1
|
Zhang L, Cao SM, Wu H, Yan M, Li J, Chen LL. A CRISPR/RfxCas13d-mediated strategy for efficient RNA knockdown in mouse embryonic development. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2297-2306. [PMID: 39110403 DOI: 10.1007/s11427-023-2572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 10/22/2024]
Abstract
The growing variety of RNA classes, such as mRNAs, lncRNAs, and circRNAs, plays pivotal roles in both developmental processes and various pathophysiological conditions. Nonetheless, our comprehension of RNA functions in live organisms remains limited due to the absence of durable and effective strategies for directly influencing RNA levels. In this study, we combined the CRISPR-RfxCas13d system with sperm-like stem cell-mediated semi-cloning techniques, which enabled the suppressed expression of different RNA species. This approach was employed to interfere with the expression of three types of RNA molecules: Sfmbt2 mRNA, Fendrr lncRNA, and circMan1a2(2,3,4,5,6). The results confirmed the critical roles of these RNAs in embryonic development, as their loss led to observable phenotypes, including embryonic lethality, delayed embryonic development, and embryo resorption. In summary, our methodology offers a potent toolkit for silencing specific RNA targets in living organisms without introducing genetic alterations.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shi-Meng Cao
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hao Wu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Meng Yan
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Ling-Ling Chen
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- New Cornerstone Science Laboratory, Shenzhen, 518054, China.
| |
Collapse
|
2
|
Peng X, Zhang Z, Zhang Y, Zhou H, Li W, Dai M, Shang J, Xu J, Gu Q. Discovery of Novel Neo-Clerodane Derivatives as Potent Dual-Functional Antiosteoporosis Agents through Targeting Peroxisome Proliferator-Activated Receptor-γ. J Med Chem 2024; 67:15738-15755. [PMID: 39185622 DOI: 10.1021/acs.jmedchem.4c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
A library of 31 natural neo-clerodanes isolated from Ajuga decumbens was assayed for antiosteoporosis. This results in 18 neo-clerodane osteoclastogenesis inhibitors, and compound 3 prevents bone loss in vivo. Further mechanistic studies demonstrated that these compounds inhibit osteoporosis by antagonizing peroxisome proliferator-activated receptor-γ (PPARγ). We designed and synthesized 17 compounds by chemically modifying the natural neo-clerodane 19 (highly potent and the major composition of A. decumbens extract) by means of structure-based drug design techniques. Among these neo-clerodane derivatives, compound 34 is the most potent osteoporosis inhibitor with a 46-fold improvement in inhibiting osteoclastogenesis (IC50 = 0.042 vs 1.92 μM), 11-fold increased activity in PPARγ antagonism (EC50 = 0.75 vs 8.35 μM), 66-fold enhancement in receptor affinity (KD = 0.27 vs 17.7 μM), and enhanced osteogenic promotion compared to 19. This underscores the potential of neo-clerodane diterpenoids as promising leads for osteoporosis treatment by targeting PPARγ.
Collapse
Affiliation(s)
- Xing Peng
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhikang Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yuting Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Wenqi Li
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Minxian Dai
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Jinsai Shang
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
3
|
Xu K, Huang RQ, Wen R, Yang Y, Cheng Y, Chang B. The role of Clec11a in bone construction and remodeling. Front Endocrinol (Lausanne) 2024; 15:1429567. [PMID: 39188913 PMCID: PMC11345164 DOI: 10.3389/fendo.2024.1429567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Bone is a dynamically active tissue whose health status is closely related to its construction and remodeling, and imbalances in bone homeostasis lead to a wide range of bone diseases. The sulfated glycoprotein C-type lectin structural domain family 11 member A (Clec11a) is a key factor in bone mass regulation that significantly promotes the osteogenic differentiation of bone marrow mesenchymal stem cells and osteoblasts and stimulates chondrocyte proliferation, thereby promoting longitudinal bone growth. More importantly, Clec11a has high therapeutic potential for treating various bone diseases and can enhance the therapeutic effects of the parathyroid hormone against osteoporosis. Clec11a is also involved in the stress/adaptive response of bone to exercise via mechanical stimulation of the cation channel Pieoz1. Clec11a plays an important role in promoting bone health and preventing bone disease and may represent a new target and novel drug for bone disease treatment. Therefore, this review aims to explore the role and possible mechanisms of Clec11a in the skeletal system, evaluate its value as a potential therapeutic target against bone diseases, and provide new ideas and strategies for basic research on Clec11a and preventing and treating bone disease.
Collapse
Affiliation(s)
- Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Rui-qi Huang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yao Yang
- Laboratory Management Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
- School of Sport Science, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| |
Collapse
|
4
|
Wang HS, Ma XR, Guo YH. Development and application of haploid embryonic stem cells. Stem Cell Res Ther 2024; 15:116. [PMID: 38654389 PMCID: PMC11040874 DOI: 10.1186/s13287-024-03727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Haploid cells are a kind of cells with only one set of chromosomes. Compared with traditional diploid cells, haploid cells have unique advantages in gene screening and drug-targeted therapy, due to their phenotype being equal to the genotype. Embryonic stem cells are a kind of cells with strong differentiation potential that can differentiate into various types of cells under specific conditions in vitro. Therefore, haploid embryonic stem cells have the characteristics of both haploid cells and embryonic stem cells, which makes them have significant advantages in many aspects, such as reproductive developmental mechanism research, genetic screening, and drug-targeted therapy. Consequently, establishing haploid embryonic stem cell lines is of great significance. This paper reviews the progress of haploid embryonic stem cell research and briefly discusses the applications of haploid embryonic stem cells.
Collapse
Affiliation(s)
- Hai-Song Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China.
| | - Xin-Rui Ma
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China
| | - Yi-Hong Guo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China.
| |
Collapse
|
5
|
Aguila L, Nociti RP, Sampaio RV, Therrien J, Meirelles FV, Felmer RN, Smith LC. Haploid androgenetic development of bovine embryos reveals imbalanced WNT signaling and impaired cell fate differentiation†. Biol Reprod 2023; 109:821-838. [PMID: 37788061 DOI: 10.1093/biolre/ioad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/09/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
Haploid embryos have contributed significantly to our understanding of the role of parental genomes in development and can be applied to important biotechnology for human and animal species. However, development to the blastocyst stage is severely hindered in bovine haploid androgenetic embryos (hAE). To further our understanding of such developmental arrest, we performed a comprehensive comparison of the transcriptomic profile of morula-stage embryos, which were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of transcripts associated with differentiation in haploid and biparental embryos. Among numerous disturbances, results showed that pluripotency pathways, especially the wingless-related integration site (WNT) signaling, were particularly unbalanced in hAE. Moreover, transcript levels of KLF4, NANOG, POU5F1, SOX2, CDX2, CTNNBL1, AXIN2, and GSK3B were noticeably altered in hAE, suggesting disturbance of pluripotency and canonical WNT pathways. To evaluate the role of WNT on hAE competence, we exposed early Day-5 morula stage embryos to the GSK3B inhibitor CHIR99021. Although no alterations were observed in pluripotency and WNT-related transcripts, exposure to CHIR99021 improved their ability to reach the blastocysts stage, confirming the importance of the WNT pathway in the developmental outcome of bovine hAE.
Collapse
Affiliation(s)
- Luis Aguila
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - Ricardo P Nociti
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, São Paulo, Brazil
| | - Rafael V Sampaio
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Jacinthe Therrien
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Flavio V Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, São Paulo, Brazil
| | - Ricardo N Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - Lawrence C Smith
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| |
Collapse
|
6
|
Jeong SH, Nguyen KT, Nguyen MT, You JS, Kim BH, Choe HC, Ahn SG. DMP1 and IFITM5 Regulate Osteogenic Differentiation of MC3T3-E1 on PEO-Treated Ti-6Al-4V-Ca 2+/P i surface. ACS Biomater Sci Eng 2023; 9:1377-1390. [PMID: 36802481 DOI: 10.1021/acsbiomaterials.2c01296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Despite numerous studies on various surface modifications on titanium and its alloys, it remains unclear what kind of titanium-based surface modifications are capable of controlling cell activity. This study aimed to understand the mechanism at the cellular and molecular levels and investigate the in vitro response of osteoblastic MC3T3-E1 cultured on the Ti-6Al-4V surface modified by plasma electrolytic oxidation (PEO) treatment. A Ti-6Al-4V surface was prepared by PEO at 180, 280, and 380 V for 3 or 10 min in an electrolyte containing Ca2+/Pi ions. Our results showed that PEO-treated Ti-6Al-4V-Ca2+/Pi surfaces enhanced the cell attachment and differentiation of MC3T3-E1 compared to the untreated Ti-6Al-4V control but did not affect cytotoxicity as shown by cell proliferation and cell death. Interestingly, on the Ti-6Al-4V-Ca2+/Pi surface treated by PEO at 280 V for 3 or 10 min, MC3T3-E1 showed a higher initial adhesion and mineralization. In addition, the alkaline phosphatase (ALP) activity significantly increased in MC3T3-E1 on the PEO-treated Ti-6Al-4V-Ca2+/Pi (280 V for 3 or 10 min). In RNA-seq analysis, the expression of dentin matrix protein 1 (DMP1), sortilin 1 (Sort1), signal-induced proliferation-associated 1 like 2 (SIPA1L2), and interferon-induced transmembrane protein 5 (IFITM5) was induced during the osteogenic differentiation of MC3T3-E1 on the PEO-treated Ti-6Al-4V-Ca2+/Pi. DMP1 and IFITM5 silencing decreased the expression of bone differentiation-related mRNAs and proteins and ALP activity in MC3T3-E1. These results suggest that the PEO-treated Ti-6Al-4V-Ca2+/Pi surface induces osteoblast differentiation by regulating the expression of DMP1 and IFITM5. Therefore, surface microstructure modification through PEO coatings with Ca2+/Pi ions could be used as a valuable method to improve biocompatibility properties of titanium alloys.
Collapse
Affiliation(s)
- Se-Ho Jeong
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Khanh Toan Nguyen
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Manh Tuong Nguyen
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Jae-Seek You
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Byung-Hoon Kim
- Advanced Functional Surface and Biomaterials Research Lab, Department of Dental Materials and Research Center of Surface Control for Oral Tissue Regeneration (BRL Center of NRF), College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Han-Cheol Choe
- Advanced Functional Surface and Biomaterials Research Lab, Department of Dental Materials and Research Center of Surface Control for Oral Tissue Regeneration (BRL Center of NRF), College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
7
|
Hu Y, Huang J, Chen C, Wang Y, Hao Z, Chen T, Wang J, Li J. Strategies of Macrophages to Maintain Bone Homeostasis and Promote Bone Repair: A Narrative Review. J Funct Biomater 2022; 14:18. [PMID: 36662065 PMCID: PMC9864083 DOI: 10.3390/jfb14010018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Bone homeostasis (a healthy bone mass) is regulated by maintaining a delicate balance between bone resorption and bone formation. The regulation of physiological bone remodeling by a complex system that involves multiple cells in the skeleton is closely related to bone homeostasis. Loss of bone mass or repair of bone is always accompanied by changes in bone homeostasis. However, due to the complexity of bone homeostasis, we are currently unable to identify all the mechanisms that affect bone homeostasis. To date, bone macrophages have been considered a third cellular component in addition to osteogenic spectrum cells and osteoclasts. As confirmed by co-culture models or in vivo experiments, polarized or unpolarized macrophages interact with multiple components within the bone to ensure bone homeostasis. Different macrophage phenotypes are prone to resorption and formation of bone differently. This review comprehensively summarizes the mechanisms by which macrophages regulate bone homeostasis and concludes that macrophages can control bone homeostasis from osteoclasts, mesenchymal cells, osteoblasts, osteocytes, and the blood/vasculature system. The elaboration of these mechanisms in this narrative review facilitates the development of macrophage-based strategies for the treatment of bone metabolic diseases and bone defects.
Collapse
Affiliation(s)
- Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Jinghuan Huang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200000, China
| | - Chunying Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| |
Collapse
|
8
|
Liu B, Jing Z, Zhang X, Chen Y, Mao S, Kaundal R, Zou Y, Wei G, Zang Y, Wang X, Lin W, Di M, Sun Y, Chen Q, Li Y, Xia J, Sun J, Lin CP, Huang X, Chi T. Large-scale multiplexed mosaic CRISPR perturbation in the whole organism. Cell 2022; 185:3008-3024.e16. [PMID: 35870449 DOI: 10.1016/j.cell.2022.06.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/23/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022]
Abstract
Here, we report inducible mosaic animal for perturbation (iMAP), a transgenic platform enabling in situ CRISPR targeting of at least 100 genes in parallel throughout the mouse body. iMAP combines Cre-loxP and CRISPR-Cas9 technologies and utilizes a germline-transmitted transgene carrying a large array of individually floxed, tandemly linked gRNA-coding units. Cre-mediated recombination triggers expression of all the gRNAs in the array but only one of them per cell, converting the mice to mosaic organisms suitable for phenotypic characterization and also for high-throughput derivation of conventional single-gene perturbation lines via breeding. Using gRNA representation as a readout, we mapped a miniature Perturb-Atlas cataloging the perturbations of 90 genes across 39 tissues, which yields rich insights into context-dependent gene functions and provides a glimpse of the potential of iMAP in genome decoding.
Collapse
Affiliation(s)
- Bo Liu
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhengyu Jing
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoming Zhang
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuxin Chen
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shaoshuai Mao
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ravinder Kaundal
- Department of Immunobiology, Yale University Medical School, New Haven, CT 06520, USA
| | - Yan Zou
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ge Wei
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ying Zang
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinxin Wang
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenyang Lin
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Minghui Di
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiwen Sun
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qin Chen
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yongqin Li
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jing Xia
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianlong Sun
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao-Po Lin
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xingxu Huang
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tian Chi
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Immunobiology, Yale University Medical School, New Haven, CT 06520, USA.
| |
Collapse
|
9
|
IRX5 promotes adipogenesis of hMSCs by repressing glycolysis. Cell Death Dis 2022; 8:204. [PMID: 35428362 PMCID: PMC9012830 DOI: 10.1038/s41420-022-00986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
AbstractIroquois homeobox transcription factor 5 (IRX5) plays a pivotal role in extramedullary adipogenesis, but little is known about the effects of IRX5 on adipogenesis of human bone marrow-derived mesenchymal stem cells (hMSCs). In this study, we aimed to determine the effect of IRX5 on hMSCs adipogenesis. By means of qPCR analysis, we determined that IRX5 expression was elevated during adipogenic commitment of hMSCs. The biologic role of IRX5 was further investigated by employing a gain/loss-of-function strategy using an in vitro lentivirus-based system. IRX5 overexpression promoted adipogenesis whereas IRX5 knockdown reduced the adipogenic phenotype. RNA-seq and metabolomics revealed that IRX5 overexpression repressed glycolysis. Dual-luciferase assay results showed that IRX5 overexpression transcriptionally activates peroxisome proliferator-activated receptor gamma coactivator (PGC-1α). Metformin and PGC-1α inhibitor reversed IRX5-induced adipogenesis and glycolytic inhibition. Collectively, IRX5 facilitates adipogenic differentiation of hMSCs by transcriptionally regulating PGC-1α and inhibiting glycolysis, revealing a potential target to control bone marrow-derived mesenchymal stem cells (BMSCs) fate decision and bone homeostasis.
Collapse
|
10
|
Suo J, Zou S, Wang J, Han Y, Zhang L, Lv C, Jiang B, Ren Q, Chen L, Yang L, Ji P, Zheng X, Hu P, Zou W. The RNA-binding protein Musashi2 governs osteoblast-adipocyte lineage commitment by suppressing PPARγ signaling. Bone Res 2022; 10:31. [PMID: 35301280 PMCID: PMC8930990 DOI: 10.1038/s41413-022-00202-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/29/2021] [Accepted: 01/08/2022] [Indexed: 11/12/2022] Open
Abstract
Osteoporosis caused by aging is characterized by reduced bone mass and accumulated adipocytes in the bone marrow cavity. How the balance between osteoblastogenesis and adipogenesis from bone marrow mesenchymal stem cells (BMSCs) is lost upon aging is still unclear. Here, we found that the RNA-binding protein Musashi2 (Msi2) regulates BMSC lineage commitment. Msi2 is commonly enriched in stem cells and tumor cells. We found that its expression was downregulated during adipogenic differentiation and upregulated during osteogenic differentiation of BMSCs. Msi2 knockout mice exhibited decreased bone mass with substantial accumulation of marrow adipocytes, similar to aging-induced osteoporosis. Depletion of Msi2 in BMSCs led to increased adipocyte commitment. Transcriptional profiling analysis revealed that Msi2 deficiency led to increased PPARγ signaling. RNA-interacting protein immunoprecipitation assays demonstrated that Msi2 could inhibit the translation of the key adipogenic factor Cebpα, thereby inhibiting PPAR signaling. Furthermore, the expression of Msi2 decreased significantly during the aging process of mice, indicating that decreased Msi2 function during aging contributes to abnormal accumulation of adipocytes in bone marrow and osteoporosis. Thus, our results provide a putative biochemical mechanism for aging-related osteoporosis, suggesting that modulating Msi2 function may benefit the treatment of bone aging.
Collapse
Affiliation(s)
- Jinlong Suo
- Department of Orthopedic Surgery and Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Sihai Zou
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, 401147, Chongqing, China
| | - Jinghui Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yujiao Han
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Lingli Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Chenchen Lv
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Bo Jiang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qian Ren
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Lele Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, 401147, Chongqing, China
| | - Xianyou Zheng
- Department of Orthopedic Surgery and Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China.
| | - Ping Hu
- Guangzhou Laboratory, No. 9 XingDaoHuan Road, Guanghzou International Bio lsland, 510005, Guangzhou, China. .,Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China. .,Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, China.
| | - Weiguo Zou
- Department of Orthopedic Surgery and Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China. .,State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
11
|
Mills EG, Yang L, Nielsen MF, Kassem M, Dhillo WS, Comninos AN. The Relationship Between Bone and Reproductive Hormones Beyond Estrogens and Androgens. Endocr Rev 2021; 42:691-719. [PMID: 33901271 PMCID: PMC8599211 DOI: 10.1210/endrev/bnab015] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/20/2022]
Abstract
Reproductive hormones play a crucial role in the growth and maintenance of the mammalian skeleton. Indeed, the biological significance for this hormonal regulation of skeletal homeostasis is best illustrated by common clinical reproductive disorders, such as primary ovarian insufficiency, hypothalamic amenorrhea, congenital hypogonadotropic hypogonadism, and early menopause, which contribute to the clinical burden of low bone mineral density and increased risk for fragility fracture. Emerging evidence relating to traditional reproductive hormones and the recent discovery of newer reproductive neuropeptides and hormones has deepened our understanding of the interaction between bone and the reproductive system. In this review, we provide a contemporary summary of the literature examining the relationship between bone biology and reproductive signals that extend beyond estrogens and androgens, and include kisspeptin, gonadotropin-releasing hormone, follicle-stimulating hormone, luteinizing hormone, prolactin, progesterone, inhibin, activin, and relaxin. A comprehensive and up-to-date review of the recent basic and clinical research advances is essential given the prevalence of clinical reproductive disorders, the emerging roles of upstream reproductive hormones in bone physiology, as well as the urgent need to develop novel safe and effective therapies for bone fragility in a rapidly aging population.
Collapse
Affiliation(s)
- Edouard G Mills
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Lisa Yang
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Morten F Nielsen
- Department of Endocrinology, University Hospital of Odense & institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Moustapha Kassem
- Department of Endocrinology, University Hospital of Odense & institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark.,Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Waljit S Dhillo
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.,Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.,Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK.,Endocrine Bone Unit, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
12
|
Dou Z, Son JE, Hui CC. Irx3 and Irx5 - Novel Regulatory Factors of Postnatal Hypothalamic Neurogenesis. Front Neurosci 2021; 15:763856. [PMID: 34795556 PMCID: PMC8593166 DOI: 10.3389/fnins.2021.763856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022] Open
Abstract
The hypothalamus is a brain region that exhibits highly conserved anatomy across vertebrate species and functions as a central regulatory hub for many physiological processes such as energy homeostasis and circadian rhythm. Neurons in the arcuate nucleus of the hypothalamus are largely responsible for sensing of peripheral signals such as leptin and insulin, and are critical for the regulation of food intake and energy expenditure. While these neurons are mainly born during embryogenesis, accumulating evidence have demonstrated that neurogenesis also occurs in postnatal-adult mouse hypothalamus, particularly in the first two postnatal weeks. This second wave of active neurogenesis contributes to the remodeling of hypothalamic neuronal populations and regulation of energy homeostasis including hypothalamic leptin sensing. Radial glia cell types, such as tanycytes, are known to act as neuronal progenitors in the postnatal mouse hypothalamus. Our recent study unveiled a previously unreported radial glia-like neural stem cell (RGL-NSC) population that actively contributes to neurogenesis in the postnatal mouse hypothalamus. We also identified Irx3 and Irx5, which encode Iroquois homeodomain-containing transcription factors, as genetic determinants regulating the neurogenic property of these RGL-NSCs. These findings are significant as IRX3 and IRX5 have been implicated in FTO-associated obesity in humans, illustrating the importance of postnatal hypothalamic neurogenesis in energy homeostasis and obesity. In this review, we summarize current knowledge regarding postnatal-adult hypothalamic neurogenesis and highlight recent findings on the radial glia-like cells that contribute to the remodeling of postnatal mouse hypothalamus. We will discuss characteristics of the RGL-NSCs and potential actions of Irx3 and Irx5 in the regulation of neural stem cells in the postnatal-adult mouse brain. Understanding the behavior and regulation of neural stem cells in the postnatal-adult hypothalamus will provide novel mechanistic insights in the control of hypothalamic remodeling and energy homeostasis.
Collapse
Affiliation(s)
- Zhengchao Dou
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Joe Eun Son
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chi-chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Applications of piggyBac Transposons for Genome Manipulation in Stem Cells. Stem Cells Int 2021; 2021:3829286. [PMID: 34567130 PMCID: PMC8460389 DOI: 10.1155/2021/3829286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Transposons are mobile genetic elements in the genome. The piggyBac (PB) transposon system is increasingly being used for stem cell research due to its high transposition efficiency and seamless excision capacity. Over the past few decades, forward genetic screens based on PB transposons have been successfully established to identify genes associated with drug resistance and stem cell-related characteristics. Moreover, PB transposon is regarded as a promising gene therapy vector and has been used in some clinically relevant stem cells. Here, we review the recent progress on the basic biology of PB, highlight its applications in current stem cell research, and discuss its advantages and challenges.
Collapse
|
14
|
Youlten SE, Kemp JP, Logan JG, Ghirardello EJ, Sergio CM, Dack MRG, Guilfoyle SE, Leitch VD, Butterfield NC, Komla-Ebri D, Chai RC, Corr AP, Smith JT, Mohanty ST, Morris JA, McDonald MM, Quinn JMW, McGlade AR, Bartonicek N, Jansson M, Hatzikotoulas K, Irving MD, Beleza-Meireles A, Rivadeneira F, Duncan E, Richards JB, Adams DJ, Lelliott CJ, Brink R, Phan TG, Eisman JA, Evans DM, Zeggini E, Baldock PA, Bassett JHD, Williams GR, Croucher PI. Osteocyte transcriptome mapping identifies a molecular landscape controlling skeletal homeostasis and susceptibility to skeletal disease. Nat Commun 2021; 12:2444. [PMID: 33953184 PMCID: PMC8100170 DOI: 10.1038/s41467-021-22517-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Osteocytes are master regulators of the skeleton. We mapped the transcriptome of osteocytes from different skeletal sites, across age and sexes in mice to reveal genes and molecular programs that control this complex cellular-network. We define an osteocyte transcriptome signature of 1239 genes that distinguishes osteocytes from other cells. 77% have no previously known role in the skeleton and are enriched for genes regulating neuronal network formation, suggesting this programme is important in osteocyte communication. We evaluated 19 skeletal parameters in 733 knockout mouse lines and reveal 26 osteocyte transcriptome signature genes that control bone structure and function. We showed osteocyte transcriptome signature genes are enriched for human orthologs that cause monogenic skeletal disorders (P = 2.4 × 10-22) and are associated with the polygenic diseases osteoporosis (P = 1.8 × 10-13) and osteoarthritis (P = 1.6 × 10-7). Thus, we reveal the molecular landscape that regulates osteocyte network formation and function and establish the importance of osteocytes in human skeletal disease.
Collapse
Affiliation(s)
- Scott E Youlten
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - John P Kemp
- University of Queensland Diamantina Institute, UQ, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Elena J Ghirardello
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Claudio M Sergio
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Michael R G Dack
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Siobhan E Guilfoyle
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC, UK
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ryan C Chai
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Alexander P Corr
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Faculty of Science, University of Bath, Bath, UK
| | - James T Smith
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Faculty of Science, University of Bath, Bath, UK
| | - Sindhu T Mohanty
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - John A Morris
- New York Genome Center, New York, NY, USA
- Faculty of Arts and Science, Department of Biology, New York University, New York, NY, USA
| | - Michelle M McDonald
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Julian M W Quinn
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Amelia R McGlade
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Nenad Bartonicek
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, NSW, Australia
| | - Matt Jansson
- Viapath Genetics Laboratory, Viapath Analytics LLP, Guy's Hospital, London, UK
- Department of Clinical Genetics, Guy's Hospital, London, UK
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Phoenix, AZ, USA
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Melita D Irving
- Department of Clinical Genetics, Guy's and St Thomas' NHS Trust, London, UK
| | | | | | - Emma Duncan
- Faculty of Life Sciences and Medicine, Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - J Brent Richards
- Faculty of Life Sciences and Medicine, Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- Faculty of Medicine, McGill University, Quebec, Canada
| | | | | | - Robert Brink
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Division of Immunology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Tri Giang Phan
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Division of Immunology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - John A Eisman
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- School of Medicine Sydney, University of Notre Dame Australia, Fremantle, Australia
| | - David M Evans
- University of Queensland Diamantina Institute, UQ, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Phoenix, AZ, USA
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Paul A Baldock
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Peter I Croucher
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, Australia.
| |
Collapse
|
15
|
Aguila L, Suzuki J, Hill ABT, García M, de Mattos K, Therrien J, Smith LC. Dysregulated Gene Expression of Imprinted and X-Linked Genes: A Link to Poor Development of Bovine Haploid Androgenetic Embryos. Front Cell Dev Biol 2021; 9:640712. [PMID: 33869192 PMCID: PMC8044962 DOI: 10.3389/fcell.2021.640712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian uniparental embryos are efficient models for genome imprinting research and allow studies on the contribution of the paternal and maternal genomes to early embryonic development. In this study, we analyzed different methods for production of bovine haploid androgenetic embryos (hAE) to elucidate the causes behind their poor developmental potential. Results indicate that hAE can be efficiently generated by using intracytoplasmic sperm injection and oocyte enucleation at telophase II. Although androgenetic haploidy does not disturb early development up to around the 8-cell stage, androgenetic development is disturbed after the time of zygote genome activation and hAE that reach the morula stage are less capable to reach the blastocyst stage of development. Karyotypic comparisons to parthenogenetic- and ICSI-derived embryos excluded chromosomal segregation errors as causes of the developmental constraints of hAE. However, analysis of gene expression indicated abnormal levels of transcripts for key long non-coding RNAs involved in X chromosome inactivation and genomic imprinting of the KCNQ1 locus, suggesting an association with X chromosome and some imprinted loci. Moreover, transcript levels of methyltransferase 3B were significantly downregulated, suggesting potential anomalies in hAE establishing de novo methylation. Finally, the methylation status of imprinted control regions for XIST and KCNQ1OT1 genes remained hypomethylated in hAE at the morula and blastocyst stages, confirming their origin from spermatozoa. Thus, our results exclude micromanipulation and chromosomal abnormalities as major factors disturbing the normal development of bovine haploid androgenotes. In addition, although the cause of the arrest remains unclear, we have shown that the inefficient development of haploid androgenetic bovine embryos to develop to the blastocyst stage is associated with abnormal expression of key factors involved in X chromosome activity and genomic imprinting.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lawrence C. Smith
- Département de Biomédecine Vétérinaire, Centre de Recherche en Reproduction Et Fertilité, Université de Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
16
|
Sun S, Zhao Y, Shuai L. The milestone of genetic screening: Mammalian haploid cells. Comput Struct Biotechnol J 2020; 18:2471-2479. [PMID: 33005309 PMCID: PMC7509586 DOI: 10.1016/j.csbj.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/30/2022] Open
Abstract
Mammalian haploid cells provide insights into multiple genetics approaches as have been proved by advances in homozygous phenotypes and function as gametes. Recent achievements make ploidy of mammalian haploid cells stable and improve the developmental efficiency of embryos derived from mammalian haploid cells intracytoplasmic microinjection, which promise great potentials for using mammalian haploid cells in forward and reverse genetic screening. In this review, we introduce breakthroughs of mammalian haploid cells involving in mechanisms of self-diploidization, forward genetics for various targeting genes and imprinted genes related development.
Collapse
Affiliation(s)
- Shengyi Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
- Tate Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| |
Collapse
|
17
|
Lin J, Chen L, Dou D. Progress of orthopaedic research in China over the last decade. J Orthop Translat 2020; 24:131-137. [PMID: 32913711 PMCID: PMC7452214 DOI: 10.1016/j.jot.2020.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Objective To summarize the representative scientific achievements in the past decade, and discuss the future challenges and directions for orthopaedic research in China. Methods In this review, we used the data provided by National Natural Science Foundation of China (NSFC) for analysis. Results Over the last decade, NSFC has initiated various research programs with a total funding of over 1149 million RMB to support orthopaedic exploration. Under the strong support of NSFC, great progresses have been made in basic research, talent training, platform construction and the clinical translation in the field of orthopaedics in China. Conclusion In general, since the establishment of the Department of Health Sciences of NSFC 10 years ago, both the amount of funding and the scale of researchers in the field of orthopaedic research have increased substantially. Despite of several shortcomings in orthopaedic research, with continuous support from NSFC both in funding and in policy, we believe that the orthopaedic research in China will surely make steady and significant progress. The translational potential of this article This article summarizes the representative scientific achievements in the past decade and puts forward the future challenges and directions for orthopaedic research in China.
Collapse
Affiliation(s)
- Jun Lin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dou Dou
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|