1
|
Zhang M, Tang S, Wang X, Fang S, Li Y. Mechanosensitive channel MscL gating transitions coupling with constriction point shift. Protein Sci 2024; 33:e4965. [PMID: 38501596 PMCID: PMC10949393 DOI: 10.1002/pro.4965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
The mechanosensitive channel of large conductance (MscL) acts as an "emergency release valve" that protects bacterial cells from acute hypoosmotic stress, and it serves as a paradigm for studying the mechanism underlying the transduction of mechanical forces. MscL gating is proposed to initiate with an expansion without opening, followed by subsequent pore opening via a number of intermediate substates, and ends in a full opening. However, the details of gating process are still largely unknown. Using in vivo viability assay, single channel patch clamp recording, cysteine cross-linking, and tryptophan fluorescence quenching approach, we identified and characterized MscL mutants with different occupancies of constriction region in the pore domain. The results demonstrated the shifts of constriction point along the gating pathway towards cytoplasic side from residue G26, though G22, to L19 upon gating, indicating the closed-expanded transitions coupling of the expansion of tightly packed hydrophobic constriction region to conduct the initial ion permeation in response to the membrane tension. Furthermore, these transitions were regulated by the hydrophobic and lipidic interaction with the constricting "hot spots". Our data reveal a new resolution of the transitions from the closed to the opening substate of MscL, providing insights into the gating mechanisms of MscL.
Collapse
Affiliation(s)
- Mingfeng Zhang
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingChina
- School of Life ScienceWestlake UniversityHangzhouChina
- School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
| | - Siyang Tang
- School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
| | - Xiaomin Wang
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingChina
| | - Sanhua Fang
- Core FacilitiesZhejiang University School of MedicineHangzhouChina
| | - Yuezhou Li
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingChina
| |
Collapse
|
2
|
Sharma A, Anishkin A, Sukharev S, Vanegas JM. Tight hydrophobic core and flexible helices yield MscL with a high tension gating threshold and a membrane area mechanical strain buffer. Front Chem 2023; 11:1159032. [PMID: 37292176 PMCID: PMC10244533 DOI: 10.3389/fchem.2023.1159032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The mechanosensitive (MS) channel of large conductance, MscL, is the high-tension threshold osmolyte release valve that limits turgor pressure in bacterial cells in the event of drastic hypoosmotic shock. Despite MscL from Mycobacterium tuberculosis (TbMscL) being the first structurally characterized MS channel, its protective mechanism of activation at nearly-lytic tensions has not been fully understood. Here, we describe atomistic simulations of expansion and opening of wild-type (WT) TbMscL in comparison with five of its gain-of-function (GOF) mutants. We show that under far-field membrane tension applied to the edge of the periodic simulation cell, WT TbMscL expands into a funnel-like structure with trans-membrane helices bent by nearly 70°, but does not break its 'hydrophobic seal' within extended 20 μs simulations. GOF mutants carrying hydrophilic substitutions in the hydrophobic gate of increasing severity (A20N, V21A, V21N, V21T and V21D) also quickly transition into funnel-shaped conformations but subsequently fully open within 1-8 μs. This shows that solvation of the de-wetted (vapor-locked) constriction is the rate-limiting step in the gating of TbMscL preceded by area-buffering silent expansion. Pre-solvated gates in these GOF mutants reduce this transition barrier according to hydrophilicity and the most severe V21D eliminates it. We predict that the asymmetric shape-change of the periplasmic side of the channel during the silent expansion provides strain-buffering to the outer leaflet thus re-distributing the tension to the inner leaflet, where the gate resides.
Collapse
Affiliation(s)
- Arjun Sharma
- Department of Physics, University of Vermont, Burlington, VT, United States
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Juan M. Vanegas
- Department of Physics, University of Vermont, Burlington, VT, United States
| |
Collapse
|
3
|
Immadisetty K, Polasa A, Shelton R, Moradi M. Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel. Comput Struct Biotechnol J 2022; 20:2539-2550. [PMID: 35685356 PMCID: PMC9156883 DOI: 10.1016/j.csbj.2022.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Mechanosensitive channel of large conductance (MscL) detects and responds to changes in the pressure profile of cellular membranes and transduces the mechanical energy into electrical and/or chemical signals. MscL can be activated using ultrasonic or chemical activation methods to improve the absorption of medicines and bioactive compounds into cells. However, re-engineering chemical signals such as pH change can trigger channel activation in MscL. This study elucidates the activation mechanism of an engineered MscL at an atomic level through a combination of equilibrium and non-equilibrium (NE) molecular dynamics (MD) simulations. Comparing the wild-type (WT) and engineered MscL activation processes suggests that the two systems are likely associated with different active states and different transition pathways. These findings indicate that (1) periplasmic loops play a key role in the activation process of MscL, (2) the loss of various backbone-backbone hydrogen bonds and salt bridge interactions in the engineered MscL channel causes the spontaneous opening of the channel, and (3) the most significant interactions lost during the activation process are between the transmembrane helices 1 and 2 in engineered MscL channel. The orientation-based biasing approach for producing and optimizing an open MscL model used in this work is a promising way to characterize unknown protein functional states and investigate the activation processes in ion channels and transmembrane proteins in general. This work paves the way for a computational framework for engineering more efficient pH-sensing mechanosensitive channels.
Collapse
Affiliation(s)
- Kalyan Immadisetty
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Reid Shelton
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| |
Collapse
|
4
|
Buyan A, Corry B. Initiating Coarse-Grained MD Simulations for Membrane-Bound Proteins. Methods Mol Biol 2022; 2402:131-141. [PMID: 34854041 DOI: 10.1007/978-1-0716-1843-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular dynamics (MD) simulations have become a widely used tool in the scientific community for understanding molecular scale phenomena that are challenging to address with wet-lab techniques. Coarse-grained simulations, in which multiple atoms are combined into single beads, allow for larger systems and longer time scales to be explored than atomistic techniques. Here, we describe the procedures and equipment required to set up coarse-grained simulations of membrane-bound proteins in a lipid bilayer that can mimic many membrane environments.
Collapse
Affiliation(s)
- Amanda Buyan
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
5
|
Gomez D, Peña Ccoa WJ, Singh Y, Rojas E, Hocky GM. Molecular Paradigms for Biological Mechanosensing. J Phys Chem B 2021; 125:12115-12124. [PMID: 34709040 DOI: 10.1021/acs.jpcb.1c06330] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many proteins in living cells are subject to mechanical forces, which can be generated internally by molecular machines, or externally, e.g., by pressure gradients. In general, these forces fall in the piconewton range, which is similar in magnitude to forces experienced by a molecule due to thermal fluctuations. While we would naively expect such moderate forces to produce only minimal changes, a wide variety of "mechanosensing" proteins have evolved with functions that are responsive to forces in this regime. The goal of this article is to provide a physical chemistry perspective on protein-based molecular mechanosensing paradigms used in living systems, and how these paradigms can be explored using novel computational methods.
Collapse
Affiliation(s)
- David Gomez
- Department of Biology, New York University, New York, New York 10003, United States.,Department of Chemistry, New York University, New York, New York 10003, United States
| | - Willmor J Peña Ccoa
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Yuvraj Singh
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Enrique Rojas
- Department of Biology, New York University, New York, New York 10003, United States
| | - Glen M Hocky
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
6
|
Lin Y, Buyan A, Corry B. Computational studies of Piezo1 yield insights into key lipid–protein interactions, channel activation, and agonist binding. Biophys Rev 2021; 14:209-219. [DOI: 10.1007/s12551-021-00847-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
|
7
|
Rajeshwar T R, Anishkin A, Sukharev S, Vanegas JM. Mechanical Activation of MscL Revealed by a Locally Distributed Tension Molecular Dynamics Approach. Biophys J 2020; 120:232-242. [PMID: 33333032 DOI: 10.1016/j.bpj.2020.11.2274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 02/02/2023] Open
Abstract
Membrane tension perceived by mechanosensitive (MS) proteins mediates cellular responses to mechanical stimuli and osmotic stresses, and it also guides multiple biological functions including cardiovascular control and development. In bacteria, MS channels function as tension-activated pores limiting excessive turgor pressure, with MS channel of large conductance (MscL) acting as an emergency release valve preventing cell lysis. Previous attempts to simulate gating transitions in MscL by either directly applying steering forces to the protein or by increasing the whole-system tension were not fully successful and often disrupted the integrity of the system. We present a novel, to our knowledge, locally distributed tension molecular dynamics (LDT-MD) simulation method that allows application of forces continuously distributed among lipids surrounding the channel using a specially constructed collective variable. We report reproducible and reversible transitions of MscL to the open state with measured parameters of lateral expansion and conductivity that exactly satisfy experimental values. The LDT-MD method enables exploration of the MscL-gating process with different pulling velocities and variable tension asymmetry between the inner and outer membrane leaflets. We use LDT-MD in combination with well-tempered metadynamics to reconstruct the tension-dependent free-energy landscape for the opening transition in MscL. The flexible definition of the LDT collective variable allows general application of our method to study mechanical activation of any membrane-embedded protein.
Collapse
Affiliation(s)
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, Maryland
| | - Juan M Vanegas
- Department of Physics, University of Vermont, Burlington, Vermont.
| |
Collapse
|
8
|
Zhu L, Zhao W, Yan Y, Liao X, Bourtsalas A, Dan Y, Xiao H, Chen X. Interaction between mechanosensitive channels embedded in lipid membrane. J Mech Behav Biomed Mater 2019; 103:103543. [PMID: 31783284 DOI: 10.1016/j.jmbbm.2019.103543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/07/2019] [Accepted: 11/15/2019] [Indexed: 11/27/2022]
Abstract
The study of the gating mechanism of mechanosensitive channels opens a window to the exploration of how different mechanical stimuli induce adaptive cellular behaviors of both the protein and the lipid, across different time and length scales. In this work, through a molecular dynamics-decorated finite element method (MDeFEM), the gating behavior of mechanosensitive channels of small conductance (MscS) in Escherichia coli (E. coli) is studied upon membrane stretch or global bending. The local membrane curvature around MscS is incorporated, as well as multiple MscL (mechanosensitive channels of large conductance) molecules in proximity to MscS. The local membrane curvature is found to delay MscS opening and diminishes moderately upon membrane stretching. Mimicking the insertion of lysophosphatidylcholine (LPC) molecules into the lipid, both downward and upward bending can active MscS, as long as the global membrane curvature radius reaches 34 nm. Based on the different MscS pore evolutions observed with the presence of one or more MscLs nearby, we propose that when coreconstituted, multiple MscL molecules tend to be located at the local membrane curvature zone around MscS. In another word, as MscL "swims around" in the lipid bilayer, it can be trapped by the membrane's local curvature. Collectively, the current study provides valuable insights into the interplay between mechanosensitive channels and lipid membrane at structural and physical levels, and specific predictions are proposed for further experimental investigations.
Collapse
Affiliation(s)
- Liangliang Zhu
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Zhao
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Yuan Yan
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Xiangbiao Liao
- Earth Engineering Center, Center for Advanced Materials for Energy and Environment, Department of Earth and Environmental Engineering, Columbia University, New York, NY10027, USA
| | - Athanasios Bourtsalas
- Earth Engineering Center, Center for Advanced Materials for Energy and Environment, Department of Earth and Environmental Engineering, Columbia University, New York, NY10027, USA
| | - Yong Dan
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
| | - Hang Xiao
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
| | - Xi Chen
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Earth Engineering Center, Center for Advanced Materials for Energy and Environment, Department of Earth and Environmental Engineering, Columbia University, New York, NY10027, USA
| |
Collapse
|
9
|
Singh W, Bilal M, McClory J, Dourado D, Quinn D, Moody TS, Sutcliffe I, Huang M. Mechanism of Phosphatidylglycerol Activation Catalyzed by Prolipoprotein Diacylglyceryl Transferase. J Phys Chem B 2019; 123:7092-7102. [DOI: 10.1021/acs.jpcb.9b04227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Warispreet Singh
- School of Chemistry & Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
- Department of Biocatalysis and Isotope Chemistry, Almac Sciences, Almac House, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, Northern Ireland, United Kingdom
| | - Munir Bilal
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - James McClory
- School of Chemistry & Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Daniel Dourado
- School of Chemistry & Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
- Department of Biocatalysis and Isotope Chemistry, Almac Sciences, Almac House, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, Northern Ireland, United Kingdom
| | - Derek Quinn
- Department of Biocatalysis and Isotope Chemistry, Almac Sciences, Almac House, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, Northern Ireland, United Kingdom
| | - Thomas S. Moody
- Department of Biocatalysis and Isotope Chemistry, Almac Sciences, Almac House, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, Northern Ireland, United Kingdom
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone, Co., Roscommon, N37 DN24, Ireland
| | - Iain Sutcliffe
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Meilan Huang
- School of Chemistry & Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
| |
Collapse
|
10
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
11
|
Gating and inactivation of mechanosensitive channels of small conductance: A continuum mechanics study. J Mech Behav Biomed Mater 2018; 90:502-514. [PMID: 30453114 DOI: 10.1016/j.jmbbm.2018.10.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/27/2018] [Accepted: 10/30/2018] [Indexed: 11/21/2022]
Abstract
Mechanosensitive channels of small conductance (MscS) in Escherichia coli (E. coli) serve as a paradigm for understanding the gating behaviors of the MscS family of ion channels. In this work, we develop a continuum mechanics framework to explore the conformational states of MscS during the gating transition. A complete gating transition trajectory from the closed to the open state along with partially open intermediates is obtained, and the open structure is close to the available structural model from crystallographic studies. The computational efficiency of the modeling framework makes it possible to explore the roles of various structural elements (e.g., loops that connect transmembrane helices) and specific interactions in the gating transition. It is observed that removing either the Asp62-Arg131 salt bridge or the Phe68-Leu111 non-polar interaction leads to essentially non-conducting structures even with a membrane tension close to the lysis limit. The loop connecting TM2 (the second transmembrane helix) and TM3 is found to be essential for force transmission during gating, while the loop connecting TM1 and TM2 does not make any major contribution. Based on the different structural evolutions observed when the TM3 kink is treated as a loop or a helical segment, we propose that the helical propensity of the kink plays a central role in inactivation; i.e., under prolonged sub-threshold membrane tension, transition of the initially flexible loop to a helical segment in TM3 may lead to MscS inactivation. Finally, the gating transition of MscS under different transmembrane voltages is explored and found to be essentially voltage independent. Collectively, results from the current continuum mechanics analysis provide further insights into the gating transition of MscS at structural and physical levels, and specific predictions are proposed for further experimental investigations.
Collapse
|
12
|
Herrera N, Maksaev G, Haswell ES, Rees DC. Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 2018; 8:14566. [PMID: 30275500 PMCID: PMC6167328 DOI: 10.1038/s41598-018-32536-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/31/2018] [Indexed: 12/04/2022] Open
Abstract
Microbial survival in dynamic environments requires the ability to successfully respond to abrupt changes in osmolarity. The mechanosensitive channel of large conductance (MscL) is a ubiquitous channel that facilitates the survival of bacteria and archaea under severe osmotic downshock conditions by relieving excess turgor pressure in response to increased membrane tension. A prominent structural feature of MscL, the cytoplasmic C-terminal domain, has been suggested to influence channel assembly and function. In this report, we describe the X-ray crystal structure and electrophysiological properties of a C-terminal domain truncation of the Mycobacterium tuberculosis MscL (MtMscLΔC). A crystal structure of MtMscLΔC solubilized in the detergent n-dodecyl-β-D-maltopyranoside reveals the pentameric, closed state-like architecture for the membrane spanning region observed in the previously solved full-length MtMscL. Electrophysiological characterization demonstrates that MtMscLΔC retains mechanosensitivity, but with conductance and tension sensitivity more closely resembling full length EcMscL than MtMscL. This study establishes that the C-terminal domain of MtMscL is not required for oligomerization of the full-length channel, but rather influences the tension sensitivity and conductance properties of the channel. The collective picture that emerges from these data is that each MscL channel structure has characteristic features, highlighting the importance of studying multiple homologs.
Collapse
Affiliation(s)
- Nadia Herrera
- Division of Chemistry and Chemical Engineering 114-96, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA.,Division of Infectious Diseases, Department of Medicine University of California, San Francisco, San Francisco, CA, 94143-0654, USA
| | - Grigory Maksaev
- Department of Biology, NSF Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Elizabeth S Haswell
- Department of Biology, NSF Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering 114-96, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
13
|
Howard RJ, Carnevale V, Delemotte L, Hellmich UA, Rothberg BS. Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:927-942. [PMID: 29258839 DOI: 10.1016/j.bbamem.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022]
Abstract
Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Rebecca J Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, 17121 Solna, Sweden.
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Theoretical Physics, KTH Royal Institute of Technology, Box 1031, 17121 Solna, Sweden.
| | - Ute A Hellmich
- Johannes Gutenberg University Mainz, Institute for Pharmacy and Biochemistry, Johann-Joachim-Becherweg 30, 55128 Mainz, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| | - Brad S Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
14
|
Bavi N, Bavi O, Vossoughi M, Naghdabadi R, Hill AP, Martinac B, Jamali Y. Nanomechanical properties of MscL α helices: A steered molecular dynamics study. Channels (Austin) 2016; 11:209-223. [PMID: 27753526 DOI: 10.1080/19336950.2016.1249077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Gating of mechanosensitive (MS) channels is driven by a hierarchical cascade of movements and deformations of transmembrane helices in response to bilayer tension. Determining the intrinsic mechanical properties of the individual transmembrane helices is therefore central to understanding the intricacies of the gating mechanism of MS channels. We used a constant-force steered molecular dynamics (SMD) approach to perform unidirectional pulling tests on all the helices of MscL in M. tuberculosis and E. coli homologs. Using this method, we could overcome the issues encountered with the commonly used constant-velocity SMD simulations, such as low mechanical stability of the helix during stretching and high dependency of the elastic properties on the pulling rate. We estimated Young's moduli of the α-helices of MscL to vary between 0.2 and 12.5 GPa with TM2 helix being the stiffest. We also studied the effect of water on the properties of the pore-lining TM1 helix. In the absence of water, this helix exhibited a much stiffer response. By monitoring the number of hydrogen bonds, it appears that water acts like a 'lubricant' (softener) during TM1 helix elongation. These data shed light on another physical aspect underlying hydrophobic gating of MS channels, in particular MscL.
Collapse
Affiliation(s)
- N Bavi
- a Division of Molecular Cardiology and Biophysics , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia.,b St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Darlinghurst , NSW , Australia
| | - O Bavi
- c Institute for Nanoscience and Nanotechnology, Sharif University of Technology , Tehran , Iran
| | - M Vossoughi
- c Institute for Nanoscience and Nanotechnology, Sharif University of Technology , Tehran , Iran.,d Biochemical & Bioenvironmental Research Center (BBRC) , Tehran , Iran
| | - R Naghdabadi
- c Institute for Nanoscience and Nanotechnology, Sharif University of Technology , Tehran , Iran.,e Department of Mechanical Engineering , Sharif University of Technology , Tehran , Iran
| | - A P Hill
- a Division of Molecular Cardiology and Biophysics , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia
| | - B Martinac
- a Division of Molecular Cardiology and Biophysics , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia.,b St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Darlinghurst , NSW , Australia
| | - Y Jamali
- f Department of Mathematics , Tarbiat Modares University , Tehran , Iran.,g Computational Physical Sciences Research Laboratory , School of Nanoscience, Institute for Research in Fundamental Sciences (IPM) , Tehran , Iran
| |
Collapse
|
15
|
Wray R, Iscla I, Gao Y, Li H, Wang J, Blount P. Dihydrostreptomycin Directly Binds to, Modulates, and Passes through the MscL Channel Pore. PLoS Biol 2016; 14:e1002473. [PMID: 27280286 PMCID: PMC4900634 DOI: 10.1371/journal.pbio.1002473] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/04/2016] [Indexed: 12/23/2022] Open
Abstract
The primary mechanism of action of the antibiotic dihydrostreptomycin is binding to and modifying the function of the bacterial ribosome, thus leading to decreased and aberrant translation of proteins; however, the routes by which it enters the bacterial cell are largely unknown. The mechanosensitive channel of large conductance, MscL, is found in the vast majority of bacterial species, where it serves as an emergency release valve rescuing the cell from sudden decreases in external osmolarity. While it is known that MscL expression increases the potency of dihydrostreptomycin, it has remained unclear if this effect is due to a direct interaction. Here, we use a combination of genetic screening, MD simulations, and biochemical and mutational approaches to determine if dihydrostreptomycin directly interacts with MscL. Our data strongly suggest that dihydrostreptomycin binds to a specific site on MscL and modifies its conformation, thus allowing the passage of K+ and glutamate out of, and dihydrostreptomycin into, the cell.
Collapse
Affiliation(s)
- Robin Wray
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Irene Iscla
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ya Gao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Junmei Wang
- Green Center for Systems Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
16
|
Zhu L, Wu J, Liu L, Liu Y, Yan Y, Cui Q, Chen X. Gating mechanism of mechanosensitive channel of large conductance: a coupled continuum mechanical-continuum solvation approach. Biomech Model Mechanobiol 2016; 15:1557-1576. [PMID: 27009075 DOI: 10.1007/s10237-016-0783-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
Abstract
Gating transition of the mechanosensitive channel of large conductance (MscL) represents a good example of important biological processes that are difficult to describe using atomistic simulations due to the large (submicron) length scale and long (millisecond) time scale. Here we develop a novel computational framework that tightly couples continuum mechanics with continuum solvation models to study the detailed gating behavior of E. coli-MscL. The components of protein molecules are modeled by continuum elements that properly describe their shape, material properties and physicochemical features (e.g., charge distribution). The lipid membrane is modeled as a three-layer material in which the lipid head group and tail regions are treated separately, taking into account the fact that fluidic lipid bilayers do not bear shear stress. Coupling between mechanical and chemical responses of the channel is realized by an iterative integration of continuum mechanics (CM) modeling and continuum solvation (CS) computation. Compared to previous continuum mechanics studies, the present model is capable of capturing the most essential features of the gating process in a much more realistic fashion: due mainly to the apolar solvation contribution, the membrane tension for full opening of MscL is reduced substantially to the experimental measured range. Moreover, the pore size stabilizes constantly during gating because of the intricate interactions of the multiple components of the system, implying the mechanism for sub-conducting states of MscL gating. A significant fraction ([Formula: see text]2/3) of the gating membrane strain is required to reach the first sub-conducting state of our model, which is featured with a relative conductance of 0.115 to the fully opened state. These trends agree well with experimental observations. We anticipate that the coupled CM/CS modeling framework is uniquely suited for the analysis of many biomolecules and their assemblies under external mechanical stimuli.
Collapse
Affiliation(s)
- Liangliang Zhu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.,Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, NY, 10027, USA
| | - Jiazhong Wu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Ling Liu
- Department of Mechanical and Aerospace Engineering, Utah State University, Logan, UT, 84322, USA
| | - Yilun Liu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yuan Yan
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xi Chen
- Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
17
|
|
18
|
Najem JS, Dunlap MD, Yasmann A, Freeman EC, Grant JW, Sukharev S, Leo DJ. Multifunctional, Micropipette-based Method for Incorporation And Stimulation of Bacterial Mechanosensitive Ion Channels in Droplet Interface Bilayers. J Vis Exp 2015. [PMID: 26650467 PMCID: PMC4692740 DOI: 10.3791/53362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MscL, a large conductance mechanosensitive channel (MSC), is a ubiquitous osmolyte release valve that helps bacteria survive abrupt hypo-osmotic shocks. It has been discovered and rigorously studied using the patch-clamp technique for almost three decades. Its basic role of translating tension applied to the cell membrane into permeability response makes it a strong candidate to function as a mechanoelectrical transducer in artificial membrane-based biomolecular devices. Serving as building blocks to such devices, droplet interface bilayers (DIBs) can be used as a new platform for the incorporation and stimulation of MscL channels. Here, we describe a micropipette-based method to form DIBs and measure the activity of the incorporated MscL channels. This method consists of lipid-encased aqueous droplets anchored to the tips of two opposing (coaxially positioned) borosilicate glass micropipettes. When droplets are brought into contact, a lipid bilayer interface is formed. This technique offers control over the chemical composition and the size of each droplet, as well as the dimensions of the bilayer interface. Having one of the micropipettes attached to a harmonic piezoelectric actuator provides the ability to deliver a desired oscillatory stimulus. Through analysis of the shapes of the droplets during deformation, the tension created at the interface can be estimated. Using this technique, the first activity of MscL channels in a DIB system is reported. Besides MS channels, activities of other types of channels can be studied using this method, proving the multi-functionality of this platform. The method presented here enables the measurement of fundamental membrane properties, provides a greater control over the formation of symmetric and asymmetric membranes, and is an alternative way to stimulate and study mechanosensitive channels.
Collapse
Affiliation(s)
- Joseph S Najem
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University
| | - Myles D Dunlap
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University
| | | | | | - John W Grant
- Department of Engineering Sciences and Mechanics, Virginia Polytechnic Institute and State University
| | | | | |
Collapse
|
19
|
Najem JS, Dunlap MD, Rowe ID, Freeman EC, Grant JW, Sukharev S, Leo DJ. Activation of bacterial channel MscL in mechanically stimulated droplet interface bilayers. Sci Rep 2015; 5:13726. [PMID: 26348441 PMCID: PMC4562232 DOI: 10.1038/srep13726] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/03/2015] [Indexed: 02/01/2023] Open
Abstract
MscL, a stretch-activated channel, saves bacteria experiencing hypo-osmotic shocks from lysis. Its high conductance and controllable activation makes it a strong candidate to serve as a transducer in stimuli-responsive biomolecular materials. Droplet interface bilayers (DIBs), flexible insulating scaffolds for such materials, can be used as a new platform for incorporation and activation of MscL. Here, we report the first reconstitution and activation of the low-threshold V23T mutant of MscL in a DIB as a response to axial compressions of the droplets. Gating occurs near maximum compression of both droplets where tension in the membrane is maximal. The observed 0.1-3 nS conductance levels correspond to the V23T-MscL sub-conductive and fully open states recorded in native bacterial membranes or liposomes. Geometrical analysis of droplets during compression indicates that both contact angle and total area of the water-oil interfaces contribute to the generation of tension in the bilayer. The measured expansion of the interfaces by 2.5% is predicted to generate a 4-6 mN/m tension in the bilayer, just sufficient for gating. This work clarifies the principles of interconversion between bulk and surface forces in the DIB, facilitates the measurements of fundamental membrane properties, and improves our understanding of MscL response to membrane tension.
Collapse
Affiliation(s)
- Joseph S. Najem
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Myles D. Dunlap
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Ian D. Rowe
- Department of Biology, University of Maryland, College Park, Maryland 20742, United States
| | - Eric C. Freeman
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - John W. Grant
- Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, Maryland 20742, United States
| | - Donald J. Leo
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
20
|
Chi G, Rohde PR, Ridone P, Hankamer B, Martinac B, Landsberg MJ. Functional similarities between heterogeneously and homogenously expressed MscL constructs. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:589-98. [PMID: 26233759 DOI: 10.1007/s00249-015-1062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/29/2015] [Accepted: 07/14/2015] [Indexed: 11/30/2022]
Abstract
The mechanosensitive channel of large conductance MscL is a well-characterized mechanically gated non-selective ion channel, which often serves as a prototype mechanosensitive channel for mechanotransduction studies. However, there are some discrepancies between MscL constructs used in these studies, most notably unintended heterogeneous expression from some MscL expression constructs. In this study we investigate the possible cause of this expression pattern, and compare the original non-homogenously expressing constructs with our new homogeneously expressing one to confirm that there is little functional difference between them. In addition, a new MscL construct has been developed with an improved molar extinction coefficient at 280 nm, enabling more accurate protein quantification.
Collapse
Affiliation(s)
- Gamma Chi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Sawada Y, Sokabe M. Molecular dynamics study on protein-water interplay in the mechanogating of the bacterial mechanosensitive channel MscL. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:531-43. [PMID: 26233760 PMCID: PMC4562998 DOI: 10.1007/s00249-015-1065-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/18/2015] [Indexed: 11/03/2022]
Abstract
One of the goals of mechanosensitive channel (MSC) studies is to understand the underlying molecular and biophysical mechanisms of the mechano-gating process from force sensing to gate opening. We focus on the latter process and investigate the role of water in the bacterial MSC MscL, which is activated by membrane tension. We analyze the interplay between water and the gate-constituting amino acids, Leu19-Gly26, through molecular dynamics simulations. To highlight the role of water, specifically hydration of the gate, in MscL gating, we restrain lateral movements of the water molecules along the water-vapor interfaces at the top and bottom of the vapor bubble, plugging the closed gate. The gating behaviors in this model and the normal MscL model, in which water movements are unrestrained, are compared. In the normal model, increased membrane tension breaks the hydrogen bond between Leu19 and Val 23 of the inner helix, exposing the backbone carbonyl oxygen of Leu19 to the water-accessible lumen side of the gate. Associated with this activity, water comes to access the vapor region and stably interacts with the carbonyl oxygen to induce a dewetting to wetting transition that facilitates gate expansion toward channel opening. By contrast, in the water-restrained model, carbonyl oxygen is also exposed, but no further conformational changes occur at the gate. This suggests that gate opening relies on a conformational change initiated by wetting. The penetrated water weakens the hydrophobic interaction between neighboring transmembrane inner helices called the "hydrophobic lock" by wedging into the space between their interacting portions.
Collapse
Affiliation(s)
- Yasuyuki Sawada
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | | |
Collapse
|
22
|
Battle AR, Ridone P, Bavi N, Nakayama Y, Nikolaev YA, Martinac B. Lipid-protein interactions: Lessons learned from stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1744-56. [PMID: 25922225 DOI: 10.1016/j.bbamem.2015.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 12/11/2022]
Abstract
Biological membranes are essential for normal function and regulation of cells, forming a physical barrier between extracellular and intracellular space and cellular compartments. These physical barriers are subject to mechanical stresses. As a consequence, nature has developed proteins that are able to transpose mechanical stimuli into meaningful intracellular signals. These proteins, termed Mechanosensitive (MS) proteins provide a variety of roles in response to these stimuli. In prokaryotes these proteins form transmembrane spanning channels that function as osmotically activated nanovalves to prevent cell lysis by hypoosmotic shock. In eukaryotes, the function of MS proteins is more diverse and includes physiological processes such as touch, pain and hearing. The transmembrane portion of these channels is influenced by the physical properties such as charge, shape, thickness and stiffness of the lipid bilayer surrounding it, as well as the bilayer pressure profile. In this review we provide an overview of the progress to date on advances in our understanding of the intimate biophysical and chemical interactions between the lipid bilayer and mechanosensitive membrane channels, focusing on current progress in both eukaryotic and prokaryotic systems. These advances are of importance due to the increasing evidence of the role the MS channels play in disease, such as xerocytosis, muscular dystrophy and cardiac hypertrophy. Moreover, insights gained from lipid-protein interactions of MS channels are likely relevant not only to this class of membrane proteins, but other bilayer embedded proteins as well. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- A R Battle
- Menzies Health Institute Queensland and School of Pharmacy, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - P Ridone
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - N Bavi
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Y Nakayama
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Y A Nikolaev
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - B Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia.
| |
Collapse
|
23
|
Chandramouli B, Di Maio D, Mancini G, Barone V, Brancato G. Breaking the hydrophobicity of the MscL pore: insights into a charge-induced gating mechanism. PLoS One 2015; 10:e0120196. [PMID: 25825909 PMCID: PMC4380313 DOI: 10.1371/journal.pone.0120196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/06/2015] [Indexed: 01/17/2023] Open
Abstract
The mechanosensitive channel of large conductance (MscL) is a protein that responds to membrane tension by opening a transient pore during osmotic downshock. Due to its large pore size and functional reconstitution into lipid membranes, MscL has been proposed as a promising artificial nanovalve suitable for biotechnological applications. For example, site-specific mutations and tailored chemical modifications have shown how MscL channel gating can be triggered in the absence of tension by introducing charged residues at the hydrophobic pore level. Recently, engineered MscL proteins responsive to stimuli like pH or light have been reported. Inspired by experiments, we present a thorough computational study aiming at describing, with atomistic detail, the artificial gating mechanism and the molecular transport properties of a light-actuated bacterial MscL channel, in which a charge-induced gating mechanism has been enabled through the selective cleavage of photo-sensitive alkylating agents. Properties such as structural transitions, pore dimension, ion flux and selectivity have been carefully analyzed. Besides, the effects of charge on alternative sites of the channel with respect to those already reported have been addressed. Overall, our results provide useful molecular insights into the structural events accompanying the engineered MscL channel gating and the interplay of electrostatic effects, channel opening and permeation properties. In addition, we describe how the experimentally observed ionic current in a single-subunit charged MscL mutant is obtained through a hydrophobicity breaking mechanism involving an asymmetric inter-subunit motion.
Collapse
Affiliation(s)
| | - Danilo Di Maio
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Giordano Mancini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Giuseppe Brancato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
- * E-mail:
| |
Collapse
|
24
|
Abstract
Molecular dynamics (MD) simulations at the atomic scale are a powerful tool to study the structure and dynamics of model biological systems. However, because of their high computational cost, the time and length scales of atomistic simulations are limited. Biologically important processes, such as protein folding, ion channel gating, signal transduction, and membrane remodeling, are difficult to investigate using atomistic simulations. Coarse-graining reduces the computational cost of calculations by reducing the number of degrees of freedom in the model, allowing simulations of larger systems for longer times. In the first part of this chapter we review briefly some of the coarse-grained models available for proteins, focusing on the specific scope of each model. Then we describe in more detail the MARTINI coarse-grained force field, and we illustrate how to set up and run a simulation of a membrane protein using the Gromacs software package. We explain step-by-step the preparation of the protein and the membrane, the insertion of the protein in the membrane, the equilibration of the system, the simulation itself, and the analysis of the trajectory.
Collapse
|
25
|
Abstract
Membrane protein structures are underrepresented in the Protein Data Bank (PDB) due to difficulties associated with expression and crystallization. As such, it is one area where computational studies, particularly Molecular Dynamics (MD) simulations, can provide useful additional information. Recently, there has been substantial progress in the simulation of lipid bilayers and membrane proteins embedded within them. Initial efforts at simulating membrane proteins embedded within a lipid bilayer were relatively slow and interactive processes, but recent advances now mean that the setup and running of membrane protein simulations is somewhat more straightforward, though not without its problems. In this chapter, we outline practical methods for setting up and running MD simulations of a membrane protein embedded within a lipid bilayer and discuss methodologies that are likely to contribute future improvements.
Collapse
|
26
|
Zhong D, Yang LM, Blount P. Dynamics of protein-protein interactions at the MscL periplasmic-lipid interface. Biophys J 2014; 106:375-81. [PMID: 24461012 DOI: 10.1016/j.bpj.2013.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/13/2013] [Accepted: 12/03/2013] [Indexed: 12/27/2022] Open
Abstract
MscL, the highly conserved bacterial mechanosensitive channel of large conductance, is one of the best studied mechanosensors. It is a homopentameric channel that serves as a biological emergency release valve that prevents cell lysis from acute osmotic stress. We previously showed that the periplasmic region of the protein, particularly a single residue located at the TM1/periplasmic loop interface, F47 of Staphylococcus aureus and I49 of Escherichia coli MscL, plays a major role in both the open dwell time and mechanosensitivity of the channel. Here, we introduced cysteine mutations at these sites and found they formed disulfide bridges that decreased the channel open dwell time. By scanning a likely interacting domain, we also found that these sites could be disulfide trapped by addition of cysteine mutations in other locations within the periplasmic loop of MscL, and this also led to rapid channel kinetics. Together, the data suggest structural rearrangements and protein-protein interactions that occur within this region upon normal gating, and further suggest that locking portions of the channel into a transition state decreases the stability of the open state.
Collapse
Affiliation(s)
- Dalian Zhong
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Li-Min Yang
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Paul Blount
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, Texas.
| |
Collapse
|
27
|
Negami T, Shimizu K, Terada T. Coarse-grained molecular dynamics simulations of protein-ligand binding. J Comput Chem 2014; 35:1835-45. [PMID: 25043724 DOI: 10.1002/jcc.23693] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/06/2014] [Accepted: 07/09/2014] [Indexed: 01/25/2023]
Abstract
Coarse-grained molecular dynamics (CGMD) simulations with the MARTINI force field were performed to reproduce the protein-ligand binding processes. We chose two protein-ligand systems, the levansucrase-sugar (glucose or sucrose), and LinB-1,2-dichloroethane systems, as target systems that differ in terms of the size and shape of the ligand-binding pocket and the physicochemical properties of the pocket and the ligand. Spatial distributions of the Coarse-grained (CG) ligand molecules revealed potential ligand-binding sites on the protein surfaces other than the real ligand-binding sites. The ligands bound most strongly to the real ligand-binding sites. The binding and unbinding rate constants obtained from the CGMD simulation of the levansucrase-sucrose system were approximately 10 times greater than the experimental values; this is mainly due to faster diffusion of the CG ligand in the CG water model. We could obtain dissociation constants close to the experimental values for both systems. Analysis of the ligand fluxes demonstrated that the CG ligand molecules entered the ligand-binding pockets through specific pathways. The ligands tended to move through grooves on the protein surface. Thus, the CGMD simulations produced reasonable results for the two different systems overall and are useful for studying the protein-ligand binding processes.
Collapse
Affiliation(s)
- Tatsuki Negami
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | |
Collapse
|
28
|
Ge C, Gómez-Llobregat J, Skwark MJ, Ruysschaert JM, Wieslander A, Lindén M. Membrane remodeling capacity of a vesicle-inducing glycosyltransferase. FEBS J 2014; 281:3667-84. [PMID: 24961908 DOI: 10.1111/febs.12889] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/21/2014] [Accepted: 06/19/2014] [Indexed: 11/28/2022]
Abstract
Intracellular vesicles are abundant in eukaryotic cells but absent in the Gram-negative bacterium Escherichia coli. However, strong overexpression of a monotopic glycolipid-synthesizing enzyme, monoglucosyldiacylglycerol synthase from Acholeplasma laidlawii (alMGS), leads to massive formation of vesicles in the cytoplasm of E. coli. More importantly, alMGS provides a model system for the regulation of membrane properties by membrane-bound enzymes, which is critical for maintaining cellular integrity. Both phenomena depend on how alMGS binds to cell membranes, which is not well understood. Here, we carry out a comprehensive investigation of the membrane binding of alMGS by combining bioinformatics methods with extensive biochemical studies, structural modeling and molecular dynamics simulations. We find that alMGS binds to the membrane in a fairly upright manner, mainly by residues in the N-terminal domain, and in a way that induces local enrichment of anionic lipids and a local curvature deformation. Furthermore, several alMGS variants resulting from substitution of residues in the membrane anchoring segment are still able to generate vesicles, regardless of enzymatic activity. These results clarify earlier theories about the driving forces for vesicle formation, and shed new light on the membrane binding properties and enzymatic mechanism of alMGS and related monotopic GT-B fold glycosyltransferases.
Collapse
Affiliation(s)
- Changrong Ge
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Sweden; Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Belgium; Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Martinac B, Nomura T, Chi G, Petrov E, Rohde PR, Battle AR, Foo A, Constantine M, Rothnagel R, Carne S, Deplazes E, Cornell B, Cranfield CG, Hankamer B, Landsberg MJ. Bacterial mechanosensitive channels: models for studying mechanosensory transduction. Antioxid Redox Signal 2014; 20:952-69. [PMID: 23834368 DOI: 10.1089/ars.2013.5471] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Sensations of touch and hearing are manifestations of mechanical contact and air pressure acting on touch receptors and hair cells of the inner ear, respectively. In bacteria, osmotic pressure exerts a significant mechanical force on their cellular membrane. Bacteria have evolved mechanosensitive (MS) channels to cope with excessive turgor pressure resulting from a hypo-osmotic shock. MS channel opening allows the expulsion of osmolytes and water, thereby restoring normal cellular turgor and preventing cell lysis. RECENT ADVANCES As biological force-sensing systems, MS channels have been identified as the best examples of membrane proteins coupling molecular dynamics to cellular mechanics. The bacterial MS channel of large conductance (MscL) and MS channel of small conductance (MscS) have been subjected to extensive biophysical, biochemical, genetic, and structural analyses. These studies have established MscL and MscS as model systems for mechanosensory transduction. CRITICAL ISSUES In recent years, MS ion channels in mammalian cells have moved into focus of mechanotransduction research, accompanied by an increased awareness of the role they may play in the pathophysiology of diseases, including cardiac hypertrophy, muscular dystrophy, or Xerocytosis. FUTURE DIRECTIONS A recent exciting development includes the molecular identification of Piezo proteins, which function as nonselective cation channels in mechanosensory transduction associated with senses of touch and pain. Since research on Piezo channels is very young, applying lessons learned from studies of bacterial MS channels to establishing the mechanism by which the Piezo channels are mechanically activated remains one of the future challenges toward a better understanding of the role that MS channels play in mechanobiology.
Collapse
Affiliation(s)
- Boris Martinac
- 1 Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute , Darlinghurst, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang Y, Liu Y, Deberg HA, Nomura T, Hoffman MT, Rohde PR, Schulten K, Martinac B, Selvin PR. Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. eLife 2014; 3:e01834. [PMID: 24550255 PMCID: PMC3925968 DOI: 10.7554/elife.01834] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The mechanosensitive channel of large conductance, which serves as a model system for mechanosensitive channels, has previously been crystallized in the closed form, but not in the open form. Ensemble measurements and electrophysiological sieving experiments show that the open-diameter of the channel pore is >25 Å, but the exact size and whether the conformational change follows a helix-tilt or barrel-stave model are unclear. Here we report measurements of the distance changes on liposome-reconstituted MscL transmembrane α-helices, using a ‘virtual sorting’ single-molecule fluorescence energy transfer. We observed directly that the channel opens via the helix-tilt model and the open pore reaches 2.8 nm in diameter. In addition, based on the measurements, we developed a molecular dynamics model of the channel structure in the open state which confirms our direct observations. DOI:http://dx.doi.org/10.7554/eLife.01834.001 Bacterial cells are full of fluid, and they will burst if they are not able to respond to a build up of pressure. Fortunately, the membrane of a bacterial cell contains channels that can detect the increased mechanical stress on the cell membrane and then open to relieve the pressure. In many bacterial cells, the last defence against the cell exploding is called the mechanosensitive channel of large conductance (MscL). This is made of five proteins, each of which consists of TM1 and TM2 helixes, which are responsible for opening and closing the channel. Two models have been proposed to explain how the channels are opened. In the barrel-stave model, the TM1 helix moves, while the TM2 helix remains stationary. This results in an open pore that is lined with TM1 and TM2 helixes in the same way that wooden staves line a barrel. In the helix-tilt model, both helixes tilt towards the membrane to open the channel. Wang et al. have now used a technique called single-molecule fluorescence resonance energy transfer (FRET) to explore the structure of the open channel in E. coli in order to determine which model is correct. In this technique an individual channel is labeled with two different fluorescent molecules. By illuminating the channel with light of a wavelength that excites the first fluorescent molecule, and measuring the strength of the fluorescence from the second molecule, it is possible to work out the distance between the two molecules. From this, the structure of the channel and how it opens and closes can be explored. Previous attempts to measure the diameters of open channels using fluorescence techniques have suffered from issues caused by the use of large numbers of fluorescent molecules. This has made it necessary to use computational modeling to extract the required data. By looking at a series of individual proteins, Wang et al. overcame these problems and found that the diameter of the fully open pore is 2.8 nm. The result provides strong support for the helix-tilt model. DOI:http://dx.doi.org/10.7554/eLife.01834.002
Collapse
Affiliation(s)
- Yong Wang
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang LM, Zhong D, Blount P. Chimeras reveal a single lipid-interface residue that controls MscL channel kinetics as well as mechanosensitivity. Cell Rep 2013; 3:520-7. [PMID: 23416054 DOI: 10.1016/j.celrep.2013.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/03/2013] [Accepted: 01/16/2013] [Indexed: 11/18/2022] Open
Abstract
MscL, the highly conserved bacterial mechanosensitive channel of large conductance, serves as an osmotic "emergency release valve," is among the best-studied mechanosensors, and is a paradigm of how a channel senses and responds to membrane tension. Although all homologs tested thus far encode channel activity, many show functional differences. We tested Escherichia coli and Staphylococcus aureus chimeras and found that the periplasmic region of the protein, particularly E. coli I49 and the equivalent S. aureus F47 at the periplasmic lipid-aqueous interface of the first transmembrane domain, drastically influences both the open dwell time and the threshold of channel opening. One mutant shows a severe hysteresis, confirming the importance of this residue in determining the energy barriers for channel gating. We propose that this site acts similarly to a spring for a clasp knife, adjusting the resistance for obtaining and stabilizing an open or closed channel structure.
Collapse
Affiliation(s)
- Li-Min Yang
- Department of Physiology, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9040, USA
| | | | | |
Collapse
|
32
|
|
33
|
de Jong DH, Singh G, Bennett WFD, Arnarez C, Wassenaar TA, Schäfer LV, Periole X, Tieleman DP, Marrink SJ. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J Chem Theory Comput 2012; 9:687-97. [DOI: 10.1021/ct300646g] [Citation(s) in RCA: 922] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Djurre H. de Jong
- Groningen Biomolecular Sciences
and Biotechnology Institute and Zernike Institute for Advanced Materials,
University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Gurpreet Singh
- Department of Biological Sciences
and Institute for Biocomplexity and Informatics, University of Calgary,
2500 University Dr. NW, Calgary, AB, Canada, T2N 1N4
| | - W. F. Drew Bennett
- Department of Biological Sciences
and Institute for Biocomplexity and Informatics, University of Calgary,
2500 University Dr. NW, Calgary, AB, Canada, T2N 1N4
| | - Clement Arnarez
- Groningen Biomolecular Sciences
and Biotechnology Institute and Zernike Institute for Advanced Materials,
University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Tsjerk A. Wassenaar
- Groningen Biomolecular Sciences
and Biotechnology Institute and Zernike Institute for Advanced Materials,
University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Lars V. Schäfer
- Groningen Biomolecular Sciences
and Biotechnology Institute and Zernike Institute for Advanced Materials,
University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Xavier Periole
- Groningen Biomolecular Sciences
and Biotechnology Institute and Zernike Institute for Advanced Materials,
University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Department of Biological Sciences
and Institute for Biocomplexity and Informatics, University of Calgary,
2500 University Dr. NW, Calgary, AB, Canada, T2N 1N4
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences
and Biotechnology Institute and Zernike Institute for Advanced Materials,
University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|