding assays. ZYKR1 produced concentration-dependent inhibition of electrically evoked contractions in isolated mouse vas deferens with an IC50 of 1.6 nM ZYKR1 showed peripheral restriction and potent analgesic efficacy in various in-vivo animal models (acetic acid induced visceral pain mouse model, ED50: 0.025 mg/kg, IV; ovariohysterectomy induced postoperative pain rat model, ED50: 0.023 mg/kg, IV; and C48/80 induced pruritus mouse model, ED50: 0.063 mg/kg, IV). In addition, ZYKR1 was devoid of motor coordination, physical dependence, dysphoria, and respiratory depression at 30, 400, 10 and 10-fold of efficacy dose, respectively. In conclusion, ZYKR1 has potent antinociceptive action in visceral pain and pruritus with limited CNS side effects in preclinical models owing to its peripheral restriction.
Collapse
Affiliation(s)
- Mukul R Jain
- Department of Pharmacology, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India.
| | - Rakesh B Patel
- Department of Pharmacology, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India; Department of Internal Medicine, University of Iowa, USA
| | - Kanaiyalal D Prajapati
- Department of Pharmacology, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India
| | - Purvi Vyas
- Department of Cell Biology, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India
| | - Debdutta Bandyopadhyay
- Department of Cell Biology, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India
| | - Vijay Prajapati
- Department of Medicinal Chemistry, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India
| | - Rajesh Bahekar
- Department of Medicinal Chemistry, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India
| | - Prakash N Patel
- Department of Pharmacokinetics, Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India
| | - Harish M Kawade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, MS, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, MS, India
| | - Vishwanath Pawar
- Department of Pharmacology, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India
| | - Ranjit Desai
- Department of Medicinal Chemistry, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382 213, Gujarat, India
| |
Collapse
|
6
|
Ghuman H, Perry N, Grice L, Gerwig M, Moorhead J, Nitzsche F, Poplawsky AJ, Ambrosio F, Modo M. Physical therapy exerts sub-additive and suppressive effects on intracerebral neural stem cell implantation in a rat model of stroke. J Cereb Blood Flow Metab 2022; 42:826-843. [PMID: 34826373 PMCID: PMC9254031 DOI: 10.1177/0271678x211062955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Intracerebral cell therapy (CT) is emerging as a new therapeutic paradigm for stroke. However, the impact of physical therapy (PT) on implanted cells and their ability to promote recovery remains poorly understood. To address this translational issue, a clinical-grade neural stem cell (NSC) line was implanted into peri-infarct tissue using MRI-defined injection sites, two weeks after stroke. PT in the form of aerobic exercise (AE) was administered 5 × per week post-implantation using a paradigm commonly applied in patients with stroke. A combined AE and CT exerted sub-additive therapeutic effects on sensory neglect, whereas AE suppressed CT effects on motor integration and grip strength. Behavioral testing emerged as a potentially major component for task integration. It is expected that this study will guide and inform the incorporation of PT in the design of clinical trials evaluating intraparenchymal NSCs implantation for stroke.
Collapse
Affiliation(s)
- Harmanvir Ghuman
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nikhita Perry
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lauren Grice
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Madeline Gerwig
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Moorhead
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Franziska Nitzsche
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Fabrisia Ambrosio
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Hogue O, Harvey T, Crozier D, Sonneborn C, Postle A, Block-Beach H, Somasundaram E, May FJ, Snyder Braun M, Pasadyn FL, King K, Johnson C, Dolansky MA, Obuchowski NA, Machado AG, Baker KB, Barnholtz-Sloan JS. Statistical practice and transparent reporting in the neurosciences: Preclinical motor behavioral experiments. PLoS One 2022; 17:e0265154. [PMID: 35312695 PMCID: PMC8936466 DOI: 10.1371/journal.pone.0265154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Longitudinal and behavioral preclinical animal studies generate complex data, which may not be well matched to statistical approaches common in this literature. Analyses that do not adequately account for complexity may result in overly optimistic study conclusions, with consequences for reproducibility and translational decision-making. Recent work interrogating methodological shortcomings in animal research has not yet comprehensively investigated statistical shortcomings in the analysis of complex longitudinal and behavioral data. To this end, the current cross-sectional meta-research study rigorously reviewed published mouse or rat controlled experiments for motor rehabilitation in three neurologic conditions to evaluate statistical choices and reporting. Medline via PubMed was queried in February 2020 for English-language articles published January 1, 2017- December 31, 2019. Included were articles that used rat or mouse models of stroke, Parkinson’s disease, or traumatic brain injury, employed a therapeutic controlled experimental design to determine efficacy, and assessed at least one functional behavioral assessment or global evaluation of function. 241 articles from 99 journals were evaluated independently by a team of nine raters. Articles were assessed for statistical handling of non-independence, animal attrition, outliers, ordinal data, and multiplicity. Exploratory analyses evaluated whether transparency or statistical choices differed as a function of journal factors. A majority of articles failed to account for sources of non-independence in the data (74–93%) and/or did not analytically account for mid-treatment animal attrition (78%). Ordinal variables were often treated as continuous (37%), outliers were predominantly not mentioned (83%), and plots often concealed the distribution of the data (51%) Statistical choices and transparency did not differ with regards to journal rank or reporting requirements. Statistical misapplication can result in invalid experimental findings and inadequate reporting obscures errors. Clinician-scientists evaluating preclinical work for translational promise should be mindful of commonplace errors. Interventions are needed to improve statistical decision-making in preclinical behavioral neurosciences research.
Collapse
Affiliation(s)
- Olivia Hogue
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| | - Tucker Harvey
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Dena Crozier
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Claire Sonneborn
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Abagail Postle
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- School of Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Hunter Block-Beach
- Cleveland State University, Cleveland, Ohio, United States of America
- Cleveland Clinic Community Care, Cleveland, Ohio, United States of America
| | - Eashwar Somasundaram
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Francis J. May
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, United States of America
- New York-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York, United States of America
| | - Monica Snyder Braun
- College of Public Health, Kent State University, Kent, Ohio, United States of America
| | - Felicia L. Pasadyn
- Department of Integrated Biology, Harvard College, Cambridge, Massachusetts, United States of America
| | - Khandi King
- College of Public Health, Kent State University, Kent, Ohio, United States of America
| | - Casandra Johnson
- College of Public Health, Kent State University, Kent, Ohio, United States of America
| | - Mary A. Dolansky
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, United States of America
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nancy A. Obuchowski
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Andre G. Machado
- Neurological Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Kenneth B. Baker
- Neurological Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jill S. Barnholtz-Sloan
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, United States of America
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States of America
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
8
|
Group sequential designs for in vivo studies: Minimizing animal numbers and handling uncertainty in power analysis. Res Vet Sci 2022; 145:248-254. [DOI: 10.1016/j.rvsc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 11/19/2022]
|
9
|
Hippocampal Disinhibition Reduces Contextual and Elemental Fear Conditioning While Sparing the Acquisition of Latent Inhibition. eNeuro 2022; 9:ENEURO.0270-21.2021. [PMID: 34980662 PMCID: PMC8805190 DOI: 10.1523/eneuro.0270-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Hippocampal neural disinhibition, i.e., reduced GABAergic inhibition, is a key feature of schizophrenia pathophysiology. The hippocampus is an important part of the neural circuitry that controls fear conditioning and can also modulate prefrontal and striatal mechanisms, including dopamine signaling, which play a role in salience modulation. Consequently, hippocampal neural disinhibition may contribute to impairments in fear conditioning and salience modulation reported in schizophrenia. Therefore, we examined the effect of ventral hippocampus (VH) disinhibition in male rats on fear conditioning and salience modulation, as reflected by latent inhibition (LI), in a conditioned emotional response (CER) procedure. A flashing light was used as the conditioned stimulus (CS), and conditioned suppression was used to index conditioned fear. In experiment 1, VH disinhibition via infusion of the GABA-A receptor antagonist picrotoxin before CS pre-exposure and conditioning markedly reduced fear conditioning to both the CS and context; LI was evident in saline-infused controls but could not be detected in picrotoxin-infused rats because of the low level of fear conditioning to the CS. In experiment 2, VH picrotoxin infusions only before CS pre-exposure did not affect the acquisition of fear conditioning or LI. Together, these findings indicate that VH neural disinhibition disrupts contextual and elemental fear conditioning, without affecting the acquisition of LI. The disruption of fear conditioning resembles aversive conditioning deficits reported in schizophrenia and may reflect a disruption of neural processing both within the hippocampus and in projection sites of the hippocampus.
Collapse
|
10
|
Higgins GA, Carroll NK, Brown M, MacMillan C, Silenieks LB, Thevarkunnel S, Izhakova J, Magomedova L, DeLannoy I, Sellers EM. Low Doses of Psilocybin and Ketamine Enhance Motivation and Attention in Poor Performing Rats: Evidence for an Antidepressant Property. Front Pharmacol 2021; 12:640241. [PMID: 33716753 PMCID: PMC7952974 DOI: 10.3389/fphar.2021.640241] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Long term benefits following short-term administration of high psychedelic doses of serotonergic and dissociative hallucinogens, typified by psilocybin and ketamine respectively, support their potential as treatments for psychiatric conditions such as major depressive disorder. The high psychedelic doses induce perceptual experiences which are associated with therapeutic benefit. There have also been anecdotal reports of these drugs being used at what are colloquially referred to as "micro" doses to improve mood and cognitive function, although currently there are recognized limitations to their clinical and preclinical investigation. In the present studies we have defined a low dose and plasma exposure range in rats for both ketamine (0.3-3 mg/kg [10-73 ng/ml]) and psilocybin/psilocin (0.05-0.1 mg/kg [7-12 ng/ml]), based on studies which identified these as sub-threshold for the induction of behavioral stereotypies. Tests of efficacy were focused on depression-related endophenotypes of anhedonia, amotivation and cognitive dysfunction using low performing male Long Evans rats trained in two food motivated tasks: a progressive ratio (PR) and serial 5-choice (5-CSRT) task. Both acute doses of ketamine (1-3 mg/kg IP) and psilocybin (0.05-0.1 mg/kg SC) pretreatment increased break point for food (PR task), and improved attentional accuracy and a measure of impulsive action (5-CSRT task). In each case, effect size was modest and largely restricted to test subjects characterized as "low performing". Furthermore, both drugs showed a similar pattern of effect across both tests. The present studies provide a framework for the future study of ketamine and psilocybin at low doses and plasma exposures, and help to establish the use of these lower concentrations of serotonergic and dissociative hallucinogens both as a valid scientific construct, and as having a therapeutic utility.
Collapse
Affiliation(s)
- Guy A Higgins
- InterVivo Solutions Inc., Fergus, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Matt Brown
- InterVivo Solutions Inc., Fergus, ON, Canada
| | | | | | | | | | | | - Ines DeLannoy
- InterVivo Solutions Inc., Mississauga, ON, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Edward M Sellers
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,DL Global Partners Inc., Toronto, ON, Canada
| |
Collapse
|
11
|
Smalheiser NR, Graetz EE, Yu Z, Wang J. Effect size, sample size and power of forced swim test assays in mice: Guidelines for investigators to optimize reproducibility. PLoS One 2021; 16:e0243668. [PMID: 33626103 PMCID: PMC7904226 DOI: 10.1371/journal.pone.0243668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
A recent flood of publications has documented serious problems in scientific reproducibility, power, and reporting of biomedical articles, yet scientists persist in their usual practices. Why? We examined a popular and important preclinical assay, the Forced Swim Test (FST) in mice used to test putative antidepressants. Whether the mice were assayed in a naïve state vs. in a model of depression or stress, and whether the mice were given test agents vs. known antidepressants regarded as positive controls, the mean effect sizes seen in the experiments were indeed extremely large (1.5-2.5 in Cohen's d units); most of the experiments utilized 7-10 animals per group which did have adequate power to reliably detect effects of this magnitude. We propose that this may at least partially explain why investigators using the FST do not perceive intuitively that their experimental designs fall short-even though proper prospective design would require ~21-26 animals per group to detect, at a minimum, large effects (0.8 in Cohen's d units) when the true effect of a test agent is unknown. Our data provide explicit parameters and guidance for investigators seeking to carry out prospective power estimation for the FST. More generally, altering the real-life behavior of scientists in planning their experiments may require developing educational tools that allow them to actively visualize the inter-relationships among effect size, sample size, statistical power, and replicability in a direct and intuitive manner.
Collapse
Affiliation(s)
- Neil R. Smalheiser
- Department of Psychiatry, University of Illinois School of Medicine, Chicago, Illinois, United States of America
| | - Elena E. Graetz
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Zhou Yu
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jing Wang
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
12
|
Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med (Zagreb) 2021; 31:010502. [PMID: 33380887 PMCID: PMC7745163 DOI: 10.11613/bm.2021.010502] [Citation(s) in RCA: 489] [Impact Index Per Article: 122.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
Calculating the sample size in scientific studies is one of the critical issues as regards the scientific contribution of the study. The sample size critically affects the hypothesis and the study design, and there is no straightforward way of calculating the effective sample size for reaching an accurate conclusion. Use of a statistically incorrect sample size may lead to inadequate results in both clinical and laboratory studies as well as resulting in time loss, cost, and ethical problems. This review holds two main aims. The first aim is to explain the importance of sample size and its relationship to effect size (ES) and statistical significance. The second aim is to assist researchers planning to perform sample size estimations by suggesting and elucidating available alternative software, guidelines and references that will serve different scientific purposes.
Collapse
Affiliation(s)
- Ceyhan Ceran Serdar
- Medical Biology and Genetics, Faculty of Medicine, Ankara Medipol University, Ankara, Turkey
| | - Murat Cihan
- Ordu University Training and Research Hospital, Ordu, Turkey
| | - Doğan Yücel
- Department of Medical Biochemistry, Lokman Hekim University School of Medicine, Ankara, Turkey
| | - Muhittin A Serdar
- Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
13
|
Gurusamy KS, Moher D, Loizidou M, Ahmed I, Avey MT, Barron CC, Davidson B, Dwek M, Gluud C, Jell G, Katakam K, Montroy J, McHugh TD, Osborne NJ, Ritskes-Hoitinga M, van Laarhoven K, Vollert J, Lalu M. Clinical relevance assessment of animal preclinical research (RAA) tool: development and explanation. PeerJ 2021; 9:e10673. [PMID: 33569250 DOI: 10.7717/peerj.10673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/09/2020] [Indexed: 12/09/2022] Open
Abstract
Background Only a small proportion of preclinical research (research performed in animal models prior to clinical trials in humans) translates into clinical benefit in humans. Possible reasons for the lack of translation of the results observed in preclinical research into human clinical benefit include the design, conduct, and reporting of preclinical studies. There is currently no formal domain-based assessment of the clinical relevance of preclinical research. To address this issue, we have developed a tool for the assessment of the clinical relevance of preclinical studies, with the intention of assessing the likelihood that therapeutic preclinical findings can be translated into improvement in the management of human diseases. Methods We searched the EQUATOR network for guidelines that describe the design, conduct, and reporting of preclinical research. We searched the references of these guidelines to identify further relevant publications and developed a set of domains and signalling questions. We then conducted a modified Delphi-consensus to refine and develop the tool. The Delphi panel members included specialists in evidence-based (preclinical) medicine specialists, methodologists, preclinical animal researchers, a veterinarian, and clinical researchers. A total of 20 Delphi-panel members completed the first round and 17 members from five countries completed all three rounds. Results This tool has eight domains (construct validity, external validity, risk of bias, experimental design and data analysis plan, reproducibility and replicability of methods and results in the same model, research integrity, and research transparency) and a total of 28 signalling questions and provides a framework for researchers, journal editors, grant funders, and regulatory authorities to assess the potential clinical relevance of preclinical animal research. Conclusion We have developed a tool to assess the clinical relevance of preclinical studies. This tool is currently being piloted.
Collapse
Affiliation(s)
- Kurinchi S Gurusamy
- Research Department of Surgical Biotechnology, University College London, London, England, UK.,Surgery and Interventional Trials Unit, University College London, London, England, UK
| | - David Moher
- Centre for Journalology, Clinical Epidemiology Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada.,School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marilena Loizidou
- Research Department of Surgical Biotechnology, University College London, London, England, UK
| | - Irfan Ahmed
- Department of Surgery, NHS Grampian, Aberdeen, Scotland, UK
| | - Marc T Avey
- Centre for Journalology, Clinical Epidemiology Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada.,School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Carly C Barron
- Centre for Journalology, Clinical Epidemiology Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada.,School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Brian Davidson
- Research Department of Surgical Biotechnology, University College London, London, England, UK
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, England, UK
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copehagen, Denmark
| | - Gavin Jell
- Research Department of Surgical Biotechnology, University College London, London, England, UK
| | - Kiran Katakam
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copehagen, Denmark
| | - Joshua Montroy
- Department of Anesthesiology and Pain Medicine, Blueprint Translational Research Group, Clinical Epidemiology and Regenerative Medicine Programs, Ottawa Hospital Research Institute, Ottawa Hospital, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Timothy D McHugh
- UCL Centre for Clinical Microbiology, Division of Infection & Immunity, University College London, London, England, UK
| | | | - Merel Ritskes-Hoitinga
- SYRCLE, Department for Health Evidence, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kees van Laarhoven
- Department of Surgery, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| | - Jan Vollert
- Pain Research, Department of Surgery & Cancer, Imperial College, London, England, UK.,Center of Biomedicine and Medical Technology Mannheim CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Manoj Lalu
- Department of Anesthesiology and Pain Medicine, Blueprint Translational Research Group, Clinical Epidemiology and Regenerative Medicine Programs, Ottawa Hospital Research Institute, Ottawa Hospital, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
14
|
Gruijters SLK, Peters GJY. Meaningful change definitions: sample size planning for experimental intervention research. Psychol Health 2020; 37:1-16. [DOI: 10.1080/08870446.2020.1841762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Stefan L. K. Gruijters
- Faculty of Psychology, General Psychology, Open University of the Netherlands, Heerlen, the Netherlands
| | - Gjalt-Jorn Y. Peters
- Faculty of Psychology, Methodology & Statistics, Open University of the Netherlands, Heerlen, the Netherlands
- Faculty of Psychology and Neuroscience, Work and Social Psychology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
15
|
Sanz-Morejón A, García-Redondo AB, Reuter H, Marques IJ, Bates T, Galardi-Castilla M, Große A, Manig S, Langa X, Ernst A, Piragyte I, Botos MA, González-Rosa JM, Ruiz-Ortega M, Briones AM, Salaices M, Englert C, Mercader N. Wilms Tumor 1b Expression Defines a Pro-regenerative Macrophage Subtype and Is Required for Organ Regeneration in the Zebrafish. Cell Rep 2020; 28:1296-1306.e6. [PMID: 31365871 PMCID: PMC6685527 DOI: 10.1016/j.celrep.2019.06.091] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/25/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Organ regeneration is preceded by the recruitment of innate immune cells, which play an active role during repair and regrowth. Here, we studied macrophage subtypes during organ regeneration in the zebrafish, an animal model with a high regenerative capacity. We identified a macrophage subpopulation expressing Wilms tumor 1b (wt1b), which accumulates within regenerating tissues. This wt1b+ macrophage population exhibited an overall pro-regenerative gene expression profile and different migratory behavior compared to the remainder of the macrophages. Functional studies showed that wt1b regulates macrophage migration and retention at the injury area. Furthermore, wt1b-null mutant zebrafish presented signs of impaired macrophage differentiation, delayed fin growth upon caudal fin amputation, and reduced cardiomyocyte proliferation following cardiac injury that correlated with altered macrophage recruitment to the regenerating areas. We describe a pro-regenerative macrophage subtype in the zebrafish and a role for wt1b in organ regeneration. Wt1b+ macrophages reveal a pro-regenerative gene expression prolife Wt1b controls migration behavior of macrophages during fin and heart regeneration Wt1b regulates differentiation of macrophages in the kidney marrow wt1b mutants reveal impaired fin and heart regeneration
Collapse
Affiliation(s)
- Andrés Sanz-Morejón
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Ana B García-Redondo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Department of Pharmacology, Universidad Autónoma de Madrid, IIS-Hospital La Paz, Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Hanna Reuter
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Inês J Marques
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Thomas Bates
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | | | - Andreas Große
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Steffi Manig
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Xavier Langa
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Alexander Ernst
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Indre Piragyte
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | | | | | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, 28040 Madrid, Spain
| | - Ana M Briones
- Department of Pharmacology, Universidad Autónoma de Madrid, IIS-Hospital La Paz, Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Mercedes Salaices
- Department of Pharmacology, Universidad Autónoma de Madrid, IIS-Hospital La Paz, Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Christoph Englert
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany; Institute of Biochemistry and Biophysics, Friedrich-Schiller-Universität, 07743 Jena, Germany
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
16
|
Higgins GA, Silenieks LB, MacMillan C, Thevarkunnel S, Parachikova AI, Mombereau C, Lindgren H, Bastlund JF. Characterization of Amphetamine, Methylphenidate, Nicotine, and Atomoxetine on Measures of Attention, Impulsive Action, and Motivation in the Rat: Implications for Translational Research. Front Pharmacol 2020; 11:427. [PMID: 32390829 PMCID: PMC7193984 DOI: 10.3389/fphar.2020.00427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
Abstract
Amphetamine (AMP), methylphenidate (MPH), and atomoxetine (ATX) are approved treatments for ADHD, and together with nicotine (NIC), represent pharmacological agents widely studied on cognitive domains including attention and impulsive action in humans. These agents thus represent opportunities for clinical observation to be reinvestigated in the preclinical setting, i.e., reverse translation. The present study investigated each drug in male, Long Evans rats trained to perform either (1) the five-choice serial reaction time task (5-CSRTT), (2) Go/NoGo task, or (3) a progressive ratio (PR) task, for the purpose of studying each drug on attention, impulsive action and motivation. Specific challenges were adopted in the 5-CSRTT designed to tax attention and impulsivity, i.e., high frequency of stimulus presentation (sITI), variable reduction in stimulus duration (sSD), and extended delay to stimulus presentation (10-s ITI). Initially, performance of a large (> 80) cohort of rats in each task variant was conducted to examine performance stability over repeated challenge sessions, and to identify subgroups of "high" and "low" attentive rats (sITI and sSD schedules), and "high" and "low" impulsives (10-s ITI). Using an adaptive sequential study design, the effects of AMP, MPH, ATX, and NIC were examined and contrasting profiles noted across the tests. Both AMP (0.03-0.3 mg/kg) and MPH (1-6 mg/kg) improved attentional performance in the sITI but not sSD or 10-s ITI condition, NIC (0.05-0.2 mg/kg) improved accuracy across all conditions. ATX (0.1-1 mg/kg) detrimentally affected performance in the sITI and sSD condition, notably in "high" performers. In tests of impulsive action, ATX reduced premature responses notably in the 10-s ITI condition, and also reduced false alarms in Go/NoGo. Both AMP and NIC increased premature responses in all task variants, although AMP reduced false alarms highlighting differences between these two measures of impulsive action. The effect of MPH was mixed and appeared baseline dependent. ATX reduced break point for food reinforcement suggesting a detrimental effect on motivation for primary reward. Taken together these studies highlight differences between AMP, MPH, and ATX which may translate to their clinical profiles. NIC had the most reliable effect on attentional accuracy, whereas ATX was reliably effective against all tests of impulsive action.
Collapse
Affiliation(s)
- Guy A Higgins
- Intervivo Solutions, Toronto, ON, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | - Hanna Lindgren
- Discovery Research, H. Lundbeck A/S, Copenhagen, Denmark
| | | |
Collapse
|
17
|
Abstract
The recent discussion on the reproducibility of scientific results is
particularly relevant for preclinical research with animal models. Within
certain areas of preclinical research, there exists the tradition of repeating
an experiment at least twice to demonstrate replicability. If the results of the
first two experiments do not agree, then the experiment might be repeated a
third time. Sometimes data of one representative experiment are shown; sometimes
data from different experiments are pooled. However, there are hardly any
guidelines about how to plan for such an experimental design or how to report
the results obtained. This article provides a thorough statistical analysis of
pre-planned experimental replications as they are currently often applied in
practice and gives some recommendations about how to improve on study design and
statistical analysis.
Collapse
Affiliation(s)
- Florian Frommlet
- Center for Medical Statistics, Informatics and Intelligent Systems, Section for Medical Statistics, Medical University Vienna, Austria
| | - Georg Heinze
- Center for Medical Statistics, Informatics and Intelligent Systems, Section for Clinical Biometrics, Medical University Vienna, Austria
| |
Collapse
|
18
|
Eckenhoff RG, Maze M, Xie Z, Culley DJ, Goodlin SJ, Zuo Z, Wei H, Whittington RA, Terrando N, Orser BA, Eckenhoff MF. Perioperative Neurocognitive Disorder: State of the Preclinical Science. Anesthesiology 2020; 132:55-68. [PMID: 31834869 PMCID: PMC6913778 DOI: 10.1097/aln.0000000000002956] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this article is to provide a succinct summary of the different experimental approaches that have been used in preclinical postoperative cognitive dysfunction research, and an overview of the knowledge that has accrued. This is not intended to be a comprehensive review, but rather is intended to highlight how the many different approaches have contributed to our understanding of postoperative cognitive dysfunction, and to identify knowledge gaps to be filled by further research. The authors have organized this report by the level of experimental and systems complexity, starting with molecular and cellular approaches, then moving to intact invertebrates and vertebrate animal models. In addition, the authors' goal is to improve the quality and consistency of postoperative cognitive dysfunction and perioperative neurocognitive disorder research by promoting optimal study design, enhanced transparency, and "best practices" in experimental design and reporting to increase the likelihood of corroborating results. Thus, the authors conclude with general guidelines for designing, conducting and reporting perioperative neurocognitive disorder rodent research.
Collapse
Affiliation(s)
- Roderic G Eckenhoff
- From Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (R.G.E., H.W., M.F.E.) Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California (M.M.) Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (Z.X.) Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts (D.J.C.) Harvard Medical School, Boston, Massachusetts (Z.X., D.J.C.) Department of Medicine, Oregon Health and Science University and Veterans Administration Portland Health Care System, Portland, Oregon (S.J.G.) Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, Virginia (Z.Z.) Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York (R.A.W.) Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina (N.T.) Department of Anesthesia, University of Toronto, Toronto, Canada (B.A.O.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Albers C. The problem with unadjusted multiple and sequential statistical testing. Nat Commun 2019; 10:1921. [PMID: 31015469 PMCID: PMC6478696 DOI: 10.1038/s41467-019-09941-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 04/10/2019] [Indexed: 11/30/2022] Open
Abstract
In research studies, the need for additional samples to obtain sufficient statistical power has often to be balanced with the experimental costs. One approach to this end is to sequentially collect data until you have sufficient measurements, e.g., when the p-value drops below 0.05. I outline that this approach is common, yet that unadjusted sequential sampling leads to severe statistical issues, such as an inflated rate of false positive findings. As a consequence, the results of such studies are untrustworthy. I identify the statistical methods that can be implemented in order to account for sequential sampling.
Collapse
|
20
|
Piper SK, Grittner U, Rex A, Riedel N, Fischer F, Nadon R, Siegerink B, Dirnagl U. Exact replication: Foundation of science or game of chance? PLoS Biol 2019; 17:e3000188. [PMID: 30964856 PMCID: PMC6456162 DOI: 10.1371/journal.pbio.3000188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The need for replication of initial results has been rediscovered only recently in many fields of research. In preclinical biomedical research, it is common practice to conduct exact replications with the same sample sizes as those used in the initial experiments. Such replication attempts, however, have lower probability of replication than is generally appreciated. Indeed, in the common scenario of an effect just reaching statistical significance, the statistical power of the replication experiment assuming the same effect size is approximately 50%-in essence, a coin toss. Accordingly, we use the provocative analogy of "replicating" a neuroprotective drug animal study with a coin flip to highlight the need for larger sample sizes in replication experiments. Additionally, we provide detailed background for the probability of obtaining a significant p value in a replication experiment and discuss the variability of p values as well as pitfalls of simple binary significance testing in both initial preclinical experiments and replication studies with small sample sizes. We conclude that power analysis for determining the sample size for a replication study is obligatory within the currently dominant hypothesis testing framework. Moreover, publications should include effect size point estimates and corresponding measures of precision, e.g., confidence intervals, to allow readers to assess the magnitude and direction of reported effects and to potentially combine the results of initial and replication study later through Bayesian or meta-analytic approaches.
Collapse
Affiliation(s)
- Sophie K. Piper
- Institute of Biometry and Clinical Epidemiology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Andre Rex
- Center for Stroke Research, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nico Riedel
- Berlin Institute of Health—QUEST The Center for Transforming Biomedical Research, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Felix Fischer
- Department of Psychosomatic Medicine, Center for Internal Medicine and Dermatology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Nadon
- Berlin Institute of Health—QUEST The Center for Transforming Biomedical Research, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Bob Siegerink
- Center for Stroke Research, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrich Dirnagl
- Center for Stroke Research, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health—QUEST The Center for Transforming Biomedical Research, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin Site, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin site, Berlin, Germany
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
21
|
Santamaria AJ, Benavides FD, Padgett KR, Guada LG, Nunez-Gomez Y, Solano JP, Guest JD. Dichotomous Locomotor Recoveries Are Predicted by Acute Changes in Segmental Blood Flow after Thoracic Spinal Contusion Injuries in Pigs. J Neurotrauma 2018; 36:1399-1415. [PMID: 30284945 DOI: 10.1089/neu.2018.6087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neuroimaging facilitates the translation of animal pre-clinical research to human application. The large porcine spinal cord is useful for testing invasive interventions. Ideally, the safety and efficacy of a delayed intervention is tested in pigs that have recovered sufficiently after spinal cord injury (SCI) to allow either deterioration or improvement of function to be detected. We set out to create moderate severity T9 injuries in Yucatan minipigs by conducting a bridging study adapting methods previously developed in infant piglets. The injury severity was varied according to two pneumatic impactor parameters: the piston compression depth into tissue or the velocity. To stratify locomotor recovery, a 10-point scale used in prior piglet studies was redefined through longitudinal observations of spontaneous recovery. Using hindlimb body weight support to discriminate injury severity, we found that end-point recovery was strongly bimodal to either non-weight-bearing plegia with reciprocating leg movements (<5/10) or recovery of weight bearing that improved toward a ceiling effect (≥ 8/10). No intermediate recovery animals were observed at 2 months post-injury. The ability of intra-operative ultrasound and acute magnetic resonance imaging (MRI) to provide immediate predictive feedback regarding tissue and vascular changes following SCI was assessed. There was an inverse association between locomotor outcome and early gray matter hemorrhage on MRI and ultrasound. Epicenter blood flow following contusion predicted recovery or non-recovery of weight-bearing. The depth of the dorsal cerebrospinal fluid space, which varied between animals, influenced injury severity and confounded the results in this fixed-stroke paradigm.
Collapse
Affiliation(s)
- Andrea J Santamaria
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Francisco D Benavides
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Kyle R Padgett
- 2 Department of Radiation Oncology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Luis G Guada
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Yohjan Nunez-Gomez
- 3 Department of Pediatrics Critical Care, University of Miami, Miller School of Medicine, Miami, Florida
| | - Juan P Solano
- 3 Department of Pediatrics Critical Care, University of Miami, Miller School of Medicine, Miami, Florida
| | - James D Guest
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida.,4 Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
22
|
Bernhardt J, Zorowitz RD, Becker KJ, Keller E, Saposnik G, Strbian D, Dichgans M, Woo D, Reeves M, Thrift A, Kidwell CS, Olivot JM, Goyal M, Pierot L, Bennett DA, Howard G, Ford GA, Goldstein LB, Planas AM, Yenari MA, Greenberg SM, Pantoni L, Amin-Hanjani S, Tymianski M. Advances in Stroke 2017. Stroke 2018; 49:e174-e199. [DOI: 10.1161/strokeaha.118.021380] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Julie Bernhardt
- From the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia (J.B.)
| | - Richard D. Zorowitz
- MedStar National Rehabilitation Network and Department of Rehabilitation Medicine, Georgetown University School of Medicine, Washington, DC (R.D.Z.)
| | - Kyra J. Becker
- Department of Neurology, University of Washington, Seattle (K.J.B.)
| | - Emanuela Keller
- Division of Internal Medicine, University Hospital of Zurich, Switzerland (E.K.)
| | | | - Daniel Strbian
- Department of Neurology, Helsinki University Central Hospital, Finland (D.S.)
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Germany (M.D.)
- Munich Cluster for Systems Neurology (SyNergy), Germany (M.D.)
| | - Daniel Woo
- Department of Neurology, University of Cincinnati College of Medicine, OH (D.W.)
| | - Mathew Reeves
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing (M.R.)
| | - Amanda Thrift
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia (A.T.)
| | - Chelsea S. Kidwell
- Departments of Neurology and Medical Imaging, University of Arizona, Tucson (C.S.K.)
| | - Jean Marc Olivot
- Acute Stroke Unit, Toulouse Neuroimaging Center and Clinical Investigation Center, Toulouse University Hospital, France (J.M.O.)
| | - Mayank Goyal
- Department of Diagnostic and Interventional Neuroradiology, University of Calgary, AB, Canada (M.G.)
| | - Laurent Pierot
- Department of Neuroradiology, Hôpital Maison Blanche, CHU Reims, Reims Champagne-Ardenne University, France (L.P.)
| | - Derrick A. Bennett
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, United Kingdom (D.A.B.)
| | - George Howard
- Department of Biostatistics, Ryals School of Public Health, University of Alabama at Birmingham (G.H.)
| | - Gary A. Ford
- Oxford Academic Health Science Network, United Kingdom (G.A.F.)
| | | | - Anna M. Planas
- Department of Brain Ischemia and Neurodegeneration, Institute for Biomedical Research of Barcelona (IIBB), Consejo Superior de Investigaciones CIentíficas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.M.P.)
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco (M.A.Y.)
- San Francisco Veterans Affairs Medical Center, CA (M.A.Y.)
| | - Steven M. Greenberg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (S.M.G.)
| | - Leonardo Pantoni
- ‘L. Sacco’ Department of Biomedical and Clinical Sciences, University of Milan, Italy (L.P.)
| | | | - Michael Tymianski
- Departments of Surgery and Physiology, University of Toronto, ON, Canada (M.T.)
- Department of Surgery, University Health Network (Neurosurgery), Toronto, ON, Canada (M.T.)
- Krembil Research Institute, Toronto Western Hospital, ON, Canada (M.T.)
| |
Collapse
|
23
|
Stein DG, Sayeed I. Repurposing and repositioning neurosteroids in the treatment of traumatic brain injury: A report from the trenches. Neuropharmacology 2018; 147:66-73. [PMID: 29630902 DOI: 10.1016/j.neuropharm.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023]
Abstract
The field of neuroprotection after brain injuries has been littered with failed clinical trials. Finding a safe and effective treatment for acute traumatic brain injury remains a serious unmet medical need. Repurposing drugs that have been in use for other disorders is receiving increasing attention as a strategy to move candidate drugs more quickly to trial while reducing the very high cost of new drug development. This paper describes our own serendipitous discovery of progesterone's neuroprotective potential, and the strategies we are using in repurposing and developing this hormone for use in brain injuries-applications very different from its classical uses in treating disorders of the reproductive system. We have been screening and testing a novel analog that maintains progesterone's therapeutic properties while overcoming its physiochemical challenges, and testing progesterone in combination treatment with another pleiotropic hormone, vitamin D. Finally, our paper, in the context of the problems and pitfalls we have encountered, surveys some of the factors we found to be critical in the clinical translation of repurposed drugs. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.
Collapse
Affiliation(s)
- Donald G Stein
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA.
| | - Iqbal Sayeed
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA.
| |
Collapse
|
24
|
Emmrich JV, Neher JJ, Boehm-Sturm P, Endres M, Dirnagl U, Harms C. Stage 1 Registered Report: Effect of deficient phagocytosis on neuronal survival and neurological outcome after temporary middle cerebral artery occlusion (tMCAo). F1000Res 2017; 6:1827. [PMID: 29152223 PMCID: PMC5664978 DOI: 10.12688/f1000research.12537.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2018] [Indexed: 01/29/2023] Open
Abstract
Stroke is a major cause of death and disability worldwide. In addition to neuronal death resulting directly from energy depletion due to lack of blood supply, inflammation and microglial activation following ischemic brain injury has been increasingly recognized to be a key contributor to the pathophysiology of cerebrovascular disease. However, our understanding of the cross talk between the ischemic brain and the immune system is limited. Recently, we demonstrated that following focal ischemia, death of mature viable neurons can be executed through phagocytosis by microglial cells or recruited macrophages, i.e. through phagoptosis. It was shown that inhibition of phagocytic signaling pathways following endothelin-1 induced focal cerebral ischemia leads to increased neuronal survival and neurological recovery. This suggests that inhibition of specific phagocytic pathways may prevent neuronal death during cerebral ischemia. To further explore this potential therapeutic target, we propose to assess the role of phagocytosis in an established model of temporary (45min) middle cerebral artery occlusion (tMCAo), and to evaluate neuronal survival and neurological recovery in mice with deficient phagocytosis. The primary outcome of this study will be forelimb function assessed with the staircase test. Secondary outcomes constitute Rotarod performance, stroke volume (quantified on MR imaging or brain sections, respectively), diffusion tensor imaging (DTI) connectome mapping, and histological analyses to measure neuronal and microglial densities, and phagocytic activity. Male mice aged 10-12 weeks will be used for experiments.
Collapse
Affiliation(s)
- Julius V Emmrich
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jonas J Neher
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Endres
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Ulrich Dirnagl
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,QUEST - Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,QUEST - Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
25
|
Marquina M, Collado JA, Pérez-Cruz M, Fernández-Pernas P, Fafián-Labora J, Blanco FJ, Máñez R, Arufe MC, Costa C. Biodistribution and Immunogenicity of Allogeneic Mesenchymal Stem Cells in a Rat Model of Intraarticular Chondrocyte Xenotransplantation. Front Immunol 2017; 8:1465. [PMID: 29163532 PMCID: PMC5681521 DOI: 10.3389/fimmu.2017.01465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/19/2017] [Indexed: 02/05/2023] Open
Abstract
Xenogeneic chondrocytes and allogeneic mesenchymal stem cells (MSC) are considered a potential source of cells for articular cartilage repair. We here assessed the immune response triggered by xenogeneic chondrocytes when injected intraarticularly, as well as the immunoregulatory effect of allogeneic bone marrow-derived MSC after systemic administration. To this end, a discordant xenotransplantation model was established by injecting three million porcine articular chondrocytes (PAC) into the femorotibial joint of Lewis rats and monitoring the immune response. First, the fate of MSC injected using various routes was monitored in an in vivo imaging system. The biodistribution revealed a dependency on the injection route with MSC injected intravenously (i.v.) succumbing early after 24 h and MSC injected intraperitoneally (i.p.) lasting locally for at least 5 days. Importantly, no migration of MSC to the joint was detected in rats previously injected with PAC. MSC were then administered either i.v. 1 week before PAC injection or i.p. 3 weeks after to assess their immunomodulatory function on humoral and adaptive immune parameters. Anti-PAC IgM and IgG responses were detected in all PAC-injected rats with a peak at week 2 postinjection and reactivity remaining above baseline levels by week 18. IgG2a and IgG2b were the predominant and long-lasting IgG subtypes. By contrast, no anti-MSC antibody response was detected in the cohort injected with MSC only, but infusion of MSC before PAC injection temporarily augmented the anti-PAC antibody response. Consistent with a cellular immune response to PAC in PAC-injected rats, cytokine/chemokine profiling in serum by antibody array revealed a distinct pattern relative to controls characterized by elevation of multiple markers at week 2, as well as increases in proliferation in draining lymph nodes. Notably, systemic administration of allogeneic MSC under the described conditions did not diminish the immune response. IL-2 measurements in cocultures of rat peripheral blood lymphocytes with PAC indicated that PAC injection induced some T-cell hyporesponsiveness that was not enhanced in the cohorts additionally receiving MSC. Thus, PAC injected intraarticularly in Lewis rats induced a cellular and humoral immune response that was not counteracted by the systemic administration of allogeneic MSC under the described conditions.
Collapse
Affiliation(s)
- Maribel Marquina
- Infectious Diseases and Transplantation Division, Institut d’Investigació Biomèdica de Bellvitge – IDIBELL, Bellvitge University Hospital, ICS, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Javier A. Collado
- Infectious Diseases and Transplantation Division, Institut d’Investigació Biomèdica de Bellvitge – IDIBELL, Bellvitge University Hospital, ICS, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Magdiel Pérez-Cruz
- Infectious Diseases and Transplantation Division, Institut d’Investigació Biomèdica de Bellvitge – IDIBELL, Bellvitge University Hospital, ICS, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Pablo Fernández-Pernas
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, A Coruña, Spain
| | - Juan Fafián-Labora
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Proteómica-ProteoRed/Plataforma PBR2-ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, A Coruña, Spain
| | - Rafael Máñez
- Infectious Diseases and Transplantation Division, Institut d’Investigació Biomèdica de Bellvitge – IDIBELL, Bellvitge University Hospital, ICS, L’Hospitalet de Llobregat, Barcelona, Spain
| | - María C. Arufe
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, A Coruña, Spain
| | - Cristina Costa
- Infectious Diseases and Transplantation Division, Institut d’Investigació Biomèdica de Bellvitge – IDIBELL, Bellvitge University Hospital, ICS, L’Hospitalet de Llobregat, Barcelona, Spain
- *Correspondence: Cristina Costa,
| |
Collapse
|