1
|
Rosell-Díaz M, Petit-Gay A, Molas-Prat C, Gallardo-Nuell L, Ramió-Torrentà L, Garre-Olmo J, Pérez-Brocal V, Moya A, Jové M, Pamplona R, Puig J, Ramos R, Bäckhed F, Mayneris-Perxachs J, Fernández-Real JM. Metformin-induced changes in the gut microbiome and plasma metabolome are associated with cognition in men. Metabolism 2024; 157:155941. [PMID: 38871078 DOI: 10.1016/j.metabol.2024.155941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND An altered gut microbiome characterized by reduced abundance of butyrate producing bacteria and reduced gene richness is associated with type 2 diabetes (T2D). An important complication of T2D is increased risk of cognitive impairment and dementia. The biguanide metformin is a commonly prescribed medication for the control of T2D and metformin treatment has been associated with a significant reduction in the risk of dementia and improved cognition, particularly in people with T2D. AIM To investigate the associations of metformin use with cognition exploring potential mechanisms by analyzing the gut microbiome and plasma metabolome using shotgun metagenomics and HPLC-ESI-MS/MS, respectively. METHODS We explored two independent cohorts: an observational study (Aging Imageomics) and a phase IV, randomized, double-blind, parallel-group, randomized pilot study (MEIFLO). From the two studies, we analyzed four study groups: (1) individuals with no documented medical history or medical treatment (n = 172); (2) people with long-term T2D on metformin monotherapy (n = 134); (3) people with long-term T2D treated with oral hypoglycemic agents other than metformin (n = 45); (4) a newly diagnosed T2D subjects on metformin monotherapy (n = 22). Analyses were also performed stratifying by sex. RESULTS Several bacterial species belonging to the Proteobacteria (Escherichia coli) and Verrucomicrobia (Akkermansia muciniphila) phyla were positively associated with metformin treatment, while bacterial species belonging to the Firmicutes phylum (Romboutsia timonensis, Romboutsia ilealis) were negatively associated. Due to the consistent increase in A. muciniphila and decrease in R.ilealis in people with T2D subjects treated with metformin, we investigated the association between this ratio and cognition. In the entire cohort of metformin-treated T2D subjects, the A.muciniphila/R.ilealis ratio was not significantly associated with cognitive test scores. However, after stratifying by sex, the A.muciniphila/R. ilealis ratio was significantly and positively associated with higher memory scores and improved memory in men. Metformin treatment was associated with an enrichment of microbial pathways involved in the TCA cycle, and butanoate, arginine, and proline metabolism in both cohorts. The bacterial genes involved in arginine metabolism, especially in production of glutamate (astA, astB, astC, astD, astE, putA), were enriched following metformin intake. In agreement, in the metabolomics analysis, metformin treatment was strongly associated with the amino acid proline, a metabolite involved in the metabolism of glutamate. CONCLUSIONS The beneficial effects of metformin may be mediated by changes in the composition of the gut microbiota and microbial-host-derived co-metabolites.
Collapse
Affiliation(s)
- Marisel Rosell-Díaz
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain and University of Girona, Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Anna Petit-Gay
- Degree in Biomedical Engineering, Polytechnic Institute, University of Girona, Girona, Spain
| | - Clàudia Molas-Prat
- Degree in Biomedical Engineering, Polytechnic Institute, University of Girona, Girona, Spain
| | - Laura Gallardo-Nuell
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain and University of Girona, Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Lluís Ramió-Torrentà
- Girona Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Neurodegeneration and Neuroinflammation research group, IDIBGI, Department of Medical Sciences, University of Girona, Girona-Salt, Spain
| | - Josep Garre-Olmo
- Research Group on Health, Gender, and Aging, Girona Biomedical Research Institute (IDIBGI-CERCA), University of Girona, Girona, Spain; Department of Nursing, University of Girona, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain; Medical Imaging, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Rafael Ramos
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Vascular Health Research Group of Girona (ISV-Girona), Jordi Gol Institute for Primary Care Research (Institut Universitari per a la Recerca en Atenció Primària Jordi Gol I Gorina -IDIAPJGol), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud -RICAPPS- ISCIII, Spain; Girona Biomedical Research Institute (IDIBGI-CERCA), Dr. Josep Trueta University Hospital, Catalonia, Spain
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain and University of Girona, Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain.
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain and University of Girona, Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.
| |
Collapse
|
2
|
Sargsian S, Mondragón-Palomino O, Lejeune A, Ercelen D, Jin WB, Varghese A, Lim YAL, Guo CJ, Loke P, Cadwell K. Functional characterization of helminth-associated Clostridiales reveals covariates of Treg differentiation. MICROBIOME 2024; 12:86. [PMID: 38730492 PMCID: PMC11084060 DOI: 10.1186/s40168-024-01793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/10/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria. RESULTS Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. CONCLUSION We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.
Collapse
Affiliation(s)
- Shushan Sargsian
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Octavio Mondragón-Palomino
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alannah Lejeune
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Defne Ercelen
- Department of Medicine, Division of Gastroenterology and Hepatology, New York University Langone Health, New York, NY, 10016, USA
| | - Wen-Bing Jin
- Weill Cornell Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Cornell University, New York, NY, 10021, USA
| | - Alan Varghese
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yvonne A L Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Chun-Jun Guo
- Weill Cornell Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Cornell University, New York, NY, 10021, USA
| | - P'ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Ken Cadwell
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Marinos G, Hamerich IK, Debray R, Obeng N, Petersen C, Taubenheim J, Zimmermann J, Blackburn D, Samuel BS, Dierking K, Franke A, Laudes M, Waschina S, Schulenburg H, Kaleta C. Metabolic model predictions enable targeted microbiome manipulation through precision prebiotics. Microbiol Spectr 2024; 12:e0114423. [PMID: 38230938 PMCID: PMC10846184 DOI: 10.1128/spectrum.01144-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
While numerous health-beneficial interactions between host and microbiota have been identified, there is still a lack of targeted approaches for modulating these interactions. Thus, we here identify precision prebiotics that specifically modulate the abundance of a microbiome member species of interest. In the first step, we show that defining precision prebiotics by compounds that are only taken up by the target species but no other species in a community is usually not possible due to overlapping metabolic niches. Subsequently, we use metabolic modeling to identify precision prebiotics for a two-member Caenorhabditis elegans microbiome community comprising the immune-protective target species Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71. We experimentally confirm four of the predicted precision prebiotics, L-serine, L-threonine, D-mannitol, and γ-aminobutyric acid, to specifically increase the abundance of MYb11. L-serine was further assessed in vivo, leading to an increase in MYb11 abundance also in the worm host. Overall, our findings demonstrate that metabolic modeling is an effective tool for the design of precision prebiotics as an important cornerstone for future microbiome-targeted therapies.IMPORTANCEWhile various mechanisms through which the microbiome influences disease processes in the host have been identified, there are still only few approaches that allow for targeted manipulation of microbiome composition as a first step toward microbiome-based therapies. Here, we propose the concept of precision prebiotics that allow to boost the abundance of already resident health-beneficial microbial species in a microbiome. We present a constraint-based modeling pipeline to predict precision prebiotics for a minimal microbial community in the worm Caenorhabditis elegans comprising the host-beneficial Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71 with the aim to boost the growth of MYb11. Experimentally testing four of the predicted precision prebiotics, we confirm that they are specifically able to increase the abundance of MYb11 in vitro and in vivo. These results demonstrate that constraint-based modeling could be an important tool for the development of targeted microbiome-based therapies against human diseases.
Collapse
Affiliation(s)
- Georgios Marinos
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Inga K. Hamerich
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Reena Debray
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Nancy Obeng
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Carola Petersen
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Jan Taubenheim
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Johannes Zimmermann
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
- Max-Planck Institute for Evolutionary Biology, Ploen, Schleswig-Holstein, Germany
| | - Dana Blackburn
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Katja Dierking
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Silvio Waschina
- Nutriinformatics, Institute for Human Nutrition and Food Science, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Hinrich Schulenburg
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
- Max-Planck Institute for Evolutionary Biology, Ploen, Schleswig-Holstein, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
4
|
Jia X, Chen Q, Zhang Y, Asakawa T. Multidirectional associations between the gut microbiota and Parkinson's disease, updated information from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway. Front Cell Infect Microbiol 2023; 13:1296713. [PMID: 38173790 PMCID: PMC10762314 DOI: 10.3389/fcimb.2023.1296713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The human gastrointestinal tract is inhabited by a diverse range of microorganisms, collectively known as the gut microbiota, which form a vast and complex ecosystem. It has been reported that the microbiota-gut-brain axis plays a crucial role in regulating host neuroprotective function. Studies have shown that patients with Parkinson's disease (PD) have dysbiosis of the gut microbiota, and experiments involving germ-free mice and fecal microbiota transplantation from PD patients have revealed the pathogenic role of the gut microbiota in PD. Interventions targeting the gut microbiota in PD, including the use of prebiotics, probiotics, and fecal microbiota transplantation, have also shown efficacy in treating PD. However, the causal relationship between the gut microbiota and Parkinson's disease remains intricate. This study reviewed the association between the microbiota-gut-brain axis and PD from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway. We found that the interactions among gut microbiota and PD are very complex, which should be "multidirectional", rather than conventionally regarded "bidirectional". To realize application of the gut microbiota-related mechanisms in the clinical setting, we propose several problems which should be addressed in the future study.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuanyuan Zhang
- Department of Acupuncture and Moxibustion, The Affiliated Traditional Chinese Medicine (TCM) Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Tao Q, Zhang ZD, Lu XR, Qin Z, Liu XW, Li SH, Bai LX, Ge BW, Li JY, Yang YJ. Multi-omics reveals aspirin eugenol ester alleviates neurological disease. Biomed Pharmacother 2023; 166:115311. [PMID: 37572635 DOI: 10.1016/j.biopha.2023.115311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Exosomes play an essential role in maintaining normal brain function due to their ability to cross the blood-brain barrier. Aspirin eugenol ester (AEE) is a new medicinal compound synthesized by the esterification of aspirin with eugenol using the prodrug principle. Aspirin has been reported to have neuroprotective effects and may be effective against neurodegenerative diseases. PURPOSE This study wanted to investigate how AEE affected neurological diseases in vivo and in vitro. EXPERIMENTAL APPROACH A multi-omics approach was used to explore the effects of AEE on the nervous system. Gene and protein expression changes of BDNF and NEFM in SY5Y cells after AEE treatment were detected using RT-qPCR and Western Blot. KEY RESULTS The multi-omics results showed that AEE could regulate neuronal synapses, neuronal axons, neuronal migration, and neuropeptide signaling by affecting transport, inflammatory response, and regulating apoptosis. Exosomes secreted by AEE-treated Caco-2 cells could promote the growth of neurofilaments in SY5Y cells and increased the expression of BDNF and NEFM proteins in SY5Y cells. miRNAs in the exosomes of AEE-treated Caco-2 cells may play an important role in the activation of SY5Y neuronal cells. CONCLUSIONS In conclusion, AEE could play positive effects on neurological-related diseases.
Collapse
Affiliation(s)
- Qi Tao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xiao-Rong Lu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Li-Xia Bai
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Bo-Wen Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| |
Collapse
|
6
|
Topalović O, Bak F, Santos S, Sikder MM, Sapkota R, Ekelund F, Nicolaisen MH, Vestergård M. Activity of root-knot nematodes associated with composition of a nematode-attached microbiome and the surrounding soil microbiota. FEMS Microbiol Ecol 2023; 99:fiad091. [PMID: 37553158 DOI: 10.1093/femsec/fiad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023] Open
Abstract
We investigated if activity of the pre-infective juveniles (J2s) of root-knot nematodes is linked to the recruitment of a specific microbiome on the nematode surface and/or to the composition of the surrounding microbiota. For this, we determined the J2 activity (active vs. non-motile, which referred to dead and immobile J2s) upon a 3-day incubation in soil suspensions and studied the composition of bacteria, protists, and fungi present on the nematode surface and in the suspensions using amplicon sequencing of the 16S/18S rRNA genes, and ITS region. We also amended suspensions with Pseudomonas protegens strain CHA0 to study its effects on J2 activity and microbial composition. The J2 activity was suppressed in soil suspensions, but increased when suspensions were amended with P. protegens CHA0. The active and non-motile J2s differed in the composition of surface-attached bacteria, which was altered by the presence of P. protegens CHA0 in the soil suspensions. The bacterial genera Algoriphagus, Pedobacter, and Bdellovibrio were enriched on active J2s and may have protected the J2s against antagonists. The incubation time appeared short for attachment of fungi and protists. Altogether, our study is a step forward in disentangling the complex nematode-microbe interactions in soil for more successful nematode control.
Collapse
Affiliation(s)
- Olivera Topalović
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200 Slagelse, Denmark
- Department of Terrestrial Ecology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Frederik Bak
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Susana Santos
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200 Slagelse, Denmark
| | - Md Maniruzzaman Sikder
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200 Slagelse, Denmark
- Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, 1342 Savar, Dhaka, Bangladesh
| | - Rumakanta Sapkota
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, 4000 Roskilde, Denmark
| | - Flemming Ekelund
- Department of Terrestrial Ecology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Mette Haubjerg Nicolaisen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Mette Vestergård
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200 Slagelse, Denmark
| |
Collapse
|
7
|
Li M, Larsen PA. Single-cell sequencing of entorhinal cortex reveals widespread disruption of neuropeptide networks in Alzheimer's disease. Alzheimers Dement 2023; 19:3575-3592. [PMID: 36825405 DOI: 10.1002/alz.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 02/25/2023]
Abstract
INTRODUCTION Abnormalities of neuropeptides (NPs) that play important roles in modulating neuronal activities are commonly observed in Alzheimer's disease (AD). We hypothesize that NP network disruption is widespread in AD brains. METHODS Single-cell transcriptomic data from the entorhinal cortex (EC) were used to investigate the NP network disruption in AD. Bulk RNA-sequencing data generated from the temporal cortex by independent groups and machine learning were employed to identify key NPs involved in AD. The relationship between aging and AD-associated NP (ADNP) expression was studied using GTEx data. RESULTS The proportion of cells expressing NPs but not their receptors decreased significantly in AD. Neurons expressing higher level and greater diversity of NPs were disproportionately absent in AD. Increased age coincides with decreased ADNP expression in the hippocampus. DISCUSSION NP network disruption is widespread in AD EC. Neurons expressing more NPs may be selectively vulnerable to AD. Decreased expression of NPs participates in early AD pathogenesis. We predict that the NP network can be harnessed for treatment and/or early diagnosis of AD.
Collapse
Affiliation(s)
- Manci Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter A Larsen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
8
|
Gaeta AL, Willicott K, Willicott CW, McKay LE, Keogh CM, Altman TJ, Kimble LC, Yarbrough AL, Caldwell KA, Caldwell GA. Mechanistic impacts of bacterial diet on dopaminergic neurodegeneration in a Caenorhabditis elegans α-synuclein model of Parkinson's disease. iScience 2023; 26:106859. [PMID: 37260751 PMCID: PMC10227375 DOI: 10.1016/j.isci.2023.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/03/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
Failure of inherently protective cellular processes and misfolded protein-associated stress contribute to the progressive loss of dopamine (DA) neurons characteristic of Parkinson's disease (PD). A disease-modifying role for the microbiome has recently emerged in PD, representing an impetus to employ the soil-dwelling nematode, Caenorhabditis elegans, as a preclinical model to correlate changes in gene expression with neurodegeneration in transgenic animals grown on distinct bacterial food sources. Even under tightly controlled conditions, hundreds of differentially expressed genes and a robust neuroprotective response were discerned between clonal C. elegans strains overexpressing human alpha-synuclein in the DA neurons fed either one of only two subspecies of Escherichia coli. Moreover, this neuroprotection persisted in a transgenerational manner. Genetic analysis revealed a requirement for the double-stranded RNA (dsRNA)-mediated gene silencing machinery in conferring neuroprotection. In delineating the contribution of individual genes, evidence emerged for endopeptidase activity and heme-associated pathway(s) as mechanistic components for modulating dopaminergic neuroprotection.
Collapse
Affiliation(s)
- Anthony L. Gaeta
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Karolina Willicott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Corey W. Willicott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Luke E. McKay
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Candice M. Keogh
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Tyler J. Altman
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Logan C. Kimble
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Abigail L. Yarbrough
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Convergent Bioscience and Medicine, The University of Alabama, Tuscaloosa, AL 35487, USA
- Alabama Research Institute on Aging, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for Basic Research in the Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Convergent Bioscience and Medicine, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for Basic Research in the Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Sargsian S, Lejeune A, Ercelen D, Jin WB, Varghese A, Loke P, Lim YAL, Guo CJ, Cadwell K. Functional characterization of helminth-associated Clostridiales reveals covariates of Treg differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543751. [PMID: 37333296 PMCID: PMC10274677 DOI: 10.1101/2023.06.05.543751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, displayed microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes previously shown to have immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. Here, we further characterized the functional properties of these bacteria. Enzymatic and metabolomic profiling revealed a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. These results provide functional insights into the microbiotas of an understudied population.
Collapse
Affiliation(s)
- Shushan Sargsian
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alannah Lejeune
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Defne Ercelen
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Langone Health, New York, NY 10016, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Alan Varghese
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - P’ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yvonne A. L. Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Lead Contact
| |
Collapse
|
10
|
Zhang W, Dong X, Huang R. Antiparkinsonian Effects of Polyphenols: A Narrative Review with a Focus on the Modulation of the Gut-brain Axis. Pharmacol Res 2023:106787. [PMID: 37224894 DOI: 10.1016/j.phrs.2023.106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Polyphenols, which are naturally occurring bioactive compounds in fruits and vegetables, are emerging as potential therapeutics for neurological disorders such as Parkinson's disease (PD). Polyphenols have diverse biological activities, such as anti-oxidative, anti-inflammatory, anti-apoptotic, and α-synuclein aggregation inhibitory effects, which could ameliorate PD pathogenesis. Studies have shown that polyphenols are capable of regulating the gut microbiota (GM) and its metabolites; in turn, polyphenols are extensively metabolized by the GM, resulting in the generation of bioactive secondary metabolites. These metabolites may regulate various physiological processes, including inflammatory responses, energy metabolism, intercellular communication, and host immunity. With increasing recognition of the importance of the microbiota-gut-brain axis (MGBA) in PD etiology, polyphenols have attracted growing attention as MGBA regulators. In order to address the potential therapeutic role of polyphenolic compounds in PD, we focused on MGBA. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China.
| |
Collapse
|
11
|
The Assembly of Bacteria Living in Natural Environments Shapes Neuronal Integrity and Behavioral Outputs in Caenorhabditis elegans. mBio 2023; 14:e0340222. [PMID: 36883821 PMCID: PMC10127743 DOI: 10.1128/mbio.03402-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Bacterivore nematodes are the most abundant animals in the biosphere, largely contributing to global biogeochemistry. Thus, the effects of environmental microbes on the nematodes' life-history traits are likely to contribute to the general health of the biosphere. Caenorhabditis elegans is an excellent model to study the behavioral and physiological outputs of microbial diets. However, the effects of complex natural bacterial assemblies have only recently been reported, as most studies have been carried out with monoxenic cultures of laboratory-reared bacteria. Here, we quantified the physiological, phenotypic, and behavioral traits of C. elegans feeding on two bacteria that were coisolated with wild nematodes from a soil sample. These bacteria were identified as a putative novel species of Stenotrophomonas named Stenotrophomonas sp. strain Iso1 and a strain of Bacillus pumilus designated Iso2. The distinctive behaviors and developmental patterns observed in animals fed with individual isolates changed when bacteria were mixed. We studied in more depth the degeneration rate of the touch circuit of C. elegans and show that B. pumilus alone is protective, while the mix with Stenotrophomonas sp. is degenerative. The analysis of the metabolite contents of each isolate and their combination identified NAD+ as being potentially neuroprotective. In vivo supplementation shows that NAD+ restores neuroprotection to the mixes and also to individual nonprotective bacteria. Our results highlight the distinctive physiological effects of bacteria resembling native diets in a multicomponent scenario rather than using single isolates on nematodes. IMPORTANCE Do behavioral choices depend on animals' microbiota? To answer this question, we studied how different bacterial assemblies impact the life-history traits of the bacterivore nematode C. elegans using isolated bacteria found in association with wild nematodes in Chilean soil. We identified the first isolate, Iso1, as a novel species of Stenotrophomonas and isolate Iso2 as Bacillus pumilus. We find that worm traits such as food choice, pharyngeal pumping, and neuroprotection, among others, are dependent on the biota composition. For example, the neurodegeneration of the touch circuit needed to sense and escape from predators in the wild decreases when nematodes are fed on B. pumilus, while its coculture with Stenotrophomonas sp. eliminates neuroprotection. Using metabolomics analysis, we identify metabolites such as NAD+, present in B. pumilus yet lost in the mix, as being neuroprotective and validated their protective effects using in vivo experiments.
Collapse
|
12
|
Marinos G, Hamerich IK, Debray R, Obeng N, Petersen C, Taubenheim J, Zimmermann J, Blackburn D, Samuel BS, Dierking K, Franke A, Laudes M, Waschina S, Schulenburg H, Kaleta C. Metabolic model predictions enable targeted microbiome manipulation through precision prebiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528811. [PMID: 36824941 PMCID: PMC9949166 DOI: 10.1101/2023.02.17.528811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The microbiome is increasingly receiving attention as an important modulator of host health and disease. However, while numerous mechanisms through which the microbiome influences its host have been identified, there is still a lack of approaches that allow to specifically modulate the abundance of individual microbes or microbial functions of interest. Moreover, current approaches for microbiome manipulation such as fecal transfers often entail a non-specific transfer of entire microbial communities with potentially unwanted side effects. To overcome this limitation, we here propose the concept of precision prebiotics that specifically modulate the abundance of a microbiome member species of interest. In a first step, we show that defining precision prebiotics by compounds that are only taken up by the target species but no other species in a community is usually not possible due to overlapping metabolic niches. Subsequently, we present a metabolic modeling network framework that allows us to define precision prebiotics for a two-member C. elegans microbiome model community comprising the immune-protective Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71. Thus, we predicted compounds that specifically boost the abundance of the host-beneficial MYb11, four of which were experimentally validated in vitro (L-serine, L-threonine, D-mannitol, and γ-aminobutyric acid). L-serine was further assessed in vivo, leading to an increase in MYb11 abundance also in the worm host. Overall, our findings demonstrate that constraint-based metabolic modeling is an effective tool for the design of precision prebiotics as an important cornerstone for future microbiome-targeted therapies.
Collapse
Affiliation(s)
- Georgios Marinos
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Inga K Hamerich
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Reena Debray
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Nancy Obeng
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Carola Petersen
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Jan Taubenheim
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Johannes Zimmermann
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
- Max-Planck Institute for Evolutionary Biology, Ploen, Schleswig-Holstein, Germany
| | - Dana Blackburn
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Buck S Samuel
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Katja Dierking
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Silvio Waschina
- Nutriinformatics, Institute for Human Nutrition and Food Science, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Hinrich Schulenburg
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
- Max-Planck Institute for Evolutionary Biology, Ploen, Schleswig-Holstein, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
13
|
SAITO R, SATO N, OKINO Y, WANG DS, SEO G. Bacillus subtilis TO-A extends the lifespan of Caenorhabditis elegans. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:124-130. [PMID: 37016687 PMCID: PMC10067327 DOI: 10.12938/bmfh.2022-057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/12/2022] [Indexed: 06/19/2023]
Abstract
Clostridium butyricum TO-A, Enterococcus faecium T-110, and Bacillus subtilis TO-A are sold as oral probiotic preparations and reportedly exhibit many beneficial effects on the health of hosts, including humans and livestock. In this study, we compared the ability of these clinically applied probiotic bacteria with Escherichia coli OP50 in extending the lifespan of Caenorhabditis elegans. To compare the C. elegans lifespan-extending effects of the three bacteria, experiments were performed using a nematode growth medium containing a small amount of trypticase soy agar. The maximum lifespans of worms fed C. butyricum TO-A, E. faecium T-110, or B. subtilis TO-A increased by 11, 12, and 26%, respectively, compared with worms fed E. coli OP50. In addition, we conducted a metabolomic analysis of methanol extracts of B. subtilis TO-A cells, which exhibited the strongest lifespan-extending effect on C. elegans among the probiotic bacteria tested in this study. As a result, 59 candidate substances involved in extending the lifespan of C. elegans were identified in B. subtilis TO-A cells.
Collapse
Affiliation(s)
- Ryuichi SAITO
- Bioscience R&D Department, TOA Biopharma Co., Ltd., 606
Kondoh-cho, Tatebayashi, Gunma 374-0042, Japan
| | - Naoki SATO
- Bioscience R&D Department, TOA Biopharma Co., Ltd., 606
Kondoh-cho, Tatebayashi, Gunma 374-0042, Japan
| | - Yoichi OKINO
- Bioscience R&D Department, TOA Biopharma Co., Ltd., 606
Kondoh-cho, Tatebayashi, Gunma 374-0042, Japan
| | - Dian-Sheng WANG
- Bioscience R&D Department, TOA Biopharma Co., Ltd., 606
Kondoh-cho, Tatebayashi, Gunma 374-0042, Japan
| | - Genichiro SEO
- Bioscience R&D Department, TOA Biopharma Co., Ltd., 606
Kondoh-cho, Tatebayashi, Gunma 374-0042, Japan
| |
Collapse
|
14
|
Wu J, Wang L, Ervin JF, Wang SHJ, Soderblom E, Ko D, Yan D. GABA signaling triggered by TMC-1/Tmc delays neuronal aging by inhibiting the PKC pathway in C. elegans. SCIENCE ADVANCES 2022; 8:eadc9236. [PMID: 36542715 PMCID: PMC9770988 DOI: 10.1126/sciadv.adc9236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Aging causes functional decline and degeneration of neurons and is a major risk factor of neurodegenerative diseases. To investigate the molecular mechanisms underlying neuronal aging, we developed a new pipeline for neuronal proteomic profiling in young and aged animals. While the overall translational machinery is down-regulated, certain proteins increase expressions upon aging. Among these aging-up-regulated proteins, the conserved channel protein TMC-1/Tmc has an anti-aging function in all neurons tested, and the neuroprotective function of TMC-1 occurs by regulating GABA signaling. Moreover, our results show that metabotropic GABA receptors and G protein GOA-1/Goα are required for the anti-neuronal aging functions of TMC-1 and GABA, and the activation of GABA receptors prevents neuronal aging by inhibiting the PLCβ-PKC pathway. Last, we show that the TMC-1-GABA-PKC signaling axis suppresses neuronal functional decline caused by a pathogenic form of human Tau protein. Together, our findings reveal the neuroprotective function of the TMC-1-GABA-PKC signaling axis in aging and disease conditions.
Collapse
Affiliation(s)
- Jieyu Wu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John F. Ervin
- Bryan Brain Bank and Biorepository, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shih-Hsiu J. Wang
- Department of Pathology & Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erik Soderblom
- Proteomics and Metabolomics Shared Resource and Duke Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Dennis Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Regeneration Next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
15
|
Peng H, Bai H, Pan Y, Li J, Pei Z, Liao Y, Wu C, Li C, Tao L, Zhong S, Ma C, Chen Z, Li X, Gong Y, Wang L, Li F. Immunological pathogenesis of Bovine E. coli infection in a model of C. elegans. BMC Microbiol 2022; 22:311. [PMID: 36539715 PMCID: PMC9764636 DOI: 10.1186/s12866-022-02733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cattle industry is critical for China's livestock industry, whereas E. coli infection and relevant diseases could lead huge economic loss. Traditional mammalian models would be costly, time consuming and complicated to study pathological changes of bovine E. coli. There is an urgent need for a simple but efficient animal model to quantitatively evaluate the pathological changes of bovine-derived E. coli in vivo. Caenorhabditis elegans (C. elegans) has a broad host range of diverse E. coli strains with advantages, including a short life cycle, a simple structure, a transparent body which is easily visualized, a well-studied genetic map, an intrinsic immune system which is conservable with more complicated mammalians. RESULTS Here, we considered that O126 was the dominant serotype, and a total of 19 virulence factors were identified from 41 common E. coli virulence factors. Different E. coli strains with diverse pathogenicity strengths were tested in C. elegans in E. coli with higher pathogenicity (EC3/10), Nsy-1, Sek-1 and Pmk-1 of the p38 MAPK signaling pathway cascade and the expression of the antimicrobial peptides Abf-3 and Clec-60 were significantly up-regulated comparing with other groups. E. coli with lower pathogenicity (EC5/13) only activated the expression of Nsy-1 and Sek-1 genes in the p38 MAPK signaling pathway, Additionally, both groups of E. coli strains caused significant upregulation of the antimicrobial peptide Spp-1. CONCLUSION Thirteen E. coli strains showed diverse pathogenicity in nematodes and the detection rate of virulence factors did not corresponding to the virulence in nematodes, indicating complex pathogenicity mechanisms. We approved that C. elegans is a fast and convenient detection model for pathogenic bacteria virulence examinations.
Collapse
Affiliation(s)
- Hao Peng
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Huili Bai
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Yan Pan
- Guangxi Agricultural Vocational University, Nanning, China
| | - Jun Li
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Zhe Pei
- grid.254250.40000 0001 2264 7145The City College of New York, New York, USA
| | - Yuying Liao
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Cuilan Wu
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Changting Li
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Li Tao
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Shuhong Zhong
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Chunxia Ma
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Zhongwei Chen
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Xiaoning Li
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Yu Gong
- Animal Science and Technology Station of Guizhou, Guiyang, China
| | - Leping Wang
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Fengsheng Li
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| |
Collapse
|
16
|
Fatty acids derived from the probiotic Lacticaseibacillus rhamnosus HA-114 suppress age-dependent neurodegeneration. Commun Biol 2022; 5:1340. [PMID: 36477191 PMCID: PMC9729297 DOI: 10.1038/s42003-022-04295-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The human microbiota is believed to influence health. Microbiome dysbiosis may be linked to neurological conditions like Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease. We report the ability of a probiotic bacterial strain in halting neurodegeneration phenotypes. We show that Lacticaseibacillus rhamnosus HA-114 is neuroprotective in C. elegans models of amyotrophic lateral sclerosis and Huntington's disease. Our results show that neuroprotection from L. rhamnosus HA-114 is unique from other L. rhamnosus strains and resides in its fatty acid content. Neuroprotection by L. rhamnosus HA-114 requires acdh-1/ACADSB, kat-1/ACAT1 and elo-6/ELOVL3/6, which are associated with fatty acid metabolism and mitochondrial β-oxidation. Our data suggest that disrupted lipid metabolism contributes to neurodegeneration and that dietary intervention with L. rhamnosus HA-114 restores lipid homeostasis and energy balance through mitochondrial β-oxidation. Our findings encourage the exploration of L. rhamnosus HA-114 derived interventions to modify the progression of neurodegenerative diseases.
Collapse
|
17
|
Emerging insights between gut microbiome dysbiosis and Parkinson's disease: Pathogenic and clinical relevance. Ageing Res Rev 2022; 82:101759. [PMID: 36243356 DOI: 10.1016/j.arr.2022.101759] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 10/09/2022] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is a complicated neurodegenerative disease, of which gastrointestinal disturbance appears prior to motor symptoms. Numerous studies have shed light on the roles of gastrointestinal tract and its neural connection to brain in PD pathology. In the past decades, the fields of microbiology and neuroscience have become ever more entwined. The emergence of gut microbiome has been considered as one of the key regulators of gut-brain function. With the advent of multi-omics sequencing techniques, gut microbiome of PD patients has been shown unique characteristics. The resident gut microbiota can exert considerable effects in PD and there are suggestions of a link between gut microbiome dysbiosis and PD progression. In this review, we summarize the latest progresses of gut microbiome dysbiosis in PD pathogenesis, further highlight the clinical relevance of gut microbiota and its metabolites in both the non-motor and motor symptoms of PD. Furthermore, we draw attention to the complex interplay between gut microbiota and PD drugs, with the purpose of improving drug efficacy and prescription accordingly. Further studies at specific strain level and longitudinal prospective clinical trials using optimized methods are still needed for the development of diagnostic markers and novel therapeutic regimens for PD.
Collapse
|
18
|
Yoon KH, Indong RA, Lee JI. Making "Sense" of Ecology from a Genetic Perspective: Caenorhabditis elegans, Microbes and Behavior. Metabolites 2022; 12:1084. [PMID: 36355167 PMCID: PMC9697003 DOI: 10.3390/metabo12111084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 12/31/2023] Open
Abstract
Our knowledge of animal and behavior in the natural ecology is based on over a century's worth of valuable field studies. In this post-genome era, however, we recognize that genes are the underpinning of ecological interactions between two organisms. Understanding how genes contribute to animal ecology, which is essentially the intersection of two genomes, is a tremendous challenge. The bacterivorous nematode Caenorhabditis elegans, one of the most well-known genetic animal model experimental systems, experiences a complex microbial world in its natural habitat, providing us with a window into the interplay of genes and molecules that result in an animal-microbial ecology. In this review, we will discuss C. elegans natural ecology, how the worm uses its sensory system to detect the microbes and metabolites that it encounters, and then discuss some of the fascinating ecological dances, including behaviors, that have evolved between the nematode and the microbes in its environment.
Collapse
Affiliation(s)
- Kyoung-hye Yoon
- Department of Physiology, Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Rocel Amor Indong
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Jin I. Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
19
|
Role of gut microbiota-derived branched-chain amino acids in the pathogenesis of Parkinson's disease: An animal study. Brain Behav Immun 2022; 106:307-321. [PMID: 36126853 DOI: 10.1016/j.bbi.2022.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/14/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroinflammation caused by the disorder of gut microbiota and its metabolites is associated with the pathogenesis of Parkinson's disease (PD). Thus, it is necessary to identify certain molecules derived from gut microbiota to verify whether they could become intervention targets for the treatment of PD. The branched-chain amino acids (BCAAs), as a common dietary supplement, could modulate brain function. Herein, we investigated the longitudinal shifts of microbial community in mice treated with rotenone for 0, 3 and 4 weeks by 16S rRNA gene sequencing to identify the microbial markers at different PD stages. Serum BCAAs were determined by gas chromatography-mass spectrometry. Then, rotenone-induced mice were given a high BCAA diet to evaluate the motor and non-motor functions, dopaminergic neuron loss, and inflammation levels. Using a PD mouse model, we discovered that during PD progression, the alterations of gut microbiota compositions led to the peripheral decrease of BCAAs. Based on the serum lipopolysaccharide binding protein concentrations and the levels of pro-inflammatory factors (including tumor necrosis factor-α, interleukin [IL]-1β, and IL-6) in the colon and substantia nigra, we found that the high BCAA diet could attenuate the inflammatory levels in PD mice, and reverse motor and non-motor dysfunctions and dopaminergic neuron impairment. Together, our results emphasize the dynamic changes of gut microbiota and BCAA metabolism and propose a novel strategy for PD therapy: a high BCAA diet intervention could improve PD progression by regulating the levels of inflammation.
Collapse
|
20
|
Röseler W, Collenberg M, Yoshida K, Lanz C, Sommer RJ, Rödelsperger C. The improved genome of the nematode Parapristionchus giblindavisi provides insights into lineage-specific gene family evolution. G3 (BETHESDA, MD.) 2022; 12:jkac215. [PMID: 35980151 PMCID: PMC9526060 DOI: 10.1093/g3journal/jkac215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
Nematodes such as Caenorhabditis elegans and Pristionchus pacificus are extremely successful model organisms for comparative biology. Several studies have shown that phenotypic novelty but also conserved processes are controlled by taxon-restricted genes. To trace back the evolution of such new or rapidly evolving genes, a robust phylogenomic framework is indispensable. Here, we present an improved version of the genome of Parapristionchus giblindavisi which is the only known member of the sister group of Pristionchus. Relative to the previous short-read assembly, the new genome is based on long reads and displays higher levels of contiguity, completeness, and correctness. Specifically, the number of contigs dropped from over 7,303 to 735 resulting in an N50 increase from 112 to 791 kb. We made use of the new genome to revisit the evolution of multiple gene families. This revealed Pristionchus-specific expansions of several environmentally responsive gene families and a Pristionchus-specific loss of the de novo purine biosynthesis pathway. Focusing on the evolution of sulfatases and sulfotransferases, which control the mouth form plasticity in P. pacificus, reveals differences in copy number and genomic configurations between the genera Pristionchus and Parapristionchus. Altogether, this demonstrates the utility of the P. giblindavisi genome to date and polarizes lineage-specific patterns.
Collapse
Affiliation(s)
- Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Maximilian Collenberg
- Department for Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Kohta Yoshida
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Christa Lanz
- Department for Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| |
Collapse
|
21
|
Liu X, Jiang L, Pang J, Wu Y, Pi Y, Zang J, Wang J, Han D. Maternal Dietary Supplementation with γ-Aminobutyric Acid Alleviated Oxidative Stress in Gestating Sows and Their Offspring by Regulating GABRP. Animals (Basel) 2022; 12:ani12192539. [PMID: 36230278 PMCID: PMC9558543 DOI: 10.3390/ani12192539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023] Open
Abstract
Sows usually suffer oxidative stress during gestation, and this limits the growth of fetuses via placenta. Gamma-aminobutyric acid (GABA) is a functional nonessential amino acid engaged in regulating the physiological status of animals. However, the effects of GABA on the oxidative homeostasis of sows and their offspring remain unclear. Eighteen late gestating sows (85 d) were divided into the CON and GABA groups and fed the basal diet and the GABA diet (200 mg/kg GABA), respectively, until farrowing. At parturition, the sows’ litter characteristics, the plasma antioxidant parameters of sows, and their offspring were evaluated. The results showed that GABA supplementation had no marked effect on the reproductive performance of sows (p > 0.10) but had a trend of reducing the amount of intrauterine growth restriction (IUGR) in piglets (0.05 < p < 0.10). At the same time, the addition of GABA elevated the plasma superoxide dismutase (SOD) level of sows and enhanced the glutathione peroxidase (GSH-Px) activity of newborn piglets (p < 0.05). Based on the H2O2-induced oxidative stress in pTr-2 cells, GABA elevated intracellular GSH-Px, SOD, catalase (CAT), and total antioxidant capacity (T-AOC, p < 0.01) and upregulated the gene expressions of CAT, gamma-aminobutyric acid receptor (GABRP), and nuclear factor-erythroid 2-related factor-2 (Nrf2) in H2O2-treated pTr-2 cells (p < 0.05). Taken together, GABA improved the antioxidant capacity of sows and alleviated the placental oxidative stress by upregulating the GABRP and Nrf2 genes, which have the potential to promote oxidative homeostasis in newborn piglets.
Collapse
|
22
|
Gao W, Xiao M, Gu Z, Fu X, Ren X, Yu Y, Liu Z, Zhu C, Kong Q, Mou H. Genome analysis and 2'-fucosyllactose utilization characteristics of a new Akkermansia muciniphila strain isolated from mice feces. Mol Genet Genomics 2022; 297:1515-1528. [PMID: 35948738 DOI: 10.1007/s00438-022-01937-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022]
Abstract
Akkermansia muciniphila is considered to be a next-generation probiotic, and closely related to host metabolism and immune response. Compared with other probiotics, little is known about its genomic analysis. Therefore, further researches about isolating more A. muciniphila strains and exploring functional genes are needed. In the present study, a new strain isolated from mice feces was identified as A. muciniphila (MucX). Whole-genome sequencing and annotation revealed that MucX possesses key genes necessary for human milk oligosaccharides (HMO) utilization, including α-L-fucosidases, β-galactosidases, exo-α-sialidases, and β-acetylhexosaminidases. The complete metabolic pathways for γ-aminobutyric acid and squalene and genes encoding functional proteins, such as the outer membrane protein Amuc_1100, were annotated in the MucX genome. Comparative genome analysis was used to identify functional genes unique to MucX compared to six other A. muciniphila strains. Results showed MucX genome possesses unique genes, including sugar transporters and transferases. Single-strain incubation revealed faster utilization of 2'-fucosyllactose (2'-FL), galacto-oligosaccharides, and lactose by MucX than by A. muciniphila DSM 22959. This study isolated and identified an A. muciniphila strain that can utilize 2'-FL, and expolored the genes related to HMO utilization and special metabolites, which provided a theoretical basis for the further excavation of A. muciniphila function and the compound application with fucosylated oligosaccharides.
Collapse
Affiliation(s)
- Wei Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Ziqiang Gu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, 330047, Jiangxi Province, People's Republic of China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Ying Yu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong Province, People's Republic of China.
| |
Collapse
|
23
|
Palikaras K, SenGupta T, Nilsen H, Tavernarakis N. Assessment of dopaminergic neuron degeneration in a C. elegans model of Parkinson’s disease. STAR Protoc 2022; 3:101264. [PMID: 35403008 PMCID: PMC8983426 DOI: 10.1016/j.xpro.2022.101264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Transgenic Caenorhabditis elegans that expresses the full-length wild-type human α-synuclein in dopaminergic neurons provides a well-established Parkinson’s disease (PD) nematode model. Here, we present a detailed protocol to monitor and dissect the molecular underpinnings of age-associated neurodegeneration using this PD nematode model. This protocol includes preparation of nematode growth media and bacterial food sources, as well as procedures for nematode growth, synchronization, and treatment. We then describe procedures to assess dopaminergic neuronal death in vivo using fluorescence imaging. For complete details on the use and execution of this protocol, please refer to SenGupta et al. (2021). A Parkinson’s disease nematode model to study α-synuclein-mediated neurotoxicity Comprehensive approach for scoring cell death of dopaminergic neurons in C. elegans Genetic tools to investigate the tissue specific effects on neurodegeneration
Collapse
|
24
|
Wang C, Zheng C. Using Caenorhabditis elegans to Model Therapeutic Interventions of Neurodegenerative Diseases Targeting Microbe-Host Interactions. Front Pharmacol 2022; 13:875349. [PMID: 35571084 PMCID: PMC9096141 DOI: 10.3389/fphar.2022.875349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Emerging evidence from both clinical studies and animal models indicates the importance of the interaction between the gut microbiome and the brain in the pathogenesis of neurodegenerative diseases (NDs). Although how microbes modulate neurodegeneration is still mostly unclear, recent studies have started to probe into the mechanisms for the communication between microbes and hosts in NDs. In this review, we highlight the advantages of using Caenorhabditis elegans (C. elegans) to disentangle the microbe-host interaction that regulates neurodegeneration. We summarize the microbial pro- and anti-neurodegenerative factors identified using the C. elegans ND models and the effects of many are confirmed in mouse models. Specifically, we focused on the role of bacterial amyloid proteins, such as curli, in promoting proteotoxicity and neurodegeneration by cross-seeding the aggregation of endogenous ND-related proteins, such as α-synuclein. Targeting bacterial amyloid production may serve as a novel therapeutic strategy for treating NDs, and several compounds, such as epigallocatechin-3-gallate (EGCG), were shown to suppress neurodegeneration at least partly by inhibiting curli production. Because bacterial amyloid fibrils contribute to biofilm formation, inhibition of amyloid production often leads to the disruption of biofilms. Interestingly, from a list of 59 compounds that showed neuroprotective effects in C. elegans and mouse ND models, we found that about half of them are known to inhibit bacterial growth or biofilm formation, suggesting a strong correlation between the neuroprotective and antibiofilm activities. Whether these potential therapeutics indeed protect neurons from proteotoxicity by inhibiting the cross-seeding between bacterial and human amyloid proteins awaits further investigations. Finally, we propose to screen the long list of antibiofilm agents, both FDA-approved drugs and novel compounds, for their neuroprotective effects and develop new pharmaceuticals that target the gut microbiome for the treatment of NDs. To this end, the C. elegans ND models can serve as a platform for fast, high-throughput, and low-cost drug screens that target the microbe-host interaction in NDs.
Collapse
Affiliation(s)
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Zhou J, Duan M, Wang X, Zhang F, Zhou H, Ma T, Yin Q, Zhang J, Tian F, Wang G, Yang C. A feedback loop engaging propionate catabolism intermediates controls mitochondrial morphology. Nat Cell Biol 2022; 24:526-537. [PMID: 35418624 DOI: 10.1038/s41556-022-00883-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
D-2-Hydroxyglutarate (D-2HG) is an α-ketoglutarate-derived mitochondrial metabolite that causes D-2-hydroxyglutaric aciduria, a devastating developmental disorder. How D-2HG adversely affects mitochondria is largely unknown. Here, we report that in Caenorhabditis elegans, loss of the D-2HG dehydrogenase DHGD-1 causes D-2HG accumulation and mitochondrial damage. The excess D-2HG leads to a build-up of 3-hydroxypropionate (3-HP), a toxic metabolite in mitochondrial propionate oxidation, by inhibiting the 3-HP dehydrogenase HPHD-1. We demonstrate that 3-HP binds the MICOS subunit MIC60 (encoded by immt-1) and inhibits its membrane-binding and membrane-shaping activities. We further reveal that dietary and gut bacteria affect mitochondrial health by modulating the host production of 3-HP. These findings identify a feedback loop that links the toxic effects of D-2HG and 3-HP on mitochondria, thus providing important mechanistic insights into human diseases related to D-2HG and 3-HP.
Collapse
Affiliation(s)
- Junxiang Zhou
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Mei Duan
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Xin Wang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hejiang Zhou
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Tengfei Ma
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qiuyuan Yin
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Jie Zhang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fei Tian
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
26
|
Zaroubi L, Ozugergin I, Mastronardi K, Imfeld A, Law C, Gélinas Y, Piekny A, Findlay BL. The Ubiquitous Soil Terpene Geosmin Acts as a Warning Chemical. Appl Environ Microbiol 2022; 88:e0009322. [PMID: 35323022 PMCID: PMC9004350 DOI: 10.1128/aem.00093-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/26/2022] [Indexed: 12/29/2022] Open
Abstract
Known as the smell of earth after rain, geosmin is an odorous terpene detectable by humans at picomolar concentrations. Geosmin production is heavily conserved in actinobacteria, myxobacteria, cyanobacteria, and some fungi, but its biological activity is poorly understood. We theorized that geosmin was an aposematic signal used to indicate the unpalatability of toxin-producing microbes, discouraging predation by eukaryotes. Consistent with this hypothesis, we found that geosmin altered the behavior of the bacteriophagous nematode Caenorhabditis elegans on agar plates in the absence of bacteria. Normal movement was restored in mutant worms lacking differentiated ASE (amphid neurons, single ciliated endings) neurons, suggesting that geosmin is a taste detected by the nematodal gustatory system. In a predation assay, geosmin and the related terpene 2-methylisoborneol reduced grazing on the bacterium Streptomyces coelicolor. Predation was restored by the removal of both terpene biosynthetic pathways or the introduction of C. elegans that lacked differentiated ASE taste neurons, leading to the apparent death of both bacteria and worms. While geosmin and 2-methylisoborneol appeared to be nontoxic, grazing triggered bacterial sporulation and the production of actinorhodin, a pigment coproduced with a number of toxic metabolites. In this system, geosmin thus appears to act as a warning signal indicating the unpalatability of its producers and reducing predation in a manner that benefits predator and prey. This suggests that molecular signaling may affect microbial predator-prey interactions in a manner similar to that of the well-studied visual markers of poisonous animal prey. IMPORTANCE One of the key chemicals that give soil its earthy aroma, geosmin is a frequent water contaminant produced by a range of unrelated microbes. Many animals, including humans, are able to detect geosmin at minute concentrations, but the benefit that this compound provides to its producing organisms is poorly understood. We found that geosmin repelled the bacterial predator Caenorhabditis elegans in the absence of bacteria and reduced contact between the worms and the geosmin-producing bacterium Streptomyces coelicolor in a predation assay. While geosmin itself appears to be nontoxic to C. elegans, these bacteria make a wide range of toxic metabolites, and grazing on them harmed the worms. In this system, geosmin thus appears to indicate unpalatable bacteria, reducing predation and benefiting both predator and prey. Aposematic signals are well known in animals, and this work suggests that metabolites may play a similar role in the microbial world.
Collapse
Affiliation(s)
- Liana Zaroubi
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Québec, Canada
| | - Imge Ozugergin
- Department of Biology, Concordia University, Montreal, Québec, Canada
| | | | - Anic Imfeld
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Québec, Canada
| | - Chris Law
- Department of Biology, Concordia University, Montreal, Québec, Canada
| | - Yves Gélinas
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Québec, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, Québec, Canada
| | - Brandon L. Findlay
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Québec, Canada
| |
Collapse
|
27
|
Cross-Talking Pathways of Forkhead Box O1 (FOXO1) Are Involved in the Pathogenesis of Alzheimer’s Disease and Huntington’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7619255. [PMID: 35154571 PMCID: PMC8831070 DOI: 10.1155/2022/7619255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/18/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) and Huntington's disease (HD) are destructive worldwide diseases. Efforts have been made to elucidate the process of these two diseases, yet the pathogenesis remains elusive as it involves a combination of multiple factors, including genetic and environmental ones. To explore the potential role of forkhead box O1 (FOXO1) in the development of AD and HD, we identified 1,853 differentially expressed genes (DEGs) from 19,414 background genes in both the AD&HD/control and FOXO1-low/high groups. Four coexpression modules were predicted by the weighted gene coexpression network analysis (WGCNA), among which blue and turquoise modules had the strongest correlation with AD&HD and high expression of FOXO1. Functional enrichment analysis showed that DEGs in these modules were enriched in phagosome, cytokine-cytokine receptor interaction, cellular senescence, FOXO signaling pathway, pathways of neurodegeneration, GABAergic synapse, and AGE-RAGE signaling pathway in diabetic complications. Furthermore, the cross-talking pathways of FOXO1 in AD and HD were jointly determined in a global regulatory network, such as the FOXO signaling pathway, cellular senescence, and AGE-RAGE signaling pathway in diabetic complications. Based on the performance evaluation of the area under the curve of 85.6%, FOXO1 could accurately predict the onset of AD and HD. We then identified the cross-talking pathways of FOXO1 in AD and HD, respectively. More specifically, FOXO1 was involved in the FOXO signaling pathway and cellular senescence in AD; correspondingly, FOXO1 participated in insulin resistance, insulin, and the FOXO signaling pathways in HD. Next, we use GSEA to validate the biological processes in AD&HD and FOXO1 expression. In GSEA analysis, regulation of protein maturation and regulation of protein processing were both enriched in the AD&HD and FOXO1-high groups, suggesting that FOXO1 may have implications in onset and progression of these two diseases through protein synthesis. Consequently, a high expression of FOXO1 is a potential pathogenic factor in both AD and HD involving mechanisms of the FOXO signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and cellular senescence. Our findings provide a comprehensive perspective on the molecular function of FOXO1 in the pathogenesis of AD and HD.
Collapse
|
28
|
Fernández EM, Cutraro YB, Adams J, Monteleone MC, Hughes KJ, Frasch AC, Vidal-Gadea AG, Brocco MA. Neuronal membrane glycoprotein (nmgp-1) gene deficiency affects chemosensation-related behaviors, dauer exit and egg-laying in Caenorhabditis elegans. J Neurochem 2021; 160:234-255. [PMID: 34816431 DOI: 10.1111/jnc.15543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022]
Abstract
The nervous system monitors the environment to maintain homeostasis, which can be affected by stressful conditions. Using mammalian models of chronic stress, we previously observed altered brain levels of GPM6A, a protein involved in neuronal morphology. However, GPM6A's role in systemic stress responses remains unresolved. The nematode Caenorhabditis elegans expresses a GPM6A ortholog, the neuronal membrane glycoprotein 1 (NMGP-1). Because of the shared features between nematode and mammalian nervous systems and the vast genetic tools available in C. elegans, we used the worm to elucidate the role of GPM6A in the stress response. We first identified nmgp-1 expression in different amphid and phasmid neurons. To understand the nmgp-1 role, we characterized the behavior of nmgp-1(RNAi) animals and two nmgp-1 mutant alleles. Compared to control animals, mutant and RNAi-treated worms exhibited increased recovery time from the stress-resistant dauer stage, altered SDS chemosensation and reduced egg-laying rate resulting in egg retention (bag-of-worms phenotype). Silencing of nmgp-1 expression induced morphological abnormalities in the ASJ sensory neurons, partly responsible for dauer exit. These results indicate that nmgp-1 is required for neuronal morphology and for behaviors associated with chemosensation. Finally, we propose nmgp-1 mutants as a tool to screen drugs for human nervous system pathologies.
Collapse
Affiliation(s)
- Eliana M Fernández
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires, Argentina
| | - Yamila B Cutraro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires, Argentina
| | - Jessica Adams
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Melisa C Monteleone
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires, Argentina
| | - Kiley J Hughes
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires, Argentina
| | | | - Marcela A Brocco
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires, Argentina
| |
Collapse
|
29
|
Microbiota-brain interactions: Moving toward mechanisms in model organisms. Neuron 2021; 109:3930-3953. [PMID: 34653349 DOI: 10.1016/j.neuron.2021.09.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/03/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Changes in the microbiota are associated with alterations in nervous system structure-function and behavior and have been implicated in the etiology of neuropsychiatric and neurodegenerative disorders. Most of these studies have centered on mammalian models due to their phylogenetic proximity to humans. Indeed, the germ-free mouse has been a particularly useful model organism for investigating microbiota-brain interactions. However, microbiota-brain axis research on simpler genetic model organisms with a vast and diverse scientific toolkit (zebrafish, Drosophila melanogaster, and Caenorhabditis elegans) is now also coming of age. In this review, we summarize the current state of microbiota-brain axis research in rodents and humans, and then we elaborate and discuss recent research on the neurobiological and behavioral effects of the microbiota in the model systems of fish, flies, and worms. We propose that a cross-species, holistic and mechanistic approach to unravel the microbiota-brain communication is an essential step toward rational microbiota-based therapeutics to combat brain disorders.
Collapse
|
30
|
Wang C, Lau CY, Ma F, Zheng C. Genome-wide screen identifies curli amyloid fibril as a bacterial component promoting host neurodegeneration. Proc Natl Acad Sci U S A 2021; 118:e2106504118. [PMID: 34413194 PMCID: PMC8403922 DOI: 10.1073/pnas.2106504118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Growing evidence indicates that gut microbiota play a critical role in regulating the progression of neurodegenerative diseases such as Parkinson's disease. The molecular mechanism underlying such microbe-host interaction is unclear. In this study, by feeding Caenorhabditis elegans expressing human α-syn with Escherichia coli knockout mutants, we conducted a genome-wide screen to identify bacterial genes that promote host neurodegeneration. The screen yielded 38 genes that fall into several genetic pathways including curli formation, lipopolysaccharide assembly, and adenosylcobalamin synthesis among others. We then focused on the curli amyloid fibril and found that genetically deleting or pharmacologically inhibiting the curli major subunit CsgA in E. coli reduced α-syn-induced neuronal death, restored mitochondrial health, and improved neuronal functions. CsgA secreted by the bacteria colocalized with α-syn inside neurons and promoted α-syn aggregation through cross-seeding. Similarly, curli also promoted neurodegeneration in C. elegans models of Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease and in human neuroblastoma cells.
Collapse
Affiliation(s)
- Chenyin Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chun Yin Lau
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Fuqiang Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
31
|
Dixit A, Bhattacharya B. Sensory perception of environmental cues as a modulator of aging and neurodegeneration: Insights from Caenorhabditis elegans. J Neurosci Res 2021; 99:2416-2426. [PMID: 34232538 DOI: 10.1002/jnr.24910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 11/09/2022]
Abstract
Environmental stimuli such as temperature, food, and smell significantly influence the physiology and behavior of animals. Animals are differentially adapted to maintain their internal body functions in response to varied environmental conditions. These external cues are sensed by specialized neurons which are a part of the chemosensory and thermosensory systems. The inability to respond correctly to varied environmental conditions may result in compromised bodily functions and reduced longevity. For example, the ability to sense food is derived from the integrated action of olfactory and gustatory systems. The damage to the olfactory system will affect our decision of palatable food items which in turn can affect the response of the gustatory system, ultimately causing abnormal feeding habits. Recent studies have provided evidence that aging is regulated by sensory perception of environment. Aging is one of the most common causes of various neurodegenerative diseases and the perception of environmental cues is also found to regulate the development of neurodegenerative phenotype in several animal models. However, specific molecular signaling pathways involved in the process are not completely understood. The research conducted on one of the best-studied animal models of aging, Caenorhabditis elegans, has demonstrated multiple examples of gene-environment interaction at the neuronal level which affects life span. The findings may be useful to identify the key neuronal regulators of aging and age-related diseases in humans owing to conserved core metabolic and aging pathways from worms to humans.
Collapse
Affiliation(s)
- Anubhuti Dixit
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, India
| | - Bidisha Bhattacharya
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, India
| |
Collapse
|
32
|
McIntyre G, Wright J, Wong HT, Lamendella R, Chan J. Effects of FUdR on gene expression in the C. elegans bacterial diet OP50. BMC Res Notes 2021; 14:207. [PMID: 34103088 PMCID: PMC8186096 DOI: 10.1186/s13104-021-05624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Many C. elegans aging studies use the compound 5-fluro-2ʹ-deoxyuridine (FUdR) to produce a synchronous population of worms. However, the effects of FUdR on the bacterial gene expression of OP50 E. coli, the primary laboratory C. elegans food source, is not fully understood. This is particularly relevant as studies suggest that intestinal microbes can affect C. elegans physiology. Therefore, it is imperative that we understand how exposure to FUdR can affect gene expression changes in OP50 E. coli. Results An RNAseq dataset comprised of expression patterns of 2900 E. coli genes in the strain OP50, which were seeded on either nematode growth media (NGM) plates or on FUdR (50 µM) supplemented NGM plates, was analyzed. Analysis showed differential gene expression in genes involved in general transport, amino acid biosynthesis, transcription, iron transport, and antibiotic resistance. We specifically highlight metabolic enzymes in the l-histidine biosynthesis pathway as differentially expressed between NGM and FUdR exposed OP50. We conclude that OP50 exposed to FUdR results in differential expression of many genes, including those in amino acid biosynthetic pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05624-6.
Collapse
Affiliation(s)
- Grace McIntyre
- Department of Biology, Marian University, 3200 Cold Spring Rd, Indianapolis, IN, 46222, USA
| | - Justin Wright
- Department of Biology, Juniata College, 1700 Moore St, Huntingdon, PA, 16652, USA
| | - Hoi Tong Wong
- Department of Biology, Juniata College, 1700 Moore St, Huntingdon, PA, 16652, USA
| | - Regina Lamendella
- Department of Biology, Juniata College, 1700 Moore St, Huntingdon, PA, 16652, USA
| | - Jason Chan
- Department of Biology, Marian University, 3200 Cold Spring Rd, Indianapolis, IN, 46222, USA.
| |
Collapse
|
33
|
Manterola M, Palominos MF, Calixto A. The Heritability of Behaviors Associated With the Host Gut Microbiota. Front Immunol 2021; 12:658551. [PMID: 34054822 PMCID: PMC8155505 DOI: 10.3389/fimmu.2021.658551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
What defines whether the interaction between environment and organism creates a genetic memory able to be transferred to subsequent generations? Bacteria and the products of their metabolism are the most ubiquitous biotic environments to which every living organism is exposed. Both microbiota and host establish a framework where environmental and genetic factors are integrated to produce adaptive life traits, some of which can be inherited. Thus, the interplay between host and microbe is a powerful model to study how phenotypic plasticity is inherited. Communication between host and microbe can occur through diverse molecules such as small RNAs (sRNAs) and the RNA interference machinery, which have emerged as mediators and carriers of heritable environmentally induced responses. Notwithstanding, it is still unclear how the organism integrates sRNA signaling between different tissues to orchestrate a systemic bacterially induced response that can be inherited. Here we discuss current evidence of heritability produced by the intestinal microbiota from several species. Neurons and gut are the sensing systems involved in transmitting changes through transcriptional and post-transcriptional modifications to the gonads. Germ cells express inflammatory receptors, and their development and function are regulated by host and bacterial metabolites and sRNAs thus suggesting that the dynamic interplay between host and microbe underlies the host's capacity to transmit heritable behaviors. We discuss how the host detects changes in the microbiota that can modulate germ cells genomic functions. We also explore the nature of the interactions that leave permanent or long-term memory in the host and propose mechanisms by which the microbiota can regulate the development and epigenetic reprogramming of germ cells, thus influencing the inheritance of the host. We highlight the vast contribution of the bacterivore nematode C. elegans and its commensal and pathogenic bacteria to the understanding on how behavioral adaptations can be inter and transgenerational inherited.
Collapse
Affiliation(s)
- Marcia Manterola
- Programa de Genética Humana, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - M. Fernanda Palominos
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- Programa de Doctorado en Ciencias, mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
34
|
Backes C, Martinez-Martinez D, Cabreiro F. C. elegans: A biosensor for host-microbe interactions. Lab Anim (NY) 2021; 50:127-135. [PMID: 33649581 DOI: 10.1038/s41684-021-00724-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
Microbes are an integral part of life on this planet. Microbes and their hosts influence each other in an endless dance that shapes how the meta-organism interacts with its environment. Although great advances have been made in microbiome research over the past 20 years, the mechanisms by which both hosts and their microbes interact with each other and the environment are still not well understood. The nematode Caenorhabditis elegans has been widely used as a model organism to study a remarkable number of human-like processes. Recent evidence shows that the worm is a powerful tool to investigate in fine detail the complexity that exists in microbe-host interactions. By combining the large array of genetic tools available for both organisms together with deep phenotyping approaches, it has been possible to uncover key effectors in the complex relationship between microbes and their hosts. In this perspective, we survey the literature for insightful discoveries in the microbiome field using the worm as a model. We discuss the latest conceptual and technological advances in the field and highlight the strengths that make C. elegans a valuable biosensor tool for the study of microbe-host interactions.
Collapse
Affiliation(s)
- Cassandra Backes
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | | | - Filipe Cabreiro
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK. .,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
35
|
Khanna A, Sellegounder D, Kumar J, Chamoli M, Vargas M, Chinta SJ, Rane A, Nelson C, Peiris TH, Brem R, Andersen J, Lithgow G, Kapahi P. Trimethylamine modulates dauer formation, neurodegeneration, and lifespan through tyra-3/daf-11 signaling in Caenorhabditis elegans. Aging Cell 2021; 20:e13351. [PMID: 33819374 PMCID: PMC8135002 DOI: 10.1111/acel.13351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 11/27/2022] Open
Abstract
In the nematode Caenorhabditis elegans, signals derived from bacteria in the diet, the animal's major nutrient source, can modulate both behavior and healthspan. Here we describe a dual role for trimethylamine (TMA), a human gut flora metabolite, which acts as a nutrient signal and a neurotoxin. TMA and its associated metabolites are produced by the human gut microbiome and have been suggested to serve as risk biomarkers for diabetes and cardiovascular diseases. We demonstrate that the tyramine receptor TYRA-3, a conserved G protein-coupled receptor (GPCR), is required to sense TMA and mediate its responses. TMA activates guanylyl cyclase DAF-11 signaling through TYRA-3 in amphid neurons (ASK) and ciliated neurons (BAG) to mediate food-sensing behavior. Bacterial mutants deficient in TMA production enhance dauer formation, extend lifespan, and are less preferred as a food source. Increased levels of TMA lead to neural damage in models of Parkinson's disease and shorten lifespan. Our results reveal conserved signaling pathways modulated by TMA in C. elegans that are likely to be relevant for its effects in mammalian systems.
Collapse
Affiliation(s)
- Amit Khanna
- Buck Institute for Research on Aging Novato CA USA
- Dovetail Genomics LLC Scotts Valley CA USA
| | | | | | | | | | - Shankar J. Chinta
- Buck Institute for Research on Aging Novato CA USA
- Touro University California Vallejo CA USA
| | - Anand Rane
- Buck Institute for Research on Aging Novato CA USA
| | | | | | - Rachel Brem
- Buck Institute for Research on Aging Novato CA USA
| | | | | | | |
Collapse
|
36
|
Wang Q, Luo Y, Chaudhuri KR, Reynolds R, Tan EK, Pettersson S. The role of gut dysbiosis in Parkinson's disease: mechanistic insights andtherapeutic options. Brain 2021; 144:2571-2593. [PMID: 33856024 DOI: 10.1093/brain/awab156] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 12/02/2022] Open
Abstract
Parkinson's disease is a common neurodegenerative disease in which gastrointestinal symptoms may appear prior to motor symptoms. The gut microbiota of patients with Parkinson's disease shows unique changes, which may be used as early biomarkers of disease. Alteration in gut microbiota composition may be related to the cause or effect of motor or non-motor symptoms, but the specific pathogenic mechanisms are unclear. The gut microbiota and its metabolites have been suggested to be involved in the pathogenesis of Parkinson's disease by regulating neuroinflammation, barrier function and neurotransmitter activity. There is bidirectional communication between the enteric nervous system and the central nervous system, and the microbiota-gut-brain axis may provide a pathway for the transmission of α-synuclein. We highlight recent discoveries and alterations of the gut microbiota in Parkinson's disease, and highlight current mechanistic insights on the microbiota-gut-brain axis in disease pathophysiology. We discuss the interactions between production and transmission of α-synuclein and gut inflammation and neuroinflammation. In addition, we also draw attention to diet modification, use of probiotics and prebiotics and fecal microbiota transplantation as potential therapeutic approaches that may lead to a new treatment paradigm for Parkinson's disease.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK.,Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.,Duke-NUS Medical School, Singapore
| | - Sven Pettersson
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.,Duke-NUS Medical School, Singapore.,LKC School of Medicine, NTU, Singapore.,Sunway University, Department of Medical Sciences, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Tran SMS, Mohajeri MH. The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients 2021; 13:732. [PMID: 33669008 PMCID: PMC7996516 DOI: 10.3390/nu13030732] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
In the last decade, emerging evidence has reported correlations between the gut microbiome and human health and disease, including those affecting the brain. We performed a systematic assessment of the available literature focusing on gut bacterial metabolites and their associations with diseases of the central nervous system (CNS). The bacterial metabolites short-chain fatty acids (SCFAs) as well as non-SCFAs like amino acid metabolites (AAMs) and bacterial amyloids are described in particular. We found significantly altered SCFA levels in patients with autism spectrum disorder (ASD), affective disorders, multiple sclerosis (MS) and Parkinson's disease (PD). Non-SCFAs yielded less significantly distinct changes in faecal levels of patients and healthy controls, with the majority of findings were derived from urinary and blood samples. Preclinical studies have implicated different bacterial metabolites with potentially beneficial as well as detrimental mechanisms in brain diseases. Examples include immunomodulation and changes in catecholamine production by histone deacetylase inhibition, anti-inflammatory effects through activity on the aryl hydrocarbon receptor and involvement in protein misfolding. Overall, our findings highlight the existence of altered bacterial metabolites in patients across various brain diseases, as well as potential neuroactive effects by which gut-derived SCFAs, p-cresol, indole derivatives and bacterial amyloids could impact disease development and progression. The findings summarized in this review could lead to further insights into the gut-brain-axis and thus into potential diagnostic, therapeutic or preventive strategies in brain diseases.
Collapse
Affiliation(s)
| | - M. Hasan Mohajeri
- Department of Medicine, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland;
| |
Collapse
|
38
|
Therapeutic applications and biological activities of bacterial bioactive extracts. Arch Microbiol 2021; 203:4755-4776. [PMID: 34370077 PMCID: PMC8349711 DOI: 10.1007/s00203-021-02505-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Bacteria are rich in a wide variety of secondary metabolites, such as pigments, alkaloids, antibiotics, and others. These bioactive microbial products serve a great application in human and animal health. Their molecular diversity allows these natural products to possess several therapeutic attributes and biological functions. That's why the current natural drug industry focuses on uncovering all the possible ailments and diseases that could be combated by bacterial extracts and their secondary metabolites. In this paper, we review the major utilizations of bacterial natural products for the treatment of cancer, inflammatory diseases, allergies, autoimmune diseases, infections and other diseases that threaten public health. We also elaborate on the identified biological activities of bacterial secondary metabolites including antibacterial, antifungal, antiviral and antioxidant activities all of which are essential nowadays with the emergence of drug-resistant microbial pathogens. Throughout this review, we discuss the possible mechanisms of actions in which bacterial-derived biologically active molecular entities could possess healing properties to inspire the development of new therapeutic agents in academia and industry.
Collapse
|
39
|
Brinkmann V, Schiavi A, Shaik A, Puchta DR, Ventura N. Dietary and environmental factors have opposite AhR-dependent effects on C. elegans healthspan. Aging (Albany NY) 2020; 13:104-133. [PMID: 33349622 PMCID: PMC7835051 DOI: 10.18632/aging.202316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022]
Abstract
Genetic, dietary, and environmental factors concurrently shape the aging process. The aryl hydrocarbon receptor (AhR) was discovered as a dioxin-binding transcription factor involved in the metabolism of different environmental toxicants in vertebrates. Since then, the variety of pathophysiological processes regulated by the AhR has grown, ranging from immune response, metabolic pathways, and aging. Many modulators of AhR activity may impact on aging and age-associated pathologies, but, whether their effects are AhR-dependent has never been explored. Here, using Caenorhabditis elegans, as an elective model organism for aging studies, we show for the first time that lack of CeAHR-1 can have opposite effects on health and lifespan in a context-dependent manner. Using known mammalian AhR modulators we found that, ahr-1 protects against environmental insults (benzo(a)pyrene and UVB light) and identified a new role for AhR-bacterial diet interaction in animal lifespan, stress resistance, and age-associated pathologies. We narrowed down the dietary factor to a bacterially extruded metabolite likely involved in tryptophan metabolism. This is the first study clearly establishing C. elegans as a good model organism to investigate evolutionarily conserved functions of AhR-modulators and -regulated processes, indicating it can be exploited to contribute to the discovery of novel information about AhR in mammals.
Collapse
Affiliation(s)
- Vanessa Brinkmann
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Alfonso Schiavi
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Anjumara Shaik
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Daniel Rüdiger Puchta
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Natascia Ventura
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| |
Collapse
|
40
|
Chen YC, Seyedsayamdost MR, Ringstad N. A microbial metabolite synergizes with endogenous serotonin to trigger C. elegans reproductive behavior. Proc Natl Acad Sci U S A 2020; 117:30589-30598. [PMID: 33199611 PMCID: PMC7720207 DOI: 10.1073/pnas.2017918117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Natural products are a major source of small-molecule therapeutics, including those that target the nervous system. We have used a simple serotonin-dependent behavior of the roundworm Caenorhabditis elegans, egg laying, to perform a behavior-based screen for natural products that affect serotonin signaling. Our screen yielded agonists of G protein-coupled serotonin receptors, protein kinase C agonists, and a microbial metabolite not previously known to interact with serotonin signaling pathways: the disulfide-bridged 2,5-diketopiperazine gliotoxin. Effects of gliotoxin on egg-laying behavior required the G protein-coupled serotonin receptors SER-1 and SER-7, and the Gq ortholog EGL-30. Furthermore, mutants lacking serotonergic neurons and mutants that cannot synthesize serotonin were profoundly resistant to gliotoxin. Exogenous serotonin restored their sensitivity to gliotoxin, indicating that this compound synergizes with endogenous serotonin to elicit behavior. These data show that a microbial metabolite with no structural similarity to known serotonergic agonists potentiates an endogenous serotonin signal to affect behavior. Based on this study, we suggest that microbial metabolites are a rich source of functionally novel neuroactive molecules.
Collapse
Affiliation(s)
- Yen-Chih Chen
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016
| | | | - Niels Ringstad
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016;
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
41
|
Abstract
With a nervous system that has only a few hundred neurons, Caenorhabditis elegans was initially not regarded as a model for studies on learning. However, the collective effort of the C. elegans field in the past several decades has shown that the worm displays plasticity in its behavioral response to a wide range of sensory cues in the environment. As a bacteria-feeding worm, C. elegans is highly adaptive to the bacteria enriched in its habitat, especially those that are pathogenic and pose a threat to survival. It uses several common forms of behavioral plasticity that last for different amounts of time, including imprinting and adult-stage associative learning, to modulate its interactions with pathogenic bacteria. Probing the molecular, cellular and circuit mechanisms underlying these forms of experience-dependent plasticity has identified signaling pathways and regulatory insights that are conserved in more complex animals.
Collapse
Affiliation(s)
- He Liu
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
42
|
Abstract
Every animal is in constant communication with populations of microbes. In a recent study, O'Donnell and colleagues (2020) uncover an inter-domain conversation, defining a relationship in which a non-pathogenic microbe directly synthesizes a signal that alters host behavior for a mutually beneficial outcome.
Collapse
Affiliation(s)
- Molly A Matty
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| |
Collapse
|