1
|
Sadeghi M, Rosenberger D. Dynamic framework for large-scale modeling of membranes and peripheral proteins. Methods Enzymol 2024; 701:457-514. [PMID: 39025579 DOI: 10.1016/bs.mie.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In this chapter, we present a novel computational framework to study the dynamic behavior of extensive membrane systems, potentially in interaction with peripheral proteins, as an alternative to conventional simulation methods. The framework effectively describes the complex dynamics in protein-membrane systems in a mesoscopic particle-based setup. Furthermore, leveraging the hydrodynamic coupling between the membrane and its surrounding solvent, the coarse-grained model grounds its dynamics in macroscopic kinetic properties such as viscosity and diffusion coefficients, marrying the advantages of continuum- and particle-based approaches. We introduce the theoretical background and the parameter-space optimization method in a step-by-step fashion, present the hydrodynamic coupling method in detail, and demonstrate the application of the model at each stage through illuminating examples. We believe this modeling framework to hold great potential for simulating membrane and protein systems at biological spatiotemporal scales, and offer substantial flexibility for further development and parametrization.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.
| | | |
Collapse
|
2
|
Guo SC, Shen R, Roux B, Dinner AR. Dynamics of activation in the voltage-sensing domain of Ciona intestinalis phosphatase Ci-VSP. Nat Commun 2024; 15:1408. [PMID: 38360718 PMCID: PMC10869754 DOI: 10.1038/s41467-024-45514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
The Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) is a membrane protein containing a voltage-sensing domain (VSD) that is homologous to VSDs from voltage-gated ion channels responsible for cellular excitability. Previously published crystal structures of Ci-VSD in putative resting and active conformations suggested a helical-screw voltage sensing mechanism in which the S4 helix translocates and rotates to enable exchange of salt-bridge partners, but the microscopic details of the transition between the resting and active conformations remained unknown. Here, by combining extensive molecular dynamics simulations with a recently developed computational framework based on dynamical operators, we elucidate the microscopic mechanism of the resting-active transition at physiological membrane potential. Sparse regression reveals a small set of coordinates that distinguish intermediates that are hidden from electrophysiological measurements. The intermediates arise from a noncanonical helical-screw mechanism in which translocation, rotation, and side-chain movement of the S4 helix are only loosely coupled. These results provide insights into existing experimental and computational findings on voltage sensing and suggest ways of further probing its mechanism.
Collapse
Affiliation(s)
- Spencer C Guo
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Rong Shen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Benoît Roux
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
| | - Aaron R Dinner
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
3
|
Kjølbye LR, Sørensen L, Yan J, Berglund NA, Ferkinghoff-Borg J, Robinson CV, Schiøtt B. Lipid Modulation of a Class B GPCR: Elucidating the Modulatory Role of PI(4,5)P 2 Lipids. J Chem Inf Model 2022; 62:6788-6802. [PMID: 36036575 DOI: 10.1021/acs.jcim.2c00635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) lipids have been shown to stabilize an active conformation of class A G-protein coupled receptors (GPCRs) through a conserved binding site, not present in class B GPCRs. For class B GPCRs, previous molecular dynamics (MD) simulation studies have shown PI(4,5)P2 interacting with the Glucagon receptor (GCGR), which constitutes an important target for diabetes and obesity therapeutics. In this work, we applied MD simulations supported by native mass spectrometry (nMS) to study lipid interactions with GCGR. We demonstrate how tail composition plays a role in modulating the binding of PI(4,5)P2 lipids to GCGR. Specifically, we find the PI(4,5)P2 lipids to have a higher affinity toward the inactive conformation of GCGR. Interestingly, we find that in contrast to class A GPCRs, PI(4,5)P2 appear to stabilize the inactive conformation of GCGR through a binding site conserved across class B GPCRs but absent in class A GPCRs. This suggests differences in the regulatory function of PI(4,5)P2 between class A and class B GPCRs.
Collapse
Affiliation(s)
- Lisbeth R Kjølbye
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.,Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Lars Sørensen
- Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Jun Yan
- Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Nils A Berglund
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | | | - Carol V Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Greene D, Barton M, Luchko T, Shiferaw Y. Molecular Dynamics Simulations of the Cardiac Ryanodine Receptor Type 2 (RyR2) Gating Mechanism. J Phys Chem B 2022; 126:9790-9809. [PMID: 36384028 PMCID: PMC9720719 DOI: 10.1021/acs.jpcb.2c03031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the cardiac ryanodine receptor type 2 (RyR2) have been linked to fatal cardiac arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT). While many CPVT mutations are associated with an increase in Ca2+ leak from the sarcoplasmic reticulum, the mechanistic details of RyR2 channel gating are not well understood, and this poses a barrier in the development of new pharmacological treatments. To address this, we explore the gating mechanism of the RyR2 using molecular dynamics (MD) simulations. We test the effect of changing the conformation of certain structural elements by constructing chimera RyR2 structures that are derived from the currently available closed and open cryo-electron microscopy (cryo-EM) structures, and we then use MD simulations to relax the system. Our key finding is that the position of the S4-S5 linker (S4S5L) on a single subunit can determine whether the channel as a whole is open or closed. Our analysis reveals that the position of the S4S5L is regulated by interactions with the U-motif on the same subunit and with the S6 helix on an adjacent subunit. We find that, in general, channel gating is crucially dependent on high percent occupancy interactions between adjacent subunits. We compare our interaction analysis to 49 CPVT1 mutations in the literature and find that 73% appear near a high percent occupancy interaction between adjacent subunits. This suggests that disruption of cooperative, high percent occupancy interactions between adjacent subunits is a primary cause of channel leak and CPVT in mutant RyR2 channels.
Collapse
|
5
|
Catacuzzeno L, Franciolini F. The 70-year search for the voltage sensing mechanism of ion channels. J Physiol 2022; 600:3227-3247. [PMID: 35665931 PMCID: PMC9545881 DOI: 10.1113/jp282780] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023] Open
Abstract
This retrospective on the voltage‐sensing mechanisms and gating models of ion channels begins in 1952 with the charged gating particles postulated by Hodgkin and Huxley, viewed as charges moving across the membrane and controlling its permeability to Na+ and K+ ions. Hodgkin and Huxley postulated that their movement should generate small and fast capacitive currents, which were recorded 20 years later as gating currents. In the early 1980s, several voltage‐dependent channels were cloned and found to share a common architecture: four homologous domains or subunits, each displaying six transmembrane α‐helical segments, with the fourth segment (S4) displaying four to seven positive charges invariably separated by two non‐charged residues. This immediately suggested that this segment was serving as the voltage sensor of the channel (the molecular counterpart of the charged gating particle postulated by Hodgkin and Huxley) and led to the development of the sliding helix model. Twenty years later, the X‐ray crystallographic structures of many voltage‐dependent channels allowed investigation of their gating by molecular dynamics. Further understanding of how channels gate will benefit greatly from the acquisition of high‐resolution structures of each of their relevant functional or structural states. This will allow the application of molecular dynamics and other approaches. It will also be key to investigate the energetics of channel gating, permitting an understanding of the physical and molecular determinants of gating. The use of multiscale hierarchical approaches might finally prove to be a rewarding strategy to overcome the limits of the various single approaches to the study of channel gating.
![]()
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| |
Collapse
|
6
|
Kluge C, Pöhnl M, Böckmann RA. Spontaneous local membrane curvature induced by transmembrane proteins. Biophys J 2022; 121:671-683. [PMID: 35122737 PMCID: PMC8943716 DOI: 10.1016/j.bpj.2022.01.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
The (local) curvature of cellular membranes acts as a driving force for the targeting of membrane-associated proteins to specific membrane domains, as well as a sorting mechanism for transmembrane proteins, e.g., by accumulation in regions of matching spontaneous curvature. The latter measure was previously experimentally employed to study the curvature induced by the potassium channel KvAP and by aquaporin AQP0. However, the direction of the reported spontaneous curvature levels as well as the molecular driving forces governing the membrane curvature induced by these integral transmembrane proteins could not be addressed experimentally. Here, using both coarse-grained and atomistic molecular dynamics (MD) simulations, we report induced spontaneous curvature values for the homologous potassium channel Kv 1.2/2.1 Chimera (KvChim) and AQP0 embedded in unrestrained lipid bicelles that are in very good agreement with experiment. Importantly, the direction of curvature could be directly assessed from our simulations: KvChim induces a strong positive membrane curvature (≈0.036 nm-1) whereas AQP0 causes a comparably small negative curvature (≈-0.019 nm-1). Analyses of protein-lipid interactions within the bicelle revealed that the potassium channel shapes the surrounding membrane via structural determinants. Differences in shape of the protein-lipid interface of the voltage-gating domains between the extracellular and cytosolic membrane leaflets induce membrane stress and thereby promote a protein-proximal membrane curvature. In contrast, the water pore AQP0 displayed a high structural stability and an only faint effect on the surrounding membrane environment that is connected to its wedge-like shape.
Collapse
Affiliation(s)
- Christoph Kluge
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matthias Pöhnl
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany,National Center for High-Performance Computing Erlangen (NHR@FAU), Erlangen, Germany,Corresponding author
| |
Collapse
|
7
|
Wang Y, Guan X, Zhang S, Liu Y, Wang S, Fan P, Du X, Yan S, Zhang P, Chen HY, Li W, Zhang D, Huang S. Structural-profiling of low molecular weight RNAs by nanopore trapping/translocation using Mycobacterium smegmatis porin A. Nat Commun 2021; 12:3368. [PMID: 34099723 PMCID: PMC8185011 DOI: 10.1038/s41467-021-23764-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Folding of RNA can produce elaborate tertiary structures, corresponding to their diverse roles in the regulation of biological activities. Direct observation of RNA structures at high resolution in their native form however remains a challenge. The large vestibule and the narrow constriction of a Mycobacterium smegmatis porin A (MspA) suggests a sensing mode called nanopore trapping/translocation, which clearly distinguishes between microRNA, small interfering RNA (siRNA), transfer RNA (tRNA) and 5 S ribosomal RNA (rRNA). To further profit from the acquired event characteristics, a custom machine learning algorithm is developed. Events from measurements with a mixture of RNA analytes can be automatically classified, reporting a general accuracy of ~93.4%. tRNAs, which possess a unique tertiary structure, report a highly distinguishable sensing feature, different from all other RNA types tested in this study. With this strategy, tRNAs from different sources are measured and a high structural conservation across different species is observed in single molecule.
Collapse
MESH Headings
- Machine Learning
- MicroRNAs/chemistry
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Dynamics Simulation
- Molecular Weight
- Mycobacterium smegmatis/genetics
- Mycobacterium smegmatis/metabolism
- Nanopores
- Nucleic Acid Conformation
- Porins/chemistry
- Porins/genetics
- Porins/metabolism
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA Folding
- RNA Transport
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
Collapse
Affiliation(s)
- Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Xiaoyu Guan
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Sha Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Wenfei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Refinement of a cryo-EM structure of hERG: Bridging structure and function. Biophys J 2021; 120:738-748. [PMID: 33476597 DOI: 10.1016/j.bpj.2021.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 01/16/2023] Open
Abstract
The human-ether-a-go-go-related gene (hERG) encodes the voltage-gated potassium channel (KCNH2 or Kv11.1, commonly known as hERG). This channel plays a pivotal role in the stability of phase 3 repolarization of the cardiac action potential. Although a high-resolution cryo-EM structure is available for its depolarized (open) state, the structure surprisingly did not feature many functionally important interactions established by previous biochemical and electrophysiology experiments. Using molecular dynamics flexible fitting (MDFF), we refined the structure and recovered the missing functionally relevant salt bridges in hERG in its depolarized state. We also performed electrophysiology experiments to confirm the functional relevance of a novel salt bridge predicted by our refinement protocol. Our work shows how refinement of a high-resolution cryo-EM structure helps to bridge the existing gap between the structure and function in the voltage-sensing domain (VSD) of hERG.
Collapse
|
9
|
Cao Y, Yang R, Sun J, Zhang W, Lee I, Wang W, Meng X. Effects of amino acid modifications on the permeability of the pentameric sarcolipin channel. Proteins 2020; 89:427-435. [PMID: 33244801 DOI: 10.1002/prot.26028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/28/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
Sarcolipin (SLN) is an important transmembrane (TM) protein encoded by long noncoding RNA. SLN is expressed in the sarcoplasmic reticulum and regulates cardiac and skeletal muscle contractions. SLN forms a pentameric hydrophobic ligand-gated ion channel. The protonation of Glu7 (protonated SLN, pSLN) and mutation of Thr18 to Ala18 (T18A) have been reported to exert a significant influence on the permeability of the channel. In this study, the altered permeability of both the pSLN and T18A pentameric channels was simulated. Combined with molecular dynamics simulation, the free-energy landscape for single ions, computational electrophysiology, diffusion coefficient, and pore geometrical characteristic analyses were performed to further understand the properties of amino acid modifications in the SLN pentameric channel. The results suggest that both the pSLN and T18A pentameric channels form stable hydrophobic ligand-gated channels. The TM voltage has a positive effect on the permeability of water molecules and ions. By using pSLN and T18A, our study provides helpful information on the pore-forming mechanism of SLN and furthers our understanding of the regulatory mechanisms underlying the permeation of ions and water molecules in the pentameric SLN channel.
Collapse
Affiliation(s)
- Yipeng Cao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,National Supercomputer Center in Tianjin, TEDA - Tianjin Economic-Technological Development Area, Tianjin, China
| | - Rui Yang
- Department of Infection and Immunity, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Jiana Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenwen Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Imshik Lee
- College of Physics, Nankai University, Tianjin, China
| | - Wei Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiangfei Meng
- National Supercomputer Center in Tianjin, TEDA - Tianjin Economic-Technological Development Area, Tianjin, China
| |
Collapse
|
10
|
Groome JR, Bayless-Edwards L. Roles for Countercharge in the Voltage Sensor Domain of Ion Channels. Front Pharmacol 2020; 11:160. [PMID: 32180723 PMCID: PMC7059764 DOI: 10.3389/fphar.2020.00160] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated ion channels share a common structure typified by peripheral, voltage sensor domains. Their S4 segments respond to alteration in membrane potential with translocation coupled to ion permeation through a central pore domain. The mechanisms of gating in these channels have been intensely studied using pioneering methods such as measurement of charge displacement across a membrane, sequencing of genes coding for voltage-gated ion channels, and the development of all-atom molecular dynamics simulations using structural information from prokaryotic and eukaryotic channel proteins. One aspect of this work has been the description of the role of conserved negative countercharges in S1, S2, and S3 transmembrane segments to promote sequential salt-bridge formation with positively charged residues in S4 segments. These interactions facilitate S4 translocation through the lipid bilayer. In this review, we describe functional and computational work investigating the role of these countercharges in S4 translocation, voltage sensor domain hydration, and in diseases resulting from countercharge mutations.
Collapse
Affiliation(s)
- James R. Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| | - Landon Bayless-Edwards
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
- Oregon Health and Sciences University School of Medicine, Portland, OR, United States
| |
Collapse
|
11
|
Catacuzzeno L, Franciolini F. Simulation of Gating Currents of the Shaker K Channel Using a Brownian Model of the Voltage Sensor. Biophys J 2019; 117:2005-2019. [PMID: 31653450 DOI: 10.1016/j.bpj.2019.09.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/07/2019] [Accepted: 09/27/2019] [Indexed: 01/18/2023] Open
Abstract
The physical mechanism underlying the voltage-dependent gating of K channels is usually addressed theoretically using molecular dynamics simulations. However, besides being computationally very expensive, this approach is presently unable to fully predict the behavior of fundamental variables of channel gating such as the macroscopic gating current, and hence, it is presently unable to validate the model. To fill this gap, here we propose a voltage-gating model that treats the S4 segment as a Brownian particle moving through a gating channel pore and adjacent internal and external vestibules. In our model, charges on the S4 segment are screened by charged residues localized on neighboring segments of the channel protein and by ions present in the vestibules, whose dynamics are assessed using a flux conservation equation. The electrostatic voltage spatial profile is consistently assessed by applying the Poisson equation to all the charges present in the system. The treatment of the S4 segment as a Brownian particle allows description of the dynamics of a single S4 segment using the Langevin stochastic differential equation or the behavior of a population of S4 segments-useful for assessing the macroscopic gating current-using the Fokker-Planck equation. The proposed model confirms the gating charge transfer hypothesis with the movement of the S4 segment among five different stable positions where the gating charges interact in succession with the negatively charged residues on the channel protein. This behavior produces macroscopic gating currents quite similar to those experimentally found.
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy.
| | - Fabio Franciolini
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
12
|
Bernsteiner H, Zangerl-Plessl EM, Chen X, Stary-Weinzinger A. Conduction through a narrow inward-rectifier K + channel pore. J Gen Physiol 2019; 151:1231-1246. [PMID: 31511304 PMCID: PMC6785732 DOI: 10.1085/jgp.201912359] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/25/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
G-protein–gated inwardly rectifying potassium channels are important mediators of inhibitory neurotransmission. Based on microsecond-scale molecular dynamics simulations, Bernsteiner et al. propose novel gating details that may enable K+ flux via a direct knock-on mechanism. Inwardly rectifying potassium (Kir) channels play a key role in controlling membrane potentials in excitable and unexcitable cells, thereby regulating a plethora of physiological processes. G-protein–gated Kir channels control heart rate and neuronal excitability via small hyperpolarizing outward K+ currents near the resting membrane potential. Despite recent breakthroughs in x-ray crystallography and cryo-EM, the gating and conduction mechanisms of these channels are poorly understood. MD simulations have provided unprecedented details concerning the gating and conduction mechanisms of voltage-gated K+ and Na+ channels. Here, we use multi-microsecond–timescale MD simulations based on the crystal structures of GIRK2 (Kir3.2) bound to phosphatidylinositol-4,5-bisphosphate to provide detailed insights into the channel’s gating dynamics, including insights into the behavior of the G-loop gate. The simulations also elucidate the elementary steps that underlie the movement of K+ ions through an inward-rectifier K+ channel under an applied electric field. Our simulations suggest that K+ permeation might occur via direct knock-on, similar to the mechanism recently shown for Kv channels.
Collapse
Affiliation(s)
- Harald Bernsteiner
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | - Xingyu Chen
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | |
Collapse
|
13
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
14
|
DeMarco KR, Bekker S, Vorobyov I. Challenges and advances in atomistic simulations of potassium and sodium ion channel gating and permeation. J Physiol 2018; 597:679-698. [PMID: 30471114 DOI: 10.1113/jp277088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022] Open
Abstract
Ion channels are implicated in many essential physiological events such as electrical signal propagation and cellular communication. The advent of K+ and Na+ ion channel structure determination has facilitated numerous investigations of molecular determinants of their behaviour. At the same time, rapid development of computer hardware and molecular simulation methodologies has made computational studies of large biological molecules in all-atom representation tractable. The concurrent evolution of experimental structural biology with biomolecular computer modelling has yielded mechanistic details of fundamental processes unavailable through experiments alone, such as ion conduction and ion channel gating. This review is a short survey of the atomistic computational investigations of K+ and Na+ ion channels, focusing on KcsA and several voltage-gated channels from the KV and NaV families, which have garnered many successes and engendered several long-standing controversies regarding the nature of their structure-function relationship. We review the latest advancements and challenges facing the field of molecular modelling and simulation regarding the structural and energetic determinants of ion channel function and their agreement with experimental observations.
Collapse
Affiliation(s)
- Kevin R DeMarco
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.,Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - Slava Bekker
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.,Chemistry Department, American River College, Sacramento, CA, USA
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.,Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| |
Collapse
|
15
|
Deyawe A, Kasimova MA, Delemotte L, Loussouarn G, Tarek M. Studying Kv Channels Function using Computational Methods. Methods Mol Biol 2018; 1684:321-341. [PMID: 29058202 DOI: 10.1007/978-1-4939-7362-0_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In recent years, molecular modeling techniques, combined with MD simulations, provided significant insights on voltage-gated (Kv) potassium channels intrinsic properties. Among the success stories are the highlight of molecular level details of the effects of mutations, the unraveling of several metastable intermediate states, and the influence of a particular lipid, PIP2, in the stability and the modulation of Kv channel function. These computational studies offered a detailed view that could not have been reached through experimental studies alone. With the increase of cross disciplinary studies, numerous experiments provided validation of these computational results, which endows an increase in the reliability of molecular modeling for the study of Kv channels. This chapter offers a description of the main techniques used to model Kv channels at the atomistic level.
Collapse
Affiliation(s)
- Audrey Deyawe
- Structure et Réactivité des Systèmes Moléculaires Complexes, CNRS, Université de Lorraine, Nancy, France
| | - Marina A Kasimova
- Structure et Réactivité des Systèmes Moléculaires Complexes, CNRS, Université de Lorraine, Nancy, France
| | - Lucie Delemotte
- Structure et Réactivité des Systèmes Moléculaires Complexes, CNRS, Université de Lorraine, Nancy, France
| | - Gildas Loussouarn
- L'institut du thorax, Inserm, CNRS, Université de Nantes, Nantes, France
| | - Mounir Tarek
- Structure et Réactivité des Systèmes Moléculaires Complexes, CNRS, Université de Lorraine, Nancy, France.
- CNRS, Unité Mixte de Recherches 7565, Université de Lorraine, Boulevard des Aiguillettes, BP 70239, 54506, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
16
|
Xiang Z, Liu G, Tang C, Yan L. A model of ion transport processes along and across the neuronal membrane. J Integr Neurosci 2017; 16:33-55. [DOI: 10.3233/jin-160002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Z.X. Xiang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - G.Z. Liu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - C.X. Tang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - L.X. Yan
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Shock Wave-Induced Damage of a Protein by Void Collapse. Biophys J 2016; 110:147-56. [PMID: 26745418 DOI: 10.1016/j.bpj.2015.11.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/28/2015] [Accepted: 11/17/2015] [Indexed: 12/20/2022] Open
Abstract
In this study, we report on a series of molecular dynamics simulations that were used to examine the effects of shock waves on a membrane-bound ion channel. A planar shock wave was found to compress the ion channel upon impact, but the protein geometry resembles the crystal structure as soon as the solvent density begins to dissipate. When a void was placed in close proximity to the membrane, the shock wave proved to be more destructive to the protein due to formation of a nanojet that results from the asymmetric collapse of the void. The nanojet was able to cause significant structural changes to the protein even at low piston velocities that are not able to directly cause poration of the membrane.
Collapse
|
18
|
Meng XY, Liu S, Cui M, Zhou R, Logothetis DE. The Molecular Mechanism of Opening the Helix Bundle Crossing (HBC) Gate of a Kir Channel. Sci Rep 2016; 6:29399. [PMID: 27439597 PMCID: PMC4954981 DOI: 10.1038/srep29399] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/20/2016] [Indexed: 11/19/2022] Open
Abstract
Inwardly rectifying K+ (Kir) channels, serving as natural molecular nanomachines, transport potassium ions across the plasma membrane of the cell. Along the ion permeation pathway, three relatively narrow regions (the selectivity filter (SF), the inner helix bundle crossing (HBC), and the cytosolic G loop) may serve as gates to control ion permeation. Our previous molecular dynamics simulations based on the crystal structure of a Kir3.1 chimera revealed the possible gating mechanism of the G loop gate. Here, we introduced a proline mutation in the inner helix and obtained a channel model of the open HBC gate. The open HBC gate reaches 0.6 nm in diameter, which allows partial hydrated K+ ions to pass through. During the gating process, both the transmembrane helices TM1 and TM2 cooperatively rotate in a counterclockwise direction (viewed from the extracellular side) with the aid of the phospholipid PIP2. Only when all the transmembrane helices adopt a counterclockwise rotation, the HBC gate can be stabilized in the open state. We estimate that introduction of the proline mutation decreases the energy required to open the HBC gate by about 1.4 kcal/mol (ΔΔG).
Collapse
Affiliation(s)
- Xuan-Yu Meng
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.,Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Shengtang Liu
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Meng Cui
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Ruhong Zhou
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.,IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA.,Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Diomedes E Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| |
Collapse
|
19
|
Cao Y, Wu X, Wang X, Sun H, Lee I. Transmembrane dynamics of the Thr-5 phosphorylated sarcolipin pentameric channel. Arch Biochem Biophys 2016; 604:143-51. [PMID: 27378083 DOI: 10.1016/j.abb.2016.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/16/2022]
Abstract
Sarcolipin (SLN), an important membrane protein expressed in the sarcoplasmic reticulum (SR), regulates muscle contractions in cardiac and skeletal muscle. The phosphorylation at amino acid Thr5 of the SLN protein modulates the amount of Ca(2+) that passes through the SR. Using molecular dynamics simulation, we evaluated the phosphorylation at Thr5 of pentameric SLN (phospho-SLN) channel's energy barrier and pore characteristics by calculating the potential of mean force (PMF) along the channel pore and determining the diffusion coefficient. The results indicate that pentameric phospho-SLN promotes penetration of monovalent and divalent ions through the channel. The analysis of PMF, pore radius and diffusion coefficient indicates that Leu21 is the hydrophobic gate of the pentameric SLN channel. In the channel, water molecules near the Leu21 pore demonstrated a clear hydrated-dehydrated transition; however, the mutation of Leu21 to an Alanine (L21A) destroyed the hydrated-dehydrated transitions. These water-dynamic behaviors and PMF confirm that Leu21 is the key residue that regulates the ion permeability of the pentameric SLN channel. These results provide the structural-basis insights and molecular-dynamic information that are needed to understand the regulatory mechanisms of ion permeability in the pentameric SLN channel.
Collapse
Affiliation(s)
- Yipeng Cao
- Institute of Physics, Nankai University, No.94 Weijin Road, Tianjin, 300071, PR China
| | - Xue Wu
- Institute of Physics, Nankai University, No.94 Weijin Road, Tianjin, 300071, PR China
| | - Xinyu Wang
- Institute of Physics, Nankai University, No.94 Weijin Road, Tianjin, 300071, PR China
| | - Haiying Sun
- Institute of Physics, Nankai University, No.94 Weijin Road, Tianjin, 300071, PR China
| | - Imshik Lee
- Institute of Physics, Nankai University, No.94 Weijin Road, Tianjin, 300071, PR China.
| |
Collapse
|
20
|
Tsuda A, Venkata NK. The role of natural processes and surface energy of inhaled engineered nanoparticles on aggregation and corona formation. NANOIMPACT 2016; 2:38-44. [PMID: 29202111 PMCID: PMC5711474 DOI: 10.1016/j.impact.2016.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The surface chemistry of engineered nanoparticles (ENPs) becomes more important as their size decreases and enters the nanometer-range. This review explains the fundamental properties of the surface chemistry of nanoparticles, and argues that their agglomeration and the formation of corona around them are natural processes that reduce surface energy. ENP agglomeration and surface corona formation are further discussed in the context of inhaled ENPs, as the lung is a major port of ENP entry to the body. The pulmonary surfactant layer, which the inhaled ENPs first encounter as they land on the lung surface, represents a unique environment with a variety of well-defined biomolecules. Many factors, such as hydrophobicity, surface charge of ENPs, protein/phospholipid concentrations of the alveolar lining fluid, etc. influence the complex processes of ENP agglomeration and corona formation in the alveolar lining fluid, and these events occur even before the ENPs reach the cells. We suggest that molecular dynamic simulations can represent a promising future direction for research of the behavior of inhaled ENPs, complementing the experimental approaches. Moreover, we want to remind biologists working on ENPs of the importance relationship between ENP surface energy and size.
Collapse
Affiliation(s)
- Akira Tsuda
- Molecular and Integrative Physiological Sciences, Dept. of Environmental Health, Harvard School of Public Health, Boston MA, USA
| | - Nagarjun Konduru Venkata
- Molecular and Integrative Physiological Sciences, Dept. of Environmental Health, Harvard School of Public Health, Boston MA, USA
| |
Collapse
|
21
|
Wu X, Han M, Ming D. Multi-scaled normal mode analysis method for dynamics simulation of protein-membrane complexes: A case study of potassium channel gating motion correlations. J Chem Phys 2015; 143:134113. [PMID: 26450298 DOI: 10.1063/1.4932329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Membrane proteins play critically important roles in many cellular activities such as ions and small molecule transportation, signal recognition, and transduction. In order to fulfill their functions, these proteins must be placed in different membrane environments and a variety of protein-lipid interactions may affect the behavior of these proteins. One of the key effects of protein-lipid interactions is their ability to change the dynamics status of membrane proteins, thus adjusting their functions. Here, we present a multi-scaled normal mode analysis (mNMA) method to study the dynamics perturbation to the membrane proteins imposed by lipid bi-layer membrane fluctuations. In mNMA, channel proteins are simulated at all-atom level while the membrane is described with a coarse-grained model. mNMA calculations clearly show that channel gating motion can tightly couple with a variety of membrane deformations, including bending and twisting. We then examined bi-channel systems where two channels were separated with different distances. From mNMA calculations, we observed both positive and negative gating correlations between two neighboring channels, and the correlation has a maximum as the channel center-to-center distance is close to 2.5 times of their diameter. This distance is larger than recently found maximum attraction distance between two proteins embedded in membrane which is 1.5 times of the protein size, indicating that membrane fluctuation might impose collective motions among proteins within a larger area. The hybrid resolution feature in mNMA provides atomic dynamics information for key components in the system without costing much computer resource. We expect it to be a conventional simulation tool for ordinary laboratories to study the dynamics of very complicated biological assemblies. The source code is available upon request to the authors.
Collapse
Affiliation(s)
- Xiaokun Wu
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Min Han
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Dengming Ming
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Liu J, Yang Z, Li H, Gu Z, Garate JA, Zhou R. Dewetting transition assisted clearance of (NFGAILS) amyloid fibrils from cell membranes by graphene. J Chem Phys 2015; 141:22D520. [PMID: 25494791 DOI: 10.1063/1.4901113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clearance of partially ordered oligomers and monomers deposited on cell membrane surfaces is believed to be an effective route to alleviate many potential protein conformational diseases (PCDs). With large-scale all-atom molecular dynamics simulations, here we show that graphene nanosheets can easily and quickly win a competitive adsorption of human islet amyloid polypeptides (hIAPP22-28) NFGAILS and associated fibrils against cell membrane, due to graphene's unique two-dimensional, highly hydrophobic surface with its all-sp(2) hybrid structure. A nanoscale dewetting transition was observed at the interfacial region between the fibril (originally deposited on the membrane) and the graphene nanosheet, which significantly assisted the adsorption of fibrils onto graphene from the membrane. The π-π stacking interaction between Phe23 and graphene played a crucial role, providing the driving force for the adsorption at the graphene surface. This study renders new insight towards the importance of water during the interactions between amyloid peptides, the phospholipidic membrane, and graphene, which might shed some light on future developments of graphene-based nanomedicine for preventing/curing PCDs like type II diabetes mellitus.
Collapse
Affiliation(s)
- Jiajia Liu
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zaixing Yang
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Haotian Li
- Bio-X Lab, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zonglin Gu
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | | | - Ruhong Zhou
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
23
|
Molecular dynamics of Kv1.3 ion channel and structural basis of its inhibition by scorpion toxin-OSK1 derivatives. Biophys Chem 2015; 203-204:1-11. [DOI: 10.1016/j.bpc.2015.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/22/2015] [Accepted: 04/22/2015] [Indexed: 11/19/2022]
|
24
|
Colenso CK, Cao Y, Sessions RB, Hancox JC, Dempsey CE. Voltage sensor gating charge transfer in a hERG potassium channel model. Biophys J 2015; 107:L25-8. [PMID: 25418316 PMCID: PMC4241455 DOI: 10.1016/j.bpj.2014.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/26/2014] [Accepted: 10/02/2014] [Indexed: 12/03/2022] Open
Abstract
Relaxation of a hERG K+ channel model during molecular-dynamics simulation in a hydrated POPC bilayer was accompanied by transitions of an arginine gating charge across a charge transfer center in two voltage sensor domains. Inspection of the passage of arginine side chains across the charge transfer center suggests that the unique hydration properties of the arginine guanidine cation facilitates charge transfer during voltage sensor responses to changes in membrane potential, and underlies the preference of Arg over Lys as a mobile charge carrier in voltage-sensitive ion channels.
Collapse
Affiliation(s)
| | - Yang Cao
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | - Jules C Hancox
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
25
|
Peyser A, Gillespie D, Roth R, Nonner W. Domain and interdomain energetics underlying gating in Shaker-type Kv channels. Biophys J 2015; 107:1841-1852. [PMID: 25418165 DOI: 10.1016/j.bpj.2014.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/08/2014] [Accepted: 08/15/2014] [Indexed: 11/26/2022] Open
Abstract
To understand gating events with a time-base many orders-of-magnitude slower than that of atomic motion in voltage-gated ion channels such as the Shaker-type KV channels, a multiscale physical model is constructed from the experimentally well-characterized voltage-sensor (VS) domains coupled to a hydrophobic gate. The four VS domains are described by a continuum electrostatic model under voltage-clamp conditions, the control of ion flow by the gate domain is described by a vapor-lock mechanism, and the simple coupling principle is informed by known experimental results and trial-and-error. The configurational energy computed for each element is used to produce a total Hamiltonian that is a function of applied voltage, VS positions, and gate radius. We compute statistical-mechanical expectation values of macroscopic laboratory observables. This approach stands in contrast with molecular-dynamic models which are challenged by increasing scale, and kinetic models which assume a probability distribution rather than derive it from the underlying physics. This generic model predicts well the Shaker charge/voltage and conductance/voltage relations; the tight constraints underlying these results allow us to quantitatively assess the underlying physical mechanisms. The total electrical work picked up by the VS domains is an order-of-magnitude larger than the work required to actuate the gate itself, suggesting an energetic basis for the evolutionary flexibility of the voltage-gating mechanism. The cooperative slide-and-interlock behavior of the VS domains described by the VS-gate coupling relation leads to the experimentally observed bistable gating. This engineering approach should prove useful in the investigation of various elements underlying gating characteristics and degraded behavior due to mutation.
Collapse
Affiliation(s)
- Alexander Peyser
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida; Computational Biophysics, German Research School for Simulation Sciences, Jülich, Germany; Simulation Lab Neuroscience -- Bernstein Facility Simulation and Database Technology, Institute for Advanced Simulation, Jülich Aachen Research Alliance, Forschungszentrum Jülich, Jülich, Germany.
| | - Dirk Gillespie
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | - Roland Roth
- Institut für Theoretische Physik, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Wolfgang Nonner
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
26
|
Conformational dynamics of shaker-type Kv1.1 ion channel in open, closed, and two mutated states. J Membr Biol 2014; 248:241-55. [PMID: 25451198 DOI: 10.1007/s00232-014-9764-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
The dynamic properties of shaker-type Kv1.1 ion channel in its open, closed, & two mutated (E325D & V408A) states embedded in DPPC membrane have been investigated using all-atom force field-based MD simulation. Here, we represent the detailed channel stability, gating environment of charge-carrying residues, salt bridge interaction among the voltage-sensing domains (VSDs), movement of S4 helix, and ion conduction of pore. At positive potential, the S4 helix undergoes lateral fluctuations in accordance with their gating motions found in every model. During transition from closed to active state conformation, charged residues of S4 move "up" across the membrane with an average tilt angle difference of 24°, which is more consistent with the paddle model of channel gating. The E325D mutation at C-terminal end of S4-S5 helical linker leads the channel to a rapid activated state by pushing the gating charge residues upward beside the VSDs resulting in more prominent tilt of S4. Similarly in V408A mutant model, disruption of hydrophobic gate at S6 C-terminal end takes place, which causes the violation of channel-active conformation by bringing the C-terminal end of S4 to its corresponding resting state. The ion permeation is observed only in open-state conformation.
Collapse
|
27
|
Deleu M, Crowet JM, Nasir MN, Lins L. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3171-3190. [DOI: 10.1016/j.bbamem.2014.08.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/05/2014] [Accepted: 08/21/2014] [Indexed: 02/08/2023]
|
28
|
Gourgy-Hacohen O, Kornilov P, Pittel I, Peretz A, Attali B, Paas Y. Capturing distinct KCNQ2 channel resting states by metal ion bridges in the voltage-sensor domain. ACTA ACUST UNITED AC 2014; 144:513-27. [PMID: 25385787 PMCID: PMC4242811 DOI: 10.1085/jgp.201411221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although crystal structures of various voltage-gated K(+) (Kv) and Na(+) channels have provided substantial information on the activated conformation of the voltage-sensing domain (VSD), the topology of the VSD in its resting conformation remains highly debated. Numerous studies have investigated the VSD resting state in the Kv Shaker channel; however, few studies have explored this issue in other Kv channels. Here, we investigated the VSD resting state of KCNQ2, a K(+) channel subunit belonging to the KCNQ (Kv7) subfamily of Kv channels. KCNQ2 can coassemble with the KCNQ3 subunit to mediate the IM current that regulates neuronal excitability. In humans, mutations in KCNQ2 are associated with benign neonatal forms of epilepsy or with severe epileptic encephalopathy. We introduced cysteine mutations into the S4 transmembrane segment of the KCNQ2 VSD and determined that external application of Cd(2+) profoundly reduced the current amplitude of S4 cysteine mutants S195C, R198C, and R201C. Based on reactivity with the externally accessible endogenous cysteine C106 in S1, we infer that each of the above S4 cysteine mutants forms Cd(2+) bridges to stabilize a channel closed state. Disulfide bonds and metal bridges constrain the S4 residues S195, R198, and R201 near C106 in S1 in the resting state, and experiments using concatenated tetrameric constructs indicate that this occurs within the same VSD. KCNQ2 structural models suggest that three distinct resting channel states have been captured by the formation of different S4-S1 Cd(2+) bridges. Collectively, this work reveals that residue C106 in S1 can be very close to several N-terminal S4 residues for stabilizing different KCNQ2 resting conformations.
Collapse
Affiliation(s)
- Orit Gourgy-Hacohen
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Polina Kornilov
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ilya Pittel
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Asher Peretz
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav Paas
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
29
|
Palovcak E, Delemotte L, Klein ML, Carnevale V. Evolutionary imprint of activation: the design principles of VSDs. ACTA ACUST UNITED AC 2014; 143:145-56. [PMID: 24470486 PMCID: PMC4001776 DOI: 10.1085/jgp.201311103] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Voltage-sensor domains (VSDs) are modular biomolecular machines that transduce electrical signals in cells through a highly conserved activation mechanism. Here, we investigate sequence-function relationships in VSDs with approaches from information theory and probabilistic modeling. Specifically, we collect over 6,600 unique VSD sequences from diverse, long-diverged phylogenetic lineages and relate the statistical properties of this ensemble to functional constraints imposed by evolution. The VSD is a helical bundle with helices labeled S1-S4. Surrounding conserved VSD residues such as the countercharges and the S2 phenylalanine, we discover sparse networks of coevolving residues. Additional networks are found lining the VSD lumen, tuning the local hydrophilicity. Notably, state-dependent contacts and the absence of coevolution between S4 and the rest of the bundle are imprints of the activation mechanism on the VSD sequence ensemble. These design principles rationalize existing experimental results and generate testable hypotheses.
Collapse
Affiliation(s)
- Eugene Palovcak
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | | | | | | |
Collapse
|
30
|
Grizel AV, Glukhov GS, Sokolova OS. Mechanisms of activation of voltage-gated potassium channels. Acta Naturae 2014; 6:10-26. [PMID: 25558391 PMCID: PMC4273088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Voltage-gated potassium ion channels (Kv) play an important role in a variety of cellular processes, including the functioning of excitable cells, regulation of apoptosis, cell growth and differentiation, the release of neurotransmitters and hormones, maintenance of cardiac activity, etc. Failure in the functioning of Kv channels leads to severe genetic disorders and the development of tumors, including malignant ones. Understanding the mechanisms underlying Kv channels functioning is a key factor in determining the cause of the diseases associated with mutations in the channels, and in the search for new drugs. The mechanism of activation of the channels is a topic of ongoing debate, and a consensus on the issue has not yet been reached. This review discusses the key stages in studying the mechanisms of functioning of Kv channels and describes the basic models of their activation known to date.
Collapse
Affiliation(s)
- A. V. Grizel
- Saint Petersburg State University, 7-9, Universitetskaya nab., 199034, St. Petersburg, Russia
| | - G. S. Glukhov
- Biological Faculty of Moscow State MV Lomonosov University, 1, Leninskie Gory, Bld. 12, 119991, Moscow, Russia
| | | |
Collapse
|
31
|
Mura C, McAnany CE. An introduction to biomolecular simulations and docking. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.935372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Voltage-gated ion channel modulation by lipids: insights from molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1322-31. [PMID: 24513257 DOI: 10.1016/j.bbamem.2014.01.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/17/2014] [Accepted: 01/24/2014] [Indexed: 11/20/2022]
Abstract
Cells commonly use lipids to modulate the function of ion channels. The lipid content influences the amplitude of the ionic current and changes the probability of voltage-gated ion channels being in the active or in the resting states. Experimental findings inferred from a variety of techniques and molecular dynamics studies have revealed a direct interaction between the lipid headgroups and the ion channel residues, suggesting an influence on the ion channel function. On the other hand the alteration of the lipids may in principle modify the overall electrostatic environment of the channel, and hence the transmembrane potential, leading to an indirect modulation, i.e. a global effect. Here we have investigated the structural and dynamical properties of the voltage-gated potassium channel Kv1.2 embedded in bilayers with modified upper or lower leaflet compositions corresponding to realistic biological scenarios: the first relates to the effects of sphingomyelinase, an enzyme that modifies the composition of lipids of the outer membrane leaflets, and the second to the effect of the presence of a small fraction of PIP2, a highly negatively charged lipid known to modulate voltage-gated channel function. Our molecular dynamics simulations do not enable to exclude the global effect mechanism in the former case. For the latter, however, it is shown that local interactions between the ion channel and the lipid headgroups are key-elements of the modulation.
Collapse
|
33
|
Tarek M, Delemotte L. Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations? Acc Chem Res 2013; 46:2755-62. [PMID: 23697886 DOI: 10.1021/ar300290u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels conduct charged species through otherwise impermeable biological membranes. Their activity supports a number of physiological processes, and genetic mutations can disrupt their function dramatically. Among these channels, voltage gated cation channels (VGCCs) are ubiquitous transmembrane proteins involved in electrical signaling. In addition to their selectivity for ions, their function requires membrane-polarization-dependent gating. Triggered by changes in the transmembrane voltage, the activation and deactivation of VGCCs proceed through a sensing mechanism that prompts motion of conserved positively charged (basic) residues within the S4 helix of a four-helix bundle, the voltage sensor domain (VSD). Decades of experimental investigations, using electrophysiology, molecular biology, pharmacology, and spectroscopy, have revealed details about the function of VGCCs. However, in 2005, the resolution of the crystal structure of the activated state of one member of the mammalian voltage gated potassium (Kv) channels family (the Kv1.2) enabled researchers to make significant progress in understanding the structure-function relationship in these proteins on a molecular level. In this Account, we review the use of a complementary technique, molecular dynamics (MD) simulations, that has offered new insights on this timely issue. Starting from the "open-activated state" crystal structure, we have carried out large-scale all atom MD simulations of the Kv1.2 channel embedded in its lipidic environment and submitted to a hyperpolarizing (negative) transmembrane potential. We then used steered MD simulations to complete the full transition to the resting-closed state. Using these procedures, we have followed the operation of the VSDs and uncovered three intermediate states between their activated and deactivated conformations. Each conformational state is characterized by its network of salt bridges and by the occupation of the gating charge transfer center by a specific S4 basic residue. Overall, the global deactivation mechanism that we have uncovered agrees with proposed kinetic models and recent experimental results that point towards the presence of several intermediate states. The understanding of these conformations has allowed us to examine how mutations of the S4 basic residues analogous to those involved in genetic diseases affect the function of VGCCs. In agreement with electrophysiology experiments, mutations perturb the VSD structure and trigger the appearance of state-dependent "leak" currents. The simulation results unveil the key elementary molecular processes involved in these so-called "omega" currents. We generalize these observations to other members of the VGCC family, indicating which type of residues may generate such currents and which conditions might cause leaks that prevent proper function of the channel. Today, the understanding of the intermediate state conformations enables researchers to confidently tackle other key questions such as the mode of action of toxins or modulation of channel function by lipids.
Collapse
Affiliation(s)
- Mounir Tarek
- Université de Lorraine, Equipe Théorie-Modélisation-Simulations, SRSMC, UMR 7565, Vandoeuvre les Nancy, France, and CNRS, Equipe Théorie-Modélisation-Simulations, UMR 7565, Vandoeuvre les Nancy, France
| | - Lucie Delemotte
- Université de Lorraine, Equipe Théorie-Modélisation-Simulations, SRSMC, UMR 7565, Vandoeuvre les Nancy, France, and CNRS, Equipe Théorie-Modélisation-Simulations, UMR 7565, Vandoeuvre les Nancy, France
| |
Collapse
|
34
|
Lundborg M, Apostolov R, Spångberg D, Gärdenäs A, van der Spoel D, Lindahl E. An efficient and extensible format, library, and API for binary trajectory data from molecular simulations. J Comput Chem 2013; 35:260-9. [DOI: 10.1002/jcc.23495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/24/2013] [Accepted: 11/01/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Magnus Lundborg
- Department of Theoretical Physics and Swedish e-Science Research Center; Royal Institute of Technology, Science for Life Laboratory; Box 1031 SE-171 21 Solna Sweden
| | - Rossen Apostolov
- PDC Center for High Performance Computing; Royal Institute of Technology, Teknikringen 14, SE-100 44 Stockholm, Sweden and Science for Life Laboratory; Box 1031 SE-171 21 Solna Sweden
| | - Daniel Spångberg
- Department of Chemistry-Ångström Laboratory; Uppsala Multidisciplinary Center for Advanced Computational Methods (UPPMAX), Uppsala University; Box 523 SE-751 20 Uppsala Sweden
| | - Anders Gärdenäs
- Department of Cell and Molecular Biology; Uppsala Center for Computational Chemistry; Uppsala University; Box 596 SE-751 24 Uppsala Sweden
| | - David van der Spoel
- Department of Cell and Molecular Biology; Uppsala Center for Computational Chemistry; Uppsala University; Box 596 SE-751 24 Uppsala Sweden
| | - Erik Lindahl
- Department of Theoretical Physics and Swedish e-Science Research Center; Royal Institute of Technology, Science for Life Laboratory; Box 1031 SE-171 21 Solna Sweden
- Department of Biochemistry and Biophysics; Center for Biomembrane Research; Stockholm University; 106 91 Stockholm Sweden
| |
Collapse
|
35
|
Vargas E, Yarov-Yarovoy V, Khalili-Araghi F, Catterall WA, Klein ML, Tarek M, Lindahl E, Schulten K, Perozo E, Bezanilla F, Roux B. An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. ACTA ACUST UNITED AC 2013. [PMID: 23183694 PMCID: PMC3514734 DOI: 10.1085/jgp.201210873] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Developing an understanding of the mechanism of voltage-gated ion channels in molecular terms requires knowledge of the structure of the active and resting conformations. Although the active-state conformation is known from x-ray structures, an atomic resolution structure of a voltage-dependent ion channel in the resting state is not currently available. This has motivated various efforts at using computational modeling methods and molecular dynamics (MD) simulations to provide the missing information. A comparison of recent computational results reveals an emerging consensus on voltage-dependent gating from computational modeling and MD simulations. This progress is highlighted in the broad context of preexisting work about voltage-gated channels.
Collapse
Affiliation(s)
- Ernesto Vargas
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Petruk AA, Varriale S, Coscia MR, Mazzarella L, Merlino A, Oreste U. The structure of the CD3 ζζ transmembrane dimer in POPC and raft-like lipid bilayer: a molecular dynamics study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2637-45. [PMID: 23896554 DOI: 10.1016/j.bbamem.2013.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/05/2013] [Accepted: 07/16/2013] [Indexed: 12/15/2022]
Abstract
Plasma membrane lipids significantly affect assembly and activity of many signaling networks. The present work is aimed at analyzing, by molecular dynamics simulations, the structure and dynamics of the CD3 ζζ dimer in palmitoyl-oleoyl-phosphatidylcholine bilayer (POPC) and in POPC/cholesterol/sphingomyelin bilayer, which resembles the raft membrane microdomain supposed to be the site of the signal transducing machinery. Both POPC and raft-like environment produce significant alterations in structure and flexibility of the CD3 ζζ with respect to nuclear magnetic resonance (NMR) model: the dimer is more compact, its secondary structure is slightly less ordered, the arrangement of the Asp6 pair, which is important for binding to the Arg residue in the alpha chain of the T cell receptor (TCR), is stabilized by water molecules. Different interactions of charged residues with lipids at the lipid-cytoplasm boundary occur when the two environments are compared. Furthermore, in contrast to what is observed in POPC, in the raft-like environment correlated motions between transmembrane and cytoplasmic regions are observed. Altogether the data suggest that when the TCR complex resides in the raft domains, the CD3 ζζ dimer assumes a specific conformation probably necessary to the correct signal transduction.
Collapse
Affiliation(s)
- Ariel Alcides Petruk
- Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET), Chacabuco 461, S. M. de Tucumán, Tucumán T4000ILI, Argentina
| | | | | | | | | | | |
Collapse
|
37
|
Stock L, Souza C, Treptow W. Structural Basis for Activation of Voltage-Gated Cation Channels. Biochemistry 2013; 52:1501-13. [DOI: 10.1021/bi3013017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Letícia Stock
- Laboratório
de Biofísica Teórica
e Computacional, Departamento de Biologia Celular, Universidade de Brasília, DF, Brasília, Brazil
| | - Caio Souza
- Laboratório
de Biofísica Teórica
e Computacional, Departamento de Biologia Celular, Universidade de Brasília, DF, Brasília, Brazil
| | - Werner Treptow
- Laboratório
de Biofísica Teórica
e Computacional, Departamento de Biologia Celular, Universidade de Brasília, DF, Brasília, Brazil
| |
Collapse
|
38
|
The conserved phenylalanine in the K+ channel voltage-sensor domain creates a barrier with unidirectional effects. Biophys J 2013; 104:75-84. [PMID: 23332060 DOI: 10.1016/j.bpj.2012.11.3827] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated ion channels are crucial for regulation of electric activity of excitable tissues such as nerve cells, and play important roles in many diseases. During activation, the charged S4 segment in the voltage sensor domain translates across a hydrophobic core forming a barrier for the gating charges. This barrier is critical for channel function, and a conserved phenylalanine in segment S2 has previously been identified to be highly sensitive to substitutions. Here, we have studied the kinetics of K(v)1-type potassium channels (Shaker and K(v)1.2/2.1 chimera) through site-directed mutagenesis, electrophysiology, and molecular simulations. The F290L mutation in Shaker (F233L in K(v)1.2/2.1) accelerates channel closure by at least a factor 50, although opening is unaffected. Free energy profiles with the hydrophobic neighbors of F233 mutated to alanine indicate that the open state with the fourth arginine in S4 above the hydrophobic core is destabilized by ∼17 kJ/mol compared to the first closed intermediate. This significantly lowers the barrier of the first deactivation step, although the last step of activation is unaffected. Simulations of wild-type F233 show that the phenyl ring always rotates toward the extracellular side both for activation and deactivation, which appears to help stabilize a well-defined open state.
Collapse
|
39
|
Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A. Modeling and simulation of ion channels. Chem Rev 2012; 112:6250-84. [PMID: 23035940 PMCID: PMC3633640 DOI: 10.1021/cr3002609] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Swati Bhattacharya
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Jejoong Yoo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - David Wells
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| |
Collapse
|
40
|
The free energy barrier for arginine gating charge translation is altered by mutations in the voltage sensor domain. PLoS One 2012; 7:e45880. [PMID: 23094020 PMCID: PMC3477161 DOI: 10.1371/journal.pone.0045880] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/22/2012] [Indexed: 11/22/2022] Open
Abstract
The gating of voltage-gated ion channels is controlled by the arginine-rich S4 helix of the voltage-sensor domain moving in response to an external potential. Recent studies have suggested that S4 moves in three to four steps to open the conducting pore, thus visiting several intermediate conformations during gating. However, the exact conformational changes are not known in detail. For instance, it has been suggested that there is a local rotation in the helix corresponding to short segments of a 3-helix moving along S4 during opening and closing. Here, we have explored the energetics of the transition between the fully open state (based on the X-ray structure) and the first intermediate state towards channel closing (C), modeled from experimental constraints. We show that conformations within 3 Å of the X-ray structure are obtained in simulations starting from the C model, and directly observe the previously suggested sliding 3-helix region in S4. Through systematic free energy calculations, we show that the C state is a stable intermediate conformation and determine free energy profiles for moving between the states without constraints. Mutations indicate several residues in a narrow hydrophobic band in the voltage sensor contribute to the barrier between the open and C states, with F233 in the S2 helix having the largest influence. Substitution for smaller amino acids reduces the transition cost, while introduction of a larger ring increases it, largely confirming experimental activation shift results. There is a systematic correlation between the local aromatic ring rotation, the arginine barrier crossing, and the corresponding relative free energy. In particular, it appears to be more advantageous for the F233 side chain to rotate towards the extracellular side when arginines cross the hydrophobic region.
Collapse
|
41
|
An HL, Lü SQ, Li JW, Meng XY, Zhan Y, Cui M, Long M, Zhang HL, Logothetis DE. The cytosolic GH loop regulates the phosphatidylinositol 4,5-bisphosphate-induced gating kinetics of Kir2 channels. J Biol Chem 2012; 287:42278-87. [PMID: 23033482 DOI: 10.1074/jbc.m112.418640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels set the resting membrane potential and regulate cellular excitability. The activity of Kir channels depends critically on the phospholipid PIP(2). The molecular mechanism by which PIP(2) regulates Kir channel gating is poorly understood. Here, we utilized a combination of computational and electrophysiological approaches to discern structural elements involved in regulating the PIP(2)-induced gating kinetics of Kir2 channels. We identify a novel role for the cytosolic GH loop. Mutations that directly or indirectly affect GH loop flexibility (e.g. V223L, E272G, D292G) increase both the on- and especially the off-gating kinetics. These effects are consistent with a model in which competing interactions between the CD and GH loops for the N terminus regulate the gating of the intracellular G loop gate.
Collapse
Affiliation(s)
- Hai-Long An
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Faure É, Starek G, McGuire H, Bernèche S, Blunck R. A limited 4 Å radial displacement of the S4-S5 linker is sufficient for internal gate closing in Kv channels. J Biol Chem 2012; 287:40091-8. [PMID: 23019337 DOI: 10.1074/jbc.m112.415497] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated ion channels are responsible for the generation of action potentials in our nervous system. Conformational rearrangements in their voltage sensor domains in response to changes of the membrane potential control pore opening and thus ion conduction. Crystal structures of the open channel in combination with a wealth of biophysical data and molecular dynamics simulations led to a consensus on the voltage sensor movement. However, the coupling between voltage sensor movement and pore opening, the electromechanical coupling, occurs at the cytosolic face of the channel, from where no structural information is available yet. In particular, the question how far the cytosolic pore gate has to close to prevent ion conduction remains controversial. In cells, spectroscopic methods are hindered because labeling of internal sites remains difficult, whereas liposomes or detergent solutions containing purified ion channels lack voltage control. Here, to overcome these problems, we controlled the state of the channel by varying the lipid environment. This way, we directly measured the position of the S4-S5 linker in both the open and the closed state of a prokaryotic Kv channel (KvAP) in a lipid environment using Lanthanide-based resonance energy transfer. We were able to reconstruct the movement of the covalent link between the voltage sensor and the pore domain and used this information as restraints for molecular dynamics simulations of the closed state structure. We found that a small decrease of the pore radius of about 3-4 Å is sufficient to prevent ion permeation through the pore.
Collapse
Affiliation(s)
- Élise Faure
- Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
43
|
Piggot TJ, Piñeiro Á, Khalid S. Molecular Dynamics Simulations of Phosphatidylcholine Membranes: A Comparative Force Field Study. J Chem Theory Comput 2012; 8:4593-609. [DOI: 10.1021/ct3003157] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Thomas J. Piggot
- School of Chemistry, University
of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Ángel Piñeiro
- Department of Applied Physics,
University of Santiago de Compostela, Campus Vida, 15782, Santiago
de Compostela, Spain
| | - Syma Khalid
- School of Chemistry, University
of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
44
|
Villalba-Galea CA. Voltage-Controlled Enzymes: The New JanusBifrons. Front Pharmacol 2012; 3:161. [PMID: 22993507 PMCID: PMC3440755 DOI: 10.3389/fphar.2012.00161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/19/2012] [Indexed: 12/25/2022] Open
Abstract
The Ciona intestinalis voltage-sensitive phosphatase, Ci-VSP, was the first Voltage-controlled Enzyme (VEnz) proven to be under direct command of the membrane potential. The discovery of Ci-VSP conjugated voltage sensitivity and enzymatic activity in a single protein. These two facets of Ci-VSP activity have provided a unique model for studying how membrane potential is sensed by proteins and a novel mechanism for control of enzymatic activity. These facets make Ci-VSP a fascinating and versatile enzyme. Ci-VSP has a voltage sensing domain (VSD) that resembles those found in voltage-gated channels (VGC). The VSD resides in the N-terminus and is formed by four putative transmembrane segments. The fourth segment contains charged residues which are likely involved in voltage sensing. Ci-VSP produces sensing currents in response to changes in potential, within a defined range of voltages. Sensing currents are analogous to “gating” currents in VGC. As known, these latter proteins contain four VSDs which are entangled in a complex interaction with the pore domain – the effector domain in VGC. This complexity makes studying the basis of voltage sensing in VGC a difficult enterprise. In contrast, Ci-VSP is thought to be monomeric and its catalytic domain – the VSP’s effector domain – can be cleaved off without disrupting the basic electrical functioning of the VSD. For these reasons, VSPs are considered a great model for studying the activity of a VSD in isolation. Finally, VSPs are also phosphoinositide phosphatases. Phosphoinositides are signaling lipids found in eukaryotes and are involved in many processes, including modulation of VGC activity and regulation of cell proliferation. Understanding VSPs as enzymes has been the center of attention in recent years and several reviews has been dedicated to this area. Thus, this review will be focused instead on the other face of this true JanusBifrons and recapitulate what is known about VSPs as electrically active proteins.
Collapse
Affiliation(s)
- Carlos A Villalba-Galea
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| |
Collapse
|
45
|
Blunck R, Batulan Z. Mechanism of electromechanical coupling in voltage-gated potassium channels. Front Pharmacol 2012; 3:166. [PMID: 22988442 PMCID: PMC3439648 DOI: 10.3389/fphar.2012.00166] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/24/2012] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion - sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv) undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt, and vertical displacement in order to bring 3-4e(+) each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy, and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i) an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii) insight as to how the voltage sensor and pore domain influence one another; and (iii) theoretical predictions on the movement of the cytosolic face of the Kv channels during gating.
Collapse
Affiliation(s)
- Rikard Blunck
- Groupe d’étude des protéines membranairesMontreal, QC, Canada
- Department of Physiology, Université de MontréalMontreal, QC, Canada
- Department of Physics, Université de MontréalMontreal, QC, Canada
| | - Zarah Batulan
- Groupe d’étude des protéines membranairesMontreal, QC, Canada
- Department of Physiology, Université de MontréalMontreal, QC, Canada
| |
Collapse
|
46
|
Peyser A, Nonner W. The sliding-helix voltage sensor: mesoscale views of a robust structure-function relationship. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:705-21. [PMID: 22907204 DOI: 10.1007/s00249-012-0847-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/17/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
Abstract
The voltage sensor (VS) domain of voltage-gated ion channels underlies the electrical excitability of living cells. We simulate a mesoscale model of the VS domain to determine the functional consequences of some of its physical elements. Our mesoscale model is based on VS charges, linear dielectrics, and whole-body motion, applied to an S4 "sliding helix." The electrostatics under voltage-clamped boundary conditions are solved consistently using a boundary-element method. Based on electrostatic configurational energy, statistical-mechanical expectations of the experimentally observable relation between displaced charge and membrane voltage are predicted. Consequences of the model are investigated for variations of S4 configuration (α- and 3(10)-helical), countercharge alignment with S4 charges, protein polarizability, geometry of the gating canal, screening of S4 charges by the baths, and fixed charges located at the bath interfaces. The sliding-helix VS domain has an inherent electrostatic stability in the explored parameter space: countercharges present in the region of weak dielectric always retain an equivalent S4 charge in that region but allow sliding movements displacing 3-4 e (0). That movement is sensitive to small energy variations (<2 kT) along the path dependent on a number of electrostatic parameters tested in our simulations. These simulations show how the slope of the relation between displaced charge and voltage could be tuned in a channel.
Collapse
Affiliation(s)
- Alexander Peyser
- Department of Physiology and Biophysics, University of Miami Computational Biophysics, German Research School for Simulation Sciences, Jülich, Germany.
| | | |
Collapse
|
47
|
Peyser A, Nonner W. Voltage sensing in ion channels: mesoscale simulations of biological devices. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:011910. [PMID: 23005455 DOI: 10.1103/physreve.86.011910] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Indexed: 06/01/2023]
Abstract
Electrical signaling via voltage-gated ion channels depends upon the function of a voltage sensor (VS), identified with the S1-S4 domain in voltage-gated K(+) channels. Here we investigate some energetic aspects of the sliding-helix model of the VS using simulations based on VS charges, linear dielectrics, and whole-body motion. Model electrostatics in voltage-clamped boundary conditions are solved using a boundary element method. The statistical mechanical consequences of the electrostatic configurational energy are computed to gain insight into the sliding-helix mechanism and to predict experimentally measured ensemble properties such as gating charge displaced by an applied voltage. Those consequences and ensemble properties are investigated for two alternate S4 configurations, α and 3(10) helical. Both forms of VS are found to have an inherent electrostatic stability. Maximal charge displacement is limited by geometry, specifically the range of movement where S4 charges and countercharges overlap in the region of weak dielectric. Charge displacement responds more steeply to voltage in the α-helical than in the 3(10)-helical sensor. This difference is due to differences on the order of 0.1 eV in the landscapes of electrostatic energy. As a step toward integrating these VS models into a full-channel model, we include a hypothetical external load in the Hamiltonian of the system and analyze the energetic input-output relation of the VS.
Collapse
Affiliation(s)
- Alexander Peyser
- Department of Physiology and Biophysics, University of Miami, Coral Gables, Florida 33146, USA
| | | |
Collapse
|
48
|
Khalili-Araghi F, Tajkhorshid E, Roux B, Schulten K. Molecular dynamics investigation of the ω-current in the Kv1.2 voltage sensor domains. Biophys J 2012; 102:258-67. [PMID: 22339862 DOI: 10.1016/j.bpj.2011.10.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 10/14/2022] Open
Abstract
Voltage sensor domains (VSD) are transmembrane proteins that respond to changes in membrane voltage and modulate the activity of ion channels, enzymes, or in the case of proton channels allow permeation of protons across the cell membrane. VSDs consist of four transmembrane segments, S1-S4, forming an antiparallel helical bundle. The S4 segment contains several positively charged residues, mainly arginines, located at every third position along the helix. In the voltage-gated Shaker K(+) channel, the mutation of the first arginine of S4 to a smaller uncharged amino acid allows permeation of cations through the VSD. These currents, known as ω-currents, pass through the VSD and are distinct from K(+) currents passing through the main ion conduction pore. Here we report molecular dynamics simulations of the ω-current in the resting-state conformation for Kv1.2 and for four of its mutants. The four tested mutants exhibit various degrees of conductivity for K(+) and Cl(-) ions, with a slight selectivity for K(+) over Cl(-). Analysis of the ion permeation pathway, in the case of a highly conductive mutant, reveals a negatively charged constriction region near the center of the membrane that might act as a selectivity filter to prevent permeation of anions through the pore. The residues R1 in S4 and E1 in S2 are located at the narrowest region of the ω-pore for the resting state conformation of the VSD, in agreement with experiments showing that the largest increase in current is produced by the double mutation E1D and R1S.
Collapse
Affiliation(s)
- Fatemeh Khalili-Araghi
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
49
|
Delemotte L, Klein ML, Tarek M. Molecular dynamics simulations of voltage-gated cation channels: insights on voltage-sensor domain function and modulation. Front Pharmacol 2012; 3:97. [PMID: 22654756 PMCID: PMC3361024 DOI: 10.3389/fphar.2012.00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/01/2012] [Indexed: 11/26/2022] Open
Abstract
Since their discovery in the 1950s, the structure and function of voltage-gated cation channels (VGCC) has been largely understood thanks to results stemming from electrophysiology, pharmacology, spectroscopy, and structural biology. Over the past decade, computational methods such as molecular dynamics (MD) simulations have also contributed, providing molecular level information that can be tested against experimental results, thereby allowing the validation of the models and protocols. Importantly, MD can shed light on elements of VGCC function that cannot be easily accessed through “classical” experiments. Here, we review the results of recent MD simulations addressing key questions that pertain to the function and modulation of the VGCC’s voltage-sensor domain (VSD) highlighting: (1) the movement of the S4-helix basic residues during channel activation, articulating how the electrical driving force acts upon them; (2) the nature of the VSD intermediate states on transitioning between open and closed states of the VGCC; and (3) the molecular level effects on the VSD arising from mutations of specific S4 positively charged residues involved in certain genetic diseases.
Collapse
Affiliation(s)
- Lucie Delemotte
- Equipe de Chimie et Biochimie Théoriques, UMR Synthèse et Réactivité de Systèmes Moléculaires Complexes, Centre National de la Recherche Scientifique Université de Lorraine Nancy, France
| | | | | |
Collapse
|
50
|
Abstract
The intricate functions of membrane proteins would not be possible without bends or breaks that are remarkably common in transmembrane helices. The frequent helix distortions are nevertheless surprising because backbone hydrogen bonds should be strong in an apolar membrane, potentially rigidifying helices. It is therefore mysterious how distortions can be generated by the evolutionary currency of random point mutations. Here we show that we can engineer a transition between distinct distorted helix conformations in bacteriorhodopsin with a single-point mutation. Moreover, we estimate the energetic cost of the conformational transitions to be smaller than 1 kcal/mol. We propose that the low energy of distortion is explained in part by the shifting of backbone hydrogen bonding partners. Consistent with this view, extensive backbone hydrogen bond shifts occur during helix conformational changes that accompany functional cycles. Our results explain how evolution has been able to liberally exploit transmembrane helix bending for the optimization of membrane protein structure, function, and dynamics.
Collapse
|