1
|
Claywell JE, Fu Y, Sibley LD. Phospho-relay feedback loops control egress vs. intracellular development in Toxoplasma gondii. Cell Rep 2025; 44:115260. [PMID: 39903669 DOI: 10.1016/j.celrep.2025.115260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/27/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
The intracellular parasite Toxoplasma gondii alternates between a motile invasive and a quiescent intracellular replicative form, yet how these transitions are regulated is unknown. A positive feedback loop involving protein kinase G (PKG) and calcium-dependent PKs (CDPKs) controls motility, invasion, and egress by Toxoplasma gondii, while PKA isoform c1 (PKAc1) counteracts this pathway. Shortly after invasion, PKAc1 is activated by cyclic AMP (cAMP) produced by adenylate cyclases, leading to the suppression of the PKG/CDPK pathway. PKAc1 further activates phosphodiesterase 2, which selectively consumes cAMP, thus forming a negative feedback loop, causing transient activation of PKAc1. Perturbation of cyclic GMP (cGMP) vs. calcium demonstrates that PKAc1 acts on targets between guanylate cyclase and calcium release. The combined activation of PKG/CDPKs and inhibition by PKAc1, controlled by a transient negative feedback loop, ensures that the parasite is responsive to environmental signals needed to activate motility while also ensuring periods of long-term stable intracellular growth.
Collapse
Affiliation(s)
- Ja E Claywell
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Waller RF, Carruthers VB. Adaptations and metabolic evolution of myzozoan protists across diverse lifestyles and environments. Microbiol Mol Biol Rev 2024; 88:e0019722. [PMID: 39387588 DOI: 10.1128/mmbr.00197-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
SUMMARYMyzozoans encompass apicomplexans and dinoflagellates that manifest diverse lifestyles in highly varied environments. They show enormous propensity to employ different metabolic programs and exploit different nutrient resources and niches, and yet, they share much core biology that underlies this evolutionary success and impact. This review discusses apicomplexan parasites of medical significance and the traits and properties they share with non-pathogenic myzozoans. These include the versatility of myzozoan plastids, which scale from fully photosynthetic organelles to the site of very select key metabolic pathways. Pivotal evolutionary innovations, such as the apical complex, have allowed myzozoans to shift from predatory to parasitic and other symbiotic lifestyles multiple times in both apicomplexan and dinoflagellate branches of the myzozoan evolutionary tree. Such traits, along with shared mechanisms for nutrient acquisition, appear to underpin the prosperity of myzozoans in their varied habitats. Understanding the mechanisms of these shared traits has the potential to spawn new strategic interventions against medically and veterinary relevant parasites within this grouping.
Collapse
Affiliation(s)
- Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Yang J, Pei Y, Wang X, Ying Z, Zhu Z, Liu Q, Liu J. Dense granule protein 41 of Neospora caninum modulates tachyzoite egress by regulating microneme secretion. Parasitol Res 2024; 123:386. [PMID: 39556123 DOI: 10.1007/s00436-024-08405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
Egress represents a crucial process employed by Neospora caninum in the establishment of infection. Dense granule proteins (GRAs), secreted by the dense granule, play significant roles in modifying the parasitophorous vacuole, maintenance of morphology, and regulating host-cell interactions. However, their precise involvement in tachyzoite egress remains inadequately characterized. In this study, we identified a homologous gene, Ncgra41, corresponding to the dense granule protein 41 (GRA41) of Toxoplasma gondii, which is associated with egress, utilizing NCBI and ToxoDB databases. NcGRA41 is localized extracellularly within dense granules and intracellularly within parasitic vacuoles. Deletion of NcGRA41 did not affect tachyzoites invasion or proliferation but significantly reduced egress capacity and pathogenicity in mice. The phenotypic characteristics were restored in a complementary strain. Further investigation revealed that the absence of NcGRA41 reduced gliding motility and the transcription level of the subtilisin-like protein (SUB1). A microneme secretion assay demonstrated a significant decrease in NcMIC1 secretion, along with reduced expression levels of NcMIC1, NcMIC4, and NcMIC8. These findings demonstrate that NcGRA41, a novel dense granule protein in N. caninum, modulates tachyzoites egress and influences pathogenicity by regulating microneme secretion.
Collapse
Affiliation(s)
- Jing Yang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Yanqun Pei
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Xianmei Wang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Zhu Ying
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Zifu Zhu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
4
|
Cabral G, Ren B, Bisio H, Otey D, Soldati-Favre D, Brown KM. Orthologs of Plasmodium ICM1 are dispensable for Ca 2+ mobilization in Toxoplasma gondii. Microbiol Spectr 2024; 12:e0122924. [PMID: 39162502 PMCID: PMC11448412 DOI: 10.1128/spectrum.01229-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024] Open
Abstract
Apicomplexan parasites mobilize ionic calcium (Ca2+) from intracellular stores to promote microneme secretion and facilitate motile processes including gliding motility, invasion, and egress. Recently, a multipass transmembrane protein, ICM1, was found to be important for calcium mobilization in Plasmodium falciparum and P. berghei. Comparative genomics and phylogenetics have revealed putative ICM orthologs in Toxoplasma gondii and other apicomplexans. T. gondii possesses two ICM-like proteins, which we have named TgICM1-L (TGGT1_305470) and TgICM2-L (TGGT1_309910). TgICM1-L and TgICM2-L localized to undefined puncta within the parasite cytosol. TgICM1-L and TgICM2-L are individually dispensable in tachyzoites, suggesting a potential compensatory relationship between the two proteins may exist. Surprisingly, mutants lacking both TgICM1-L and TgICM2-L are fully viable, exhibiting no obvious defects in growth, microneme secretion, invasion, or egress. Furthermore, loss of TgICM1-L, TgICM2-L, or both does not impair the parasite's ability to mobilize Ca2+. These findings suggest that additional proteins may participate in Ca2+ mobilization or import in Apicomplexa, reducing the dependence on ICM-like proteins in T. gondii. Collectively, these results highlight similar yet distinct mechanisms of Ca2+ mobilization between T. gondii and Plasmodium.IMPORTANCECa2+ signaling plays a crucial role in governing apicomplexan motility; yet, the mechanisms underlying Ca2+ mobilization from intracellular stores in these parasites remain unclear. In Plasmodium, the necessity of ICM1 for Ca2+ mobilization raises the question of whether this mechanism is conserved in other apicomplexans. Investigation into the orthologs of Plasmodium ICM1 in T. gondii revealed a differing requirement for ICM proteins between the two parasites. This study suggests that T. gondii employs ICM-independent mechanisms to regulate Ca2+ homeostasis and mobilization. Proteins involved in Ca2+ signaling in apicomplexans represent promising targets for therapeutic development.
Collapse
Affiliation(s)
- Gabriel Cabral
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bingjian Ren
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Hugo Bisio
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Marseille, France
| | - Dawson Otey
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Kevin M. Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
5
|
Tagoe DNA, Ribeiro E Silva A, Drozda AA, Coppens I, Coleman BI, Gubbels MJ. Toxoplasma FER1 is a versatile and dynamic mediator of differential microneme trafficking and microneme exocytosis. Sci Rep 2024; 14:21819. [PMID: 39294204 PMCID: PMC11410953 DOI: 10.1038/s41598-024-72628-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Toxoplasma gondii is a polarized cell concentrating several secretory organelles at the apical pole. The secretory micronemes come in two sub-populations differentiated by dependence on Rab5A/C in their biogenesis. Calcium-dependent exocytosis of micronemes occurs at the very apical tip and is critical for parasite egress from its host cell, adhesion and invasion of the next cell. Ferlins represent a protein family with roles in exocytosis containing multiple Ca2+-sensing C2 domains. We determined that T. gondii's ferlin 1 (FER1) localized dynamically to the parasite's secretory pathway. FER1 function was dissected by dominant negative overexpression strategies. We demonstrated that FER1 traffics microneme organelles along the following trajectories: (1) Along the cortex to the apical end; (2) To the apical tip for fusion with the plasma membrane; (3) Differential microneme sub-population traffic, and that FER1 could putatively be responsible for microneme protein trafficking. (4) From the trans-Golgi-endosomal network to the subpellicular cortex; (5) Retrograde transport allowing microneme recycling from mother to daughter. Finally, FER1 overexpression triggers a microneme exocytosis burst, supporting the notion that the radially organized micronemes at the apical tip comprise a readily-releasable microneme pool. In summary, FER1 is pivotal for dynamic microneme trafficking, acts differently on the two microneme subpopulations, and acts on the plasma membrane fusion step during microneme exocytosis.
Collapse
Affiliation(s)
- Daniel N A Tagoe
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
- CANbridge Pharmaceuticals Inc., Burlington, MA, USA
| | | | - Allison A Drozda
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
- KromaTiD, Longmont, CO, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Bradley I Coleman
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
- Flagship Pioneering, Cambridge, MA, USA
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
6
|
Cabral G, Moss WJ, Brown KM. Proteomic approaches for protein kinase substrate identification in Apicomplexa. Mol Biochem Parasitol 2024; 259:111633. [PMID: 38821187 PMCID: PMC11194964 DOI: 10.1016/j.molbiopara.2024.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Apicomplexa is a phylum of protist parasites, notable for causing life-threatening diseases including malaria, toxoplasmosis, cryptosporidiosis, and babesiosis. Apicomplexan pathogenesis is generally a function of lytic replication, dissemination, persistence, host cell modification, and immune subversion. Decades of research have revealed essential roles for apicomplexan protein kinases in establishing infections and promoting pathogenesis. Protein kinases modify their substrates by phosphorylating serine, threonine, tyrosine, or other residues, resulting in rapid functional changes in the target protein. Post-translational modification by phosphorylation can activate or inhibit a substrate, alter its localization, or promote interactions with other proteins or ligands. Deciphering direct kinase substrates is crucial to understand mechanisms of kinase signaling, yet can be challenging due to the transient nature of kinase phosphorylation and potential for downstream indirect phosphorylation events. However, with recent advances in proteomic approaches, our understanding of kinase function in Apicomplexa has improved dramatically. Here, we discuss methods that have been used to identify kinase substrates in apicomplexan parasites, classifying them into three main categories: i) kinase interactome, ii) indirect phosphoproteomics and iii) direct labeling. We briefly discuss each approach, including their advantages and limitations, and highlight representative examples from the Apicomplexa literature. Finally, we conclude each main category by introducing prospective approaches from other fields that would benefit kinase substrate identification in Apicomplexa.
Collapse
Affiliation(s)
- Gabriel Cabral
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William J Moss
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin M Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
7
|
Herneisen AL, Peters ML, Smith TA, Shortt E, Lourido S. SPARK regulates AGC kinases central to the Toxoplasma gondii asexual cycle. eLife 2024; 13:RP93877. [PMID: 39136687 PMCID: PMC11321763 DOI: 10.7554/elife.93877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Apicomplexan parasites balance proliferation, persistence, and spread in their metazoan hosts. AGC kinases, such as PKG, PKA, and the PDK1 ortholog SPARK, integrate environmental signals to toggle parasites between replicative and motile life stages. Recent studies have cataloged pathways downstream of apicomplexan PKG and PKA; however, less is known about the global integration of AGC kinase signaling cascades. Here, conditional genetics coupled to unbiased proteomics demonstrates that SPARK complexes with an elongin-like protein to regulate the stability of PKA and PKG in the model apicomplexan Toxoplasma gondii. Defects attributed to SPARK depletion develop after PKG and PKA are down-regulated. Parasites lacking SPARK differentiate into the chronic form of infection, which may arise from reduced activity of a coccidian-specific PKA ortholog. This work delineates the signaling topology of AGC kinases that together control transitions within the asexual cycle of this important family of parasites.
Collapse
Affiliation(s)
- Alice L Herneisen
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Michelle L Peters
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Tyler A Smith
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Emily Shortt
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
8
|
Herneisen AL, Peters ML, Smith TA, Shortt E, Lourido S. SPARK regulates AGC kinases central to the Toxoplasma gondii asexual cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564746. [PMID: 37961644 PMCID: PMC10634940 DOI: 10.1101/2023.10.30.564746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Apicomplexan parasites balance proliferation, persistence, and spread in their metazoan hosts. AGC kinases, such as PKG, PKA, and the PDK1 ortholog SPARK, integrate environmental signals to toggle parasites between replicative and motile life stages. Recent studies have cataloged pathways downstream of apicomplexan PKG and PKA; however, less is known about the global integration of AGC kinase signaling cascades. Here, conditional genetics coupled to unbiased proteomics demonstrates that SPARK complexes with an elongin-like protein to regulate the stability of PKA and PKG in the model apicomplexan Toxoplasma gondii. Defects attributed to SPARK depletion develop after PKG and PKA are down-regulated. Parasites lacking SPARK differentiate into the chronic form of infection, which may arise from reduced activity of a coccidian-specific PKA ortholog. This work delineates the signaling topology of AGC kinases that together control transitions within the asexual cycle of this important family of parasites.
Collapse
Affiliation(s)
- Alice L. Herneisen
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Michelle L. Peters
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Tyler A. Smith
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
9
|
Ober VT, Githure GB, Volpato Santos Y, Becker S, Moya Munoz G, Basquin J, Schwede F, Lorentzen E, Boshart M. Purine nucleosides replace cAMP in allosteric regulation of PKA in trypanosomatid pathogens. eLife 2024; 12:RP91040. [PMID: 38517938 PMCID: PMC10959531 DOI: 10.7554/elife.91040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Cyclic nucleotide binding domains (CNB) confer allosteric regulation by cAMP or cGMP to many signaling proteins, including PKA and PKG. PKA of phylogenetically distant Trypanosoma is the first exception as it is cyclic nucleotide-independent and responsive to nucleoside analogues (Bachmaier et al., 2019). Here, we show that natural nucleosides inosine, guanosine and adenosine are nanomolar affinity CNB ligands and activators of PKA orthologs of the important tropical pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. The sequence and structural determinants of binding affinity, -specificity and kinase activation of PKAR were established by structure-activity relationship (SAR) analysis, co-crystal structures and mutagenesis. Substitution of two to three amino acids in the binding sites is sufficient for conversion of CNB domains from nucleoside to cyclic nucleotide specificity. In addition, a trypanosomatid-specific C-terminal helix (αD) is required for high affinity binding to CNB-B. The αD helix functions as a lid of the binding site that shields ligands from solvent. Selectivity of guanosine for CNB-B and of adenosine for CNB-A results in synergistic kinase activation at low nanomolar concentration. PKA pulldown from rapid lysis establishes guanosine as the predominant ligand in vivo in T. brucei bloodstream forms, whereas guanosine and adenosine seem to synergize in the procyclic developmental stage in the insect vector. We discuss the versatile use of CNB domains in evolution and recruitment of PKA for novel nucleoside-mediated signaling.
Collapse
Affiliation(s)
- Veronica Teresa Ober
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | | | - Yuri Volpato Santos
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | - Sidney Becker
- Max Planck Institute of Molecular PhysiologyDortmundGermany
- TU Dortmund, Department of Chemistry and Chemical BiologyDortmundGermany
| | - Gabriel Moya Munoz
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | | | - Frank Schwede
- BIOLOG Life Science Institute GmbH & Co KGBremenGermany
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Michael Boshart
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| |
Collapse
|
10
|
Moss WJ, Brusini L, Kuehnel R, Brochet M, Brown KM. Apicomplexan phosphodiesterases in cyclic nucleotide turnover: conservation, function, and therapeutic potential. mBio 2024; 15:e0305623. [PMID: 38132724 PMCID: PMC10865986 DOI: 10.1128/mbio.03056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Apicomplexa encompasses a large number of intracellular parasites infecting a wide range of animals. Cyclic nucleotide signaling is crucial for a variety of apicomplexan life stages and cellular processes. The cyclases and kinases that synthesize and respond to cyclic nucleotides (i.e., 3',5'-cyclic guanosine monophosphate and 3',5'-cyclic adenosine monophosphate) are highly conserved and essential throughout the parasite phylum. Growing evidence indicates that phosphodiesterases (PDEs) are also critical for regulating cyclic nucleotide signaling via cyclic nucleotide hydrolysis. Here, we discuss recent advances in apicomplexan PDE biology and opportunities for therapeutic interventions, with special emphasis on the major human apicomplexan parasite genera Plasmodium, Toxoplasma, Cryptosporidium, and Babesia. In particular, we show a highly flexible repertoire of apicomplexan PDEs associated with a wide range of cellular requirements across parasites and lifecycle stages. Despite this phylogenetic diversity, cellular requirements of apicomplexan PDEs for motility, host cell egress, or invasion are conserved. However, the molecular wiring of associated PDEs is extremely malleable suggesting that PDE diversity and redundancy are key for the optimization of cyclic nucleotide turnover to respond to the various environments encountered by each parasite and life stage. Understanding how apicomplexan PDEs are regulated and integrating multiple signaling systems into a unified response represent an untapped avenue for future exploration.
Collapse
Affiliation(s)
- William J. Moss
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ronja Kuehnel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kevin M. Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
11
|
Chelaghma S, Ke H, Barylyuk K, Krueger T, Koreny L, Waller RF. Apical annuli are specialised sites of post-invasion secretion of dense granules in Toxoplasma. eLife 2024; 13:e94201. [PMID: 38270431 PMCID: PMC10857790 DOI: 10.7554/elife.94201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
Apicomplexans are ubiquitous intracellular parasites of animals. These parasites use a programmed sequence of secretory events to find, invade, and then re-engineer their host cells to enable parasite growth and proliferation. The secretory organelles micronemes and rhoptries mediate the first steps of invasion. Both secrete their contents through the apical complex which provides an apical opening in the parasite's elaborate inner membrane complex (IMC) - an extensive subpellicular system of flattened membrane cisternae and proteinaceous meshwork that otherwise limits access of the cytoplasm to the plasma membrane for material exchange with the cell exterior. After invasion, a second secretion programme drives host cell remodelling and occurs from dense granules. The site(s) of dense granule exocytosis, however, has been unknown. In Toxoplasma gondii, small subapical annular structures that are embedded in the IMC have been observed, but the role or significance of these apical annuli to plasma membrane function has also been unknown. Here, we determined that integral membrane proteins of the plasma membrane occur specifically at these apical annular sites, that these proteins include SNARE proteins, and that the apical annuli are sites of vesicle fusion and exocytosis. Specifically, we show that dense granules require these structures for the secretion of their cargo proteins. When secretion is perturbed at the apical annuli, parasite growth is strongly impaired. The apical annuli, therefore, represent a second type of IMC-embedded structure to the apical complex that is specialised for protein secretion, and reveal that in Toxoplasma there is a physical separation of the processes of pre- and post-invasion secretion that mediate host-parasite interactions.
Collapse
Affiliation(s)
- Sara Chelaghma
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Huiling Ke
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | | | - Thomas Krueger
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Ludek Koreny
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Ross F Waller
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
12
|
Elsworth B, Keroack C, Rezvani Y, Paul A, Barazorda K, Tennessen J, Sack S, Moreira C, Gubbels MJ, Meyers M, Zarringhalam K, Duraisingh M. Babesia divergens egress from host cells is orchestrated by essential and druggable kinases and proteases. RESEARCH SQUARE 2023:rs.3.rs-2553721. [PMID: 36909484 PMCID: PMC10002801 DOI: 10.21203/rs.3.rs-2553721/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Apicomplexan egress from host cells is fundamental to the spread of infection and is poorly characterized in Babesia spp., parasites of veterinary importance and emerging zoonoses. Through the use of video microscopy, transcriptomics and chemical genetics, we have implicated signaling, proteases and gliding motility as key drivers of egress by Babesia divergens. We developed reverse genetics to perform a knockdown screen of putative mediators of egress, identifying kinases and proteases involved in distinct steps of egress (ASP3, PKG and CDPK4) and invasion (ASP2, ASP3 and PKG). Inhibition of egress leads to continued intracellular replication, indicating exit from the replication cycle is uncoupled from egress. Chemical genetics validated PKG, ASP2 and ASP3 as druggable targets in Babesia spp. All taken together, egress in B. divergens more closely resembles T. gondii than the more evolutionarily-related Plasmodium spp. We have established a molecular framework for biological and translational studies of B. divergens egress.
Collapse
|
13
|
Toxoplasma Shelph, a Phosphatase Located in the Parasite Endoplasmic Reticulum, Is Required for Parasite Virulence. mSphere 2022; 7:e0035022. [PMID: 36326242 PMCID: PMC9769683 DOI: 10.1128/msphere.00350-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii is a single-celled parasitic eukaryote that evolved to successfully propagate in any nucleated cell. As with any other eukaryote, its life cycle is regulated by signaling pathways controlled by kinases and phosphatases. T. gondii encodes an atypical bacterial-like phosphatase absent from mammalian genomes, named Shelph, after its first identification in the psychrophilic bacterium Schewanella sp. Here, we demonstrate that Toxoplasma Shelph is an active phosphatase localized in the parasite endoplasmic reticulum. The phenotyping of a shelph knockout (KO) line showed a minor impairment in invasion on human fibroblasts, while the other steps of the parasite lytic cycle were not affected. In contrast with Plasmodium ortholog Shelph1, this invasion deficiency was not correlated with any default in the biogenesis of secretory organelles. However, Shelph-KO parasites displayed a much-pronounced defect in virulence in vivo. These phenotypes could be rescued by genetic complementation, thus supporting an important function for Shelph in the context of a natural infection. IMPORTANCE Toxoplasma gondii belongs to the Apicomplexa phylum, which comprises more than 5,000 species, among which is Plasmodium falciparum, the notorious agent of human malaria. Intriguingly, the Apicomplexa genomes encode at least one phosphatase closely related to the bacterial Schewanella phosphatase, or Shelph. To better understand the importance of these atypical bacterial enzymes in eukaryotic parasites, we undertook the functional characterization of T. gondii Shelph. Our results uncovered its subcellular localization and its enzymatic activity, revealed its subtle involvement during the tachyzoite invasion step of the lytic cycle, and more importantly, highlighted a critical requirement of this phosphatase for parasite propagation in mice. Overall, this study revealed an unexpected role for T. gondii Shelph in the maintenance of parasite virulence in vivo.
Collapse
|
14
|
Nofal SD, Dominicus C, Broncel M, Katris NJ, Flynn HR, Arrizabalaga G, Botté CY, Invergo BM, Treeck M. A positive feedback loop mediates crosstalk between calcium, cyclic nucleotide and lipid signalling in calcium-induced Toxoplasma gondii egress. PLoS Pathog 2022; 18:e1010901. [PMID: 36265000 PMCID: PMC9624417 DOI: 10.1371/journal.ppat.1010901] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/01/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Fundamental processes that govern the lytic cycle of the intracellular parasite Toxoplasma gondii are regulated by several signalling pathways. However, how these pathways are connected remains largely unknown. Here, we compare the phospho-signalling networks during Toxoplasma egress from its host cell by artificially raising cGMP or calcium levels. We show that both egress inducers trigger indistinguishable signalling responses and provide evidence for a positive feedback loop linking calcium and cyclic nucleotide signalling. Using WT and conditional knockout parasites of the non-essential calcium-dependent protein kinase 3 (CDPK3), which display a delay in calcium inonophore-mediated egress, we explore changes in phosphorylation and lipid signalling in sub-minute timecourses after inducing Ca2+ release. These studies indicate that cAMP and lipid metabolism are central to the feedback loop, which is partly dependent on CDPK3 and allows the parasite to respond faster to inducers of egress. Biochemical analysis of 4 phosphodiesterases (PDEs) identified in our phosphoproteomes establishes PDE2 as a cAMP-specific PDE which regulates Ca2+ induced egress in a CDPK3-independent manner. The other PDEs display dual hydrolytic activity and play no role in Ca2+ induced egress. In summary, we uncover a positive feedback loop that enhances signalling during egress, thereby linking several signalling pathways.
Collapse
Affiliation(s)
- Stephanie D. Nofal
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Caia Dominicus
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Nicholas J. Katris
- Apicolipid Team, Institute for Advance Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Helen R. Flynn
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Gustavo Arrizabalaga
- University of Indianapolis, School of Medicine, Indianapolis, Indiana, United States of America
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Advance Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Brandon M. Invergo
- Translational Research Exchange at Exeter, University of Exeter, Exeter, United Kingdom
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
15
|
Yang J, Yang X, Liu A, Li Y, Niu Z, Lyu C, Liang X, Xia N, Cui J, Li M, Wu P, Peng C, Shen B. The beta subunit of AMP-activated protein kinase is critical for cell cycle progression and parasite development in Toxoplasma gondii. Cell Mol Life Sci 2022; 79:532. [PMID: 36205781 PMCID: PMC11802946 DOI: 10.1007/s00018-022-04556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/30/2022] [Accepted: 09/10/2022] [Indexed: 11/03/2022]
Abstract
Toxoplasma gondii is a widespread eukaryotic pathogen that causes life-threatening diseases in humans and diverse animals. It has a complex life cycle with multiple developmental stages, which are timely adjusted according to growth conditions. But the regulatory mechanisms are largely unknown. Here we show that the AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis in eukaryotes, plays crucial roles in controlling the cell cycle progression and bradyzoite development in Toxoplasma. Deleting the β regulatory subunit of AMPK in the type II strain ME49 caused massive DNA damage and increased spontaneous conversion to bradyzoites (parasites at chronic infection stage), leading to severe growth arrest and reduced virulence of the parasites. Under alkaline stress, all Δampkβ mutants converted to a bradyzoite-like state but the cell division pattern was significantly impaired, resulting in compromised parasite viability. Moreover, we found that phosphorylation of the catalytic subunit AMPKα was greatly increased in alkaline stressed parasites, whereas AMPKβ deletion mutants failed to do so. Phosphoproteomics found that many proteins with predicted roles in cell cycle and cell division regulation were differentially phosphorylated after AMPKβ deletion, under both normal and alkaline stress conditions. Together, these results suggest that the parasite AMPK has critical roles in safeguarding cell cycle progression, and guiding the proper exist of the cell cycle to form mature bradyzoites when the parasites are stressed. Consistent with this model, growth of parasites was not significantly altered when AMPKβ was deleted in a strain that was naturally reluctant to bradyzoite development.
Collapse
Affiliation(s)
- Jichao Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xuke Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Anqi Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Yaqiong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Zhipeng Niu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Congcong Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xiaohan Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Ningbo Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jianmin Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Mingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, People's Republic of China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, People's Republic of China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
- Key Laboratory of Preventive Medicine in Hubei Province, Wuhan, 430070, Hubei Province, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
16
|
Vo KC, Ruga L, Psathaki OE, Franzkoch R, Distler U, Tenzer S, Hensel M, Hegemann P, Gupta N. Plasticity and therapeutic potential of cAMP and cGMP-specific phosphodiesterases in Toxoplasma gondii. Comput Struct Biotechnol J 2022; 20:5775-5789. [PMID: 36382189 PMCID: PMC9619220 DOI: 10.1016/j.csbj.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/03/2022] Open
Abstract
Toxoplasma gondii is a common zoonotic protozoan pathogen adapted to intracellular parasitism in many host cells of diverse organisms. Our previous work has identified 18 cyclic nucleotide phosphodiesterase (PDE) proteins encoded by the parasite genome, of which 11 are expressed during the lytic cycle of its acutely-infectious tachyzoite stage in human cells. Here, we show that ten of these enzymes are promiscuous dual-specific phosphodiesterases, hydrolyzing cAMP and cGMP. TgPDE1 and TgPDE9, with a Km of 18 μM and 31 μM, respectively, are primed to hydrolyze cGMP, whereas TgPDE2 is highly specific to cAMP (Km, 14 μM). Immuno-electron microscopy revealed various subcellular distributions of TgPDE1, 2, and 9, including in the inner membrane complex, apical pole, plasma membrane, cytosol, dense granule, and rhoptry, indicating spatial control of signaling within tachyzoites. Notably, despite shared apical location and dual-catalysis, TgPDE8 and TgPDE9 are fully dispensable for the lytic cycle and show no functional redundancy. In contrast, TgPDE1 and TgPDE2 are individually required for optimal growth, and their collective loss is lethal to the parasite. In vitro phenotyping of these mutants revealed the roles of TgPDE1 and TgPDE2 in proliferation, gliding motility, invasion and egress of tachyzoites. Moreover, our enzyme inhibition assays in conjunction with chemogenetic phenotyping underpin TgPDE1 as a target of commonly-used PDE inhibitors, BIPPO and zaprinast. Finally, we identified a retinue of TgPDE1 and TgPDE2-interacting kinases and phosphatases, possibly regulating the enzymatic activity. In conclusion, our datasets on the catalytic function, physiological relevance, subcellular localization and drug inhibition of key phosphodiesterases highlight the previously-unanticipated plasticity and therapeutic potential of cyclic nucleotide signaling in T. gondii.
Collapse
Key Words
- 3′IT, 3′-insertional tagging
- Apicomplexa
- COS, crossover sequence
- CRISPR, clustered regularly interspaced short palindromic repeats
- DHFR-TS, dihydrofolate reductase – thymidylate synthase
- HFF, human foreskin fibroblast
- HXGPRT, hypoxanthine-xanthine-guanine phosphoribosyl transferase
- IMC, inner membrane complex
- Lytic cycle
- MoI, multiplicity of infection
- PDE, phosphodiesterase
- PKA, protein kinase A
- PKG, protein kinase G
- PM, plasma membrane
- Phosphodiesterase
- S. C., selection cassette
- TEM, transmission electron microscopy
- Tachyzoite
- cAMP & cGMP signaling
- sgRNA, single guide RNA
- smHA, spaghetti monster-HA
Collapse
Affiliation(s)
- Kim Chi Vo
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Liberta Ruga
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Olympia Ekaterini Psathaki
- University of Osnabrück, Center of Cellular Nanoanalytics (CellNanOs), Integrated Bioimaging Faciltiy (iBiOs), Germany
| | - Rico Franzkoch
- University of Osnabrück, Center of Cellular Nanoanalytics (CellNanOs), Integrated Bioimaging Faciltiy (iBiOs), Germany
| | - Ute Distler
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Michael Hensel
- University of Osnabrück, Center of Cellular Nanoanalytics (CellNanOs), Integrated Bioimaging Faciltiy (iBiOs), Germany
| | - Peter Hegemann
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-P), Hyderabad, India
| |
Collapse
|
17
|
Abstract
Human malaria, caused by infection with Plasmodium parasites, remains one of the most important global public health problems, with the World Health Organization reporting more than 240 million cases and 600,000 deaths annually as of 2020 (World malaria report 2021). Our understanding of the biology of these parasites is critical for development of effective therapeutics and prophylactics, including both antimalarials and vaccines. Plasmodium is a protozoan organism that is intracellular for most of its life cycle. However, to complete its complex life cycle and to allow for both amplification and transmission, the parasite must egress out of the host cell in a highly regulated manner. This review discusses the major pathways and proteins involved in the egress events during the Plasmodium life cycle-merozoite and gametocyte egress out of red blood cells, sporozoite egress out of the oocyst, and merozoite egress out of the hepatocyte. The similarities, as well as the differences, between the various egress pathways of the parasite highlight both novel cell biology and potential therapeutic targets to arrest its life cycle.
Collapse
Affiliation(s)
- Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine; and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
18
|
Herneisen AL, Li ZH, Chan AW, Moreno SNJ, Lourido S. Temporal and thermal profiling of the Toxoplasma proteome implicates parasite Protein Phosphatase 1 in the regulation of Ca 2+-responsive pathways. eLife 2022; 11:e80336. [PMID: 35976251 PMCID: PMC9436416 DOI: 10.7554/elife.80336] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Apicomplexan parasites cause persistent mortality and morbidity worldwide through diseases including malaria, toxoplasmosis, and cryptosporidiosis. Ca2+ signaling pathways have been repurposed in these eukaryotic pathogens to regulate parasite-specific cellular processes governing the replicative and lytic phases of the infectious cycle, as well as the transition between them. Despite the presence of conserved Ca2+-responsive proteins, little is known about how specific signaling elements interact to impact pathogenesis. We mapped the Ca2+-responsive proteome of the model apicomplexan Taxoplasma gondii via time-resolved phosphoproteomics and thermal proteome profiling. The waves of phosphoregulation following PKG activation and stimulated Ca2+ release corroborate known physiological changes but identify specific proteins operating in these pathways. Thermal profiling of parasite extracts identified many expected Ca2+-responsive proteins, such as parasite Ca2+-dependent protein kinases. Our approach also identified numerous Ca2+-responsive proteins that are not predicted to bind Ca2+, yet are critical components of the parasite signaling network. We characterized protein phosphatase 1 (PP1) as a Ca2+-responsive enzyme that relocalized to the parasite apex upon Ca2+ store release. Conditional depletion of PP1 revealed that the phosphatase regulates Ca2+ uptake to promote parasite motility. PP1 may thus be partly responsible for Ca2+-regulated serine/threonine phosphatase activity in apicomplexan parasites.
Collapse
Affiliation(s)
- Alice L Herneisen
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Alex W Chan
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Silvia NJ Moreno
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Sebastian Lourido
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
19
|
Cova MM, Lamarque MH, Lebrun M. How Apicomplexa Parasites Secrete and Build Their Invasion Machinery. Annu Rev Microbiol 2022; 76:619-640. [PMID: 35671531 DOI: 10.1146/annurev-micro-041320-021425] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apicomplexa are obligatory intracellular parasites that sense and actively invade host cells. Invasion is a conserved process that relies on the timely and spatially controlled exocytosis of unique specialized secretory organelles termed micronemes and rhoptries. Microneme exocytosis starts first and likely controls the intricate mechanism of rhoptry secretion. To assemble the invasion machinery, micronemal proteins-associated with the surface of the parasite-interact and form complexes with rhoptry proteins, which in turn are targeted into the host cell. This review covers the molecular advances regarding microneme and rhoptry exocytosis and focuses on how the proteins discharged from these two compartments work in synergy to drive a successful invasion event. Particular emphasis is given to the structure and molecular components of the rhoptry secretion apparatus, and to the current conceptual framework of rhoptry exocytosis that may constitute an unconventional eukaryotic secretory machinery closely related to the one described in ciliates. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marta Mendonça Cova
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Mauld H Lamarque
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| |
Collapse
|
20
|
Smith TA, Lopez-Perez GS, Herneisen AL, Shortt E, Lourido S. Screening the Toxoplasma kinome with high-throughput tagging identifies a regulator of invasion and egress. Nat Microbiol 2022; 7:868-881. [PMID: 35484233 PMCID: PMC9167752 DOI: 10.1038/s41564-022-01104-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Protein kinases regulate fundamental aspects of eukaryotic cell biology, making them attractive chemotherapeutic targets in parasites like Plasmodium spp. and Toxoplasma gondii. To systematically examine the parasite kinome, we developed a high-throughput tagging (HiT) strategy to endogenously label protein kinases with an auxin-inducible degron and fluorophore. Hundreds of tagging vectors were assembled from synthetic sequences in a single reaction and used to generate pools of mutants to determine localization and function. Examining 1,160 arrayed clones, we assigned 40 protein localizations and associated 15 kinases with distinct defects. The fitness of tagged alleles was also measured by pooled screening, distinguishing delayed from acute phenotypes. A previously unstudied kinase, associated with a delayed phenotype, was shown to be a regulator of invasion and egress. We named the kinase Store Potentiating/Activating Regulatory Kinase (SPARK), based on its impact on intracellular Ca2+ stores. Despite homology to mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1), SPARK lacks a lipid-binding domain, suggesting a rewiring of the pathway in parasites. HiT screening extends genome-wide approaches into complex cellular phenotypes, providing a scalable and versatile platform to dissect parasite biology.
Collapse
Affiliation(s)
- Tyler A Smith
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Alice L Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
21
|
The Tyrosine Phosphatase PRL Regulates Attachment of Toxoplasma gondii to Host Cells and Is Essential for Virulence. mSphere 2022; 7:e0005222. [PMID: 35603560 PMCID: PMC9241511 DOI: 10.1128/msphere.00052-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with
Toxoplasma gondii
can lead to severe and even life-threatening diseases in people with compromised or suppressed immune systems. Unfortunately, drugs to combat the parasite are limited, highly toxic, and ineffective against the chronic stage of the parasite.
Collapse
|
22
|
Huynh MH, Carruthers VB. Toxoplasma gondii excretion of glycolytic products is associated with acidification of the parasitophorous vacuole during parasite egress. PLoS Pathog 2022; 18:e1010139. [PMID: 35512005 PMCID: PMC9113570 DOI: 10.1371/journal.ppat.1010139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/17/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
The Toxoplasma gondii lytic cycle is a repetition of host cell invasion, replication, egress, and re-invasion into the next host cell. While the molecular players involved in egress have been studied in greater detail in recent years, the signals and pathways for triggering egress from the host cell have not been fully elucidated. A perforin-like protein, PLP1, has been shown to be necessary for permeabilizing the parasitophorous vacuole (PV) membrane or exit from the host cell. In vitro studies indicated that PLP1 is most active in acidic conditions, and indirect evidence using superecliptic pHluorin indicated that the PV pH drops prior to parasite egress. Using ratiometric pHluorin, a GFP variant that responds to changes in pH with changes in its bimodal excitation spectrum peaks, allowed us to directly measure the pH in the PV prior to and during egress by live-imaging microscopy. A statistically significant change was observed in PV pH during ionomycin or zaprinast induced egress in both wild-type RH and Δplp1 vacuoles compared to DMSO-treated vacuoles. Interestingly, if parasites are chemically paralyzed, a pH drop is still observed in RH but not in Δplp1 tachyzoites. This indicates that the pH drop is dependent on the presence of PLP1 or motility. Efforts to determine transporters, exchangers, or pumps that could contribute to the drop in PV pH identified two formate-nitrite transporters (FNTs). Auxin induced conditional knockdown and knockouts of FNT1 and FNT2 reduced the levels of lactate and pyruvate released by the parasites and lead to an abatement of vacuolar acidification. While additional transporters and molecules are undoubtedly involved, we provide evidence of a definitive reduction in vacuolar pH associated with induced and natural egress and characterize two transporters that contribute to the acidification. Toxoplasma gondii is a single celled intracellular parasite that infects many different animals, and it is thought to infect up to one third of the human population. This parasite must rupture out of its replicative compartment and the host cell to spread from one cell to another. Previous studies indicated that a decrease in pH occurs within the replicative compartment near the time of parasite exit from host cells, an event termed egress. However, it remained unknown whether the decrease in pH is directly tied to egress and, if so, what is responsible for the decrease in pH. Here we used a fluorescent reporter protein to directly measure pH within the replicative compartment during parasite egress. We found that pH decreases immediately prior to parasite egress and that this decrease is linked to parasite disruption of membranes. We also identified a family of transporters that release acidic products from parasite use of glucose for energy as contributing to the decrease in pH during egress. Our findings provide new insight that connects parasite glucose metabolism to acidification of its replicative compartment during egress from infected cells.
Collapse
Affiliation(s)
- My-Hang Huynh
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
23
|
Bisio H, Krishnan A, Marq JB, Soldati-Favre D. Toxoplasma gondii phosphatidylserine flippase complex ATP2B-CDC50.4 critically participates in microneme exocytosis. PLoS Pathog 2022; 18:e1010438. [PMID: 35325010 PMCID: PMC8982854 DOI: 10.1371/journal.ppat.1010438] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/05/2022] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
Regulated microneme secretion governs motility, host cell invasion and egress in the obligate intracellular apicomplexans. Intracellular calcium oscillations and phospholipid dynamics critically regulate microneme exocytosis. Despite its importance for the lytic cycle of these parasites, molecular mechanistic details about exocytosis are still missing. Some members of the P4-ATPases act as flippases, changing the phospholipid distribution by translocation from the outer to the inner leaflet of the membrane. Here, the localization and function of the repertoire of P4-ATPases was investigated across the lytic cycle of Toxoplasma gondii. Of relevance, ATP2B and the non-catalytic subunit cell division control protein 50.4 (CDC50.4) form a stable heterocomplex at the parasite plasma membrane, essential for microneme exocytosis. This complex is responsible for flipping phosphatidylserine, which presumably acts as a lipid mediator for organelle fusion with the plasma membrane. Overall, this study points toward the importance of phosphatidylserine asymmetric distribution at the plasma membrane for microneme exocytosis. Biological membranes display diverse functions, including membrane fusion, which are conferred by a defined composition and organization of proteins and lipids. Apicomplexan parasites possess specialized secretory organelles (micronemes), implicated in motility, invasion and egress from host cells. Microneme exocytosis is already known to depend on phosphatidic acid for its fusion with the plasma membrane. Here we identify a type P4-ATPase and its CDC50 chaperone (ATP2B-CDC50.4) that act as a flippase and contribute to the enrichment of phosphatidylserine (PS) in the inner leaflet of the parasite plasma membrane. The disruption of PS asymmetric distribution at the plasma membrane impacts microneme exocytosis. Overall, our results shed light on the importance of membrane homeostasis and lipid composition in controlling microneme secretion.
Collapse
Affiliation(s)
- Hugo Bisio
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
24
|
Abstract
Toxoplasma motility is both activated and suppressed by 3′,5′-cyclic nucleotide signaling. Cyclic GMP (cGMP) signaling through Toxoplasma gondii protein kinase G (TgPKG) activates motility, whereas cyclic AMP (cAMP) signaling through TgPKAc1 inhibits motility. Despite their importance, it remains unclear how cGMP and cAMP levels are maintained in Toxoplasma. Phosphodiesterases (PDEs) are known to inactivate cyclic nucleotides and are highly expanded in the Toxoplasma genome. Here, we analyzed the expression and function of the 18-member TgPDE family in tachyzoites, the virulent life stage of Toxoplasma. We detected the expression of 11 of 18 TgPDEs, confirming prior expression studies. A knockdown screen of the TgPDE family revealed four TgPDEs that contribute to lytic Toxoplasma growth (TgPDE1, TgPDE2, TgPDE5, and TgPDE9). Depletion of TgPDE1 or TgPDE2 caused severe growth defects, prompting further investigation. While TgPDE1 was important for extracellular motility, TgPDE2 was important for host cell invasion, parasite replication, host cell egress, and extracellular motility. TgPDE1 displayed a plasma membrane/cytomembranous distribution, whereas TgPDE2 displayed an endoplasmic reticulum/cytomembranous distribution. Biochemical analysis of TgPDE1 and TgPDE2 purified from Toxoplasma lysates revealed that TgPDE1 hydrolyzes both cGMP and cAMP, whereas TgPDE2 was cAMP specific. Interactome studies of TgPDE1 and TgPDE2 indicated that they do not physically interact with each other or other TgPDEs but may be regulated by kinases and proteases. Our studies have identified TgPDE1 and TgPDE2 as central regulators of tachyzoite cyclic nucleotide levels and enable future studies aimed at determining how these enzymes are regulated and cooperate to control Toxoplasma motility and growth. IMPORTANCE Apicomplexan parasites require motility to actively infect host cells and cause disease. Cyclic nucleotide signaling governs apicomplexan motility, but it is unclear how cyclic nucleotide levels are maintained in these parasites. In search of novel regulators of cyclic nucleotides in the model apicomplexan Toxoplasma, we identified and characterized two catalytically active phosphodiesterases, TgPDE1 and TgPDE2, that are important for Toxoplasma’s virulent tachyzoite life cycle. Enzymes that generate, sense, or degrade cyclic nucleotides make attractive targets for therapies aimed at paralyzing and killing apicomplexan parasites.
Collapse
|
25
|
Lv X, Chen Z, Zheng M, Bai R, Zhang L, Zhang X, Duan B, Zhao Y, Yin L, Fan B, Cui K, Xu T. The interaction between free Ca 2+ in host cells and invasion of E. tenella. Parasitol Res 2022; 121:965-972. [PMID: 35084557 DOI: 10.1007/s00436-022-07436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022]
Abstract
Eimeria tenella is the most pathogenic and common coccidia that causes chicken coccidiosis. The intracellular free Ca2+ of the host cell is closely related to the invasion, development, and proliferation of intracellular parasites. To determine the dynamic changes of intracellular free Ca2+ and its function in the process of E. tenella invading host cells, we established a chick embryo cecal epithelial cells model of E. tenella infection. Chick embryo cecal epithelial cells were treated with different Ca2+ signal inhibitor, respectively, and then infected with E. tenella. The results showed that extracellular Ca2+, Ca2+ channels on the cell membrane, IP3R ion channels on the endoplasmic reticulum membrane, and RyR ion channels regulated the free Ca2+ in cecal epithelial cells. Through fluorescence labeling and invasion rate detection, we found that the intracellular Ca2+ did not change significantly during the invasion of E. tenella, but its stability was critical to the invasion of parasites.
Collapse
Affiliation(s)
- Xiaoling Lv
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Zhaoying Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Mingxue Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China.
| | - Rui Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Li Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Xuesong Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Buting Duan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Yongjuan Zhao
- School of Food and Environment, Jinzhong College of Information, Taigu, 030801, Jinzhong, China
| | - Liyang Yin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Bingling Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Kailing Cui
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Tong Xu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| |
Collapse
|
26
|
Fu Y, Brown KM, Jones NG, Moreno SNJ, Sibley LD. Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress. eLife 2021; 10:e73011. [PMID: 34860156 PMCID: PMC8683080 DOI: 10.7554/elife.73011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
Toxoplasma gondii has evolved different developmental stages for disseminating during acute infection (i.e., tachyzoites) and establishing chronic infection (i.e., bradyzoites). Calcium ion (Ca2+) signaling tightly regulates the lytic cycle of tachyzoites by controlling microneme secretion and motility to drive egress and cell invasion. However, the roles of Ca2+ signaling pathways in bradyzoites remain largely unexplored. Here, we show that Ca2+ responses are highly restricted in bradyzoites and that they fail to egress in response to agonists. Development of dual-reporter parasites revealed dampened Ca2+ responses and minimal microneme secretion by bradyzoites induced in vitro or harvested from infected mice and tested ex vivo. Ratiometric Ca2+ imaging demonstrated lower Ca2+ basal levels, reduced magnitude, and slower Ca2+ kinetics in bradyzoites compared with tachyzoites stimulated with agonists. Diminished responses in bradyzoites were associated with downregulation of Ca2+-ATPases involved in intracellular Ca2+ storage in the endoplasmic reticulum (ER) and acidocalcisomes. Once liberated from cysts by trypsin digestion, bradyzoites incubated in glucose plus Ca2+ rapidly restored their intracellular Ca2+ and ATP stores, leading to enhanced gliding. Collectively, our findings indicate that intracellular bradyzoites exhibit dampened Ca2+ signaling and lower energy levels that restrict egress, and yet upon release they rapidly respond to changes in the environment to regain motility.
Collapse
Affiliation(s)
- Yong Fu
- Department of Molecular Microbiology, Washington University in St. Louis, School of MedicineSt LouisUnited States
| | - Kevin M Brown
- Department of Molecular Microbiology, Washington University in St. Louis, School of MedicineSt LouisUnited States
| | - Nathaniel G Jones
- Department of Molecular Microbiology, Washington University in St. Louis, School of MedicineSt LouisUnited States
| | - Silvia NJ Moreno
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of GeorgiaAthensUnited States
| | - L David Sibley
- Department of Molecular Microbiology, Washington University in St. Louis, School of MedicineSt LouisUnited States
| |
Collapse
|
27
|
Mallo N, Ovciarikova J, Martins-Duarte ES, Baehr SC, Biddau M, Wilde ML, Uboldi AD, Lemgruber L, Tonkin CJ, Wideman JG, Harding CR, Sheiner L. Depletion of a Toxoplasma porin leads to defects in mitochondrial morphology and contacts with the endoplasmic reticulum. J Cell Sci 2021; 134:272536. [PMID: 34523684 PMCID: PMC8572010 DOI: 10.1242/jcs.255299] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/06/2021] [Indexed: 01/21/2023] Open
Abstract
The voltage-dependent anion channel (VDAC) is a ubiquitous channel in the outer membrane of the mitochondrion with multiple roles in protein, metabolite and small molecule transport. In mammalian cells, VDAC protein, as part of a larger complex including the inositol triphosphate receptor, has been shown to have a role in mediating contacts between the mitochondria and endoplasmic reticulum (ER). We identify VDAC of the pathogenic apicomplexan Toxoplasma gondii and demonstrate its importance for parasite growth. We show that VDAC is involved in protein import and metabolite transfer to mitochondria. Further, depletion of VDAC resulted in significant morphological changes in the mitochondrion and ER, suggesting a role in mediating contacts between these organelles in T. gondii. This article has an associated First Person interview with the first author of the paper. Summary: Depletion of the Toxoplasma voltage-dependent anion channel highlights the importance of endoplasmic reticulum–mitochondria membrane contact sites in maintaining organelle morphology.
Collapse
Affiliation(s)
- Natalia Mallo
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Jana Ovciarikova
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Erica S Martins-Duarte
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 486 31270-901, Brazil
| | - Stephan C Baehr
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Marco Biddau
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Mary-Louise Wilde
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3086, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Alessandro D Uboldi
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3086, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Leandro Lemgruber
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK.,Glasgow Imaging Facility, University of Glasgow, Glasgow G12 8TA, UK
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3086, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jeremy G Wideman
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Clare R Harding
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
28
|
Ward H, Kim K. Editorial overview. Curr Opin Microbiol 2021; 58:vi-ix. [PMID: 33328088 DOI: 10.1016/j.mib.2020.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Honorine Ward
- Departments of Medicine and Public Health and Community Medicine, Tufts University School of Medicine, United States; Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, United States
| | - Kami Kim
- Division of Infectious Diseases and International Medicine at the Morsani College of Medicine, University of South Florida, United States
| |
Collapse
|
29
|
Gaji RY, Sharp AK, Brown AM. Protein kinases in Toxoplasma gondii. Int J Parasitol 2021; 51:415-429. [PMID: 33581139 PMCID: PMC11065138 DOI: 10.1016/j.ijpara.2020.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii is an obligatory intracellular pathogen that causes life threatening illness in immunodeficient individuals, miscarriage in pregnant woman, and blindness in newborn children. Similar to any other eukaryotic cell, protein kinases play critical and essential roles in the Toxoplasma life cycle. Accordingly, many studies have focused on identifying and defining the mechanism of function of these signalling proteins with a long-term goal to develop anti-Toxoplasma therapeutics. In this review, we briefly discuss classification and key components of the catalytic domain which are critical for functioning of kinases, with a focus on domains, families, and groups of kinases within Toxoplasma. More importantly, this article provides a comprehensive, current overview of research on kinase groups in Toxoplasma including the established eukaryotic AGC, CAMK, CK1, CMGC, STE, TKL families and the apicomplexan-specific FIKK, ROPK and WNG family of kinases. This work provides an overview and discusses current knowledge on Toxoplasma kinases including their localization, function, signalling network and role in acute and chronic pathogenesis, with a view towards the future in probing kinases as viable drug targets.
Collapse
Affiliation(s)
- Rajshekhar Y Gaji
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech University, Blacksburg, VA, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Amanda K Sharp
- Interdisciplinary Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Anne M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; University Libraries, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
30
|
Bardeci NG, Tofolón E, Trajtenberg F, Caramelo J, Larrieux N, Rossi S, Buschiazzo A, Moreno S. The crystal structure of yeast regulatory subunit reveals key evolutionary insights into Protein Kinase A oligomerization. J Struct Biol 2021; 213:107732. [PMID: 33819633 DOI: 10.1016/j.jsb.2021.107732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
Protein Kinase A (PKA) is a widespread enzyme that plays a key role in many signaling pathways from lower eukaryotes to metazoans. In mammals, the regulatory (R) subunits sequester and target the catalytic (C) subunits to proper subcellular locations. This targeting is accomplished by the dimerization and docking (D/D) domain of the R subunits. The activation of the holoenzyme depends on the binding of the second messenger cAMP. The only available structures of the D/D domain proceed from mammalian sources. Unlike dimeric mammalian counterparts, the R subunit from Saccharomyces cerevisiae (Bcy1) forms tetramers in solution. Here we describe the first high-resolution structure of a non-mammalian D/D domain. The tetramer in the crystals of the Bcy1 D/D domain is a dimer of dimers that retain the classical D/D domain fold. By using phylogenetic and structural analyses combined with site-directed mutagenesis, we found that fungal R subunits present an insertion of a single amino acid at the D/D domain that shifts the position of a downstream, conserved arginine. This residue participates in intra-dimer interactions in mammalian D/D domains, while due to this insertion it is involved in inter-dimer contacts in Bcy1, which are crucial for the stability of the tetramer. This surprising finding challenges well-established concepts regarding the oligomeric state within the PKAR protein family and provides important insights into the yet unexplored structural diversity of the D/D domains and the molecular determinants of R subunit oligomerization.
Collapse
Affiliation(s)
- Nicolás González Bardeci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires C1428EHA, Argentina.
| | - Enzo Tofolón
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires C1428EHA, Argentina
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Julio Caramelo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Fundación Instituto Leloir, Instituto de investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires C1405BWE, Argentina
| | - Nicole Larrieux
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Silvia Rossi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires C1428EHA, Argentina
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Silvia Moreno
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires C1428EHA, Argentina.
| |
Collapse
|
31
|
Tagoe DNA, Drozda AA, Falco JA, Bechtel TJ, Weerapana E, Gubbels MJ. Ferlins and TgDOC2 in Toxoplasma Microneme, Rhoptry and Dense Granule Secretion. Life (Basel) 2021; 11:217. [PMID: 33803212 PMCID: PMC7999867 DOI: 10.3390/life11030217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/25/2022] Open
Abstract
The host cell invasion process of apicomplexan parasites like Toxoplasma gondii is facilitated by sequential exocytosis of the microneme, rhoptry and dense granule organelles. Exocytosis is facilitated by a double C2 domain (DOC2) protein family. This class of C2 domains is derived from an ancestral calcium (Ca2+) binding archetype, although this feature is optional in extant C2 domains. DOC2 domains provide combinatorial power to the C2 domain, which is further enhanced in ferlins that harbor 5-7 C2 domains. Ca2+ conditionally engages the C2 domain with lipids, membranes, and/or proteins to facilitating vesicular trafficking and membrane fusion. The widely conserved T. gondii ferlins 1 (FER1) and 2 (FER2) are responsible for microneme and rhoptry exocytosis, respectively, whereas an unconventional TgDOC2 is essential for microneme exocytosis. The general role of ferlins in endolysosmal pathways is consistent with the repurposed apicomplexan endosomal pathways in lineage specific secretory organelles. Ferlins can facilitate membrane fusion without SNAREs, again pertinent to the Apicomplexa. How temporal raises in Ca2+ combined with spatiotemporally available membrane lipids and post-translational modifications mesh to facilitate sequential exocytosis events is discussed. In addition, new data on cross-talk between secretion events together with the identification of a new microneme protein, MIC21, is presented.
Collapse
Affiliation(s)
- Daniel N A Tagoe
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Allison A Drozda
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Julia A Falco
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Tyler J Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
32
|
Uboldi AD, Wilde ML, Bader SM, Tonkin CJ. Environmental sensing and regulation of motility in Toxoplasma. Mol Microbiol 2020; 115:916-929. [PMID: 33278047 DOI: 10.1111/mmi.14661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Toxoplasma and other apicomplexan parasites undergo a unique form of cellular locomotion referred to as "gliding motility." Gliding motility is crucial for parasite survival as it powers tissue dissemination, host cell invasion and egress. Distinct environmental cues lead to activation of gliding motility and have become a prominent focus of recent investigation. Progress has been made toward understanding what environmental cues are sensed and how these signals are transduced in order to regulate the machinery and cellular events powering gliding motility. In this review, we will discuss new findings and integrate these into our current understanding to propose a model of how environmental sensing is achieved to regulate gliding motility in Toxoplasma. Collectively, these findings also have implications for the understanding of gliding motility across Apicomplexa more broadly.
Collapse
Affiliation(s)
- Alessandro D Uboldi
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Mary-Louise Wilde
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stefanie M Bader
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Christopher J Tonkin
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Elsworth B, Duraisingh MT. A framework for signaling throughout the life cycle of Babesia species. Mol Microbiol 2020; 115:882-890. [PMID: 33274587 DOI: 10.1111/mmi.14650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023]
Abstract
Babesia species are tick-borne intracellular parasites that infect the red blood cells of their mammalian host, leading to severe or fatal disease. Babesia spp. infect a wide range of mammalian species and cause a significant economic burden globally, predominantly through disease in cattle. Several Babesia spp. are increasingly being recognized as zoonotic pathogens of humans. Babesia spp. have complex life cycles involving multiple stages in the tick and the mammalian host. The parasite utilizes complex signaling pathways during replication, egress, and invasion in each of these stages. They must also rapidly respond to their environment when switching between the mammalian and tick stages. This review will focus on the signaling pathways and environmental stimuli that Babesia spp. utilize in the bloodstream and for transmission to the tick, with an emphasis on the role of phosphorylation- and calcium-based signaling during egress and invasion. The expanding availability of in vitro and in vivo culture systems, genomes, transcriptomes, and transgenic systems available for a range of Babesia spp. should encourage further biological and translational studies of these ubiquitous parasites.
Collapse
Affiliation(s)
- Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
34
|
Vo KC, Günay-Esiyok Ö, Liem N, Gupta N. The protozoan parasite Toxoplasma gondii encodes a gamut of phosphodiesterases during its lytic cycle in human cells. Comput Struct Biotechnol J 2020; 18:3861-3876. [PMID: 33335684 PMCID: PMC7720076 DOI: 10.1016/j.csbj.2020.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 01/21/2023] Open
Abstract
Toxoplasma genome harbors at least 18 phosphodiesterases encoded by distinct genes. Most parasite PDEs lack regulatory modules and are quite divergent from their human orthologs. Acutely-infectious tachyzoite stage of T. gondii expresses 11 PDEs with varied localizations. PDE8 and PDE9 are closely-related dual-substrate specific proteins residing in the apical pole. Homology modeling of PDE8 and PDE9 reveals a conserved 3D topology and substrate pocket. PDE9 is dispensable in tachyzoites, signifying a functional redundancy with PDE8.
Cyclic nucleotide signaling is pivotal to the asexual reproduction of Toxoplasma gondii, however little do we know about the phosphodiesterase enzymes in this widespread obligate intracellular parasite. Here, we identified 18 phosphodiesterases (TgPDE1-18) in the parasite genome, most of which form apicomplexan-specific clades and lack archetypal regulatory motifs often found in mammalian PDEs. Genomic epitope-tagging in the tachyzoite stage showed the expression of 11 phosphodiesterases with diverse subcellular distributions. Notably, TgPDE8 and TgPDE9 are located in the apical plasma membrane to regulate cAMP and cGMP signaling, as suggested by their dual-substrate catalysis and structure modeling. TgPDE9 expression can be ablated with no apparent loss of growth fitness in tachyzoites. Likewise, the redundancy in protein expression, subcellular localization and predicted substrate specificity of several other PDEs indicate significant plasticity and spatial control of cyclic nucleotide signaling during the lytic cycle. Our findings shall enable a rational dissection of signaling in tachyzoites by combinatorial mutagenesis. Moreover, the phylogenetic divergence of selected Toxoplasma PDEs from human counterparts can be exploited to develop parasite-specific inhibitors and therapeutics.
Collapse
Key Words
- 3′IT, 3′-insertional tagging
- AC, adenylate cyclase
- Apicomplexa
- Bradyzoite
- COS, crossover sequence
- CRISPR, clustered regularly interspaced short palindromic repeats
- EES, entero-epithelial stages
- FPKM, fragments per kilobase of exon model per million
- GC, guanylate cyclase
- GMQE, Global Model Quality Estimation
- HFF, human foreskin fibroblast
- HXGPRT, hypoxanthine-xanthine-guanine phosphoribosyltransferase
- IMC, inner membrane complex
- Lytic cycle
- MAEBL, merozoite adhesive erythrocytic binding ligand
- MOI, multiplicity of infection
- OCRE, octamer repeat
- PDE, phosphodiesterase
- PKA, protein kinase A
- PKG, protein kinase G
- PM, plasma membrane
- QMEAN, Quality Model Energy Analysis
- Tachyzoite
- cAMP and cGMP signaling
- sgRNA, single guide RNA
- smHA, spaghetti monster-HA
Collapse
Affiliation(s)
- Kim Chi Vo
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Özlem Günay-Esiyok
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nicolas Liem
- Experimental Biophysics, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany.,Department of Biological Sciences, Birla Institute of Technology and Science Pilani (BITS-P), Hyderabad, India
| |
Collapse
|
35
|
Brochet M, Balestra AC, Brusini L. cGMP homeostasis in malaria parasites-The key to perceiving and integrating environmental changes during transmission to the mosquito. Mol Microbiol 2020; 115:829-838. [PMID: 33112460 DOI: 10.1111/mmi.14633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
Malaria-causing parasites are transmitted from humans to mosquitoes when developmentally arrested gametocytes are taken up by a female Anopheles during a blood meal. The changes in environment from human to mosquito activate gametogenesis, including a drop in temperature, a rise in pH, and a mosquito-derived molecule, xanthurenic acid. Signaling receptors have not been identified in malaria parasites but mounting evidence indicates that cGMP homeostasis is key to sensing extracellular cues in gametocytes. Low levels of cGMP maintained by phosphodiesterases prevent precocious activation of gametocytes in the human blood. Upon ingestion, initiation of gametogenesis depends on the activation of a hybrid guanylyl cyclase/P4-ATPase. Elevated cGMP levels lead to the rapid mobilization of intracellular calcium that relies upon the activation of both cGMP-dependent protein kinase and phosphoinositide phospholipase C. Once calcium is released, a cascade of phosphorylation events mediated by calcium-dependent protein kinases and phosphatases regulates the cellular processes required for gamete formation. cGMP signaling also triggers timely egress from the host cell at other life cycle stages of malaria parasites and in Toxoplasma gondii, a related apicomplexan parasite. This suggests that cGMP signaling is a versatile platform transducing external cues into calcium signals at important decision points in the life cycle of apicomplexan parasites.
Collapse
Affiliation(s)
- Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélia C Balestra
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
36
|
Sassmannshausen J, Pradel G, Bennink S. Perforin-Like Proteins of Apicomplexan Parasites. Front Cell Infect Microbiol 2020; 10:578883. [PMID: 33042876 PMCID: PMC7522308 DOI: 10.3389/fcimb.2020.578883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/13/2020] [Indexed: 11/23/2022] Open
Abstract
Perforins are secreted proteins of eukaryotes, which possess a membrane attack complex/perforin (MACPF) domain enabling them to form pores in the membranes of target cells. In higher eukaryotes, they are assigned to immune defense mechanisms required to kill invading microbes or infected cells. Perforin-like proteins (PLPs) are also found in apicomplexan parasites. Here they play diverse roles during lifecycle progression of the intracellularly replicating protozoans. The apicomplexan PLPs are best studied in Plasmodium and Toxoplasma, the causative agents of malaria and toxoplasmosis, respectively. The PLPs are expressed in the different lifecycle stages of the pathogens and can target and lyse a variety of cell membranes of the invertebrate and mammalian hosts. The PLPs thereby either function in host cell destruction during exit or in overcoming epithelial barriers during tissue passage. In this review, we summarize the various PLPs known for apicomplexan parasites and highlight their roles in Plasmodium and Toxoplasma lifecycle progression.
Collapse
Affiliation(s)
- Juliane Sassmannshausen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
37
|
Blake TCA, Haase S, Baum J. Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum. PLoS Pathog 2020; 16:e1009007. [PMID: 33104759 PMCID: PMC7644091 DOI: 10.1371/journal.ppat.1009007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/05/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022] Open
Abstract
All symptoms of malaria disease are associated with the asexual blood stages of development, involving cycles of red blood cell (RBC) invasion and egress by the Plasmodium spp. merozoite. Merozoite invasion is rapid and is actively powered by a parasite actomyosin motor. The current accepted model for actomyosin force generation envisages arrays of parasite myosins, pushing against short actin filaments connected to the external milieu that drive the merozoite forwards into the RBC. In Plasmodium falciparum, the most virulent human malaria species, Myosin A (PfMyoA) is critical for parasite replication. However, the precise function of PfMyoA in invasion, its regulation, the role of other myosins and overall energetics of invasion remain unclear. Here, we developed a conditional mutagenesis strategy combined with live video microscopy to probe PfMyoA function and that of the auxiliary motor PfMyoB in invasion. By imaging conditional mutants with increasing defects in force production, based on disruption to a key PfMyoA phospho-regulation site, the absence of the PfMyoA essential light chain, or complete motor absence, we define three distinct stages of incomplete RBC invasion. These three defects reveal three energetic barriers to successful entry: RBC deformation (pre-entry), mid-invasion initiation, and completion of internalisation, each requiring an active parasite motor. In defining distinct energetic barriers to invasion, these data illuminate the mechanical challenges faced in this remarkable process of protozoan parasitism, highlighting distinct myosin functions and identifying potential targets for preventing malaria pathogenesis.
Collapse
Affiliation(s)
- Thomas C. A. Blake
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Silvia Haase
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| |
Collapse
|
38
|
Tartarelli I, Tinari A, Possenti A, Cherchi S, Falchi M, Dubey JP, Spano F. During host cell traversal and cell-to-cell passage, Toxoplasma gondii sporozoites inhabit the parasitophorous vacuole and posteriorly release dense granule protein-associated membranous trails. Int J Parasitol 2020; 50:1099-1115. [PMID: 32882286 DOI: 10.1016/j.ijpara.2020.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/21/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
Toxoplasma gondii has a worldwide distribution and infects virtually all warm-blooded animals, including humans. Ingestion of the environmentally resistant oocyst stage, excreted only in the feces of cats, is central to transmission of this apicomplexan parasite. There is vast literature on the host and T. gondii tachyzoite (proliferative stage of the parasite) but little is known of the host-parasite interaction and conversion of the free-living stage (sporozoite inside the oocyst) to the parasitic stage. Here, we present events that follow invasion of host cells with T. gondii sporozoites by using immunofluorescence (IF) and transmission electron microscopy (TEM). Several human type cell cultures were infected with T. gondii sporozoites of the two genotypes (Type II, ME49 and Type III, VEG) most prevalent worldwide. For the first known time, using anti-rhoptry neck protein 4 (RON4) antibodies, the moving junction was visualized in sporozoites during the invasion process and shortly after its completion. Surprisingly, IF and TEM evaluation revealed that intracellular sporozoites release, at their posterior end, long membranous tails, herein named sporozoite-specific trails (SSTs). Differential permeabilization and IF experiments showed that the SSTs are associated with several dense granule proteins (GRAs) and that their membranous component is of parasite origin. Furthermore, TEM observations demonstrated that SST-associated sporozoites are delimited by a typical parasitophorous vacuole, which is retained during parasite exit from the host cell and during cell-to-cell passage. Our data strongly suggest that host cell traversal by T. gondii sporozoites relies on a novel force-producing mechanism, based on the massive extrusion at the parasite posterior pole of GRA-associated membranous material derived from the same pool of membranes forming the intravacuolar network.
Collapse
Affiliation(s)
- Irene Tartarelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Antonella Tinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessia Possenti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Simona Cherchi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Jitender P Dubey
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland 20705, United States
| | - Furio Spano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
39
|
Bisio H, Soldati-Favre D. Signaling Cascades Governing Entry into and Exit from Host Cells by Toxoplasma gondii. Annu Rev Microbiol 2020; 73:579-599. [PMID: 31500539 DOI: 10.1146/annurev-micro-020518-120235] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Apicomplexa phylum includes a large group of obligate intracellular protozoan parasites responsible for important diseases in humans and animals. Toxoplasma gondii is a widespread parasite with considerable versatility, and it is capable of infecting virtually any warm-blooded animal, including humans. This outstanding success can be attributed at least in part to an efficient and continuous sensing of the environment, with a ready-to-adapt strategy. This review updates the current understanding of the signals governing the lytic cycle of T. gondii, with particular focus on egress from infected cells, a key step for balancing survival, multiplication, and spreading in the host. We cover the recent advances in the conceptual framework of regulation of microneme exocytosis that ensures egress, motility, and invasion. Particular emphasis is given to the trigger molecules and signaling cascades regulating exit from host cells.
Collapse
Affiliation(s)
- Hugo Bisio
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1211 Geneva 4, Switzerland;
| | - Dominique Soldati-Favre
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1211 Geneva 4, Switzerland;
| |
Collapse
|
40
|
Broncel M, Dominicus C, Vigetti L, Nofal SD, Bartlett EJ, Touquet B, Hunt A, Wallbank BA, Federico S, Matthews S, Young JC, Tate EW, Tardieux I, Treeck M. Profiling of myristoylation in Toxoplasma gondii reveals an N-myristoylated protein important for host cell penetration. eLife 2020; 9:e57861. [PMID: 32618271 PMCID: PMC7373427 DOI: 10.7554/elife.57861] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/27/2020] [Indexed: 12/26/2022] Open
Abstract
N-myristoylation is a ubiquitous class of protein lipidation across eukaryotes and N-myristoyl transferase (NMT) has been proposed as an attractive drug target in several pathogens. Myristoylation often primes for subsequent palmitoylation and stable membrane attachment, however, growing evidence suggests additional regulatory roles for myristoylation on proteins. Here we describe the myristoylated proteome of Toxoplasma gondii using chemoproteomic methods and show that a small-molecule NMT inhibitor developed against related Plasmodium spp. is also functional in Toxoplasma. We identify myristoylation on a transmembrane protein, the microneme protein 7 (MIC7), which enters the secretory pathway in an unconventional fashion with the myristoylated N-terminus facing the lumen of the micronemes. MIC7 and its myristoylation play a crucial role in the initial steps of invasion, likely during the interaction with and penetration of the host cell. Myristoylation of secreted eukaryotic proteins represents a substantial expansion of the functional repertoire of this co-translational modification.
Collapse
Affiliation(s)
- Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Caia Dominicus
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Luis Vigetti
- Institute for Advanced Biosciences, Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble AlpesGrenobleFrance
| | - Stephanie D Nofal
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Edward J Bartlett
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City CampusLondonUnited Kingdom
| | - Bastien Touquet
- Institute for Advanced Biosciences, Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble AlpesGrenobleFrance
| | - Alex Hunt
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Bethan A Wallbank
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stefania Federico
- The Peptide Chemistry STP, The Francis Crick InstituteLondonUnited Kingdom
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
| | - Joanna C Young
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City CampusLondonUnited Kingdom
| | - Isabelle Tardieux
- Institute for Advanced Biosciences, Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble AlpesGrenobleFrance
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
41
|
Division and Adaptation to Host Environment of Apicomplexan Parasites Depend on Apicoplast Lipid Metabolic Plasticity and Host Organelle Remodeling. Cell Rep 2020; 30:3778-3792.e9. [DOI: 10.1016/j.celrep.2020.02.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/12/2019] [Accepted: 02/19/2020] [Indexed: 11/20/2022] Open
|
42
|
Abstract
Understanding the mechanisms behind host cell invasion by Plasmodium falciparum remains a major hurdle to developing antimalarial therapeutics that target the asexual cycle and the symptomatic stage of malaria. Host cell entry is enabled by a multitude of precisely timed and tightly regulated receptor-ligand interactions. Cyclic nucleotide signaling has been implicated in regulating parasite invasion, and an important downstream effector of the cAMP-signaling pathway is protein kinase A (PKA), a cAMP-dependent protein kinase. There is increasing evidence that P. falciparum PKA (PfPKA) is responsible for phosphorylation of the cytoplasmic domain of P. falciparum apical membrane antigen 1 (PfAMA1) at Ser610, a cAMP-dependent event that is crucial for successful parasite invasion. In the present study, CRISPR-Cas9 and conditional gene deletion (dimerizable cre) technologies were implemented to generate a P. falciparum parasite line in which expression of the catalytic subunit of PfPKA (PfPKAc) is under conditional control, demonstrating highly efficient dimerizable Cre recombinase (DiCre)-mediated gene excision and complete knockdown of protein expression. Parasites lacking PfPKAc show severely reduced growth after one intraerythrocytic growth cycle and are deficient in host cell invasion, as highlighted by live-imaging experiments. Furthermore, PfPKAc-deficient parasites are unable to phosphorylate PfAMA1 at Ser610. This work not only identifies an essential role for PfPKAc in the P. falciparum asexual life cycle but also confirms that PfPKAc is the kinase responsible for phosphorylating PfAMA1 Ser610.IMPORTANCE Malaria continues to present a major global health burden, particularly in low-resource countries. Plasmodium falciparum, the parasite responsible for the most severe form of malaria, causes disease through rapid and repeated rounds of invasion and replication within red blood cells. Invasion into red blood cells is essential for P. falciparum survival, and the molecular events mediating this process have gained much attention as potential therapeutic targets. With no effective vaccine available, and with the emergence of resistance to antimalarials, there is an urgent need for the development of new therapeutics. Our research has used genetic techniques to provide evidence of an essential protein kinase involved in P. falciparum invasion. Our work adds to the current understanding of parasite signaling processes required for invasion, highlighting PKA as a potential drug target to inhibit invasion for the treatment of malaria.
Collapse
|
43
|
Engelberg K, Chen CT, Bechtel T, Sánchez Guzmán V, Drozda AA, Chavan S, Weerapana E, Gubbels MJ. The apical annuli of Toxoplasma gondii are composed of coiled-coil and signalling proteins embedded in the inner membrane complex sutures. Cell Microbiol 2019; 22:e13112. [PMID: 31470470 DOI: 10.1111/cmi.13112] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/16/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
The apical annuli are among the most intriguing and understudied structures in the cytoskeleton of the apicomplexan parasite Toxoplasma gondii. We mapped the proteome of the annuli in Toxoplasma by reciprocal proximity biotinylation (BioID), and validated five apical annuli proteins (AAP1-5), Centrin2, and an apical annuli methyltransferase. Moreover, inner membrane complex (IMC) suture proteins connecting the alveolar vesicles were also detected and support annuli residence within the sutures. Super-resolution microscopy identified a concentric organisation comprising four rings with diameters ranging from 200 to 400 nm. The high prevalence of domain signatures shared with centrosomal proteins in the AAPs together with Centrin2 suggests that the annuli are related and/or derived from the centrosomes. Phylogenetic analysis revealed that the AAPs are conserved narrowly in coccidian, apicomplexan parasites that multiply by an internal budding mechanism. This suggests a role in replication, for example, to provide pores in the mother IMC permitting exchange of building blocks and waste products. However, presence of multiple signalling domains and proteins are suggestive of additional functions. Knockout of AAP4, the most conserved compound forming the largest ring-like structure, modestly decreased parasite fitness in vitro but had no significant impact on acute virulence in vivo. In conclusion, the apical annuli are composed of coiled-coil and signalling proteins assembled in a pore-like structure crossing the IMC barrier maintained during internal budding.
Collapse
Affiliation(s)
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts.,Precision Medicine Center, Department of Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Tyler Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts
| | - Victoria Sánchez Guzmán
- Department of Biology, Boston College, Chestnut Hill, Massachusetts.,Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Allison A Drozda
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| | - Suyog Chavan
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| | | | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| |
Collapse
|
44
|
Günay-Esiyok Ö, Scheib U, Noll M, Gupta N. An unusual and vital protein with guanylate cyclase and P4-ATPase domains in a pathogenic protist. Life Sci Alliance 2019; 2:2/3/e201900402. [PMID: 31235476 PMCID: PMC6592433 DOI: 10.26508/lsa.201900402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii harbors an alveolate-specific guanylate cyclase linked to P-type ATPase motifs, which is an essential actuator of cGMP-dependent gliding motility, egress, and invasion during acute infection. cGMP signaling is one of the master regulators of diverse functions in eukaryotes; however, its architecture and functioning in protozoans remain poorly understood. Herein, we report an exclusive guanylate cyclase coupled with N-terminal P4-ATPase in a common parasitic protist, Toxoplasma gondii. This bulky protein (477-kD), termed TgATPaseP-GC to fairly reflect its envisaged multifunctionality, localizes in the plasma membrane at the apical pole of the parasite, whereas the corresponding cGMP-dependent protein kinase (TgPKG) is distributed in the cytomembranes. TgATPaseP-GC is refractory to genetic deletion, and its CRISPR/Cas9–assisted disruption aborts the lytic cycle of T. gondii. Besides, Cre/loxP–mediated knockdown of TgATPaseP-GC reduced the synthesis of cGMP and inhibited the parasite growth due to impairments in the motility-dependent egress and invasion events. Equally, repression of TgPKG by a similar strategy recapitulated phenotypes of the TgATPaseP-GC–depleted mutant. Notably, despite a temporally restricted function, TgATPaseP-GC is expressed constitutively throughout the lytic cycle, entailing a post-translational regulation of cGMP signaling. Not least, the occurrence of TgATPaseP-GC orthologs in several other alveolates implies a divergent functional repurposing of cGMP signaling in protozoans, and offers an excellent drug target against the parasitic protists.
Collapse
Affiliation(s)
- Özlem Günay-Esiyok
- Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Ulrike Scheib
- Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Matthias Noll
- Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| |
Collapse
|
45
|
Choudhary HH, Gupta R, Mishra S. PKAc is not required for the preerythrocytic stages of Plasmodium berghei. Life Sci Alliance 2019; 2:2/3/e201900352. [PMID: 31142638 PMCID: PMC6545604 DOI: 10.26508/lsa.201900352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
The mutant salivary gland sporozoites lacking PKAc are able to glide, invade hepatocytes, and mature into hepatic merozoites, which release successfully from the merosome, however, fail to initiate blood stage infection when inoculated into mice. Plasmodium sporozoites invade hepatocytes to initiate infection in the mammalian host. In the infected hepatocytes, sporozoites undergo rapid expansion and differentiation, resulting in the formation and release of thousands of invasive merozoites into the bloodstream. Both sporozoites and merozoites invade their host cells by activation of a signaling cascade followed by discharge of micronemal content. cAMP-dependent protein kinase catalytic subunit (PKAc)–mediated signaling plays an important role in merozoite invasion of erythrocytes, but its role during other stages of the parasite remains unknown. Becaused of the essentiality of PKAc in blood stages, we generated conditional mutants of PKAc by disrupting the gene in Plasmodium berghei sporozoites. The mutant salivary gland sporozoites were able to glide, invaded hepatocytes, and matured into hepatic merozoites which were released successfully from merosome, however failed to initiate blood stage infection when inoculated into mice. Our results demonstrate that malaria parasite complete preerythrocytic stages development without PKAc, raising the possibility that the PKAc independent signaling operates in preerythrocytic stages of P. berghei.
Collapse
Affiliation(s)
| | - Roshni Gupta
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Satish Mishra
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India .,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
46
|
Bullen HE, Bisio H, Soldati-Favre D. The triumvirate of signaling molecules controlling Toxoplasma microneme exocytosis: Cyclic GMP, calcium, and phosphatidic acid. PLoS Pathog 2019; 15:e1007670. [PMID: 31121005 PMCID: PMC6532924 DOI: 10.1371/journal.ppat.1007670] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To elicit effective invasion and egress from infected cells, obligate intracellular parasites of the phylum Apicomplexa rely on the timely and spatially controlled exocytosis of specialized secretory organelles termed the micronemes. The effector molecules and signaling events underpinning this process are intricate; however, recent advances within the field of Toxoplasma gondii research have facilitated a broader understanding as well as a more integrated view of this complex cascade of events and have unraveled the importance of phosphatidic acid (PA) as a lipid mediator at multiple steps in this process.
Collapse
Affiliation(s)
- Hayley E. Bullen
- Burnet Institute, Melbourne, Victoria, Australia
- * E-mail: (HEB); (DS-F)
| | - Hugo Bisio
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
- * E-mail: (HEB); (DS-F)
| |
Collapse
|
47
|
Patel A, Perrin AJ, Flynn HR, Bisson C, Withers-Martinez C, Treeck M, Flueck C, Nicastro G, Martin SR, Ramos A, Gilberger TW, Snijders AP, Blackman MJ, Baker DA. Cyclic AMP signalling controls key components of malaria parasite host cell invasion machinery. PLoS Biol 2019; 17:e3000264. [PMID: 31075098 PMCID: PMC6530879 DOI: 10.1371/journal.pbio.3000264] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/22/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023] Open
Abstract
Cyclic AMP (cAMP) is an important signalling molecule across evolution, but its role in malaria parasites is poorly understood. We have investigated the role of cAMP in asexual blood stage development of Plasmodium falciparum through conditional disruption of adenylyl cyclase beta (ACβ) and its downstream effector, cAMP-dependent protein kinase (PKA). We show that both production of cAMP and activity of PKA are critical for erythrocyte invasion, whilst key developmental steps that precede invasion still take place in the absence of cAMP-dependent signalling. We also show that another parasite protein with putative cyclic nucleotide binding sites, Plasmodium falciparum EPAC (PfEpac), does not play an essential role in blood stages. We identify and quantify numerous sites, phosphorylation of which is dependent on cAMP signalling, and we provide mechanistic insight as to how cAMP-dependent phosphorylation of the cytoplasmic domain of the essential invasion adhesin apical membrane antigen 1 (AMA1) regulates erythrocyte invasion.
Collapse
Affiliation(s)
- Avnish Patel
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Abigail J. Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Helen R. Flynn
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Claudine Bisson
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | | | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Christian Flueck
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Stephen R. Martin
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andres Ramos
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Tim W. Gilberger
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ambrosius P. Snijders
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Michael J. Blackman
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David A. Baker
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
48
|
Yang L, Uboldi AD, Seizova S, Wilde ML, Coffey MJ, Katris NJ, Yamaryo-Botté Y, Kocan M, Bathgate RAD, Stewart RJ, McConville MJ, Thompson PE, Botté CY, Tonkin CJ. An apically located hybrid guanylate cyclase-ATPase is critical for the initiation of Ca 2+ signaling and motility in Toxoplasma gondii. J Biol Chem 2019; 294:8959-8972. [PMID: 30992368 DOI: 10.1074/jbc.ra118.005491] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 04/12/2019] [Indexed: 11/06/2022] Open
Abstract
Protozoan parasites of the phylum Apicomplexa actively move through tissue to initiate and perpetuate infection. The regulation of parasite motility relies on cyclic nucleotide-dependent kinases, but how these kinases are activated remains unknown. Here, using an array of biochemical and cell biology approaches, we show that the apicomplexan parasite Toxoplasma gondii expresses a large guanylate cyclase (TgGC) protein, which contains several upstream ATPase transporter-like domains. We show that TgGC has a dynamic localization, being concentrated at the apical tip in extracellular parasites, which then relocates to a more cytosolic distribution during intracellular replication. Conditional TgGC knockdown revealed that this protein is essential for acute-stage tachyzoite growth, as TgGC-deficient parasites were defective in motility, host cell attachment, invasion, and subsequent host cell egress. We show that TgGC is critical for a rapid rise in cytosolic [Ca2+] and for secretion of microneme organelles upon stimulation with a cGMP agonist, but these deficiencies can be bypassed by direct activation of signaling by a Ca2+ ionophore. Furthermore, we found that TgGC is required for transducing changes in extracellular pH and [K+] to activate cytosolic [Ca2+] flux. Together, the results of our work implicate TgGC as a putative signal transducer that activates Ca2+ signaling and motility in Toxoplasma.
Collapse
Affiliation(s)
- Luning Yang
- From the The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia.,School of Medicine, Tsinghua University, Beijing, China 100006
| | - Alessandro D Uboldi
- From the The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Simona Seizova
- From the The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Mary-Louise Wilde
- From the The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Michael J Coffey
- From the The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Nicholas J Katris
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Martina Kocan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ross A D Bathgate
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia, and
| | - Rebecca J Stewart
- From the The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia, and
| | - Philip E Thompson
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria 3052, Australia
| | - Cyrille Y Botté
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Christopher J Tonkin
- From the The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia, .,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| |
Collapse
|
49
|
Carruthers VB. Interrupting Toxoplasma's Regularly Scheduled Program of Egress. Trends Parasitol 2019; 35:338-340. [PMID: 30948349 DOI: 10.1016/j.pt.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 11/18/2022]
Abstract
Although many cellular components of the Ca2+ signaling pathway dictating Toxoplasma gondii egress have been identified, whether the parasite secretes protein activators of this pathway remained unknown. Bisio et al. (Nat. Microbiol. 2019;4:420-428) identify a parasite-secreted diacylglycerol kinase as a key upstream activator of signaling for 'programmed' egress from host cells.
Collapse
Affiliation(s)
- Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA.
| |
Collapse
|
50
|
Katris NJ, Ke H, McFadden GI, van Dooren GG, Waller RF. Calcium negatively regulates secretion from dense granules in Toxoplasma gondii. Cell Microbiol 2019; 21:e13011. [PMID: 30673152 PMCID: PMC6563121 DOI: 10.1111/cmi.13011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/05/2018] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
Apicomplexan parasites including Toxoplasma gondii and Plasmodium spp. manufacture a complex arsenal of secreted proteins used to interact with and manipulate their host environment. These proteins are organised into three principle exocytotic compartment types according to their functions: micronemes for extracellular attachment and motility, rhoptries for host cell penetration, and dense granules for subsequent manipulation of the host intracellular environment. The order and timing of these events during the parasite's invasion cycle dictates when exocytosis from each compartment occurs. Tight control of compartment secretion is, therefore, an integral part of apicomplexan biology. Control of microneme exocytosis is best understood, where cytosolic intermediate molecular messengers cGMP and Ca2+ act as positive signals. The mechanisms for controlling secretion from rhoptries and dense granules, however, are virtually unknown. Here, we present evidence that dense granule exocytosis is negatively regulated by cytosolic Ca2+, and we show that this Ca2+‐mediated response is contingent on the function of calcium‐dependent protein kinases TgCDPK1 and TgCDPK3. Reciprocal control of micronemes and dense granules provides an elegant solution to the mutually exclusive functions of these exocytotic compartments in parasite invasion cycles and further demonstrates the central role that Ca2+ signalling plays in the invasion biology of apicomplexan parasites.
Collapse
Affiliation(s)
- Nicholas J Katris
- Department of Biochemistry, University of Cambridge, Cambridge, UK.,School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Huiling Ke
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Geoffrey I McFadden
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|