1
|
Steiner LX, Wiese J, Rahn T, Borchert E, Slaby BM, Hentschel U. Maribacter halichondriae sp. nov., isolated from the marine sponge Halichondria panicea, displays features of a sponge-associated life style. Antonie Van Leeuwenhoek 2024; 117:56. [PMID: 38489089 PMCID: PMC10942906 DOI: 10.1007/s10482-024-01950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
A new member of the family Flavobacteriaceae (termed Hal144T) was isolated from the marine breadcrumb sponge Halichondria panicea. Sponge material was collected in 2018 at Schilksee which is located in the Kiel Fjord (Baltic Sea, Germany). Phylogenetic analysis of the full-length Hal144T 16S rRNA gene sequence revealed similarities from 94.3 to 96.6% to the nearest type strains of the genus Maribacter. The phylogenetic tree of the 16S rRNA gene sequences depicted a cluster of strain Hal144T with its closest relatives Maribacter aestuarii GY20T (96.6%) and Maribacter thermophilus HT7-2T (96.3%). Genome phylogeny showed that Maribacter halichondriae Hal144T branched from a cluster consisting of Maribacter arenosus, Maribacter luteus, and Maribacter polysiphoniae. Genome comparisons of strain Maribacter halichondriae Hal144T with Maribacter sp. type strains exhibited average nucleotide identities in the range of 75-76% and digital DNA-DNA hybridisation values in the range of 13.1-13.4%. Compared to the next related type strains, strain Hal144T revealed unique genomic features such as phosphoenolpyruvate-dependent phosphotransferase system pathway, serine-glyoxylate cycle, lipid A 3-O-deacylase, 3-hexulose-6-phosphate synthase, enrichment of pseudogenes and of genes involved in cell wall and envelope biogenesis, indicating an adaptation to the host. Strain Hal144T was determined to be Gram-negative, mesophilic, strictly aerobic, flexirubin positive, resistant to aminoglycoside antibiotics, and able to utilize N-acetyl-β-D-glucosamine. Optimal growth occurred at 25-30 °C, within a salinity range of 2-6% sea salt, and a pH range between 5 and 8. The major fatty acids identified were C17:0 3-OH, iso-C15:0, and iso-C15:1 G. The DNA G + C content of strain Hal144T was 41.4 mol%. Based on the polyphasic approach, strain Hal144T represents a novel species of the genus Maribacter, and we propose the name Maribacter halichondriae sp. nov. The type strain is Hal144T (= DSM 114563T = LMG 32744T).
Collapse
Affiliation(s)
- Leon X Steiner
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Jutta Wiese
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany.
| | - Tanja Rahn
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Beate M Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RU Marine Ecology, RD3 Marine Symbioses, Wischhofstraße 1-3, 24148, Kiel, Germany
- Christian-Albrechts-University (CAU) of Kiel, Kiel, Germany
| |
Collapse
|
2
|
Fang T, Szklarczyk D, Hachilif R, von Mering C. Enhancing coevolutionary signals in protein-protein interaction prediction through clade-wise alignment integration. Sci Rep 2024; 14:6009. [PMID: 38472223 PMCID: PMC10933411 DOI: 10.1038/s41598-024-55655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Protein-protein interactions (PPIs) play essential roles in most biological processes. The binding interfaces between interacting proteins impose evolutionary constraints that have successfully been employed to predict PPIs from multiple sequence alignments (MSAs). To construct MSAs, critical choices have to be made: how to ensure the reliable identification of orthologs, and how to optimally balance the need for large alignments versus sufficient alignment quality. Here, we propose a divide-and-conquer strategy for MSA generation: instead of building a single, large alignment for each protein, multiple distinct alignments are constructed under distinct clades in the tree of life. Coevolutionary signals are searched separately within these clades, and are only subsequently integrated using machine learning techniques. We find that this strategy markedly improves overall prediction performance, concomitant with better alignment quality. Using the popular DCA algorithm to systematically search pairs of such alignments, a genome-wide all-against-all interaction scan in a bacterial genome is demonstrated. Given the recent successes of AlphaFold in predicting direct PPIs at atomic detail, a discover-and-refine approach is proposed: our method could provide a fast and accurate strategy for pre-screening the entire genome, submitting to AlphaFold only promising interaction candidates-thus reducing false positives as well as computation time.
Collapse
Affiliation(s)
- Tao Fang
- Department of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Damian Szklarczyk
- Department of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Radja Hachilif
- Department of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland.
- SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| |
Collapse
|
3
|
Currie MJ, Davies JS, Scalise M, Gulati A, Wright JD, Newton-Vesty MC, Abeysekera GS, Subramanian R, Wahlgren WY, Friemann R, Allison JR, Mace PD, Griffin MDW, Demeler B, Wakatsuki S, Drew D, Indiveri C, Dobson RCJ, North RA. Structural and biophysical analysis of a Haemophilus influenzae tripartite ATP-independent periplasmic (TRAP) transporter. eLife 2024; 12:RP92307. [PMID: 38349818 PMCID: PMC10942642 DOI: 10.7554/elife.92307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are secondary-active transporters that receive their substrates via a soluble-binding protein to move bioorganic acids across bacterial or archaeal cell membranes. Recent cryo-electron microscopy (cryo-EM) structures of TRAP transporters provide a broad framework to understand how they work, but the mechanistic details of transport are not yet defined. Here we report the cryo-EM structure of the Haemophilus influenzae N-acetylneuraminate TRAP transporter (HiSiaQM) at 2.99 Å resolution (extending to 2.2 Å at the core), revealing new features. The improved resolution (the previous HiSiaQM structure is 4.7 Å resolution) permits accurate assignment of two Na+ sites and the architecture of the substrate-binding site, consistent with mutagenic and functional data. Moreover, rather than a monomer, the HiSiaQM structure is a homodimer. We observe lipids at the dimer interface, as well as a lipid trapped within the fusion that links the SiaQ and SiaM subunits. We show that the affinity (KD) for the complex between the soluble HiSiaP protein and HiSiaQM is in the micromolar range and that a related SiaP can bind HiSiaQM. This work provides key data that enhances our understanding of the 'elevator-with-an-operator' mechanism of TRAP transporters.
Collapse
Affiliation(s)
- Michael J Currie
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - James S Davies
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of CalabriaArcavacata di RendeItaly
| | - Ashutosh Gulati
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Joshua D Wright
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Michael C Newton-Vesty
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Gayan S Abeysekera
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Ramaswamy Subramanian
- Biological Sciences and Biomedical Engineering, Bindley Bioscience Center, Purdue University West LafayetteWest LafayetteUnited States
| | - Weixiao Y Wahlgren
- Department of Chemistry and Molecular Biology, Biochemistry and Structural Biology, University of GothenburgGothenburgSweden
| | - Rosmarie Friemann
- Centre for Antibiotic Resistance Research (CARe) at University of GothenburgGothenburgSweden
| | - Jane R Allison
- Biomolecular Interaction Centre, Digital Life Institute, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of AucklandAucklandNew Zealand
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - Michael DW Griffin
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of MelbourneMelbourneAustralia
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of MontanaMissoulaUnited States
- Department of Chemistry and Biochemistry, University of LethbridgeLethbridgeCanada
| | - Soichi Wakatsuki
- Biological Sciences Division, SLAC National Accelerator LaboratoryMenlo ParkUnited States
- Department of Structural Biology, Stanford University School of MedicineStanfordUnited States
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of CalabriaArcavacata di RendeItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Renwick CJ Dobson
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of MelbourneMelbourneAustralia
| | - Rachel A North
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
- School of Medical Sciences, Faculty of Medicine and Health, University of SydneySydneyAustralia
| |
Collapse
|
4
|
Varela MF, Ortiz-Alegria A, Lekshmi M, Stephen J, Kumar S. Functional Roles of the Conserved Amino Acid Sequence Motif C, the Antiporter Motif, in Membrane Transporters of the Major Facilitator Superfamily. BIOLOGY 2023; 12:1336. [PMID: 37887046 PMCID: PMC10604125 DOI: 10.3390/biology12101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
The biological membrane surrounding all living cells forms a hydrophobic barrier to the passage of biologically important molecules. Integral membrane proteins called transporters circumvent the cellular barrier and transport molecules across the cell membrane. These molecular transporters enable the uptake and exit of molecules for cell growth and homeostasis. One important collection of related transporters is the major facilitator superfamily (MFS). This large group of proteins harbors passive and secondary active transporters. The transporters of the MFS consist of uniporters, symporters, and antiporters, which share similarities in structures, predicted mechanism of transport, and highly conserved amino acid sequence motifs. In particular, the antiporter motif, called motif C, is found primarily in antiporters of the MFS. The antiporter motif's molecular elements mediate conformational changes and other molecular physiological roles during substrate transport across the membrane. This review article traces the history of the antiporter motif. It summarizes the physiological evidence reported that supports these biological roles.
Collapse
Affiliation(s)
- Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA;
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA;
| | - Manjusha Lekshmi
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (M.L.); (J.S.); (S.K.)
| | - Jerusha Stephen
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (M.L.); (J.S.); (S.K.)
| | - Sanath Kumar
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (M.L.); (J.S.); (S.K.)
| |
Collapse
|
5
|
Ghazikhani H, Butler G. Enhanced identification of membrane transport proteins: a hybrid approach combining ProtBERT-BFD and convolutional neural networks. J Integr Bioinform 2023; 0:jib-2022-0055. [PMID: 37497772 PMCID: PMC10389051 DOI: 10.1515/jib-2022-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Transmembrane transport proteins (transporters) play a crucial role in the fundamental cellular processes of all organisms by facilitating the transport of hydrophilic substrates across hydrophobic membranes. Despite the availability of numerous membrane protein sequences, their structures and functions remain largely elusive. Recently, natural language processing (NLP) techniques have shown promise in the analysis of protein sequences. Bidirectional Encoder Representations from Transformers (BERT) is an NLP technique adapted for proteins to learn contextual embeddings of individual amino acids within a protein sequence. Our previous strategy, TooT-BERT-T, differentiated transporters from non-transporters by employing a logistic regression classifier with fine-tuned representations from ProtBERT-BFD. In this study, we expand upon this approach by utilizing representations from ProtBERT, ProtBERT-BFD, and MembraneBERT in combination with classical classifiers. Additionally, we introduce TooT-BERT-CNN-T, a novel method that fine-tunes ProtBERT-BFD and discriminates transporters using a Convolutional Neural Network (CNN). Our experimental results reveal that CNN surpasses traditional classifiers in discriminating transporters from non-transporters, achieving an MCC of 0.89 and an accuracy of 95.1 % on the independent test set. This represents an improvement of 0.03 and 1.11 percentage points compared to TooT-BERT-T, respectively.
Collapse
Affiliation(s)
- Hamed Ghazikhani
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Gregory Butler
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| |
Collapse
|
6
|
Hagström Å, Zweifel UL, Sundh J, Osbeck CMG, Bunse C, Sjöstedt J, Müller-Karulis B, Pinhassi J. Composition and Seasonality of Membrane Transporters in Marine Picoplankton. Front Microbiol 2021; 12:714732. [PMID: 34650527 PMCID: PMC8507841 DOI: 10.3389/fmicb.2021.714732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we examined transporter genes in metagenomic and metatranscriptomic data from a time-series survey in the temperate marine environment of the Baltic Sea. We analyzed the abundance and taxonomic distribution of transporters in the 3μm–0.2μm size fraction comprising prokaryotes and some picoeukaryotes. The presence of specific transporter traits was shown to be guiding the succession of these microorganisms. A limited number of taxa were associated with the dominant transporter proteins that were identified for the nine key substrate categories for microbial growth. Throughout the year, the microbial taxa at the level of order showed highly similar patterns in terms of transporter traits. The distribution of transporters stayed the same, irrespective of the abundance of each taxon. This would suggest that the distribution pattern of transporters depends on the bacterial groups being dominant at a given time of the year. Also, we find notable numbers of secretion proteins that may allow marine bacteria to infect and kill prey organisms thus releasing nutrients. Finally, we demonstrate that transporter proteins may provide clues to the relative importance of biogeochemical processes, and we suggest that virtual transporter functionalities may become important components in future population dynamics models.
Collapse
Affiliation(s)
- Åke Hagström
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Ulla Li Zweifel
- Swedish Institute for the Marine Environment, Gothenburg University, Gothenburg, Sweden
| | - John Sundh
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Christofer M G Osbeck
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Carina Bunse
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden.,Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Johanna Sjöstedt
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden.,Department of Biology, Aquatic Ecology, Lund University, Lund, Sweden
| | | | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
7
|
Hadchity L, Lanois A, Kiwan P, Nassar F, Givaudan A, Khattar ZA. AcrAB, the major RND-type efflux pump of Photorhabdus laumondii, confers intrinsic multidrug-resistance and contributes to virulence in insects. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:637-648. [PMID: 34002534 DOI: 10.1111/1758-2229.12974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The resistance-nodulation-division (RND)-type efflux pumps AcrAB and MdtABC contribute to multidrug-resistance (MDR) in Gram-negative bacteria. Photorhabdus is a symbiotic bacterium of soil nematodes that also produces virulence factors killing insects by septicaemia. We previously showed that mdtA deletion in Photorhabdus laumondii TT01 resulted in no detrimental phenotypes. Here, we investigated the roles of the last two putative RND transporters in TT01 genome, AcrAB and AcrAB-like (Plu0759-Plu0758). Only ΔacrA and ΔmdtAΔacrA mutants were multidrug sensitive, even to triphenyltetrazolium chloride and bromothymol blue used for Photorhabdus isolation from nematodes on the nutrient bromothymol blue-triphenyltetrazolium chloride agar (NBTA) medium. Both mutants also displayed slightly attenuated virulence after injection into Spodoptera littoralis. Transcriptional analysis revealed intermediate levels of acrAB expression in vitro, in vivo and post-mortem, whereas its putative transcriptional repressor acrR was weakly expressed. Yet, plasmid-mediated acrR overexpression did not decrease acrAB transcript levels neither MDR in TT01 WT. While no pertinent mutations were detected in acrR of the same P. laumondii strain grown either on NBTA or nutrient agar, we suggest that AcrR-mediated repression of acrAB is not physiologically required under conditions tested. Finally, we propose that AcrAB is the primary RND-efflux pump, which is essential for MDR in Photorhabdus and may confer adaptive advantages during insect infection.
Collapse
Affiliation(s)
- Linda Hadchity
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology team, Faculty of Sciences 2, Lebanese University, Fanar, Lebanon
- DGIMI, Université Montpellier, INRAE, Montpellier, France
| | - Anne Lanois
- DGIMI, Université Montpellier, INRAE, Montpellier, France
| | - Paloma Kiwan
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology team, Faculty of Sciences 2, Lebanese University, Fanar, Lebanon
| | - Fida Nassar
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology team, Faculty of Sciences 2, Lebanese University, Fanar, Lebanon
| | - Alain Givaudan
- DGIMI, Université Montpellier, INRAE, Montpellier, France
| | - Ziad Abi Khattar
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology team, Faculty of Sciences 2, Lebanese University, Fanar, Lebanon
| |
Collapse
|
8
|
Hassan KA, Maher C, Elbourne LD, Henderson PJ, Paulsen IT. Increasing the PACE of characterising novel transporters by functional genomics. Curr Opin Microbiol 2021; 64:1-8. [PMID: 34492595 DOI: 10.1016/j.mib.2021.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
Since the late 1990's the genome sequences for thousands of species of bacteria have been released into public databases. The release of each new genome sequence typically revealed the presence of tens to hundreds of uncharacterised genes encoding putative membrane proteins and more recently, microbial metagenomics has revealed countless more of these uncharacterised genes. Given the importance of small molecule efflux in bacteria, it is likely that a significant proportion of these genes encode for novel efflux proteins, but the elucidation of these functions is challenging. We used transcriptomics to predict that the function of a gene encoding a hypothetical membrane protein is in efflux-mediated antimicrobial resistance. We subsequently confirmed this function and the likely native substrates of the pump by using detailed biochemical and biophysical analyses. Functional studies of homologs of the protein from other bacterial species determined that the protein is a prototype for a family of multidrug efflux pumps - the Proteobacterial Antimicrobial Compound Efflux (PACE) family. The general functional genomics approach used here, and its expansion to functional metagenomics, will very likely reveal the identities of more efflux pumps and other transport proteins of scientific, clinical and commercial interest in the future.
Collapse
Affiliation(s)
- Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia.
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Liam Dh Elbourne
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia; Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter Jf Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, Yorkshire, United Kingdom.
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia; Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Álvarez-Lugo A, Becerra A. The Role of Gene Duplication in the Divergence of Enzyme Function: A Comparative Approach. Front Genet 2021; 12:641817. [PMID: 34335678 PMCID: PMC8318041 DOI: 10.3389/fgene.2021.641817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Gene duplication is a crucial process involved in the appearance of new genes and functions. It is thought to have played a major role in the growth of enzyme families and the expansion of metabolism at the biosphere's dawn and in recent times. Here, we analyzed paralogous enzyme content within each of the seven enzymatic classes for a representative sample of prokaryotes by a comparative approach. We found a high ratio of paralogs for three enzymatic classes: oxidoreductases, isomerases, and translocases, and within each of them, most of the paralogs belong to only a few subclasses. Our results suggest an intricate scenario for the evolution of prokaryotic enzymes, involving different fates for duplicated enzymes fixed in the genome, where around 20-40% of prokaryotic enzymes have paralogs. Intracellular organisms have a lesser ratio of duplicated enzymes, whereas free-living enzymes show the highest ratios. We also found that phylogenetically close phyla and some unrelated but with the same lifestyle share similar genomic and biochemical traits, which ultimately support the idea that gene duplication is associated with environmental adaptation.
Collapse
Affiliation(s)
- Alejandro Álvarez-Lugo
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
10
|
Leitner M, Bishop C, Asgari S. Transcriptional Response of Wolbachia to Dengue Virus Infection in Cells of the Mosquito Aedes aegypti. mSphere 2021; 6:e0043321. [PMID: 34190587 PMCID: PMC8265661 DOI: 10.1128/msphere.00433-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Aedes aegypti transmits one of the most significant mosquito-borne viruses, dengue virus (DENV). The absence of effective vaccines and clinical treatments and the emergence of insecticide resistance in A. aegypti necessitate novel vector control strategies. A new approach uses the endosymbiotic bacterium Wolbachia pipientis to reduce the spread of arboviruses. However, the Wolbachia-mediated antiviral mechanism is not well understood. To shed light on this mechanism, we investigated an unexplored aspect of Wolbachia-virus-mosquito interaction. We used RNA sequencing to examine the transcriptional response of Wolbachia to DENV infection in A. aegypti Aag2 cells transinfected with the wAlbB strain of Wolbachia. Our results suggest that genes encoding an endoribonuclease (RNase HI), a regulator of sigma 70-dependent gene transcription (6S RNA), essential cellular, transmembrane, and stress response functions and primary type I and IV secretion systems were upregulated, while a number of transport and binding proteins of Wolbachia, ribosome structure, and elongation factor-associated genes were downregulated due to DENV infection. Furthermore, bacterial retrotransposon, transposable, and phage-related elements were found among the up- and downregulated genes. We show that Wolbachia elicits a transcriptional response to virus infection and identify differentially expressed Wolbachia genes mostly at the early stages of virus infection. These findings highlight Wolbachia's ability to alter its gene expression in response to DENV infection of the host cell. IMPORTANCE Aedes aegypti is a vector of several pathogenic viruses, including dengue, Zika, chikungunya, and yellow fever viruses, which are of importance to human health. Wolbachia is an endosymbiotic bacterium currently used in transinfected mosquitoes to suppress replication and transmission of dengue viruses. However, the mechanism of Wolbachia-mediated virus inhibition is not fully understood. While several studies have shown mosquitoes' transcriptional responses to dengue virus infection, none have investigated these responses in Wolbachia, which may provide clues to the inhibition mechanism. Our results suggest changes in the expression of a number of functionally important Wolbachia genes upon dengue virus infection, including those involved in stress responses, providing insights into the endosymbiont's reaction to virus infection.
Collapse
Affiliation(s)
- Michael Leitner
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Cameron Bishop
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
11
|
Abundant Monovalent Ions as Environmental Signposts for Pathogens during Host Colonization. Infect Immun 2021; 89:IAI.00641-20. [PMID: 33526568 DOI: 10.1128/iai.00641-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Host colonization by a pathogen requires proper sensing and response to local environmental cues, to ensure adaptation and continued survival within the host. The ionic milieu represents a critical potential source of environmental cues, and indeed, there has been extensive study of the interplay between host and pathogen in the context of metals such as iron, zinc, and manganese, vital ions that are actively sequestered by the host. The inherent non-uniformity of the ionic milieu also extends, however, to "abundant" ions such as chloride and potassium, whose concentrations vary greatly between tissue and cellular locations, and with the immune response. Despite this, the concept of abundant ions as environmental cues and key players in host-pathogen interactions is only just emerging. Focusing on chloride and potassium, this review brings together studies across multiple bacterial and parasitic species that have begun to define both how these abundant ions are exploited as cues during host infection, and how they can be actively manipulated by pathogens during host colonization. The close links between ion homeostasis and sensing/response to different ionic signals, and the importance of studying pathogen response to cues in combination, are also discussed, while considering the fundamental insight still to be uncovered from further studies in this nascent area of inquiry.
Collapse
|
12
|
Oral Microbial Diversity Formed and Maintained through Decomposition Product Feedback Regulation and Delayed Responses. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5590110. [PMID: 33688360 PMCID: PMC7914081 DOI: 10.1155/2021/5590110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/31/2021] [Accepted: 02/14/2021] [Indexed: 11/17/2022]
Abstract
Oral microbial diversity plays an important role on oral health maintenance. However, there are only few kinds of substrates available for the microbial flora in oral cavity, and it still remains unclear why oral microbial diversity can be formed and sustained without obvious competitive exclusion. Based on experimental phenomena and data, a new hypothesis was proposed, namely, the decomposition product negative feedback regulation on microbial population size and microbial delay responses including reproductive, reaction, interspecific competition, and substrate decomposition delay responses induced by oral immunity. According to hypothesis and its cellular automata (CA) model, the CA simulation results sufficiently proved that the decomposition product negative feedback regulation and four microbial delay responses could significantly alleviate the interspecific competitions and inhibit the emergence of dominant species, causing the formation and sustenance of oral microbial diversity. This study could also offer effective guidance of prevention and treatment of oral cavity diseases.
Collapse
|
13
|
Song H, Hewitt OH, Degnan SM. Arginine Biosynthesis by a Bacterial Symbiont Enables Nitric Oxide Production and Facilitates Larval Settlement in the Marine-Sponge Host. Curr Biol 2020; 31:433-437.e3. [PMID: 33220182 DOI: 10.1016/j.cub.2020.10.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 01/05/2023]
Abstract
Larval settlement and metamorphosis are regulated by nitric oxide (NO) signaling in a wide diversity of marine invertebrates.1-10 It is thus surprising that, in most invertebrates, the substrate for NO synthesis-arginine-cannot be biosynthesized but instead must be exogenously sourced.11 In the sponge Amphimedon queenslandica, vertically inherited proteobacterial symbionts in the larva are able to biosynthesize arginine.12,13 Here, we test the hypothesis that symbionts provide arginine to the sponge host so that nitric oxide synthase expressed in the larva can produce NO, which regulates metamorphosis,8 and the byproduct citrulline (Figure 1). First, we find support for an arginine-citrulline biosynthetic loop in this sponge larval holobiont by using stable isotope tracing. In symbionts, incorporated 13C-citrulline decreases as 13C-arginine increases, consistent with the use of exogenous citrulline for arginine synthesis. In contrast, 13C-citrulline accumulates in larvae as 13C-arginine decreases, demonstrating the uptake of exogenous arginine and its conversion to NO and citrulline. Second, we show that, although Amphimedon larvae can derive arginine directly from seawater, normal settlement and metamorphosis can occur in artificial sea water lacking arginine. Together, these results support holobiont complementation of the arginine-citrulline loop and NO biosynthesis in Amphimedon larvae, suggesting a critical role for bacterial symbionts in the development of this marine sponge. Given that NO regulates settlement and metamorphosis in diverse animal phyla1-10 and arginine is procured externally in most animals,11 we propose that symbionts might play an equally critical regulatory role in this essential life cycle transition in other metazoans.
Collapse
Affiliation(s)
- Hao Song
- School of Biological Sciences, The University of Queensland, Brisbane, 4072 QLD, Australia; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Olivia H Hewitt
- School of Biological Sciences, The University of Queensland, Brisbane, 4072 QLD, Australia
| | - Sandie M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, 4072 QLD, Australia.
| |
Collapse
|
14
|
Organophosphate hydrolase interacts with ferric-enterobactin and promotes iron uptake in association with TonB-dependent transport system. Biochem J 2020; 477:2821-2840. [PMID: 32686828 DOI: 10.1042/bcj20200299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022]
Abstract
Our previous studies have shown the existence of organophosphate hydrolase (OPH) as a part of the inner membrane associated Ton complex (ExbB/ExbD and TonB) of Sphingobium fuliginis. We now show its involvement in iron uptake by establishing direct interactions with ferric-enterobactin. The interactions between OPH and ferric-enterobactin were not affected even when the active site architecture is altered by substituting active site aspartate with either alanine or asparagine. Protein docking studies further substantiated these findings and predicted the existence of ferric-enterobactin binding site that is different from the catalytic site of OPH. A lysine residue (82K) found at the predicted ferric-enterobactin binding site facilitated interactions between OPH and ferric-enterobactin. Substitution of lysine with alanine did not affect triesterase activity, but it abrogated OPH ability to interact with both ferric-enterobactin and ExbD, strengthening further the fact that the catalytic site is not the site for binding of these ligands. In the absence of interactions between OPHK82A and ExbD, OPHK82A failed to target membrane in E. coli cells. The Sphingobium fuliginis TonB-dependent transport (SfTonBDT) system was reconstituted in E. coli GS027 cells generated by deleting the exbD and tonB genes. The E. coli GS030 cells having SfTonBDT system with OPH showed increased iron uptake. Such an increase was not seen in E. coli GS029, cells having SfTonBDT system generated either by omitting OPH or by including its variants, OPHD301A, OPHD301N suggesting a role for OPH in enhanced iron uptake.
Collapse
|
15
|
Transporters of glucose and other carbohydrates in bacteria. Pflugers Arch 2020; 472:1129-1153. [PMID: 32372286 DOI: 10.1007/s00424-020-02379-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
Glucose arguably is the most important energy carrier, carbon source for metabolites and building block for biopolymers in all kingdoms of life. The proper function of animal organs and tissues depends on the continuous supply of glucose from the bloodstream. Most animals can resorb only a small number of monosaccharides, mostly glucose, galactose and fructose, while all other sugars oligosaccharides and dietary fibers are degraded and metabolized by the microbiota of the lower intestine. Bacteria, in contrast, are omnivorous. They can import and metabolize structurally different sugars and, as a consortium of different species, utilize almost any sugar, sugar derivative and oligosaccharide occurring in nature. Bacteria have membrane transport systems for the uptake of sugars against steep concentration gradients energized by ATP, the proton motive force and the high energy glycolytic intermediate phosphoenolpyruvate (PEP). Different uptake mechanisms and the broad range of overlapping substrate specificities allow bacteria to quickly adapt to and colonize changing environments. Here, we review the structures and mechanisms of bacterial representatives of (i) ATP-dependent cassette (ABC) transporters, (ii) major facilitator (MFS) superfamily proton symporters, (iii) sodium solute symporters (SSS) and (iv) enzyme II integral membrane subunits of the bacterial PEP-dependent phosphotransferase system (PTS). We give a short overview on the distribution of transporter genes and their phylogenetic relationship in different bacterial species. Some sugar transporters are hijacked for import of bacteriophage DNA and antibacterial toxins (bacteriocins) and they facilitate the penetration of polar antibiotics. Finally, we describe how the expression and activity of certain sugar transporters are controlled in response to the availability of sugars and how the presence and uptake of sugars may affect pathogenicity and host-microbiota interactions.
Collapse
|
16
|
Alballa M, Butler G. TooT-T: discrimination of transport proteins from non-transport proteins. BMC Bioinformatics 2020; 21:25. [PMID: 32321420 PMCID: PMC7178945 DOI: 10.1186/s12859-019-3311-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 11/10/2022] Open
Abstract
Background Membrane transport proteins (transporters) play an essential role in every living cell by transporting hydrophilic molecules across the hydrophobic membranes. While the sequences of many membrane proteins are known, their structure and function is still not well characterized and understood, owing to the immense effort needed to characterize them. Therefore, there is a need for advanced computational techniques takes sequence information alone to distinguish membrane transporter proteins; this can then be used to direct new experiments and give a hint about the function of a protein. Results This work proposes an ensemble classifier TooT-T that is trained to optimally combine the predictions from homology annotation transfer and machine-learning methods to determine the final prediction. Experimental results obtained by cross-validation and independent testing show that combining the two approaches is more beneficial than employing only one. Conclusion The proposed model outperforms all of the state-of-the-art methods that rely on the protein sequence alone, with respect to accuracy and MCC. TooT-T achieved an overall accuracy of 90.07% and 92.22% and an MCC 0.80 and 0.82 with the training and independent datasets, respectively.
Collapse
Affiliation(s)
- Munira Alballa
- Department of Computer Science and Software Engineering, Concordia University, Montréal, Québec, Canada.
| | - Gregory Butler
- Department of Computer Science and Software Engineering, Concordia University, Montréal, Québec, Canada.,Centre for Structural and Functional Genomics, Concordia University, Montréal, Québec, 24105, Canada
| |
Collapse
|
17
|
Hydrogen Does Not Appear To Be a Major Electron Donor for Symbiosis with the Deep-Sea Hydrothermal Vent Tubeworm Riftia pachyptila. Appl Environ Microbiol 2019; 86:AEM.01522-19. [PMID: 31628148 DOI: 10.1128/aem.01522-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/09/2019] [Indexed: 12/23/2022] Open
Abstract
Use of hydrogen gas (H2) as an electron donor is common among free-living chemolithotrophic microorganisms. Given the presence of this dissolved gas at deep-sea hydrothermal vents, it has been suggested that it may also be a major electron donor for the free-living and symbiotic chemolithoautotrophic bacteria that are the primary producers at these sites. Giant Riftia pachyptila siboglinid tubeworms and their symbiotic bacteria ("Candidatus Endoriftia persephone") dominate many vents in the Eastern Pacific, and their use of sulfide as a major electron donor has been documented. Genes encoding hydrogenase are present in the "Ca Endoriftia persephone" genome, and proteome data suggest that these genes are expressed. In this study, high-pressure respirometry of intact R. pachyptila and incubations of trophosome homogenate were used to determine whether this symbiotic association could also use H2 as a major electron donor. Measured rates of H2 uptake by intact R. pachyptila in high-pressure respirometers were similar to rates measured in the absence of tubeworms. Oxygen uptake rates in the presence of H2 were always markedly lower than those measured in the presence of sulfide, as was the incorporation of 13C-labeled dissolved inorganic carbon. Carbon fixation by trophosome homogenate was not stimulated by H2, nor was hydrogenase activity detectable in these samples. Though genes encoding [NiFe] group 1e and [NiFe] group 3b hydrogenases are present in the genome and transcribed, it does not appear that H2 is a major electron donor for this system, and it may instead play a role in intracellular redox homeostasis.IMPORTANCE Despite the presence of hydrogenase genes, transcripts, and proteins in the "Ca Endoriftia persephone" genome, transcriptome, and proteome, it does not appear that R. pachyptila can use H2 as a major electron donor. For many uncultivable microorganisms, omic analyses are the basis for inferences about their activities in situ However, as is apparent from the study reported here, there are dangers in extrapolating from omics data to function, and it is essential, whenever possible, to verify functions predicted from omics data with physiological and biochemical measurements.
Collapse
|
18
|
Royo-Llonch M, Sánchez P, González JM, Pedrós-Alió C, Acinas SG. Ecological and functional capabilities of an uncultured Kordia sp. Syst Appl Microbiol 2019; 43:126045. [PMID: 31831198 DOI: 10.1016/j.syapm.2019.126045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 01/07/2023]
Abstract
Cultivable bacteria represent only a fraction of the diversity in microbial communities. However, the official procedures for classification and characterization of a novel prokaryotic species still rely on isolates. Nevertheless, due to single cell genomics, it is possible to retrieve genomes from environmental samples by sequencing them individually, and to assign specific genes to a specific taxon, regardless of their ability to grow in culture. In this study, a complete description was performed for uncultured Kordia sp. TARA_039_SRF, a proposed novel species within the genus Kordia, using culture-independent techniques. The type material was a high-quality draft genome (94.97% complete, 4.65% gene redundancy) co-assembled using ten nearly identical single amplified genomes (SAGs) from surface seawater in the North Indian Ocean during the Tara Oceans Expedition. The assembly process was optimized to obtain the best possible assembly metrics and a less fragmented genome. The closest relative of the species was Kordia periserrulae, which shared 97.56% similarity of the 16S rRNA gene, 75% orthologs and 89.13% average nucleotide identity. The functional potential of the proposed novel species included proteorhodopsin, the ability to incorporate nitrate, cytochrome oxidases with high affinity for oxygen, and CAZymes that were unique features within the genus. Its abundance at different depths and size fractions was also evaluated together with its functional annotation, revealing that its putative ecological niche could be particles of phytoplanktonic origin. It could putatively attach to these particles and consume them while sinking to the deeper and oxygen depleted layers of the North Indian Ocean.
Collapse
Affiliation(s)
- M Royo-Llonch
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain
| | - P Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain
| | - J M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - C Pedrós-Alió
- Systems Biology Program, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - S G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain.
| |
Collapse
|
19
|
Pasqua M, Grossi M, Zennaro A, Fanelli G, Micheli G, Barras F, Colonna B, Prosseda G. The Varied Role of Efflux Pumps of the MFS Family in the Interplay of Bacteria with Animal and Plant Cells. Microorganisms 2019; 7:microorganisms7090285. [PMID: 31443538 PMCID: PMC6780985 DOI: 10.3390/microorganisms7090285] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Efflux pumps represent an important and large group of transporter proteins found in all organisms. The importance of efflux pumps resides in their ability to extrude a wide range of antibiotics, resulting in the emergence of multidrug resistance in many bacteria. Besides antibiotics, multidrug efflux pumps can also extrude a large variety of compounds: Bacterial metabolites, plant-produced compounds, quorum-sensing molecules, and virulence factors. This versatility makes efflux pumps relevant players in interactions not only with other bacteria, but also with plant or animal cells. The multidrug efflux pumps belonging to the major facilitator superfamily (MFS) are widely distributed in microbial genomes and exhibit a large spectrum of substrate specificities. Multidrug MFS efflux pumps are present either as single-component transporters or as tripartite complexes. In this review, we will summarize how the multidrug MFS efflux pumps contribute to the interplay between bacteria and targeted host cells, with emphasis on their role in bacterial virulence, in the colonization of plant and animal host cells and in biofilm formation. We will also address the complexity of these interactions in the light of the underlying regulatory networks required for the effective activation of efflux pump genes.
Collapse
Affiliation(s)
- Martina Pasqua
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Milena Grossi
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Alessandro Zennaro
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Giulia Fanelli
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Gioacchino Micheli
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (CNR), P.le A. Moro 5, 00185 Roma, Italy
| | - Frederic Barras
- Département de Microbiologie, Institut Pasteur, 75015 Paris, France
- Équipe de Recherche Labellisée (ERL) Microbiology, Centre National de la Recherche Scientifique (CNRS), 13009 Marseille, France
| | - Bianca Colonna
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Gianni Prosseda
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy.
| |
Collapse
|
20
|
Wang X, Gong C, Zhao Y, Shen L. Transcriptome and Resistance-Related Genes Analysis of Botrytis cinerea B05.10 Strain to Different Selective Pressures of Cyprodinil and Fenhexamid. Front Microbiol 2018; 9:2591. [PMID: 30425701 PMCID: PMC6218599 DOI: 10.3389/fmicb.2018.02591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/11/2018] [Indexed: 01/10/2023] Open
Abstract
The pathogen Botrytis cinerea is a very dangerous pathogen that infects many economically important crops such as grape, strawberry, tomato, and eggplant. Cyprodinil, a pyrimidine amine fungicide, and fenhexamid, an amide fungicide, are new reagents for controlling gray mold with special efficacy. It is necessary to understand the change trends in the toxicological and physiological characteristics of B. cinerea with successive selective pressures of cyprodinil and fenhexamid to elongate the serving life of these fungicides for effective disease control. The toxicities of cyprodinil and fenhexamid at successive concentrations of EC25, EC50 and EC75 on B. cinerea strain BO5.10 were assayed along with mycelial growth-inhibition capacity. The results showed that the EC50 value of the cyprodinil-treated F27 strain increased approximately 18-fold, whereas of which in the fenhexamid-treated F27 strain increased only 3-fold compared with that of the F0 strain. The conductivities and glycerinum contents of the strains resistant to cyprodinil and fenhexamid were obviously enhanced; in contrast, the oxalic acid contents were decreased compared with those in the F0 strain. The transcriptomes of the F27 control (T01), cyprodinil-treated (T02) and fenhexamid- treated (T03) strains were analyzed, and the expression levels of functional genes in the T02 and T03 strains were significantly increased compared with those in the T01 strain; these results were further validated using qRT-PCR. The results indicated that the relative expression of two genes encoding mixed-functional oxidases (MFOs) BC1G_16062 and BC1G_16084, two genes encoding transmembrane proteins BC1G_12366 and BC1G_13768, two genes encoding Zinc finger proteins BC1G_13764 and BC1G_10483,one gene encoding citrate synthase enzyme BC1G_09151, one gene encoding gluconolactonase BC1G_15612 in the T02 and T03 strains and one gene encoding lysophospholipids enzyme BC1G_04893 in the T3 strain increased substantially compared with that in the T1 strain (P < 0.01). Functional prediction analysis of upregulated gene expression and structural verification was also performed, and the results showed that BC1G_10483 was a ZnF_C2HC transcriptional regulator interacting with the Sp1 element of these genes to respond to the pressures from cyprodinil and fenhexamid. Our results could contribute to a better understanding of the resistance mechanism of B. cinerea against cyprodinil and fenhexamid.
Collapse
|
21
|
Bioinformatics Analysis and Functional Prediction of Transmembrane Proteins in Entamoeba histolytica. Genes (Basel) 2018; 9:genes9100499. [PMID: 30332795 PMCID: PMC6209943 DOI: 10.3390/genes9100499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
Entamoeba histolytica is an invasive, pathogenic parasite causing amoebiasis. Given that proteins involved in transmembrane (TM) transport are crucial for the adherence, invasion, and nutrition of the parasite, we conducted a genome-wide bioinformatics analysis of encoding proteins to functionally classify and characterize all the TM proteins in E. histolytica. In the present study, 692 TM proteins have been identified, of which 546 are TM transporters. For the first time, we report a set of 141 uncharacterized proteins predicted as TM transporters. The percentage of TM proteins was found to be lower in comparison to the free-living eukaryotes, due to the extracellular nature and functional diversification of the TM proteins. The number of multi-pass proteins is larger than the single-pass proteins; though both have their own significance in parasitism, multi-pass proteins are more extensively required as these are involved in acquiring nutrition and for ion transport, while single-pass proteins are only required at the time of inciting infection. Overall, this intestinal parasite implements multiple mechanisms for establishing infection, obtaining nutrition, and adapting itself to the new host environment. A classification of the repertoire of TM transporters in the present study augments several hints on potential methods of targeting the parasite for therapeutic benefits.
Collapse
|
22
|
Darbani B, Kell DB, Borodina I. Energetic evolution of cellular Transportomes. BMC Genomics 2018; 19:418. [PMID: 29848286 PMCID: PMC5977736 DOI: 10.1186/s12864-018-4816-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Transporter proteins mediate the translocation of substances across the membranes of living cells. Many transport processes are energetically expensive and the cells use 20 to 60% of their energy to power the transportomes. We hypothesized that there may be an evolutionary selection pressure for lower energy transporters. RESULTS We performed a genome-wide analysis of the compositional reshaping of the transportomes across the kingdoms of bacteria, archaea, and eukarya. We found that the share of ABC transporters is much higher in bacteria and archaea (ca. 27% of the transportome) than in primitive eukaryotes (13%), algae and plants (10%) and in fungi and animals (5-6%). This decrease is compensated by an increased occurrence of secondary transporters and ion channels. The share of ion channels is particularly high in animals (ca. 30% of the transportome) and algae and plants with (ca. 13%), when compared to bacteria and archaea with only 6-7%. Therefore, our results show a move to a preference for the low-energy-demanding transporters (ion channels and carriers) over the more energy-costly transporter classes (ATP-dependent families, and ABCs in particular) as part of the transition from prokaryotes to eukaryotes. The transportome analysis also indicated seven bacterial species, including Neorickettsia risticii and Neorickettsia sennetsu, as likely origins of the mitochondrion in eukaryotes, based on the phylogenetically restricted presence therein of clear homologues of modern mitochondrial solute carriers. CONCLUSIONS The results indicate that the transportomes of eukaryotes evolved strongly towards a higher energetic efficiency, as ATP-dependent transporters diminished and secondary transporters and ion channels proliferated. These changes have likely been important in the development of tissues performing energetically costly cellular functions.
Collapse
Affiliation(s)
- Behrooz Darbani
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
23
|
Heidari Tajabadi F, Medrano-Soto A, Ahmadzadeh M, Salehi Jouzani G, Saier MH. Comparative Analyses of Transport Proteins Encoded within the Genomes of Bdellovibrio bacteriovorus HD100 and Bdellovibrio exovorus JSS. J Mol Microbiol Biotechnol 2017; 27:332-349. [PMID: 29212086 DOI: 10.1159/000484563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Bdellovibrio, δ-proteobacteria, including B. bacteriovorus (Bba) and B. exovorus (Bex), are obligate predators of other Gram-negative bacteria. While Bba grows in the periplasm of the prey cell, Bex grows externally. We have analyzed and compared the transport proteins of these 2 organisms based on the current contents of the Transporter Classification Database (TCDB; www.tcdb.org). Bba has 103 transporters more than Bex, 50% more secondary carriers, and 3 times as many MFS carriers. Bba has far more metabolite transporters than Bex as expected from its larger genome, but there are 2 times more carbohydrate uptake and drug efflux systems, and 3 times more lipid transporters. Bba also has polyamine and carboxylate transporters lacking in Bex. Bba has more than twice as many members of the Mot-Exb family of energizers, but both may have energizers for gliding motility. They use entirely different types of systems for iron acquisition. Both contain unexpectedly large numbers of pseudogenes and incomplete systems, suggesting that they are undergoing genome size reduction. Interestingly, all 5 outer-membrane receptors in Bba are lacking in Bex. The 2 organisms have similar numbers and types of peptide and amino acid uptake systems as well as protein and carbohydrate secretion systems. The differences observed correlate with and may account, in part, for the different lifestyles of these 2 bacterial predators.
Collapse
|
24
|
Goudsmits JMH, van Oijen AM, Slotboom DJ. Single-Molecule Fluorescence Studies of Membrane Transporters Using Total Internal Reflection Microscopy. Methods Enzymol 2017; 594:101-121. [PMID: 28779837 DOI: 10.1016/bs.mie.2017.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Cells are delineated by a lipid bilayer that physically separates the inside from the outer environment. Most polar, charged, or large molecules require proteins to reduce the energetic barrier for passage across the membrane and to achieve transport rates that are relevant for life. Here, we describe techniques to visualize the functioning of membrane transport proteins with fluorescent probes at the single-molecule level. First, we explain how to produce membrane-reconstituted transporters with fluorescent labels. Next, we detail the construction of a microfluidic flow cell to image immobilized proteoliposomes on a total internal reflection fluorescence microscope. We conclude by describing the methods that are needed to analyze fluorescence movies and obtain useful single-molecule data.
Collapse
|
25
|
Wang J, Hou Q, Li P, Yang L, Sun X, Benedito VA, Wen J, Chen B, Mysore KS, Zhao J. Diverse functions of multidrug and toxin extrusion (MATE) transporters in citric acid efflux and metal homeostasis in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:79-95. [PMID: 28052433 DOI: 10.1111/tpj.13471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 05/02/2023]
Abstract
The multidrug and toxin extrusion (MATE) transporter family comprises 70 members in the Medicago truncatula genome, and they play seemingly important, yet mostly uncharacterized, physiological functions. Here, we employed bioinformatics and molecular genetics to identify and characterize MATE transporters involved in citric acid export, Al3+ tolerance and Fe translocation. MtMATE69 is a citric acid transporter induced by Fe-deficiency. Overexpression of MtMATE69 in hairy roots altered Fe homeostasis and hormone levels under Fe-deficient or Fe-oversupplied conditions. MtMATE66 is a plasma membrane citric acid transporter primarily expressed in root epidermal cells. The mtmate66 mutant had less root growth than the wild type under Al3+ stress, and seedlings were chlorotic under Fe-deficient conditions. Overexpression of MtMATE66 rendered hairy roots more tolerant to Al3+ toxicity. MtMATE55 is involved in seedling development and iron homeostasis, as well as hormone signaling. The mtmate55 mutant had delayed development and chlorotic leaves in mature plants. Both knock-out and overexpression mutants of MtMATE55 showed altered Fe accumulation and abnormal hormone levels compared with the wild type. We demonstrate that the zinc-finger transcription factor MtSTOP is essentially required for MtMATE66 expression and plant resistance to H+ and Al3+ toxicity. The proper expression of two previously characterized MATE flavonoid transporters MtMATE1 and MtMATE2 also depends on several transcription factors. This study reveals not only functional diversity of MATE transporters and regulatory mechanisms in legumes against H+ and Al3+ stresses, but also casts light on their role in metal nutrition and hormone signaling under various stresses.
Collapse
Affiliation(s)
- Junjie Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075, China
| | - Qiuqiang Hou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075, China
| | - Penghui Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075, China
| | - Lina Yang
- Division of Plant & Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Xuecheng Sun
- College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430075, China
| | - Vagner A Benedito
- Division of Plant & Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Jiangqi Wen
- Plant Biology Division, the Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Beibei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075, China
| | - Kirankumar S Mysore
- Plant Biology Division, the Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075, China
| |
Collapse
|
26
|
Defining Brugia malayi and Wolbachia symbiosis by stage-specific dual RNA-seq. PLoS Negl Trop Dis 2017; 11:e0005357. [PMID: 28358880 PMCID: PMC5373514 DOI: 10.1371/journal.pntd.0005357] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Background Filarial nematodes currently infect up to 54 million people worldwide, with millions more at risk for infection, representing the leading cause of disability in the developing world. Brugia malayi is one of the causative agents of lymphatic filariasis and remains the only human filarial parasite that can be maintained in small laboratory animals. Many filarial nematode species, including B. malayi, carry an obligate endosymbiont, the alpha-proteobacteria Wolbachia, which can be eliminated through antibiotic treatment. Elimination of the endosymbiont interferes with development, reproduction, and survival of the worms within the mamalian host, a clear indicator that the Wolbachia are crucial for survival of the parasite. Little is understood about the mechanism underlying this symbiosis. Methodology/ Principle findings To better understand the molecular interplay between these two organisms we profiled the transcriptomes of B. malayi and Wolbachia by dual RNA-seq across the life cycle of the parasite. This helped identify functional pathways involved in this essential symbiotic relationship provided by the co-expression of nematode and bacterial genes. We have identified significant stage-specific and gender-specific differential expression in Wolbachia during the nematode’s development. For example, during female worm development we find that Wolbachia upregulate genes involved in ATP production and purine biosynthesis, as well as genes involved in the oxidative stress response. Conclusions/ Significance This global transcriptional analysis has highlighted specific pathways to which both Wolbachia and B. malayi contribute concurrently over the life cycle of the parasite, paving the way for the development of novel intervention strategies. Filarial nematodes currently infect millions of people worldwide and represent a leading cause of disability. Currently available medications are insufficient in reaching elimination of these parasites. Many filarial nematodes, including Brugia malayi, have an Achilles heel of sorts—that is their obligate symbiotic relationship with the bacteria Wolbachia. While it is known that the nematode and the bacteria are co-dependent, the molecular basis of this relationship remains poorly understood. Using deep sequencing, we profiled the transcriptomes of B. malayi and Wolbachia across the life cycle of the parasite to determine the functional pathways necessary for parasite survival provided by the co-expression of nematode and bacterial genes. Defining the mechanisms of endosymbiosis between these two organisms will allow for the exploitation of this relationship for the development of new intervention strategies.
Collapse
|
27
|
Spengler G, Kincses A, Gajdács M, Amaral L. New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria. Molecules 2017; 22:molecules22030468. [PMID: 28294992 PMCID: PMC6155429 DOI: 10.3390/molecules22030468] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 01/05/2023] Open
Abstract
Multidrug resistance (MDR) has appeared in response to selective pressures resulting from the incorrect use of antibiotics and other antimicrobials. This inappropriate application and mismanagement of antibiotics have led to serious problems in the therapy of infectious diseases. Bacteria can develop resistance by various mechanisms and one of the most important factors resulting in MDR is efflux pump-mediated resistance. Because of the importance of the efflux-related multidrug resistance the development of new therapeutic approaches aiming to inhibit bacterial efflux pumps is a promising way to combat bacteria having over-expressed MDR efflux systems. The definition of an efflux pump inhibitor (EPI) includes the ability to render the bacterium increasingly more sensitive to a given antibiotic or even reverse the multidrug resistant phenotype. In the recent years numerous EPIs have been developed, although so far their clinical application has not yet been achieved due to their in vivo toxicity and side effects. In this review, we aim to give a short overview of efflux mediated resistance in bacteria, EPI compounds of plant and synthetic origin, and the possible methods to investigate and screen EPI compounds in bacterial systems.
Collapse
Affiliation(s)
- Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Annamária Kincses
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Márió Gajdács
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Leonard Amaral
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
- Travel Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal.
| |
Collapse
|
28
|
Elbourne LDH, Tetu SG, Hassan KA, Paulsen IT. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res 2016; 45:D320-D324. [PMID: 27899676 PMCID: PMC5210551 DOI: 10.1093/nar/gkw1068] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 01/24/2023] Open
Abstract
All cellular life contains an extensive array of membrane transport proteins. The vast majority of these transporters have not been experimentally characterized. We have developed a bioinformatic pipeline to identify and annotate complete sets of transporters in any sequenced genome. This pipeline is now fully automated enabling it to better keep pace with the accelerating rate of genome sequencing. This manuscript describes TransportDB 2.0 (http://www.membranetransport.org/transportDB2/), a completely updated version of TransportDB, which provides access to the large volumes of data generated by our automated transporter annotation pipeline. The TransportDB 2.0 web portal has been rebuilt to utilize contemporary JavaScript libraries, providing a highly interactive interface to the annotation information, and incorporates analysis tools that enable users to query the database on a number of levels. For example, TransportDB 2.0 includes tools that allow users to select annotated genomes of interest from the thousands of species held in the database and compare their complete transporter complements.
Collapse
Affiliation(s)
- Liam D H Elbourne
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW 2109, Australia
| | - Sasha G Tetu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW 2109, Australia
| | - Karl A Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW 2109, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW 2109, Australia
| |
Collapse
|
29
|
Tian X, Zhang Z, Yang T, Chen M, Li J, Chen F, Yang J, Li W, Zhang B, Zhang Z, Wu J, Zhang C, Long L, Xiao J. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level. Front Microbiol 2016; 7:998. [PMID: 27446038 PMCID: PMC4921485 DOI: 10.3389/fmicb.2016.00998] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 11/13/2022] Open
Abstract
Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea's genetic data sources.
Collapse
Affiliation(s)
- Xinpeng Tian
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology - Chinese Academy of Sciences Guangzhou, China
| | - Zhewen Zhang
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Tingting Yang
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Meili Chen
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Jie Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology - Chinese Academy of Sciences Guangzhou, China
| | - Fei Chen
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Jin Yang
- Core Genomic Facility, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Wenjie Li
- Core Genomic Facility, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Bing Zhang
- Core Genomic Facility, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Zhang Zhang
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Jiayan Wu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology - Chinese Academy of Sciences Guangzhou, China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology - Chinese Academy of Sciences Guangzhou, China
| | - Jingfa Xiao
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| |
Collapse
|
30
|
Sequence- and Structure-Based Functional Annotation and Assessment of Metabolic Transporters in Aspergillus oryzae: A Representative Case Study. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8124636. [PMID: 27274991 PMCID: PMC4870676 DOI: 10.1155/2016/8124636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/06/2016] [Indexed: 11/17/2022]
Abstract
Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H+-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction.
Collapse
|
31
|
Anderson LN, Koech PK, Plymale AE, Landorf EV, Konopka A, Collart FR, Lipton MS, Romine MF, Wright AT. Live Cell Discovery of Microbial Vitamin Transport and Enzyme-Cofactor Interactions. ACS Chem Biol 2016; 11:345-54. [PMID: 26669591 DOI: 10.1021/acschembio.5b00918] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rapid completion of microbial genomes is inducing a conundrum in functional gene discovery. Novel methods are needed to shorten the gap between characterizing a microbial genome and experimentally validating bioinformatically predicted functions. Of particular importance are transport mechanisms, which shuttle nutrients such as B vitamins and metabolites across cell membranes and are required for the survival of microbes ranging from members of environmental microbial communities to pathogens. Methods to accurately assign function and specificity for a wide range of experimentally unidentified and/or predicted membrane-embedded transport proteins, along with characterization of intracellular enzyme-cofactor associations, are needed to enable a significantly improved understanding of microbial biochemistry and physiology, microbial interactions, and microbial responses to perturbations. Chemical probes derived from B vitamins B1, B2, and B7 have allowed us to experimentally address the aforementioned needs by identifying B vitamin transporters and intracellular enzyme-cofactor associations through live cell labeling of the filamentous anoxygenic photoheterotroph, Chloroflexus aurantiacus J-10-fl, known to employ mechanisms for both B vitamin biosynthesis and environmental salvage. Our probes provide a unique opportunity to directly link cellular activity and protein function back to ecosystem and/or host dynamics by identifying B vitamin transport and cofactor-dependent interactions required for survival.
Collapse
Affiliation(s)
- Lindsey N. Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Phillip K. Koech
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Andrew E. Plymale
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Elizabeth V. Landorf
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439 United States
| | - Allan Konopka
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Frank R. Collart
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439 United States
| | - Mary S. Lipton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Margaret F. Romine
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Aaron T. Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| |
Collapse
|
32
|
Comparative genome analysis of Oceanimonas sp. GK1, a halotolerant bacterium with considerable xenobiotics degradation potentials. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1156-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Garushyants SK, Kazanov MD, Gelfand MS. Horizontal gene transfer and genome evolution in Methanosarcina. BMC Evol Biol 2015; 15:102. [PMID: 26044078 PMCID: PMC4455057 DOI: 10.1186/s12862-015-0393-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/29/2015] [Indexed: 12/29/2022] Open
Abstract
Background Genomes of Methanosarcina spp. are among the largest archaeal genomes. One suggested reason for that is massive horizontal gene transfer (HGT) from bacteria. Genes of bacterial origin may be involved in the central metabolism and solute transport, in particular sugar synthesis, sulfur metabolism, phosphate metabolism, DNA repair, transport of small molecules etc. Horizontally transferred (HT) genes are considered to play the key role in the ability of Methanosarcina spp. to inhabit diverse environments. At the moment, genomes of three Methanosarcina spp. have been sequenced, and while these genomes vary in length and number of protein-coding genes, they all have been shown to accumulate HT genes. However, previous estimates had been made when fewer archaeal genomes were known. Moreover, several Methanosarcinaceae genomes from other genera have been sequenced recently. Here, we revise the census of genes of bacterial origin in Methanosarcinaceae. Results About 5 % of Methanosarcina genes have been shown to be horizontally transferred from various bacterial groups to the last common ancestor either of Methanosarcinaceae, or Methanosarcina, or later in the evolution. Simulation of the composition of the NCBI protein non-redundant database for different years demonstrates that the estimates of the HGT rate have decreased drastically since 2002, the year of publication of the first Methanosarcina genome. The phylogenetic distribution of HT gene donors is non-uniform. Most HT genes were transferred from Firmicutes and Proteobacteria, while no HGT events from Actinobacteria to the common ancestor of Methanosarcinaceae were found. About 50 % of HT genes are involved in metabolism. Horizontal transfer of transcription factors is not common, while 46 % of horizontally transferred genes have demonstrated differential expression in a variety of conditions. HGT of complete operons is relatively infrequent and half of HT genes do not belong to operons. Conclusions While genes of bacterial origin are still more frequent in Methanosarcinaceae than in other Archaea, most HGT events described earlier as Methanosarcina-specific seem to have occurred before the divergence of Methanosarcinaceae. Genes horizontally transferred from bacteria to archaea neither tend to be transferred with their regulators, nor in long operons. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0393-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofya K Garushyants
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoi Karetny per. 19, build.1, Moscow, 127051, Russia.
| | - Marat D Kazanov
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoi Karetny per. 19, build.1, Moscow, 127051, Russia.
| | - Mikhail S Gelfand
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoi Karetny per. 19, build.1, Moscow, 127051, Russia. .,Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Vorobievy Gory 1-73, Moscow, 119991, Russia.
| |
Collapse
|
34
|
Li N, Chen H, Williams HN. Genome-wide comparative analysis of ABC systems in the Bdellovibrio-and-like organisms. Gene 2015; 562:132-7. [PMID: 25707746 DOI: 10.1016/j.gene.2015.02.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/14/2015] [Accepted: 02/19/2015] [Indexed: 11/28/2022]
Abstract
Bdellovibrio-and-like organisms (BALOs) are gram-negative, predatory bacteria with wide variations in genome sizes and GC content and ecological habitats. The ATP-binding cassette (ABC) systems have been identified in several prokaryotes, fungi and plants and have a role in transport of materials in and out of cells and in cellular processes. However, knowledge of the ABC systems of BALOs remains obscure. A total of 269 putative ABC proteins were identified in BALOs. The genes encoding these ABC systems occupy nearly 1.3% of the gene content in freshwater Bdellovibrio strains and about 0.7% in their saltwater counterparts. The proteins found belong to 25 ABC system families based on their structural characteristics and functions. Among these, 16 families function as importers, 6 as exporters and 3 are involved in various cellular processes. Eight of these 25 ABC system families were deduced to be the core set of ABC systems conserved in all BALOs. All Bacteriovorax strains have 28 or less ABC systems. On the contrary, the freshwater Bdellovibrio strains have more ABC systems, typically around 51. In the genome of Bdellovibrio exovorus JSS (CP003537.1), 53 putative ABC systems were detected, representing the highest number among all the BALO genomes examined in this study. Unexpected high numbers of ABC systems involved in cellular processes were found in all BALOs. Phylogenetic analysis suggests that the majority of ABC proteins can be assigned into many separate families with high bootstrap supports (>50%). In this study, a general framework of sequence-structure-function connections for the ABC systems in BALOs was revealed providing novel insights for future investigations.
Collapse
Affiliation(s)
- Nan Li
- School of the Environment, Florida A&M University, Tallahassee, FL, USA
| | - Huan Chen
- National High Magnetic Field Laboratory, Tallahassee, FL, USA
| | - Henry N Williams
- School of the Environment, Florida A&M University, Tallahassee, FL, USA.
| |
Collapse
|
35
|
Tegos GP, Evangelisti AM, Strouse JJ, Ursu O, Bologa C, Sklar LA. A high throughput flow cytometric assay platform targeting transporter inhibition. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 12:e95-103. [PMID: 25027381 DOI: 10.1016/j.ddtec.2014.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review highlights the concepts, recent applications and limitations of High Throughput Screening (HTS) flow cytometry-based efflux inhibitory assays. This platform has been employed in mammalian and yeast efflux systems leading to the identification of small molecules with transporter inhibitory capabilities. This technology offers the possibility of substrate multiplexing and may promote novel strategies targeting microbial efflux systems. This platform can generate a comprehensive dataset that may support efforts to map the interface between chemistry and transporter biology in a variety of pathogenic systems.
Collapse
Affiliation(s)
- George P Tegos
- Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States
| | - Annette M Evangelisti
- Center for Molecular Discovery, University of New Mexico, Albuquerque, NM 87131, United States
| | - J Jacob Strouse
- Center for Molecular Discovery, University of New Mexico, Albuquerque, NM 87131, United States
| | - Oleg Ursu
- Division of Translational Informatics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Cristian Bologa
- Division of Translational Informatics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Larry A Sklar
- Department of Pathology, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| |
Collapse
|
36
|
Nayfach S, Pollard KS. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol 2015; 16:51. [PMID: 25853934 PMCID: PMC4389708 DOI: 10.1186/s13059-015-0611-7] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/10/2015] [Indexed: 01/15/2023] Open
Abstract
Average genome size is an important, yet often overlooked, property of microbial communities. We developed MicrobeCensus to rapidly and accurately estimate average genome size from shotgun metagenomic data and applied our tool to 1,352 human microbiome samples. We found that average genome size differs significantly within and between body sites and tracks with major functional and taxonomic differences. In the gut, average genome size is positively correlated with the abundance of Bacteroides and genes related to carbohydrate metabolism. Importantly, we found that average genome size variation can bias comparative analyses, and that normalization improves detection of differentially abundant genes.
Collapse
|
37
|
Rao Q, Rollat-Farnier PA, Zhu DT, Santos-Garcia D, Silva FJ, Moya A, Latorre A, Klein CC, Vavre F, Sagot MF, Liu SS, Mouton L, Wang XW. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genomics 2015; 16:226. [PMID: 25887812 PMCID: PMC4438442 DOI: 10.1186/s12864-015-1379-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/21/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The whitefly Bemisia tabaci is an important agricultural pest with global distribution. This phloem-sap feeder harbors a primary symbiont, "Candidatus Portiera aleyrodidarum", which compensates for the deficient nutritional composition of its food sources, and a variety of secondary symbionts. Interestingly, all of these secondary symbionts are found in co-localization with the primary symbiont within the same bacteriocytes, which should favor the evolution of strong interactions between symbionts. RESULTS In this paper, we analyzed the genome sequences of the primary symbiont Portiera and of the secondary symbiont Hamiltonella in the B. tabaci Mediterranean (MED) species in order to gain insight into the metabolic role of each symbiont in the biology of their host. The genome sequences of the uncultured symbionts Portiera and Hamiltonella were obtained from one single bacteriocyte of MED B. tabaci. As already reported, the genome of Portiera is highly reduced (357 kb), but has kept a number of genes encoding most essential amino-acids and carotenoids. On the other hand, Portiera lacks almost all the genes involved in the synthesis of vitamins and cofactors. Moreover, some pathways are incomplete, notably those involved in the synthesis of some essential amino-acids. Interestingly, the genome of Hamiltonella revealed that this secondary symbiont can not only provide vitamins and cofactors, but also complete the missing steps of some of the pathways of Portiera. In addition, some critical amino-acid biosynthetic genes are missing in the two symbiotic genomes, but analysis of whitefly transcriptome suggests that the missing steps may be performed by the whitefly itself or its microbiota. CONCLUSIONS These data suggest that Portiera and Hamiltonella are not only complementary but could also be mutually dependent to provide a full complement of nutrients to their host. Altogether, these results illustrate how functional redundancies can lead to gene losses in the genomes of the different symbiotic partners, reinforcing their inter-dependency.
Collapse
Affiliation(s)
- Qiong Rao
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China.
- School of Agriculture and Food Science, Zhejiang A & F University, 311300, Lin'an, Zhejiang, China.
| | - Pierre-Antoine Rollat-Farnier
- Université de Lyon, Université Lyon1, Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, 69622, Villeurbanne, Cedex, France.
- Inria Grenoble Rhône-Alpes, Grenoble, France.
| | - Dan-Tong Zhu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Diego Santos-Garcia
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain.
| | - Francisco J Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain.
- Unidad Mixta de Investigación en Genómica y Salud FISABIO-Salud Pública and Universitat de València, Valencia, Spain.
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain.
- Unidad Mixta de Investigación en Genómica y Salud FISABIO-Salud Pública and Universitat de València, Valencia, Spain.
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain.
- Unidad Mixta de Investigación en Genómica y Salud FISABIO-Salud Pública and Universitat de València, Valencia, Spain.
| | - Cecilia C Klein
- Université de Lyon, Université Lyon1, Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, 69622, Villeurbanne, Cedex, France.
- Inria Grenoble Rhône-Alpes, Grenoble, France.
| | - Fabrice Vavre
- Université de Lyon, Université Lyon1, Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, 69622, Villeurbanne, Cedex, France.
| | - Marie-France Sagot
- Université de Lyon, Université Lyon1, Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, 69622, Villeurbanne, Cedex, France.
- Inria Grenoble Rhône-Alpes, Grenoble, France.
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Laurence Mouton
- Université de Lyon, Université Lyon1, Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, 69622, Villeurbanne, Cedex, France.
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
38
|
Trötschel C, Follmann M, Nettekoven JA, Mohrbach T, Forrest LR, Burkovski A, Marin K, Krämer R. Methionine uptake in Corynebacterium glutamicum by MetQNI and by MetPS, a novel methionine and alanine importer of the NSS neurotransmitter transporter family. Biochemistry 2015; 47:12698-709. [PMID: 18991398 DOI: 10.1021/bi801206t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The soil bacterium Corynebacterium glutamicum is a model organism in amino acid biotechnology. Here we present the identification of two different L-methionine uptake systems including the first characterization of a bacterial secondary methionine carrier. The primary carrier MetQNI is a high affinity ABC-type transporter specific for l-methionine. Its expression is under the control of the transcription factor McbR, the global regulator of sulfur metabolism in C. glutamicum. Besides MetQNI, a novel secondary methionine uptake system of the NSS (neurotransmitter:sodium symporter) family was identified and named MetP. The MetP system is characterized by a lower affinity for methionine and uses Na(+) ions for energetic coupling. It is also the main alanine transporter in C. glutamicum and is expressed constitutively. These observations are consistent with models of methionine, alanine, and leucine bound to MetP, derived from the X-ray crystal structure of the LeuT transporter from Aquifex aeolicus. Complementation studies show that MetP consists of two components, a large subunit with 12 predicted transmembrane segments and, surprisingly, an additional subunit with one predicted transmembrane segment only. Thus, this new member of the NSS transporter family adds a novel feature to this class of carriers, namely, the functional dependence on an additional small subunit.
Collapse
Affiliation(s)
- Christian Trötschel
- Institute of Biochemistry, University of Koln, 50674 Koln, Germany, and Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kumar U, Saier MH. Comparative Genomic Analysis of Integral Membrane Transport Proteins in Ciliates. J Eukaryot Microbiol 2014; 62:167-87. [DOI: 10.1111/jeu.12156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/23/2014] [Accepted: 04/28/2014] [Indexed: 11/25/2022]
Affiliation(s)
- Ujjwal Kumar
- Division of Biological Sciences; University of California at San Diego; La Jolla California
| | - Milton H. Saier
- Division of Biological Sciences; University of California at San Diego; La Jolla California
| |
Collapse
|
40
|
Trujillo ME, Bacigalupe R, Pujic P, Igarashi Y, Benito P, Riesco R, Médigue C, Normand P. Genome features of the endophytic actinobacterium Micromonospora lupini strain Lupac 08: on the process of adaptation to an endophytic life style? PLoS One 2014; 9:e108522. [PMID: 25268993 PMCID: PMC4182475 DOI: 10.1371/journal.pone.0108522] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/22/2014] [Indexed: 12/03/2022] Open
Abstract
Endophytic microorganisms live inside plants for at least part of their life cycle. According to their life strategies, bacterial endophytes can be classified as “obligate” or “facultative”. Reports that members of the genus Micromonospora, Gram-positive Actinobacteria, are normal occupants of nitrogen-fixing nodules has opened up a question as to what is the ecological role of these bacteria in interactions with nitrogen-fixing plants and whether it is in a process of adaptation from a terrestrial to a facultative endophytic life. The aim of this work was to analyse the genome sequence of Micromonospora lupini Lupac 08 isolated from a nitrogen fixing nodule of the legume Lupinus angustifolius and to identify genomic traits that provide information on this new plant-microbe interaction. The genome of M. lupini contains a diverse array of genes that may help its survival in soil or in plant tissues, while the high number of putative plant degrading enzyme genes identified is quite surprising since this bacterium is not considered a plant-pathogen. Functionality of several of these genes was demonstrated in vitro, showing that Lupac 08 degraded carboxymethylcellulose, starch and xylan. In addition, the production of chitinases detected in vitro, indicates that strain Lupac 08 may also confer protection to the plant. Micromonospora species appears as new candidates in plant-microbe interactions with an important potential in agriculture and biotechnology. The current data strongly suggests that a beneficial effect is produced on the host-plant.
Collapse
Affiliation(s)
- Martha E. Trujillo
- Departamento de Microbiología y Genética, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| | - Rodrigo Bacigalupe
- Departamento de Microbiología y Genética, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca, Spain
| | - Petar Pujic
- Université Lyon 1, Université de Lyon, CNRS-UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, Kurokawa, Imizu, Toyama, Japan
| | - Patricia Benito
- Departamento de Microbiología y Genética, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca, Spain
| | - Raúl Riesco
- Departamento de Microbiología y Genética, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca, Spain
| | - Claudine Médigue
- Genoscope, CNRS-UMR 8030, Atelier de Génomique Comparative, Evry, France
| | - Philippe Normand
- Université Lyon 1, Université de Lyon, CNRS-UMR5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
41
|
Offre P, Kerou M, Spang A, Schleper C. Variability of the transporter gene complement in ammonia-oxidizing archaea. Trends Microbiol 2014; 22:665-75. [PMID: 25169021 DOI: 10.1016/j.tim.2014.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/17/2014] [Accepted: 07/30/2014] [Indexed: 12/19/2022]
Abstract
Ammonia-oxidizing archaea (AOA) are a widespread and abundant component of microbial communities in many different ecosystems. The extent of physiological differences between individual AOA is, however, unknown. Here, we compare the transporter gene complements of six AOA, from four different environments and two major clades, to assess their potential for substrate uptake and efflux. Each of the corresponding AOA genomes encode a unique set of transporters and although the composition of AOA transporter complements follows a phylogenetic pattern, few transporter families are conserved in all investigated genomes. A comparison of ammonia transporters encoded by archaeal and bacterial ammonia oxidizers highlights the variance among AOA lineages as well as their distinction from the ammonia-oxidizing bacteria, and suggests differential ecological adaptations.
Collapse
Affiliation(s)
- Pierre Offre
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaea Biology and Ecogenomics Division, Althanstrasse 14, A-1090 Wien, Austria.
| | - Melina Kerou
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaea Biology and Ecogenomics Division, Althanstrasse 14, A-1090 Wien, Austria
| | - Anja Spang
- Uppsala University, Department of Cell and Molecular Biology, Science for Life Laboratory, Box 596, SE-75123, Uppsala, Sweden
| | - Christa Schleper
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaea Biology and Ecogenomics Division, Althanstrasse 14, A-1090 Wien, Austria.
| |
Collapse
|
42
|
Haq IU, Graupner K, Nazir R, van Elsas JD. The genome of the fungal-interactive soil bacterium Burkholderia terrae BS001-a plethora of outstanding interactive capabilities unveiled. Genome Biol Evol 2014; 6:1652-68. [PMID: 24923325 PMCID: PMC4122924 DOI: 10.1093/gbe/evu126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Burkholderia terrae strain BS001, obtained as an inhabitant of the mycosphere of Laccaria proxima (a close relative of Lyophyllum sp. strain Karsten), actively interacts with Lyophyllum sp. strain Karsten. We here summarize the remarkable ecological behavior of B. terrae BS001 in the mycosphere and add key data to this. Moreover, we extensively analyze the approximately 11.5-Mb five-replicon genome of B. terrae BS001 and highlight its remarkable features. Seventy-nine regions of genomic plasticity (RGP), that is, 16.48% of the total genome size, were found. One 70.42-kb RGP, RGP76, revealed a typical conjugal element structure, including a full type 4 secretion system. Comparative analyses across 24 related Burkholderia genomes revealed that 95.66% of the total BS001 genome belongs to the variable part, whereas the remaining 4.34% constitutes the core genome. Genes for biofilm formation and several secretion systems, under which a type 3 secretion system (T3SS), were found, which is consistent with the hypothesis that T3SSs play a role in the interaction with Lyophyllum sp. strain Karsten. The high number of predicted metabolic pathways and membrane transporters suggested that strain BS001 can take up and utilize a range of sugars, amino acids and organic acids. In particular, a unique glycerol uptake system was found. The BS001 genome further contains genetic systems for the degradation of complex organic compounds. Moreover, gene clusters encoding nonribosomal peptide synthetases (NRPS) and hybrid polyketide synthases/NRPS were found, highlighting the potential role of secondary metabolites in the ecology of strain BS001. The patchwork of genetic features observed in the genome is consistent with the notion that 1) horizontal gene transfer is a main driver of B. terrae BS001 adaptation and 2) the organism is very flexible in its ecological behavior in soil.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, The Netherlands
| | - Katharina Graupner
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Rashid Nazir
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, The Netherlands
| |
Collapse
|
43
|
Gundert-Remy U, Bernauer U, Blömeke B, Döring B, Fabian E, Goebel C, Hessel S, Jäckh C, Lampen A, Oesch F, Petzinger E, Völkel W, Roos PH. Extrahepatic metabolism at the body's internal–external interfaces. Drug Metab Rev 2014; 46:291-324. [DOI: 10.3109/03602532.2014.900565] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Döring B, Petzinger E. Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism. Drug Metab Rev 2014; 46:261-82. [PMID: 24483608 DOI: 10.3109/03602532.2014.882353] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The historical phasing concept of drug metabolism and elimination was introduced to comprise the two phases of metabolism: phase I metabolism for oxidations, reductions and hydrolyses, and phase II metabolism for synthesis. With this concept, biological membrane barriers obstructing the accessibility of metabolism sites in the cells for drugs were not considered. The concept of two phases was extended to a concept of four phases when drug transporters were detected that guided drugs and drug metabolites in and out of the cells. In particular, water soluble or charged drugs are virtually not able to overcome the phospholipid membrane barrier. Drug transporters belong to two main clusters of transporter families: the solute carrier (SLC) families and the ATP binding cassette (ABC) carriers. The ABC transporters comprise seven families with about 20 carriers involved in drug transport. All of them operate as pumps at the expense of ATP splitting. Embedded in the former phase concept, the term "phase III" was introduced by Ishikawa in 1992 for drug export by ABC efflux pumps. SLC comprise 52 families, from which many carriers are drug uptake transporters. Later on, this uptake process was referred to as the "phase 0 transport" of drugs. Transporters for xenobiotics in man and animal are most expressed in liver, but they are also present in extra-hepatic tissues such as in the kidney, the adrenal gland and lung. This review deals with the function of drug carriers in various organs and their impact on drug metabolism and elimination.
Collapse
Affiliation(s)
- Barbara Döring
- Institute of Pharmacology and Toxicology, Biomedical Research Center Seltersberg, Justus-Liebig-University Giessen , Giessen , Germany
| | | |
Collapse
|
45
|
Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2013; 20:123-33. [PMID: 23352146 DOI: 10.1016/j.chembiol.2012.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/30/2012] [Accepted: 11/20/2012] [Indexed: 01/03/2023]
Abstract
Computational prediction of protein function is frequently error-prone and incomplete. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins, severely limiting our understanding of Mtb pathogenicity. Here, we utilize a high-throughput quantitative activity-based protein profiling (ABPP) platform to probe, annotate, and validate ATP-binding proteins in Mtb. We experimentally validate prior in silico predictions of >240 proteins and identify 72 hypothetical proteins as ATP binders. ATP interacts with proteins with diverse and unrelated sequences, providing an expanded view of adenosine nucleotide binding in Mtb. Several hypothetical ATP binders are essential or taxonomically limited, suggesting specialized functions in mycobacterial physiology and pathogenicity.
Collapse
|
46
|
Palmieri G, Balestrieri M, Peter-Katalinić J, Pohlentz G, Rossi M, Fiume I, Pocsfalvi G. Surface-exposed glycoproteins of hyperthermophilic Sulfolobus solfataricus P2 show a common N-glycosylation profile. J Proteome Res 2013; 12:2779-90. [PMID: 23586857 DOI: 10.1021/pr400123z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell surface proteins of hyperthermophilic Archaea actively participate in intercellular communication, cellular uptake, and energy conversion to sustain survival strategies in extreme habitats. Surface (S)-layer glycoproteins, the major component of the S-layers in many archaeal species and the best-characterized prokaryotic glycoproteins, were shown to have a large structural diversity in their glycan compositions. In spite of this, knowledge on glycosylation of proteins other than S-layer proteins in Archaea is quite limited. Here, the N-glycosylation pattern of cell-surface-exposed proteins of Sulfolobus solfataricus P2 were analyzed by lectin affinity purification, HPAEC-PAD, and multiple mass spectrometry-based techniques. Detailed analysis of SSO1273, one of the most abundant ABC transporters present in the cell surface fraction of S. solfataricus, revealed a novel glycan structure composed of a branched sulfated heptasaccharide, Hex4(GlcNAc)2 plus sulfoquinovose where Hex is d-mannose and d-glucose. Having one monosaccharide unit more than the glycan of the S-layer glycoprotein of S. acidocaldarius, this is the most complex archaeal glycan structure known today. SSO1273 protein is heavily glycosylated and all 20 theoretical N-X-S/T (where X is any amino acid except proline) consensus sequence sites were confirmed. Remarkably, we show that several other proteins in the surface fraction of S. solfataricus are N-glycosylated by the same sulfated oligosaccharide and we identified 56 N-glycosylation sites in this subproteome.
Collapse
Affiliation(s)
- Gianna Palmieri
- Institute of Protein Biochemistry, National Research Council of Italy, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Kourtesi C, Ball AR, Huang YY, Jachak SM, Vera DMA, Khondkar P, Gibbons S, Hamblin MR, Tegos GP. Microbial efflux systems and inhibitors: approaches to drug discovery and the challenge of clinical implementation. Open Microbiol J 2013; 7:34-52. [PMID: 23569468 PMCID: PMC3617545 DOI: 10.2174/1874285801307010034] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/16/2022] Open
Abstract
Conventional antimicrobials are increasingly ineffective due to the emergence of multidrug-resistance among pathogenic microorganisms. The need to overcome these deficiencies has triggered exploration for novel and unconventional approaches to controlling microbial infections. Multidrug efflux systems (MES) have been a profound obstacle in the successful deployment of antimicrobials. The discovery of small molecule efflux system blockers has been an active and rapidly expanding research discipline. A major theme in this platform involves efflux pump inhibitors (EPIs) from natural sources. The discovery methodologies and the available number of natural EPI-chemotypes are increasing. Advances in our understanding of microbial physiology have shed light on a series of pathways and phenotypes where the role of efflux systems is pivotal. Complementing existing antimicrobial discovery platforms such as photodynamic therapy (PDT) with efflux inhibition is a subject under investigation. This core information is a stepping stone in the challenge of highlighting an effective drug development path for EPIs since the puzzle of clinical implementation remains unsolved. This review summarizes advances in the path of EPI discovery, discusses potential avenues of EPI implementation and development, and underlines the need for highly informative and comprehensive translational approaches.
Collapse
Affiliation(s)
- Christina Kourtesi
- Department of Pathology, University of New Mexico, School of Medicine, Albuquerque, NM, USA ; Department of Pathology, Faculty of Medicine, National & Kapodistrian University of Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
SAR11 is an ancient and diverse clade of heterotrophic bacteria that are abundant throughout the world’s oceans, where they play a major role in the ocean carbon cycle. Correlations between the phylogenetic branching order and spatiotemporal patterns in cell distributions from planktonic ocean environments indicate that SAR11 has evolved into perhaps a dozen or more specialized ecotypes that span evolutionary distances equivalent to a bacterial order. We isolated and sequenced genomes from diverse SAR11 cultures that represent three major lineages and encompass the full breadth of the clade. The new data expand observations about genome evolution and gene content that previously had been restricted to the SAR11 Ia subclade, providing a much broader perspective on the clade’s origins, evolution, and ecology. We found small genomes throughout the clade and a very high proportion of core genome genes (48 to 56%), indicating that small genome size is probably an ancestral characteristic. In their level of core genome conservation, the members of SAR11 are outliers, the most conserved free-living bacteria known. Shared features of the clade include low GC content, high gene synteny, a large hypervariable region bounded by rRNA genes, and low numbers of paralogs. Variation among the genomes included genes for phosphorus metabolism, glycolysis, and C1 metabolism, suggesting that adaptive specialization in nutrient resource utilization is important to niche partitioning and ecotype divergence within the clade. These data provide support for the conclusion that streamlining selection for efficient cell replication in the planktonic habitat has occurred throughout the evolution and diversification of this clade. The SAR11 clade is the most abundant group of marine microorganisms worldwide, making them key players in the global carbon cycle. Growing knowledge about their biochemistry and metabolism is leading to a more mechanistic understanding of organic carbon oxidation and sequestration in the oceans. The discovery of small genomes in SAR11 provided crucial support for the theory that streamlining selection can drive genome reduction in low-nutrient environments. Study of isolates in culture revealed atypical organic nutrient requirements that can be attributed to genome reduction, such as conditional auxotrophy for glycine and its precursors, a requirement for reduced sulfur compounds, and evidence for widespread cycling of C1 compounds in marine environments. However, understanding the genetic variation and distribution of such pathways and characteristics like streamlining throughout the group has required the isolation and genome sequencing of diverse SAR11 representatives, an analysis of which we provide here.
Collapse
|
49
|
Miyara I, Shnaiderman C, Meng X, Vargas WA, Diaz-Minguez JM, Sherman A, Thon M, Prusky D. Role of nitrogen-metabolism genes expressed during pathogenicity of the alkalinizing Colletotrichum gloeosporioides and their differential expression in acidifying pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1251-63. [PMID: 22571816 DOI: 10.1094/mpmi-01-12-0017-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pathogens can actively alter fruit pH around the infection site, signaling modulation of pathogenicity-factor expression, as found for alkalinizing (Colletotrichum and Alternaria spp.) and acidifying (Penicillium, Botrytis, and Sclerotinia spp.) fungi. The nitrogen-metabolism genes GDH2, GS1, GLT, and MEP genes are differentially expressed during colonization by Colletotrichum gloeosporioides, and a Δgdh2 strain reduces ammonia accumulation and pathogenicity. We analyzed the contribution of transporters GLT and MEPB to C. gloeosporiodes pathogenicity. Germinating spores of Δglt strains showed reduced appressorium formation; those of ΔmepB mutants showed rapid ammonia uptake and accumulation inside the hyphae, indicating deregulated uptake. Both mutants reduced pathogenicity, indicating that these transporters function during alkalinizing species pathogenicity. We compared the expressions of these genes in C. gloeosporioides and Sclerotinia sclerotiorum, and found five to 10-fold higher expression at the transcript level in the former. Interestingly, GLT and MEPB in the alkalinizing species showed no and very low sequence identity, respectively, with their counterparts in the acidifying species. Knockout analysis of GLT and MEPB and their differential transcript regulation in the alkalinizing and acidifying species suggest that the ammonia accumulation contributing to pathogenicity in the former is modulated by factors at the gene-regulation levels that are lacking in the acidifying species.
Collapse
Affiliation(s)
- I Miyara
- Department of Postharvest Science of Fresh Produce, ARO, Bet Dagan, Israel
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen J, Lalonde S, Obrdlik P, Noorani Vatani A, Parsa SA, Vilarino C, Revuelta JL, Frommer WB, Rhee SY. Uncovering Arabidopsis membrane protein interactome enriched in transporters using mating-based split ubiquitin assays and classification models. FRONTIERS IN PLANT SCIENCE 2012; 3:124. [PMID: 22737156 PMCID: PMC3380418 DOI: 10.3389/fpls.2012.00124] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/24/2012] [Indexed: 05/18/2023]
Abstract
High-throughput data are a double-edged sword; for the benefit of large amount of data, there is an associated cost of noise. To increase reliability and scalability of high-throughput protein interaction data generation, we tested the efficacy of classification to enrich potential protein-protein interactions. We applied this method to identify interactions among Arabidopsis membrane proteins enriched in transporters. We validated our method with multiple retests. Classification improved the quality of the ensuing interaction network and was effective in reducing the search space and increasing true positive rate. The final network of 541 interactions among 239 proteins (of which 179 are transporters) is the first protein interaction network enriched in membrane transporters reported for any organism. This network has similar topological attributes to other published protein interaction networks. It also extends and fills gaps in currently available biological networks in plants and allows building a number of hypotheses about processes and mechanisms involving signal-transduction and transport systems.
Collapse
Affiliation(s)
- Jin Chen
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
- MSU-DOE Plant Research Laboratory, Computer Science and Engineering Department, Michigan State UniversityEast Lansing, MI, USA
| | - Sylvie Lalonde
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
| | | | - Azam Noorani Vatani
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
| | - Saman A. Parsa
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
| | - Cristina Vilarino
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genomica, Universidad de Salamanca-Consejo Superior de Investigaciones CientíficasSalamanca, Spain
| | - Jose Luis Revuelta
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genomica, Universidad de Salamanca-Consejo Superior de Investigaciones CientíficasSalamanca, Spain
| | - Wolf B. Frommer
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
| | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
| |
Collapse
|