1
|
Shi B, Phan TK, Poon IKH. Extracellular vesicles from the dead: the final message. Trends Cell Biol 2024:S0962-8924(24)00205-8. [PMID: 39438206 DOI: 10.1016/j.tcb.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Communication between dying and neighbouring cells is vital to ensure appropriate processes such as tissue repair or inflammation are initiated in response to cell death. As a mechanism to aid intercellular communication, cells undergoing apoptosis can release membrane-bound extracellular vesicles (EVs) called apoptotic-cell-derived EVs (ApoEVs) that can influence downstream processes through biomolecules within or on ApoEVs. ApoEVs are broadly categorised based on size as either large ApoEVs known as apoptotic bodies (ApoBDs) or small ApoEVs (s-ApoEVs). Notably, the mechanisms of ApoBD and s-ApoEV formation are different, and the functions of these two ApoEV subsets are distinct. This Review focuses on the biogenesis and functional properties of both ApoBDs and s-ApoEVs, particularly in the context of cell clearance, cell signalling and disease progression.
Collapse
Affiliation(s)
- Bo Shi
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Research Centre for Extracellular Vesicles, La Trobe University, Victoria, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Research Centre for Extracellular Vesicles, La Trobe University, Victoria, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Research Centre for Extracellular Vesicles, La Trobe University, Victoria, Australia.
| |
Collapse
|
2
|
Balena T, Staley K. Neuronal Death: Now You See It, Now You Don't. Neuroscientist 2024:10738584241282632. [PMID: 39316584 DOI: 10.1177/10738584241282632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Fatally injured neurons may necrose and rupture immediately, or they may initiate a programmed cell death pathway and then wait for microglial phagocytosis. Biochemical and histopathologic assays of neuronal death assess the numbers of neurons awaiting phagocytosis at a particular time point after injury. This number varies with the fraction of neurons that have necrosed vs initiated programmed cell death, the time elapsed since injury, the rate of phagocytosis, and the assay's ability to detect neurons at different stages of programmed cell death. Many of these variables can be altered by putatively neurotoxic and neuroprotective interventions independent of the effects on neuronal death. This complicates analyses of neurotoxicity and neuroprotection and has likely contributed to difficulties with clinical translation of neuroprotective strategies after brain injury. Time-resolved assays of neuronal health, such as ongoing expression of transgenic fluorescent proteins, are a useful means of avoiding these problems.
Collapse
Affiliation(s)
- Trevor Balena
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Kevin Staley
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
3
|
Miao X, Wu X, You W, He K, Chen C, Pathak JL, Zhang Q. Tailoring of apoptotic bodies for diagnostic and therapeutic applications:advances, challenges, and prospects. J Transl Med 2024; 22:810. [PMID: 39218900 PMCID: PMC11367938 DOI: 10.1186/s12967-024-05451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Apoptotic bodies (ABs) are extracellular vesicles released during apoptosis and possess diverse biological activities. Initially, ABs were regarded as garbage bags with the main function of apoptotic cell clearance. Recent research has found that ABs carry and deliver various biological agents and are taken by surrounding and distant cells, affecting cell functions and behavior. ABs-mediated intercellular communications are involved in various physiological processes including anti-inflammation and tissue regeneration as well as the pathogenesis of a variety of diseases including cancer, cardiovascular diseases, neurodegeneration, and inflammatory diseases. ABs in biological fluids can be used as a window of altered cellular and tissue states which can be applied in the diagnosis and prognosis of various diseases. The structural and constituent versatility of ABs provides flexibility for tailoring ABs according to disease diagnostic and therapeutic needs. An in-depth understanding of ABs' constituents and biological functions is mandatory for the effective tailoring of ABs including modification of bio membrane and cargo constituents. ABs' tailoring approaches including physical, chemical, biological, and genetic have been proposed for bench-to-bed translation in disease diagnosis, prognosis, and therapy. This review summarizes the updates on ABs tailoring approaches, discusses the existing challenges, and speculates the prospects for effective diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Miao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xiaojin Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Wenran You
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Kaini He
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Changzhong Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Janak Lal Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
| | - Qing Zhang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Eberle SA, Gustavsson M. Bilayer lipids modulate ligand binding to atypical chemokine receptor 3. Structure 2024; 32:1174-1183.e5. [PMID: 38776922 DOI: 10.1016/j.str.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Chemokine receptors belong to the large class of G protein-coupled receptors (GPCRs) and are involved in a number of (patho)physiological processes. Previous studies highlighted the importance of membrane lipids for modulating GPCR structure and function. However, the underlying mechanisms of how lipids regulate GPCRs are often poorly understood. Here, we report that anionic lipid bilayers increase the binding affinity of the chemokine CXCL12 for the atypical chemokine receptor 3 (ACKR3) by modulating the CXCL12 binding kinetics. Notably, the anionic bilayer favors CXCL12 over the more positively charged chemokine CXCL11, which we explained by bilayer interactions orienting CXCL12 but not CXCL11 for productive ACKR3 binding. Furthermore, our data suggest a stabilization of active ACKR3 conformations in anionic bilayers. Taken together, the described regulation of chemokine selectivity of ACKR3 by the lipid bilayer proposes an extended version of the classical model of chemokine binding including the lipid environment of the receptor.
Collapse
Affiliation(s)
- Stefanie Alexandra Eberle
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Martin Gustavsson
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
5
|
Tuersun A, Huo J, Lv Z, Zhang Y, Chen F, Zhao J, Feng W, Xu Z, Mao Z, Xue P, Lu A. Establishment of a chemokine-based prognostic model and identification of CXCL10+ M1 macrophages as predictors of neoadjuvant therapy efficacy in colorectal cancer. Front Immunol 2024; 15:1400722. [PMID: 39170612 PMCID: PMC11335547 DOI: 10.3389/fimmu.2024.1400722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Background Although neoadjuvant therapy has brought numerous benefits to patients, not all patients can benefit from it. Chemokines play a crucial role in the tumor microenvironment and are closely associated with the prognosis and treatment of colorectal cancer. Therefore, constructing a prognostic model based on chemokines will help risk stratification and providing a reference for the personalized treatment. Methods Employing LASSO-Cox predictive modeling, a chemokine-based prognostic model was formulated, harnessing the data from TCGA and GEO databases. Then, our exploration focused on the correlation between the chemokine signature and elements such as the immune landscape, somatic mutations, copy number variations, and drug sensitivity. CXCL10+M1 macrophages identified via scRNA-seq. Monocle2 showed cell pseudotime trajectories, CellChat characterized intercellular communication. CytoTRACE analyzed neoadjuvant therapy stemness, SCENIC detected cell type-specific regulation. Lastly, validation was performed through multiplex immunofluorescence experiments. Results A model based on 15 chemokines was constructed and validated. High-risk scores correlated with poorer prognosis and advanced TNM and clinical stages. Individuals presenting elevated risk scores demonstrated an increased propensity towards the development of chemotherapy resistance. Subsequent scRNA-seq data analysis indicated that patients with higher presence of CXCL10+ M1 macrophages in tumor tissues are more likely to benefit from neoadjuvant therapy. Conclusion We developed a chemokine-based prognostic model by integrating both single-cell and bulk RNA-seq data. Furthermore, we revealed epithelial cell heterogeneity in neoadjuvant outcomes and identified CXCL10+ M1 macrophages as potential therapy response predictors. These findings could significantly contribute to risk stratification and serve as a key guide for the advancement of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Abudumaimaitijiang Tuersun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of General Surgery, Second People’s Hospital, Kashi, Xinjiang Uygur Autonomous Region, China
| | - Jianting Huo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zeping Lv
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuchen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fangqian Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenqing Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuoqing Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhihai Mao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pei Xue
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Pontejo SM, Martinez S, Zhao A, Barnes K, de Anda J, Alimohamadi H, Lee EY, Dishman AF, Volkman BF, Wong GC, Garboczi DN, Ballesteros A, Murphy PM. Chemokines Kill Bacteria by Binding Anionic Phospholipids without Triggering Antimicrobial Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.604863. [PMID: 39091850 PMCID: PMC11291121 DOI: 10.1101/2024.07.25.604863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Classically, chemokines coordinate leukocyte trafficking during immune responses; however, many chemokines have also been reported to possess direct antibacterial activity in vitro. Yet, the bacterial killing mechanism of chemokines and the biochemical properties that define which members of the chemokine superfamily are antimicrobial remain poorly understood. Here we report that the antimicrobial activity of chemokines is defined by their ability to bind phosphatidylglycerol and cardiolipin, two anionic phospholipids commonly found in the bacterial plasma membrane. We show that only chemokines able to bind these two phospholipids kill Escherichia coli and Staphylococcus aureus and that they exert rapid bacteriostatic and bactericidal effects against E. coli with a higher potency than the antimicrobial peptide beta-defensin 3. Furthermore, our data support that bacterial membrane cardiolipin facilitates the antimicrobial action of chemokines. Both biochemical and genetic interference with the chemokine-cardiolipin interaction impaired microbial growth arrest, bacterial killing, and membrane disruption by chemokines. Moreover, unlike conventional antibiotics, E. coli failed to develop resistance when placed under increasing antimicrobial chemokine pressure in vitro. Thus, we have identified cardiolipin and phosphatidylglycerol as novel binding partners for chemokines responsible for chemokine antimicrobial action. Our results provide proof of principle for developing chemokines as novel antibiotics resistant to bacterial antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
- Sergio M. Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophia Martinez
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allison Zhao
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Barnes
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaime de Anda
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Haleh Alimohamadi
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Ernest Y. Lee
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Acacia F. Dishman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gerard C.L. Wong
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - David N. Garboczi
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angela Ballesteros
- Section of Sensory Physiology and Biophysics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Poon IKH, Ravichandran KS. Targeting Efferocytosis in Inflammaging. Annu Rev Pharmacol Toxicol 2024; 64:339-357. [PMID: 37585658 DOI: 10.1146/annurev-pharmtox-032723-110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Rapid removal of apoptotic cells by phagocytes, a process known as efferocytosis, is key for the maintenance of tissue homeostasis, the resolution of inflammation, and tissue repair. However, impaired efferocytosis can result in the accumulation of apoptotic cells, subsequently triggering sterile inflammation through the release of endogenous factors such as DNA and nuclear proteins from membrane permeabilized dying cells. Here, we review the molecular basis of the three key phases of efferocytosis, that is, the detection, uptake, and degradation of apoptotic materials by phagocytes. We also discuss how defects in efferocytosis due to the alteration of phagocytes and dying cells can contribute to the low-grade chronic inflammation that occurs during aging, described as inflammaging. Lastly, we explore opportunities in targeting and harnessing the efferocytic machinery to limit aging-associated inflammatory diseases.
Collapse
Affiliation(s)
- Ivan K H Poon
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, and Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia;
| | - Kodi S Ravichandran
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
- VIB Center for Inflammation Research, and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Wang W, Wang H, Long Y, Li Z, Li J. Controlling Hair Loss by Regulating Apoptosis in Hair Follicles: A Comprehensive Overview. Biomolecules 2023; 14:20. [PMID: 38254620 PMCID: PMC10813359 DOI: 10.3390/biom14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Apoptosis is a physiological process that occurs in all cell types of the human body, and it profoundly changes the fate of hair by affecting hair follicle cells. This review outlines the cellular changes, intrinsic biochemical characteristics, and mechanisms underlying apoptosis and summarizes the hair follicle life cycle, including development, cycle stages, and corresponding cellular changes. Finally, the relationship between apoptosis and the hair cycle is discussed and the significance of apoptosis in hair loss conditions and drug treatments is highlighted. Apoptosis induces cellular changes and exhibits distinctive properties through intricate signaling pathways. Hair follicles undergo cyclic periods of growth, regression, and dormancy. Apoptosis is closely correlated with the regression phase by triggering hair follicle cell death and shedding. Regulation of apoptosis in hair follicles plays an essential role in hair loss due to maladies and drug treatments. Mitigating apoptosis can enhance hair growth and minimize hair loss. A comprehensive understanding of the correlation between apoptosis and the hair cycle can facilitate the development of novel treatments to prevent hair loss and stimulate hair regeneration.
Collapse
Affiliation(s)
- Wuji Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Honglan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yunluan Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
9
|
Mohammad-Rafiei F, Moadab F, Mahmoudi A, Navashenaq JG, Gheibihayat SM. Efferocytosis: a double-edged sword in microbial immunity. Arch Microbiol 2023; 205:370. [PMID: 37925389 DOI: 10.1007/s00203-023-03704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Efferocytosis is characterized as the rapid and efficient process by which dying or dead cells are removed. This type of clearance is initiated via "find-me" signals, and then, carries on by "eat-me" and "don't-eat-me" ones. Efferocytosis has a critical role to play in tissue homeostasis and innate immunity. However, some evidence suggests it as a double-edged sword in microbial immunity. In other words, some pathogens have degraded efferocytosis by employing efferocytic mechanisms to bypass innate immune detection and promote infection, despite the function of this process for the control and clearance of pathogens. In this review, the efferocytosis mechanisms from the recognition of dying cells to phagocytic engulfment are initially presented, and then, its diverse roles in inflammation and immunity are highlighted. In this case, much focus is also laid on some bacterial, viral, and parasitic infections caused by Mycobacterium tuberculosis (M. tb), Mycobacterium marinum (M. marinum), Listeria monocytogenes (L. monocytogenes), Chlamydia pneumoniae (CP), Klebsiella pneumoniae (KP), Influenza A virus (IAV), human immunodeficiency virus (HIV), and Leishmania, respectively.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, USA
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
10
|
Gregory CD, Rimmer MP. Extracellular vesicles arising from apoptosis: forms, functions, and applications. J Pathol 2023; 260:592-608. [PMID: 37294158 PMCID: PMC10952477 DOI: 10.1002/path.6138] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/10/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed subcellular bodies produced by most, if not all cells. Research over the last two decades has recognised the importance of EVs in intercellular communication and horizontal transfer of biological material. EVs range in diameter from tens of nanometres up to several micrometres and are able to transfer a spectrum of biologically active cargoes - from whole organelles, through macromolecules including nucleic acids and proteins, to metabolites and small molecules - from their cells of origin to recipient cells, which may consequently become physiologically or pathologically altered. Based on their modes of biogenesis, the most renowned EV classes are (1) microvesicles, (2) exosomes (both produced by healthy cells), and (3) EVs from cells undergoing regulated death by apoptosis (ApoEVs). Microvesicles bud directly from the plasma membrane, while exosomes are derived from endosomal compartments. Current knowledge of the formation and functional properties of ApoEVs lags behind that of microvesicles and exosomes, but burgeoning evidence indicates that ApoEVs carry manifold cargoes, including mitochondria, ribosomes, DNA, RNAs, and proteins, and perform diverse functions in health and disease. Here we review this evidence, which demonstrates substantial diversity in the luminal and surface membrane cargoes of ApoEVs, permitted by their very broad size range (from around 50 nm to >5 μm; the larger often termed apoptotic bodies), strongly suggests their origins through both microvesicle- and exosome-like biogenesis pathways, and indicates routes through which they interact with recipient cells. We discuss the capacity of ApoEVs to recycle cargoes and modulate inflammatory, immunological, and cell fate programmes in normal physiology and in pathological scenarios such as cancer and atherosclerosis. Finally, we provide a perspective on clinical applications of ApoEVs in diagnostics and therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Christopher D Gregory
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, University of EdinburghEdinburghUK
| | - Michael P Rimmer
- Centre for Reproductive HealthInstitute for Regeneration and Repair, University of EdinburghEdinburghUK
| |
Collapse
|
11
|
Gao JL, Owusu-Ansah A, Yang A, Yim E, McDermott DH, Jacobs P, Majumdar S, Choi U, Sweeney CL, Malech HL, Murphy PM. CRISPR/Cas9-mediated Cxcr4 disease allele inactivation for gene therapy in a mouse model of WHIM syndrome. Blood 2023; 142:23-32. [PMID: 36928087 PMCID: PMC10356574 DOI: 10.1182/blood.2022019142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
WHIM syndrome is an autosomal dominant immunodeficiency disorder caused by gain-of-function mutations in chemokine receptor CXCR4 that promote severe panleukopenia because of retention of mature leukocytes in the bone marrow (BM). We previously reported that Cxcr4-haploinsufficient (Cxcr4+/o) hematopoietic stem cells (HSCs) have a strong selective advantage for durable hematopoietic reconstitution over wild-type (Cxcr4+/+) and WHIM (Cxcr4+/w) HSCs and that a patient with WHIM was spontaneously cured by chromothriptic deletion of the disease allele in an HSC, suggesting that WHIM allele inactivation through gene editing may be a safe genetic cure strategy for the disease. We have developed a 2-step preclinical protocol of autologous hematopoietic stem and progenitor cell (HSPC) transplantation to achieve this goal. First, 1 copy of Cxcr4 in HSPCs was inactivated in vitro by CRISPR/Cas9 editing with a single guide RNA (sgRNA) that does not discriminate between Cxcr4+/w and Cxcr4+/+ alleles. Then, through in vivo natural selection, WHIM allele-inactivated cells were enriched over wild-type allele-inactivated cells. The WHIM allele-inactivated HSCs retained long-term pluripotency and selective hematopoietic reconstitution advantages. To our knowledge, this is the first example of gene therapy for an autosomal dominant gain-of-function disease using a disease allele inactivation strategy in place of the less efficient disease allele repair approach.
Collapse
Affiliation(s)
- Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Albert Owusu-Ansah
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alexander Yang
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Erin Yim
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David H. McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Paejonette Jacobs
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Uimook Choi
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Colin L. Sweeney
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Harry L. Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Philip M. Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
12
|
Ji H, Wang B, Shen Y, Labib D, Lei J, Chen X, Sapar M, Boulanger A, Dura JM, Han C. The Drosophila chemokine-like Orion bridges phosphatidylserine and Draper in phagocytosis of neurons. Proc Natl Acad Sci U S A 2023; 120:e2303392120. [PMID: 37276397 PMCID: PMC10268242 DOI: 10.1073/pnas.2303392120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/10/2023] [Indexed: 06/07/2023] Open
Abstract
Phagocytic clearance of degenerating neurons is triggered by "eat-me" signals exposed on the neuronal surface. The conserved neuronal eat-me signal phosphatidylserine (PS) and the engulfment receptor Draper (Drpr) mediate phagocytosis of degenerating neurons in Drosophila. However, how PS is recognized by Drpr-expressing phagocytes in vivo remains poorly understood. Using multiple models of dendrite degeneration, we show that the Drosophila chemokine-like protein Orion can bind to PS and is responsible for detecting PS exposure on neurons; it is supplied cell-non-autonomously to coat PS-exposing dendrites and to mediate interactions between PS and Drpr, thus enabling phagocytosis. As a result, the accumulation of Orion on neurons and on phagocytes produces opposite outcomes by potentiating and suppressing phagocytosis, respectively. Moreover, the Orion dosage is a key determinant of the sensitivity of phagocytes to PS exposed on neurons. Lastly, mutagenesis analyses show that the sequence motifs shared between Orion and human immunomodulatory proteins are important for Orion function. Thus, our results uncover a missing link in PS-mediated phagocytosis in Drosophila and imply conserved mechanisms of phagocytosis of neurons.
Collapse
Affiliation(s)
- Hui Ji
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Yifan Shen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - David Labib
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Joyce Lei
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Xinchen Chen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Maria Sapar
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Ana Boulanger
- Institute of Human Genetics (IGH), Univ Montpellier, CNRS, Montpellier34090, France
| | - Jean-Maurice Dura
- Institute of Human Genetics (IGH), Univ Montpellier, CNRS, Montpellier34090, France
| | - Chun Han
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
13
|
Oshchepkova A, Zenkova M, Vlassov V. Extracellular Vesicles for Therapeutic Nucleic Acid Delivery: Loading Strategies and Challenges. Int J Mol Sci 2023; 24:ijms24087287. [PMID: 37108446 PMCID: PMC10139028 DOI: 10.3390/ijms24087287] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released into the extracellular milieu by cells of various origins. They contain different biological cargoes, protecting them from degradation by environmental factors. There is an opinion that EVs have a number of advantages over synthetic carriers, creating new opportunities for drug delivery. In this review, we discuss the ability of EVs to function as carriers for therapeutic nucleic acids (tNAs), challenges associated with the use of such carriers in vivo, and various strategies for tNA loading into EVs.
Collapse
Affiliation(s)
- Anastasiya Oshchepkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
14
|
Perez GI, Bernard MP, Vocelle D, Zarea AA, Saleh NA, Gagea MA, Schneider D, Bauzon M, Hermiston T, Kanada M. Phosphatidylserine-Exposing Annexin A1-Positive Extracellular Vesicles: Potential Cancer Biomarkers. Vaccines (Basel) 2023; 11:639. [PMID: 36992223 PMCID: PMC10059271 DOI: 10.3390/vaccines11030639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/11/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Under physiological conditions, phosphatidylserine (PS) predominantly localizes to the cytosolic leaflet of the plasma membrane of cells. During apoptosis, PS is exposed on the cell surface and serves as an "eat-me" signal for macrophages to prevent releasing self-immunogenic cellular components from dying cells which could potentially lead to autoimmunity. However, increasing evidence indicates that viable cells can also expose PS on their surface. Interestingly, tumor cell-derived extracellular vesicles (EVs) externalize PS. Recent studies have proposed PS-exposing EVs as a potential biomarker for the early detection of cancer and other diseases. However, there are confounding results regarding subtypes of PS-positive EVs, and knowledge of PS exposure on the EV surface requires further elucidation. In this study, we enriched small EVs (sEVs) and medium/large EVs (m/lEVs) from conditioned media of breast cancer cells (MDA-MB-231, MDA-MB-468) and non-cancerous cells (keratinocytes, fibroblasts). Since several PS-binding molecules are available to date, we compared recombinant proteins of annexin A5 and the carboxylated glutamic acid domain of Protein S (GlaS), also specific for PS, to detect PS-exposing EVs. Firstly, PS externalization in each EV fraction was analyzed using a bead-based EV assay, which combines EV capture using microbeads and analysis of PS-exposing EVs by flow cytometry. The bulk EV assay showed higher PS externalization in m/lEVs derived from MDA-MB-468 cells but not from MDA-MB-231 cells, while higher binding of GlaS was also observed in m/lEVs from fibroblasts. Second, using single EV flow cytometry, PS externalization was also analyzed on individual sEVs and m/lEVs. Significantly higher PS externalization was detected in m/lEVs (annexin A1+) derived from cancer cells compared to m/lEVs (annexin A1+) from non-cancerous cells. These results emphasize the significance of PS-exposing m/lEVs (annexin A1+) as an undervalued EV subtype for early cancer detection and provide a better understanding of PS externalization in disease-associated EV subtypes.
Collapse
Affiliation(s)
- Gloria I. Perez
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Matthew P. Bernard
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Vocelle
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Ahmed A. Zarea
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
- College of Natural Science, Michigan State University, East Lansing, MI 48824, USA
| | - Najla A. Saleh
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
| | - Matthew A. Gagea
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
- Lyman Briggs College, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | - Masamitsu Kanada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
de Gaetano M. Development of synthetic lipoxin-A4 mimetics (sLXms): New avenues in the treatment of cardio-metabolic diseases. Semin Immunol 2023; 65:101699. [PMID: 36428172 DOI: 10.1016/j.smim.2022.101699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Resolution of inflammation is a complex, dynamic process consisting of several distinct processes, including inhibition of endothelial activation and leukocyte trafficking; promotion of inflammatory cell apoptosis and subsequent non-phlogistic scavenging and degradation; augmentation of pathogen phagocytosis; modulation of stromal cell phenotype coupled to the promotion of tissue regeneration and repair. Among these tightly regulated processes, the clearance and degradation of apoptotic cells without eliciting an inflammatory response is a crucial allostatic mechanism vital to developmental processes, host defence, and the effective resolution of inflammation. These efferocytic and subsequent effero-metabolism processes can be carried out by professional and non-professional phagocytes. Defective removal or inadequate processing of apoptotic cells leads to persistent unresolved inflammation, which may promote insidious pathologies including scarring, fibrosis, and eventual organ failure. In this manuscript, the well-established role of endothelial activation and leukocyte extravasation, as classical vascular targets of the 'inflammation pharmacology', will be briefly reviewed. The main focus of this work is to bring attention to a less explored aspect of the 'resolution pharmacology', aimed at tackling defective efferocytosis and inefficient effero-metabolism, as key targeted mechanisms to prevent or pre-empt vascular complications in cardio-metabolic diseases. Despite the use of gold standard lipid-lowering drugs or glucose-lowering drugs, none of them are able to tackle the so called residual inflammatory risk and/or the metabolic memory. In this review, the development of synthetic mimetics of endogenous mediators of inflammation is highlighted. Such molecules finely tune key components across the whole inflammatory process, amongst various other novel therapeutic paradigms that have emerged over the past decade, including anti-inflammatory therapy. More specifically, FPR2-agonists in general, and Lipoxin analogues in particular, greatly enhance the reprogramming and cross-talk between classical and non-classical innate immune cells, thus inducing both termination of the pro-inflammatory state as well as promoting the subsequent resolving phase, which represent pivotal mechanisms in inflammatory cardio-metabolic diseases.
Collapse
Affiliation(s)
- Monica de Gaetano
- Diabetes Complications Research Centre, Conway Institute & School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
16
|
Kholodenko IV, Kholodenko RV, Majouga AG, Yarygin KN. Apoptotic MSCs and MSC-Derived Apoptotic Bodies as New Therapeutic Tools. Curr Issues Mol Biol 2022; 44:5153-5172. [PMID: 36354663 PMCID: PMC9688732 DOI: 10.3390/cimb44110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
Over the past two decades, mesenchymal stem cells (MSCs) have shown promising therapeutic effects both in preclinical studies (in animal models of a wide range of diseases) and in clinical trials. However, the efficacy of MSC-based therapy is not always predictable. Moreover, despite the large number of studies, the mechanisms underlying the regenerative potential of MSCs are not fully elucidated. Recently, it has been reliably established that transplanted MSCs can undergo rapid apoptosis and clearance from the recipient's body, still exhibiting therapeutic effects, especially those associated with their immunosuppressive/immunomodulating properties. The mechanisms underlying these effects can be mediated by the efferocytosis of apoptotic MSCs by host phagocytic cells. In this concise review, we briefly describe three types of MSC-generated extracellular vesicles, through which their therapeutic functions can potentially be carried out; we focused on reviewing recent data on apoptotic MSCs and MSC-derived apoptotic bodies (MSC-ApoBDs), their functions, and the mechanisms of their therapeutic effects.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
17
|
Pontejo SM, Murphy PM. Chemokines and phosphatidylserine: New binding partners for apoptotic cell clearance. Front Cell Dev Biol 2022; 10:943590. [PMID: 36092729 PMCID: PMC9456247 DOI: 10.3389/fcell.2022.943590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
|
18
|
Li X, Liu Y, Liu X, Du J, Bhawal UK, Xu J, Guo L, Liu Y. Advances in the Therapeutic Effects of Apoptotic Bodies on Systemic Diseases. Int J Mol Sci 2022; 23:ijms23158202. [PMID: 35897778 PMCID: PMC9331698 DOI: 10.3390/ijms23158202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Apoptosis plays an important role in development and in the maintenance of homeostasis. Apoptotic bodies (ApoBDs) are specifically generated from apoptotic cells and can contain a large variety of biological molecules, which are of great significance in intercellular communications and the regulation of phagocytes. Emerging evidence in recent years has shown that ApoBDs are essential for maintaining homeostasis, including systemic bone density and immune regulation as well as tissue regeneration. Moreover, studies have revealed the therapeutic effects of ApoBDs on systemic diseases, including cancer, atherosclerosis, diabetes, hepatic fibrosis, and wound healing, which can be used to treat potential targets. This review summarizes current research on the generation, application, and reconstruction of ApoBDs regarding their functions in cellular regulation and on systemic diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.
Collapse
Affiliation(s)
- Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Xu Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Ujjal Kumar Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan;
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100006, China
- Correspondence: (L.G.); (Y.L.)
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
- Immunology Research Center for Oral and Systematic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Correspondence: (L.G.); (Y.L.)
| |
Collapse
|
19
|
Events Occurring in the Axotomized Facial Nucleus. Cells 2022; 11:cells11132068. [PMID: 35805151 PMCID: PMC9266054 DOI: 10.3390/cells11132068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Transection of the rat facial nerve leads to a variety of alterations not only in motoneurons, but also in glial cells and inhibitory neurons in the ipsilateral facial nucleus. In injured motoneurons, the levels of energy metabolism-related molecules are elevated, while those of neurofunction-related molecules are decreased. In tandem with these motoneuron changes, microglia are activated and start to proliferate around injured motoneurons, and astrocytes become activated for a long period without mitosis. Inhibitory GABAergic neurons reduce the levels of neurofunction-related molecules. These facts indicate that injured motoneurons somehow closely interact with glial cells and inhibitory neurons. At the same time, these events allow us to predict the occurrence of tissue remodeling in the axotomized facial nucleus. This review summarizes the events occurring in the axotomized facial nucleus and the cellular and molecular mechanisms associated with each event.
Collapse
|
20
|
Tajbakhsh A, Yousefi F, Abedi SM, Rezaee M, Savardashtaki A, Teng Y, Sahebkar A. The cross-talk between soluble "Find me" and "Keep out" signals as an initial step in regulating efferocytosis. J Cell Physiol 2022; 237:3113-3126. [PMID: 35578547 DOI: 10.1002/jcp.30770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022]
Abstract
The rapid clearance of apoptotic cells (ACs), known as efferocytosis, prompts the inhibition of inflammatory responses and autoimmunity and maintains homeostatic cell turnover by controlling the release of intracellular contents. The fast clearance of ACs requires professional and nonprofessional phagocytic cells that can accurately and promptly recognize ACs and migrate towards them. Cells undergoing apoptosis alarm their presence by releasing special soluble chemotactic factors, such as lactoferrin, that act as "Find me," "Keep out," or "Stay away" signals to recruit phagocytic cells, such as macrophages or prevent granulocyte migration. Efferocytosis effectively serves to prevent damage-associated molecular pattern release and secondary necrosis and inhibit inflammation/autoimmunity at the very first step. Since less attention has been given to the cross-talk and balance of "Find me" and "Keep out" signals released from ACs in efferocytosis, we set out to investigate the current knowledge of the roles of "Find me" and "Keep out" signals in the efferocytosis process.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh M Abedi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amir Savardashtaki
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Depatment of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Secretome and Tunneling Nanotubes: A Multilevel Network for Long Range Intercellular Communication between Endothelial Cells and Distant Cells. Int J Mol Sci 2021; 22:ijms22157971. [PMID: 34360735 PMCID: PMC8347715 DOI: 10.3390/ijms22157971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
As a cellular interface between the blood and tissues, the endothelial cell (EC) monolayer is involved in the control of key functions including vascular tone, permeability and homeostasis, leucocyte trafficking and hemostasis. EC regulatory functions require long-distance communications between ECs, circulating hematopoietic cells and other vascular cells for efficient adjusting thrombosis, angiogenesis, inflammation, infection and immunity. This intercellular crosstalk operates through the extracellular space and is orchestrated in part by the secretory pathway and the exocytosis of Weibel Palade Bodies (WPBs), secretory granules and extracellular vesicles (EVs). WPBs and secretory granules allow both immediate release and regulated exocytosis of messengers such as cytokines, chemokines, extracellular membrane proteins, coagulation or growth factors. The ectodomain shedding of transmembrane protein further provide the release of both receptor and ligands with key regulatory activities on target cells. Thin tubular membranous channels termed tunneling nanotubes (TNTs) may also connect EC with distant cells. EVs, in particular exosomes, and TNTs may contain and transfer different biomolecules (e.g., signaling mediators, proteins, lipids, and microRNAs) or pathogens and have emerged as a major triggers of horizontal intercellular transfer of information.
Collapse
|