1
|
Lanir-Azaria S, Chishinski R, Tauman R, Nir Y, Giladi N. Sleep improves accuracy, but not speed, of generalized motor learning in young and older adults and in individuals with Parkinson's disease. Front Behav Neurosci 2024; 18:1466696. [PMID: 39390986 PMCID: PMC11464313 DOI: 10.3389/fnbeh.2024.1466696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
An essential aspect of motor learning is generalizing procedural knowledge to facilitate skill acquisition across diverse conditions. Here, we examined the development of generalized motor learning during initial practice-dependent learning, and how distinct components of learning are consolidated over longer timescales during wakefulness or sleep. In the first experiment, a group of young healthy volunteers engaged in a novel motor sequence task over 36 h in a two-arm experimental design (either morning-evening-morning, or evening-morning-evening) aimed at controlling for circadian confounders. The findings unveiled an immediate, rapid generalization of sequential learning, accompanied by an additional long-timescale performance gain. Sleep modulated accuracy, but not speed, above and beyond equivalent wake intervals. To further elucidate the role of sleep across ages and under neurodegenerative disorders, a second experiment utilized the same task in a group of early-stage, drug-naïve individuals with Parkinson's disease and in healthy individuals of comparable age. Participants with Parkinson's disease exhibited comparable performance to their healthy age-matched group with the exception of reduced performance in recalling motor sequences, revealing a disease-related cognitive shortfall. In line with the results found in young subjects, both groups exhibited improved accuracy, but not speed, following a night of sleep. This result emphasizes the role of sleep in skill acquisition and provides a potential framework for deeper investigation of the intricate relationship between sleep, aging, Parkinson's disease, and motor learning.
Collapse
Affiliation(s)
- Saar Lanir-Azaria
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | | | - Riva Tauman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Yuval Nir
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Nir Giladi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Schroyens N, Vercammen L, Özcan B, Salazar VAO, Zaman J, De Bundel D, Beckers T, Luyten L. No evidence that post-training dopamine D2 receptor agonism affects fear generalization in male rats. J Psychopharmacol 2024; 38:672-682. [PMID: 39068641 PMCID: PMC7616352 DOI: 10.1177/02698811241261375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
BACKGROUND The neurotransmitter dopamine plays an important role in the processing of emotional memories, and prior research suggests that dopaminergic manipulations immediately after fear learning can affect the retention and generalization of acquired fear. AIMS The current study focuses specifically on the role of dopamine D2 receptors (D2Rs) regarding fear generalization in adult, male Wistar rats, and aims to replicate previous findings in mice. METHODS In a series of five experiments, D2R (ant)agonists were injected systemically, immediately after differential cued fear conditioning (CS+ followed by shock, CS- without shock). All five experiments involved the administration of the D2R agonist quinpirole at different doses versus saline (n = 12, 16, or 44 rats/group). In addition, one of the studies administered the D2R antagonist raclopride (n = 12). One day later, freezing during the CS+ and CS- was assessed. RESULTS We found no indications for an effect of quinpirole or raclopride on fear generalization during this drug-free test. Importantly, and contradicting earlier research in mice, the evidence for the absence of an effect of D2R agonist quinpirole (1 mg/kg) on fear generalization was substantial according to Bayesian analyses and was observed in a highly powered experiment (N = 87). We did find acute behavioral effects in line with the literature, for both quinpirole and raclopride in a locomotor activity test. CONCLUSION In contrast with prior studies in mice, we have obtained evidence against a preventative effect of post-training D2R agonist quinpirole administration on subsequent fear generalization in rats.
Collapse
Affiliation(s)
- Natalie Schroyens
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
| | - Laura Vercammen
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
- KU Leuven, Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3714, 3000Leuven, Belgium
| | - Burcu Özcan
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
| | - Victoria Aurora Ossorio Salazar
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
- KU Leuven, Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3714, 3000Leuven, Belgium
| | - Jonas Zaman
- KU Leuven, Health Psychology, Tiensestraat 102 box 3726, 3000Leuven, Belgium
| | - Dimitri De Bundel
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, 1090Brussel, Belgium
| | - Tom Beckers
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
| | - Laura Luyten
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, Tiensestraat 102 box 3712, 3000Leuven, Belgium
- KU Leuven, Leuven Brain Institute, O&N V Herestraat 49 box 1020, 3000Leuven, Belgium
| |
Collapse
|
3
|
Takacs A, Toth‐Faber E, Schubert L, Tarnok Z, Ghorbani F, Trelenberg M, Nemeth D, Münchau A, Beste C. Neural representations of statistical and rule-based predictions in Gilles de la Tourette syndrome. Hum Brain Mapp 2024; 45:e26719. [PMID: 38826009 PMCID: PMC11144952 DOI: 10.1002/hbm.26719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a disorder characterised by motor and vocal tics, which may represent habitual actions as a result of enhanced learning of associations between stimuli and responses (S-R). In this study, we investigated how adults with GTS and healthy controls (HC) learn two types of regularities in a sequence: statistics (non-adjacent probabilities) and rules (predefined order). Participants completed a visuomotor sequence learning task while EEG was recorded. To understand the neurophysiological underpinnings of these regularities in GTS, multivariate pattern analyses on the temporally decomposed EEG signal as well as sLORETA source localisation method were conducted. We found that people with GTS showed superior statistical learning but comparable rule-based learning compared to HC participants. Adults with GTS had different neural representations for both statistics and rules than HC adults; specifically, adults with GTS maintained the regularity representations longer and had more overlap between them than HCs. Moreover, over different time scales, distinct fronto-parietal structures contribute to statistical learning in the GTS and HC groups. We propose that hyper-learning in GTS is a consequence of the altered sensitivity to encode complex statistics, which might lead to habitual actions.
Collapse
Affiliation(s)
- Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnische Universität DresdenDresdenGermany
- University Neuropsychology Center, Faculty of Medicine, Technische Universität DresdenDresdenGermany
| | - Eszter Toth‐Faber
- Institute of PsychologyELTE Eötvös Loránd UniversityBudapestHungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Lina Schubert
- Institute of Systems Motor ScienceUniversity of LübeckLübeckGermany
| | - Zsanett Tarnok
- Vadaskert Child and Adolescent Psychiatry Hospital and Outpatient ClinicBudapestHungary
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnische Universität DresdenDresdenGermany
- University Neuropsychology Center, Faculty of Medicine, Technische Universität DresdenDresdenGermany
| | - Madita Trelenberg
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Dezso Nemeth
- INSERMUniversité Claude Bernard Lyon 1, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292BronFrance
- NAP Research Group, Institute of Psychology, Eötvös Loránd University and Institute of Cognitive Neuroscience and Psychology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
- Department of Education and Psychology, Faculty of Social SciencesUniversity of Atlántico MedioLas Palmas de Gran CanariaSpain
| | | | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnische Universität DresdenDresdenGermany
- University Neuropsychology Center, Faculty of Medicine, Technische Universität DresdenDresdenGermany
| |
Collapse
|
4
|
van der Plas M, Failla A, Robertson EM. Neuroscience: Memory modification without catastrophe. Curr Biol 2024; 34:R281-R284. [PMID: 38593772 DOI: 10.1016/j.cub.2024.02.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Adaptive behaviour is supported by changes in neuronal networks. Insight into maintaining these memories - preventing their catastrophic loss - despite further network changes occurring due to novel learning is provided in a new study.
Collapse
Affiliation(s)
- Mircea van der Plas
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK
| | - Alberto Failla
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK
| | - Edwin M Robertson
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
5
|
Yamada T, Watanabe T, Sasaki Y. Plasticity-stability dynamics during post-training processing of learning. Trends Cogn Sci 2024; 28:72-83. [PMID: 37858389 PMCID: PMC10842181 DOI: 10.1016/j.tics.2023.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Learning continues beyond the end of training. Post-training learning is supported by changes in plasticity and stability in the brain during both wakefulness and sleep. However, the lack of a unified measure for assessing plasticity and stability dynamics during training and post-training periods has limited our understanding of how these dynamics shape learning. Focusing primarily on procedural learning, we integrate work using behavioral paradigms and a recently developed measure, the excitatory-to-inhibitory (E/I) ratio, to explore the delicate balance between plasticity and stability and its relationship to post-training learning. This reveals plasticity-stability cycles during both wakefulness and sleep that enhance learning and protect it from new learning during post-training processing.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
6
|
Brosens N, Lesuis SL, Rao-Ruiz P, van den Oever MC, Krugers HJ. Shaping Memories Via Stress: A Synaptic Engram Perspective. Biol Psychiatry 2023:S0006-3223(23)01720-1. [PMID: 37977215 DOI: 10.1016/j.biopsych.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/09/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Stress modulates the activity of various memory systems and can thereby guide behavioral interaction with the environment in an adaptive or maladaptive manner. At the cellular level, a large body of evidence indicates that (nor)adrenaline and glucocorticoid release induced by acute stress exposure affects synapse function and synaptic plasticity, which are critical substrates for learning and memory. Recent evidence suggests that memories are supported in the brain by sparsely distributed neurons within networks, termed engram cell ensembles. While the physiological and molecular effects of stress on the synapse are increasingly well characterized, how these synaptic modifications shape the multiscale dynamics of engram cell ensembles is still poorly understood. In this review, we discuss and integrate recent information on how acute stress affects synapse function and how this may alter engram cell ensembles and their synaptic connectivity to shape memory strength and memory precision. We provide a mechanistic framework of a synaptic engram under stress and put forward outstanding questions that address knowledge gaps in our understanding of the mechanisms that underlie stress-induced memory modulation.
Collapse
Affiliation(s)
- Niek Brosens
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| | - Sylvie L Lesuis
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Cellular and Cognitive Neuroscience group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Priyanka Rao-Ruiz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Johnson BP, Iturrate I, Fakhreddine RY, Bönstrup M, Buch ER, Robertson EM, Cohen LG. Generalization of procedural motor sequence learning after a single practice trial. NPJ SCIENCE OF LEARNING 2023; 8:45. [PMID: 37803003 PMCID: PMC10558563 DOI: 10.1038/s41539-023-00194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 09/14/2023] [Indexed: 10/08/2023]
Abstract
When humans begin learning new motor skills, they typically display early rapid performance improvements. It is not well understood how knowledge acquired during this early skill learning period generalizes to new, related skills. Here, we addressed this question by investigating factors influencing generalization of early learning from a skill A to a different, but related skill B. Early skill generalization was tested over four experiments (N = 2095). Subjects successively learned two related motor sequence skills (skills A and B) over different practice schedules. Skill A and B sequences shared ordinal (i.e., matching keypress locations), transitional (i.e., ordered keypress pairs), parsing rule (i.e., distinct sequence events like repeated keypresses that can be used as a breakpoint for segmenting the sequence into smaller units) structures, or possessed no structure similarities. Results showed generalization for shared parsing rule structure between skills A and B after only a single 10-second practice trial of skill A. Manipulating the initial practice exposure to skill A (1 to 12 trials) and inter-practice rest interval (0-30 s) between skills A and B had no impact on parsing rule structure generalization. Furthermore, this generalization was not explained by stronger sensorimotor mapping between individual keypress actions and their symbolic representations. In contrast, learning from skill A did not generalize to skill B during early learning when the sequences shared only ordinal or transitional structure features. These results document sequence structure that can be very rapidly generalized during initial learning to facilitate generalization of skill.
Collapse
Affiliation(s)
- B P Johnson
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, USA
- Washington University in St Louis, St. Louis, USA
| | - I Iturrate
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, USA
- Amazon EU, Barcelona, Spain
| | - R Y Fakhreddine
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, USA
- UT Austin, Austin, USA
| | | | - E R Buch
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, USA.
| | - E M Robertson
- Center for Cognitive Neuroimaging, University of Glasgow, Glasgow, Scotland, UK
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, USA.
| |
Collapse
|
8
|
Conessa A, Debarnot U, Siegler I, Boutin A. Sleep-related motor skill consolidation and generalizability after physical practice, motor imagery, and action observation. iScience 2023; 26:107314. [PMID: 37520714 PMCID: PMC10374463 DOI: 10.1016/j.isci.2023.107314] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/15/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Sleep benefits the consolidation of motor skills learned by physical practice, mainly through periodic thalamocortical sleep spindle activity. However, motor skills can be learned without overt movement through motor imagery or action observation. Here, we investigated whether sleep spindle activity also supports the consolidation of non-physically learned movements. Forty-five electroencephalographic sleep recordings were collected during a daytime nap after motor sequence learning by physical practice, motor imagery, or action observation. Our findings reveal that a temporal cluster-based organization of sleep spindles underlies motor memory consolidation in all groups, albeit with distinct behavioral outcomes. A daytime nap offers an early sleep window promoting the retention of motor skills learned by physical practice and motor imagery, and its generalizability toward the inter-manual transfer of skill after action observation. Findings may further have practical impacts with the development of non-physical rehabilitation interventions for patients having to remaster skills following peripherical or brain injury.
Collapse
Affiliation(s)
- Adrien Conessa
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- Université d’Orléans, CIAMS, 45067 Orléans, France
| | - Ursula Debarnot
- University Lyon, UCBL-Lyon 1, Inter-University Laboratory of Human Movement Biology, EA7424, 69622 Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Isabelle Siegler
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- Université d’Orléans, CIAMS, 45067 Orléans, France
| | - Arnaud Boutin
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- Université d’Orléans, CIAMS, 45067 Orléans, France
| |
Collapse
|
9
|
Brosens N, Lesuis SL, Bassie I, Reyes L, Gajadien P, Lucassen PJ, Krugers HJ. Elevated corticosterone after fear learning impairs remote auditory memory retrieval and alters brain network connectivity. Learn Mem 2023; 30:125-132. [PMID: 37487708 PMCID: PMC10519398 DOI: 10.1101/lm.053836.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
Glucocorticoids are potent memory modulators that can modify behavior in an adaptive or maladaptive manner. Elevated glucocorticoid levels after learning promote memory consolidation at recent time points, but their effects on remote time points are not well established. Here we set out to assess whether corticosterone (CORT) given after learning modifies remote fear memory. To that end, mice were exposed to a mild auditory fear conditioning paradigm followed by a single 2 mg/kg CORT injection, and after 28 d, auditory memory was assessed. Neuronal activation was investigated using immunohistochemistry for the immediate early gene c-Fos, and coactivation of brain regions was determined using a correlation matrix analysis. CORT-treated mice displayed significantly less remote auditory memory retrieval. While the net activity of studied brain regions was similar compared with the control condition, CORT-induced remote memory impairment was associated with altered correlated activity between brain regions. Specifically, connectivity of the lateral amygdala with the basal amygdala and the dorsal dentate gyrus was significantly reduced in CORT-treated mice, suggesting disrupted network connectivity that may underlie diminished remote memory retrieval. Elucidating the pathways underlying these effects could help provide mechanistic insight into the effects of stress on memory and possibly provide therapeutic targets for psychopathology.
Collapse
Affiliation(s)
- Niek Brosens
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Sylvie L Lesuis
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Ilse Bassie
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Lara Reyes
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Priya Gajadien
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences (SILS)-Cognitive and Systems Neuroscience (CNS), University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| |
Collapse
|
10
|
Bracco M, Mutanen TP, Veniero D, Thut G, Robertson EM. Distinct frequencies balance segregation with interaction between different memory types within a prefrontal circuit. Curr Biol 2023:S0960-9822(23)00622-X. [PMID: 37269827 DOI: 10.1016/j.cub.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/05/2023]
Abstract
Once formed, the fate of memory is uncertain. Subsequent offline interactions between even different memory types (actions versus words) modify retention.1,2,3,4,5,6 These interactions may occur due to different oscillations functionally linking together different memory types within a circuit.7,8,9,10,11,12,13 With memory processing driving the circuit, it may become less susceptible to external influences.14 We tested this prediction by perturbing the human brain with single pulses of transcranial magnetic stimulation (TMS) and simultaneously measuring the brain activity changes with electroencephalography (EEG15,16,17). Stimulation was applied over brain areas that contribute to memory processing (dorsolateral prefrontal cortex, DLPFC; primary motor cortex, M1) at baseline and offline, after memory formation, when memory interactions are known to occur.1,4,6,10,18 The EEG response decreased offline (compared with baseline) within the alpha/beta frequency bands when stimulation was applied to the DLPFC, but not to M1. This decrease exclusively followed memory tasks that interact, revealing that it was due specifically to the interaction, not task performance. It remained even when the order of the memory tasks was changed and so was present, regardless of how the memory interaction was produced. Finally, the decrease within alpha power (but not beta) was correlated with impairment in motor memory, whereas the decrease in beta power (but not alpha) was correlated with impairment in word-list memory. Thus, different memory types are linked to different frequency bands within a DLPFC circuit, and the power of these bands shapes the balance between interaction and segregation between these memories.
Collapse
Affiliation(s)
- Martina Bracco
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 Bd de l'Hôpital, 75013 Paris, France
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. box 12200, FI-00076 Aalto, Finland
| | - Domenica Veniero
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gregor Thut
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK
| | - Edwin M Robertson
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
11
|
Takehara-Nishiuchi K. Flexibility of memory for future-oriented cognition. Curr Opin Neurobiol 2022; 76:102622. [PMID: 35994840 DOI: 10.1016/j.conb.2022.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022]
Abstract
Memories of daily experiences contain incidental details unique to each experience as well as common latent patterns shared with others. Neural representations focusing on the latter aspect can be reinstated by similar new experiences even though their perceptual features do not match the original experiences perfectly. Such flexible memory use allows for faster learning and better decision-making in novel situations. Here, I review evidence from rodent and primate electrophysiological studies to discuss how memory flexibility is implemented in the spiking activity of neuronal ensembles. These findings uncovered innate and learned coding properties and their potential refinement during sleep that support flexible integration and application of memories for better future adaptation.
Collapse
Affiliation(s)
- Kaori Takehara-Nishiuchi
- Department of Psychology, University of Toronto, Toronto, M5S 3G3, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G3, Canada; Neuroscience Program, University of Toronto, Toronto, M5S 3G3, Canada.
| |
Collapse
|
12
|
Almeida VN, Radanovic M. Semantic processing and neurobiology in Alzheimer's disease and Mild Cognitive Impairment. Neuropsychologia 2022; 174:108337. [DOI: 10.1016/j.neuropsychologia.2022.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022]
|
13
|
Stacho M, Manahan-Vaughan D. The Intriguing Contribution of Hippocampal Long-Term Depression to Spatial Learning and Long-Term Memory. Front Behav Neurosci 2022; 16:806356. [PMID: 35548697 PMCID: PMC9084281 DOI: 10.3389/fnbeh.2022.806356] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/10/2022] [Indexed: 01/03/2023] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) comprise the principal cellular mechanisms that fulfill established criteria for the physiological correlates of learning and memory. Traditionally LTP, that increases synaptic weights, has been ascribed a prominent role in learning and memory whereas LTD, that decreases them, has often been relegated to the category of "counterpart to LTP" that serves to prevent saturation of synapses. In contradiction of these assumptions, studies over the last several years have provided functional evidence for distinct roles of LTD in specific aspects of hippocampus-dependent associative learning and information encoding. Furthermore, evidence of the experience-dependent "pruning" of excitatory synapses, the majority of which are located on dendritic spines, by means of LTD has been provided. In addition, reports exist of the temporal and physical restriction of LTP in dendritic compartments by means of LTD. Here, we discuss the role of LTD and LTP in experience-dependent information encoding based on empirical evidence derived from conjoint behavioral and electrophysiological studies conducted in behaving rodents. We pinpoint the close interrelation between structural modifications of dendritic spines and the occurrence of LTP and LTD. We report on findings that support that whereas LTP serves to acquire the general scheme of a spatial representation, LTD enables retention of content details. We argue that LTD contributes to learning by engaging in a functional interplay with LTP, rather than serving as its simple counterpart, or negator. We propose that similar spatial experiences that share elements of neuronal representations can be modified by means of LTD to enable pattern separation. Therewith, LTD plays a crucial role in the disambiguation of similar spatial representations and the prevention of generalization.
Collapse
|
14
|
Robertson EM. Memory leaks: information shared across memory systems. Trends Cogn Sci 2022; 26:544-554. [DOI: 10.1016/j.tics.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
|
15
|
Yalnizyan-Carson A, Richards BA. Forgetting Enhances Episodic Control With Structured Memories. Front Comput Neurosci 2022; 16:757244. [PMID: 35399916 PMCID: PMC8991683 DOI: 10.3389/fncom.2022.757244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Forgetting is a normal process in healthy brains, and evidence suggests that the mammalian brain forgets more than is required based on limitations of mnemonic capacity. Episodic memories, in particular, are liable to be forgotten over time. Researchers have hypothesized that it may be beneficial for decision making to forget episodic memories over time. Reinforcement learning offers a normative framework in which to test such hypotheses. Here, we show that a reinforcement learning agent that uses an episodic memory cache to find rewards in maze environments can forget a large percentage of older memories without any performance impairments, if they utilize mnemonic representations that contain structural information about space. Moreover, we show that some forgetting can actually provide a benefit in performance compared to agents with unbounded memories. Our analyses of the agents show that forgetting reduces the influence of outdated information and states which are not frequently visited on the policies produced by the episodic control system. These results support the hypothesis that some degree of forgetting can be beneficial for decision making, which can help to explain why the brain forgets more than is required by capacity limitations.
Collapse
Affiliation(s)
- Annik Yalnizyan-Carson
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Montreal Institute for Learning Algorithms (MILA), Montreal, QC, Canada
- *Correspondence: Annik Yalnizyan-Carson
| | - Blake A. Richards
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Montreal Institute for Learning Algorithms (MILA), Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- School of Computer Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Hamel R, Lepage JF, Bernier PM. Anterograde interference emerges along a gradient as a function of task similarity: A behavioural study. Eur J Neurosci 2021; 55:49-66. [PMID: 34894023 PMCID: PMC9299670 DOI: 10.1111/ejn.15561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Abstract
Anterograde interference emerges when two opposite (B → A) or identical tasks (A → A) are learned in close temporal succession, suggesting that interference cannot be fully accounted for by competing memories. Informed by neurobiological evidence, this work tested the hypothesis that interference depends upon the degree of overlap between the neural networks involved in the learning of two tasks. In a fully within‐subject and counterbalanced design, participants (n = 24) took part in two learning sessions where the putative overlap between learning‐specific neural networks was behaviourally manipulated across four conditions by modifying reach direction and the effector used during gradual visuomotor adaptation. The results showed that anterograde interference emerged regardless of memory competition—that is, to a similar extent in the B → A and A → A conditions—and along a gradient as a function of the tasks' similarity. Specifically, learning under similar reaching conditions generated more anterograde interference than learning under dissimilar reaching conditions, suggesting that putatively overlapping neural networks are required to generate interference. Overall, these results indicate that competing memories are not the sole contributor to anterograde interference and suggest that overlapping neural networks between two learning sessions are required to trigger interference. One discussed possibility is that initial learning modifies the properties of its neural networks to constrain further plasticity induction and learning capabilities, therefore causing anterograde interference in a network‐dependent manner. One implication is that learning‐specific neural networks must be maximally dissociated to minimize the interfering influences of previous learning on subsequent learning.
Collapse
Affiliation(s)
- Raphaël Hamel
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Lepage
- Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pierre-Michel Bernier
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
17
|
Noyes NC, Phan A, Davis RL. Memory suppressor genes: Modulating acquisition, consolidation, and forgetting. Neuron 2021; 109:3211-3227. [PMID: 34450024 PMCID: PMC8542634 DOI: 10.1016/j.neuron.2021.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
The brain has a remarkable but underappreciated capacity to limit memory formation and expression. The term "memory suppressor gene" was coined in 1998 as an attempt to explain emerging reports that some genes appeared to limit memory. At that time, only a handful of memory suppressor genes were known, and they were understood to work by limiting cAMP-dependent consolidation. In the intervening decades, almost 100 memory suppressor genes with diverse functions have been discovered that affect not only consolidation but also acquisition and forgetting. Here we highlight the surprising extent to which biological limits are placed on memory formation through reviewing the literature on memory suppressor genes. In this review, we present memory suppressors within the framework of their actions on different memory operations: acquisition, consolidation, and forgetting. This is followed by a discussion of the reasons why there may be a biological need to limit memory formation.
Collapse
Affiliation(s)
- Nathaniel C Noyes
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Anna Phan
- Department of Biological Sciences, University of Alberta, 11355 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
| | - Ronald L Davis
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
18
|
Baena D, Cantero JL, Atienza M. Stability of neural encoding moderates the contribution of sleep and repeated testing to memory consolidation. Neurobiol Learn Mem 2021; 185:107529. [PMID: 34597816 DOI: 10.1016/j.nlm.2021.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
There is evidence suggesting that online consolidation during retrieval-mediated learning interacts with offline consolidation during subsequent sleep to transform memory. Here we investigate whether this interaction persists when retrieval-mediated learning follows post-training sleep and whether the direction of this interaction is conditioned by the quality of encoding resulting from manipulation of the amount of sleep on the previous night. The quality of encoding was determined by computing the degree of similarity between EEG-activity patterns across restudy of face pairs in two groups of young participants, one who slept the last 4 h of the pre-training night, and another who slept 8 h. The offline consolidation was assessed by computing the degree of coupling between slow oscillations (SOs) and spindles (SPs) during post-training sleep, while the online consolidation was evaluated by determining the degree of similarity between EEG-activity patterns recorded during the study phase and during repeated recognition of either the same face pair (i.e., specific similarity) or face pairs sharing sex and profession (i.e., categorical similarity) to evaluate differentiation and generalization, respectively. The study and recognition phases were separated by a night of normal sleep duration. Mixed-effects models revealed that the stability of neural encoding moderated the relationship between sleep- and retrieval-mediated consolidation processes over left frontal regions. For memories showing lower encoding stability, the enhanced SO-SP coupling was associated with increased reinstatement of category-specific encoding-related activity at the expense of content-specific activity, whilst the opposite occurred for memories showing greater encoding stability. Overall, these results suggest that offline consolidation during post-training sleep interacts with online consolidation during retrieval the next day to favor the reorganization of memory contents, by increasing specificity of stronger memories and generalization of the weaker ones.
Collapse
Affiliation(s)
- Daniel Baena
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville 41013, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville 41013, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain.
| |
Collapse
|
19
|
Tandoc MC, Bayda M, Poskanzer C, Cho E, Cox R, Stickgold R, Schapiro AC. Examining the effects of time of day and sleep on generalization. PLoS One 2021; 16:e0255423. [PMID: 34339459 PMCID: PMC8328323 DOI: 10.1371/journal.pone.0255423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
Extracting shared structure across our experiences allows us to generalize our knowledge to novel contexts. How do different brain states influence this ability to generalize? Using a novel category learning paradigm, we assess the effect of both sleep and time of day on generalization that depends on the flexible integration of recent information. Counter to our expectations, we found no evidence that this form of generalization is better after a night of sleep relative to a day awake. Instead, we observed an effect of time of day, with better generalization in the morning than the evening. This effect also manifested as increased false memory for generalized information. In a nap experiment, we found that generalization did not benefit from having slept recently, suggesting a role for time of day apart from sleep. In follow-up experiments, we were unable to replicate the time of day effect for reasons that may relate to changes in category structure and task engagement. Despite this lack of consistency, we found a morning benefit for generalization when analyzing all the data from experiments with matched protocols (n = 136). We suggest that a state of lowered inhibition in the morning may facilitate spreading activation between otherwise separate memories, promoting this form of generalization.
Collapse
Affiliation(s)
- Marlie C. Tandoc
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mollie Bayda
- Department of Psychiatry, Beth Israel Deaconess Medical Center / Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Psychology, University of California-Los Angeles, Los Angeles, California, United States of America
| | - Craig Poskanzer
- Department of Psychiatry, Beth Israel Deaconess Medical Center / Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Eileen Cho
- Department of Psychiatry, Beth Israel Deaconess Medical Center / Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roy Cox
- Department of Psychiatry, Beth Israel Deaconess Medical Center / Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center / Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anna C. Schapiro
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Psychiatry, Beth Israel Deaconess Medical Center / Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
20
|
Johnson BP, Cohen LG, Westlake KP. The Intersection of Offline Learning and Rehabilitation. Front Hum Neurosci 2021; 15:667574. [PMID: 33967725 PMCID: PMC8098688 DOI: 10.3389/fnhum.2021.667574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brian P Johnson
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States.,Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Kelly P Westlake
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
21
|
Abstract
Perceptual learning has been widely used to study the plasticity of the visual system in adults. Owing to the belief that practice makes perfect, perceptual learning protocols usually require subjects to practice a task thousands of times over days, even weeks. However, we know very little about the relationship between training amount and behavioral improvement. Here, four groups of subjects underwent motion direction discrimination training over 8 days with 40, 120, 360, or 1080 trials per day. Surprisingly, different daily training amounts induced similar improvement across the four groups, and the similarity lasted for at least 2 weeks. Moreover, the group with 40 training trials per day showed more learning transfer from the trained direction to the untrained directions than the group with 1080 training trials per day immediately after training and 2 weeks later. These findings suggest that perceptual learning of motion direction discrimination is not always dependent on the daily training amount and less training leads to more transfer.
Collapse
Affiliation(s)
- Yongqian Song
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, People's Republic of China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, People's Republic of China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China.,
| | - Nihong Chen
- Department of Psychology, Tsinghua University, Beijing, People's Republic of China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, People's Republic of China.,
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, People's Republic of China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, People's Republic of China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China.,
| |
Collapse
|
22
|
Zenses AK, Lee JC, Plaisance V, Zaman J. Differences in perceptual memory determine generalization patterns. Behav Res Ther 2020; 136:103777. [PMID: 33271392 DOI: 10.1016/j.brat.2020.103777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/03/2020] [Accepted: 11/13/2020] [Indexed: 11/28/2022]
Abstract
Although memory of past experiences is crucial for the ability to transfer knowledge to new situations, surprisingly little research has directly investigated the relationship between memory and generalization. The present study sought to investigate how the perceptual memory of a trained stimulus influences generalization to similar stimuli. Forty participants underwent a fear conditioning procedure on Day 1, and separate memory recall and generalization tests on Day 2. We focused on two aspects of perceptual memory: namely memory bias (i.e., over- or underestimation of stimulus magnitude) and uncertainty. We found that memory bias predicted the pattern of generalized self-reported (expectancy ratings) and psychophysiological responses (fear-potentiated startle responses). Memory uncertainty was measured in two ways: self-reported uncertainty ratings and variability in stimulus recall. We found that higher levels of self-reported memory uncertainty corresponded with a broader generalization gradient on US expectancy, while greater variability in memory recall was associated with a broader generalization gradient on fear-potentiated startle responses. Taken together, our findings suggest that memory is an important determinant of generalized behavior and illustrate the need to account for these interindividual differences in perceptual memory when examining the generalization of learned responses.
Collapse
Affiliation(s)
- Ann-Kathrin Zenses
- Center for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Tiensestraat 102, Box 3712, 3000, Leuven, Belgium
| | - Jessica C Lee
- University of New South Wales, Sydney, NSW, 2052, Australia
| | - Valérie Plaisance
- Center for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Tiensestraat 102, Box 3712, 3000, Leuven, Belgium
| | - Jonas Zaman
- Center for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Tiensestraat 102, Box 3712, 3000, Leuven, Belgium; Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Tiensestraat 102, Box 3726, 3000, Leuven, Belgium; Brain and Cognition, Department of Psychology, Education & Child Studies, Erasmus School of Social and Behavioural Sciences, The Netherlands
| |
Collapse
|
23
|
Perceiving structure in unstructured stimuli: Implicitly acquired prior knowledge impacts the processing of unpredictable transitional probabilities. Cognition 2020; 205:104413. [DOI: 10.1016/j.cognition.2020.104413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
|
24
|
Marin FN, Franzen JM, Troyner F, Molina VA, Giachero M, Bertoglio LJ. Taking advantage of fear generalization-associated destabilization to attenuate the underlying memory via reconsolidation intervention. Neuropharmacology 2020; 181:108338. [PMID: 33002500 DOI: 10.1016/j.neuropharm.2020.108338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 02/05/2023]
Abstract
Upon retrieval, an aversive memory can undergo destabilization and reconsolidation. A traumatic-like memory, however, may be resistant to this process. The present study sought to contribute with a strategy to overcome this potential issue by investigating whether generalized fear retrieval is susceptible to destabilization-reconsolidation that can be pharmacologically modified. We hypothesized that exposure to a context that elicits moderate generalization levels would allow a malleable memory state. We developed a fear conditioning protocol in context A (cxt-A) paired with yohimbine administration to promote significant fear to a non-conditioned context B (cxt-B) in rats, mimicking the enhanced noradrenergic activity reported after traumatic events in humans. Next, we attempted to impair the reconsolidation phase by administering clonidine (CLO) immediately after exposure to cxt-A, cxt-B, or a third context C (cxt-C) neither conditioned nor generalized. CLO administered post-cxt-B exposure for two consecutive days subsequently resulted in decreased freezing levels in cxt-A. CLO after cxt-B only once, after cxt-A or cxt-C in two consecutive days, or independently of cxt-B exposures did not affect fear in a later test. A 6-h-delay in CLO treatment post-cxt-B exposures produced no effects, and nimodipine administered pre-cxt-B exposures precluded the CLO action. We then quantified the Egr1/Zif268 protein expression following cxt-B exposures and CLO treatments. We found that these factors interact to modulate this memory destabilization-reconsolidation mechanism in the basolateral amygdala but not the dorsal CA1 hippocampus. Altogether, memory destabilization can accompany generalized fear expression; thus, we may exploit it to potentiate reconsolidation blockers' action.
Collapse
Affiliation(s)
- Fernanda Navarro Marin
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jaqueline Maisa Franzen
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fernanda Troyner
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Victor Alejandro Molina
- Departamento de Farmacología, IFEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marcelo Giachero
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Instituto de Neurociencia Cognitiva y Traslacional (INCYT), CONICET, Fundación INECO, Universidad Favaloro, Buenos Aires, Argentina.
| | - Leandro Jose Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
25
|
Sampath S, Srivastava V. On stability and associative recall of memories in attractor neural networks. PLoS One 2020; 15:e0238054. [PMID: 32941475 PMCID: PMC7498056 DOI: 10.1371/journal.pone.0238054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/10/2020] [Indexed: 11/21/2022] Open
Abstract
Attractor neural networks such as the Hopfield model can be used to model associative memory. An efficient associative memory should be able to store a large number of patterns which must all be stable. We study in detail the meaning and definition of stability of network states. We reexamine the meanings of retrieval, recognition and recall and assign precise mathematical meanings to each of these terms. We also examine the relation between them and how they relate to memory capacity of the network. We have shown earlier in this journal that orthogonalization scheme provides an effective way of overcoming catastrophic interference that limits the memory capacity of the Hopfield model. It is not immediately apparent whether the improvement made by orthgonalization affects the processes of retrieval, recognition and recall equally. We show that this influence occurs to different degrees and hence affects the relations between them. We then show that the conditions for pattern stability can be split into a necessary condition (recognition) and a sufficient one (recall). We interpret in cognitive terms the information being stored in the Hopfield model and also after it is orthogonalized. We also study the alterations in the network dynamics of the Hopfield network upon the introduction of orthogonalization, and their effects on the efficiency of the network as an associative memory.
Collapse
Affiliation(s)
- Suchitra Sampath
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, Telangana, India
- * E-mail:
| | - Vipin Srivastava
- School of Physics, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
26
|
Beik M, Taheri H, Saberi Kakhki A, Ghoshuni M. Neural Mechanisms of the Contextual Interference Effect and Parameter Similarity on Motor Learning in Older Adults: An EEG Study. Front Aging Neurosci 2020; 12:173. [PMID: 32595488 PMCID: PMC7304442 DOI: 10.3389/fnagi.2020.00173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 05/19/2020] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to investigate the neural mechanisms of the contextual interference effect (CIE) and parameter similarity on motor learning in older adults. Sixty older adults (mean age, 67.68 ± 3.95 years) were randomly assigned to one of six experimental groups: blocked-similar, algorithm-similar, random-similar, blocked-dissimilar, algorithm-dissimilar, and random-dissimilar. Algorithm practice was a hybrid practice schedule (a combination of blocked, serial, and random practice) that switching between practice schedules were based on error trial number, ≤33%. The sequential motor task was used to record the absolute timing for the absolute timing goals (ATGs). In similar conditions, the participants’ performance was near ATGs (1,350, 1,500, 1,650 ms) and in dissimilar conditions, they performed far ATGs (1,050, 1,500, 1,950 ms) with the same spatial sequence for all groups. EEG signals were continuously collected during the acquisition phase and delayed retention. Data were analyzed in different bands (alpha and beta) and scalp locations (frontal: Fp1, Fp2, F3, F4; central: C3, C4; and parietal: P3, P4) with repeated measures on the last factor. The analyses were included motor preparation and intertrial interval (motor evaluation) periods in the first six blocks and the last six blocks, respectively. The results of behavioral data indicated that algorithm practice resulted in medium error related to classic blocked and random practice during the acquisition, however, algorithm practice outperformed the classic blocked and random practice in the delayed retention test. The results of EEG data demonstrated that algorithm practice, due to optimal activity in the frontal lobe (medium alpha and beta activation at prefrontal), resulted in increased activity of sensorimotor areas (high alpha activation at C3 and P4) in older adults. Also, EEG data showed that similar conditions could affect the intertrial interval period (medium alpha and beta activation in frontal in the last six-block), while the dissimilar conditions could affect the motor preparation period (medium alpha and beta activation in frontal in the first six-block). In conclusion, algorithm practice can enhance motor learning and optimize the efficiency of brain activity, resulting in the achievement of a desirable goal in older adults.
Collapse
Affiliation(s)
- Meysam Beik
- Motor Behavior Laboratory, Department of Motor Behavior, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamidreza Taheri
- Motor Behavior Laboratory, Department of Motor Behavior, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Saberi Kakhki
- Motor Behavior Laboratory, Department of Motor Behavior, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Ghoshuni
- Department of Biomedical Engineering, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| |
Collapse
|
27
|
Takacs A, Mückschel M, Roessner V, Beste C. Decoding Stimulus-Response Representations and Their Stability Using EEG-Based Multivariate Pattern Analysis. Cereb Cortex Commun 2020; 1:tgaa016. [PMID: 34296094 PMCID: PMC8152870 DOI: 10.1093/texcom/tgaa016] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
Goal-directed actions require proper associations between stimuli and response. This has been delineated by cognitive theory, for example, in the theory of event coding framework, which proposes that event files represent such bindings. Yet, how such event file representations are coded on a neurophysiological level is unknown. We close this gap combining temporal electroencephalography (EEG) signal decomposition methods and multivariate pattern analysis (MVPA). We show that undecomposed neurophysiological data is unsuitable to decode event file representations because different aspects of information coded in the neurophysiological signal reveal distinct and partly opposed dynamics in the representational content. This is confirmed by applying MVPA to temporal decomposed EEG data. After intermixed aspects of information in the EEG during response selection have been separated, a reliable examination of the event file’s representational content and its temporal stability was possible. We show that representations of stimulus–response bindings are activated and decay in a gradual manner and that event file representations resemble distributed neural activity. Especially representations of stimulus–response bindings, as well as stimulus-related representations, are coded and reveal temporal stability. Purely motor-related representations are not found in neurophysiological signals during event coding.
Collapse
Affiliation(s)
- Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden D-01309, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden D-01309, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden D-01309, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden D-01309, Germany
| |
Collapse
|
28
|
Mutanen TP, Bracco M, Robertson EM. A Common Task Structure Links Together the Fate of Different Types of Memories. Curr Biol 2020; 30:2139-2145.e5. [PMID: 32302588 DOI: 10.1016/j.cub.2020.03.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/06/2020] [Accepted: 03/17/2020] [Indexed: 12/28/2022]
Abstract
Our memories frequently have features in common. For example, a learned sequence of words or actions can follow a common rule, which determines their serial order, despite being composed of very different events [1, 2]. This common abstract structure might link the fates of memories together. We tested this idea by creating different types of memory task: a sequence of words or actions that either did or did not have a common structure. Participants learned one of these memory tasks and then they learned another type of memory task 6 h later, either with or without the same structure. We then tested the newly formed memory's susceptibility to interference. We found that the newly formed memory was protected from interference when it shared a common structure with the earlier memory. Specifically, learning a sequence of words protected a subsequent sequence of actions learned hours later from interference, and conversely, learning a sequence of actions protected a subsequent sequence of words learned hours later from interference provided the sequences shared a common structure. Yet this protection of the newly formed memory came at a cost. The earlier memory had disrupted recall when it had the same rather than a different structure to the newly formed and protected memory. Thus, a common structure can determine what is retained (i.e., protected) and what is modified (i.e., disrupted). Our work reveals that a shared common structure links the fate of otherwise different types of memories together and identifies a novel mechanism for memory modification.
Collapse
Affiliation(s)
- Tuomas P Mutanen
- Department of Neuroscience & Biomedical Engineering, Aalto University, School of Science, 00076 Aalto, Espoo, Finland
| | - Martina Bracco
- Institute of Neuroscience & Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK
| | - Edwin M Robertson
- Institute of Neuroscience & Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
29
|
Robertson EM, Genzel L. Memories replayed: reactivating past successes and new dilemmas. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190226. [PMID: 32248775 DOI: 10.1098/rstb.2019.0226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Our experiences continue to be processed 'offline' in the ensuing hours of both wakefulness and sleep. During these different brain states, the memory formed during our experience is replayed or reactivated. Here, we discuss the unique challenges in studying offline reactivation, the growth in both the experimental and analytical techniques available across different animals from rodents to humans to capture these offline events, the important challenges this innovation has brought, our still modest understanding of how reactivation drives diverse synaptic changes across circuits, and how these changes differ (if at all), and perhaps complement, those at memory formation. Together, these discussions highlight critical emerging issues vital for identifying how reactivation affects circuits, and, in turn, behaviour, and provides a broader context for the contributions in this special issue. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Edwin M Robertson
- Institute of Neuroscience & Psychology, University of Glasgow, Glasgow, UK
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Marshall L, Cross N, Binder S, Dang-Vu TT. Brain Rhythms During Sleep and Memory Consolidation: Neurobiological Insights. Physiology (Bethesda) 2020; 35:4-15. [DOI: 10.1152/physiol.00004.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sleep can benefit memory consolidation. The characterization of brain regions underlying memory consolidation during sleep, as well as their temporal interplay, reflected by specific patterns of brain electric activity, is surfacing. Here, we provide an overview of recent concepts and results on the mechanisms of sleep-related memory consolidation. The latest studies strongly impacting future directions of research in this field are highlighted.
Collapse
Affiliation(s)
- Lisa Marshall
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck, Germany
- Center for Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Nathan Cross
- Perform Center, Center for Studies in Behavioral Neurobiology, and Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l’Ile-de-Montréal, Montreal, Quebec, Canada
| | - Sonja Binder
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck, Germany
- Center for Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Thien Thanh Dang-Vu
- Perform Center, Center for Studies in Behavioral Neurobiology, and Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l’Ile-de-Montréal, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Lutz ND, Born J. Sleep to make more of your memories: Decoding hidden rules from encoded information. Sleep Med Rev 2019; 47:122-124. [PMID: 31447252 DOI: 10.1016/j.smrv.2019.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 11/24/2022]
Affiliation(s)
- Nicolas D Lutz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Otfried-Müller-Straße 25, 72076, Tübingen, Germany.
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Otfried-Müller-Straße 25, 72076, Tübingen, Germany.
| |
Collapse
|
32
|
Crossley M, Lorenzetti FD, Naskar S, O’Shea M, Kemenes G, Benjamin PR, Kemenes I. Proactive and retroactive interference with associative memory consolidation in the snail Lymnaea is time and circuit dependent. Commun Biol 2019; 2:242. [PMID: 31263786 PMCID: PMC6595009 DOI: 10.1038/s42003-019-0470-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/18/2019] [Indexed: 12/29/2022] Open
Abstract
Interference-based forgetting occurs when new information acquired either before or after a learning event attenuates memory expression (proactive and retroactive interference, respectively). Multiple learning events often occur in rapid succession, leading to competition between consolidating memories. However, it is unknown what factors determine which memory is remembered or forgotten. Here, we challenge the snail, Lymnaea, to acquire two consecutive similar or different memories and identify learning-induced changes in neurons of its well-characterized motor circuits. We show that when new learning takes place during a stable period of the original memory, proactive interference only occurs if the two consolidating memories engage the same circuit mechanisms. If different circuits are used, both memories survive. However, any new learning during a labile period of consolidation promotes retroactive interference and the acquisition of the new memory. Therefore, the effect of interference depends both on the timing of new learning and the underlying neuronal mechanisms.
Collapse
Affiliation(s)
- Michael Crossley
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | | | - Souvik Naskar
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - Michael O’Shea
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - Paul R. Benjamin
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - Ildikó Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| |
Collapse
|
33
|
King BR, Dolfen N, Gann MA, Renard Z, Swinnen SP, Albouy G. Schema and Motor-Memory Consolidation. Psychol Sci 2019; 30:963-978. [PMID: 31173532 DOI: 10.1177/0956797619847164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent research has demonstrated that memory-consolidation processes can be accelerated if newly learned information is consistent with preexisting knowledge. Until now, investigations of this fast integration of new information into memory have focused on the declarative and perceptual systems. We employed a unique manipulation of a motor-sequence-learning paradigm to examine the effect of experimentally acquired memory on the learning of new motor information. Results demonstrate that new information is rapidly integrated into memory when practice occurs in a framework that is compatible with the previously acquired memory. This framework consists of the ordinal representation of the motor sequence. This enhanced integration cannot be explained by differences in the explicit awareness of the sequence and is observed only if the previously acquired motor memory was consolidated overnight. Results are consistent with the schema model of memory consolidation and offer insights into how previous motor experience can accelerate learning and consolidation processes.
Collapse
Affiliation(s)
- Bradley R King
- 1 Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven.,2 Leuven Brain Institute, KU Leuven
| | - Nina Dolfen
- 1 Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven.,2 Leuven Brain Institute, KU Leuven
| | - Mareike A Gann
- 1 Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven.,2 Leuven Brain Institute, KU Leuven
| | - Zenzi Renard
- 1 Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven.,2 Leuven Brain Institute, KU Leuven
| | - Stephan P Swinnen
- 1 Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven.,2 Leuven Brain Institute, KU Leuven
| | - Genevieve Albouy
- 1 Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven.,2 Leuven Brain Institute, KU Leuven
| |
Collapse
|
34
|
Kang CY, Duncan GJ, Clements DH, Sarama J, Bailey DH. The Roles of Transfer of Learning and Forgetting in the Persistence and Fadeout of Early Childhood Mathematics Interventions. JOURNAL OF EDUCATIONAL PSYCHOLOGY 2019; 111:590-603. [PMID: 31156273 PMCID: PMC6541454 DOI: 10.1037/edu0000297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although many interventions have generated immediate positive effects on mathematics achievement, these effects often diminish over time, leading to the important question of what causes fadeout and persistence of intervention effects. This study investigates how children's forgetting contributes to fadeout and how transfer contributes to the persistence of effects of early childhood mathematics interventions. We also test whether having a sustaining classroom environment following an intervention helps mitigate forgetting and promotes new learning. Students who received the intervention we studied forgot more in the following year than students who did not, but forgetting accounted for only about one-quarter of the fadeout effect. An offsetting but small and statistically non-significant transfer effect accounted for some of the persistence of the intervention effect - approximately one-tenth of the end-of-program treatment effect and a quarter of the treatment effect one year later. These findings suggest that most of the fadeout was attributable to control-group students catching up to the treatment-group students in the year following the intervention. Finding ways to facilitate more transfer of learning in subsequent schooling could improve the persistence of early intervention effects.
Collapse
|
35
|
|