1
|
Tseng WW, Chu CH, Lee YJ, Zhao S, Chang C, Ho YP, Wei AC. Metabolic regulation of mitochondrial morphologies in pancreatic beta cells: coupling of bioenergetics and mitochondrial dynamics. Commun Biol 2024; 7:1267. [PMID: 39369076 PMCID: PMC11455970 DOI: 10.1038/s42003-024-06955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
Cellular bioenergetics and mitochondrial dynamics are crucial for the secretion of insulin by pancreatic beta cells in response to elevated levels of blood glucose. To elucidate the interactions between energy production and mitochondrial fission/fusion dynamics, we combine live-cell mitochondria imaging with biophysical-based modeling and graph-based network analysis. The aim is to determine the mechanism that regulates mitochondrial morphology and balances metabolic demands in pancreatic beta cells. A minimalistic differential equation-based model for beta cells is constructed that includes glycolysis, oxidative phosphorylation, calcium dynamics, and fission/fusion dynamics, with ATP synthase flux and proton leak flux as main regulators of mitochondrial dynamics. The model shows that mitochondrial fission occurs in response to hyperglycemia, starvation, ATP synthase inhibition, uncoupling, and diabetic conditions, in which the rate of proton leakage exceeds the rate of mitochondrial ATP synthesis. Under these metabolic challenges, the propensities of tip-to-tip fusion events simulated from the microscopy images of the mitochondrial networks are lower than those in the control group and prevent the formation of mitochondrial networks. The study provides a quantitative framework that couples bioenergetic regulation with mitochondrial dynamics, offering insights into how mitochondria adapt to metabolic challenges.
Collapse
Affiliation(s)
- Wen-Wei Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsiang Chu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ju Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Shirui Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of the CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
| | - Chen Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of the CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Khan AH, Gu X, Patel RJ, Chuphal P, Viana MP, Brown AI, Zid BM, Tsuboi T. Mitochondrial protein heterogeneity stems from the stochastic nature of co-translational protein targeting in cell senescence. Nat Commun 2024; 15:8274. [PMID: 39333462 PMCID: PMC11437024 DOI: 10.1038/s41467-024-52183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/27/2024] [Indexed: 09/29/2024] Open
Abstract
A decline in mitochondrial function is a hallmark of aging and neurodegenerative diseases. It has been proposed that changes in mitochondrial morphology, including fragmentation of the tubular mitochondrial network, can lead to mitochondrial dysfunction, yet the mechanism of this loss of function is unclear. Most proteins contained within mitochondria are nuclear-encoded and must be properly targeted to the mitochondria. Here, we report that sustained mRNA localization and co-translational protein delivery leads to a heterogeneous protein distribution across fragmented mitochondria. We find that age-induced mitochondrial fragmentation drives a substantial increase in protein expression noise across fragments. Using a translational kinetic and molecular diffusion model, we find that protein expression noise is explained by the nature of stochastic compartmentalization and that co-translational protein delivery is the main contributor to increased heterogeneity. We observed that cells primarily reduce the variability in protein distribution by utilizing mitochondrial fission-fusion processes rather than relying on the mitophagy pathway. Furthermore, we are able to reduce the heterogeneity of the protein distribution by inhibiting co-translational protein targeting. This research lays the framework for a better understanding of the detrimental impact of mitochondrial fragmentation on the physiology of cells in aging and disease.
Collapse
Affiliation(s)
- Abdul Haseeb Khan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Xuefang Gu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Rutvik J Patel
- Department of Physics, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Prabha Chuphal
- Department of Physics, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | | | - Aidan I Brown
- Department of Physics, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Brian M Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Tatsuhisa Tsuboi
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
- Tsinghua-SIGS & Jilin Fuyuan Guan Food Group Joint Research Center, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Kuznetsov IA, Kuznetsov AV. Mitochondrial transport in symmetric and asymmetric axons with multiple branching junctions: a computational study. Comput Methods Biomech Biomed Engin 2024; 27:1071-1090. [PMID: 37424316 PMCID: PMC10776827 DOI: 10.1080/10255842.2023.2226787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
Mitochondrial aging has been proposed to be involved in a variety of neurodegenerative disorders, such as Parkinson's disease. Here, we explore the impact of multiple branching junctions in axons on the mean age of mitochondria and their age density distributions in demand sites. The study examined mitochondrial concentration, mean age, and age density distribution in relation to the distance from the soma. We developed models for a symmetric axon containing 14 demand sites and an asymmetric axon containing 10 demand sites. We investigated how the concentration of mitochondria changes when an axon splits into two branches at the branching junction. Additionally, we studied whether mitochondrial concentrations in the branches are affected by what proportion of mitochondrial flux enters the upper branch versus the lower branch. Furthermore, we explored whether the distributions of mitochondrial mean age and age density in branching axons are affected by how the mitochondrial flux splits at the branching junction. When the mitochondrial flux is unevenly split at the branching junction of an asymmetric axon, with a greater proportion of the flux entering the longer branch, the average age of mitochondria (system age) in the axon increases. Our findings elucidate the effects of axonal branching on the mitochondrial age.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of PA, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, NC, USA
| |
Collapse
|
4
|
Kuznetsov IA, Kuznetsov AV. Effect of mitochondrial circulation on mitochondrial age density distribution. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3770. [PMID: 37688421 PMCID: PMC10841163 DOI: 10.1002/cnm.3770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Recent publications report that although the mitochondria population in an axon can be quickly replaced by a combination of retrograde and anterograde axonal transport (often within less than 24 hours), the axon contains much older mitochondria. This suggests that not all mitochondria that reach the soma are degraded and that some are recirculating back into the axon. To explain this, we developed a model that simulates mitochondria distribution when a portion of mitochondria that return to the soma are redirected back to the axon rather than being destroyed in somatic lysosomes. Utilizing the developed model, we studied how the percentage of returning mitochondria affects the mean age and age density distributions of mitochondria at different distances from the soma. We also investigated whether turning off the mitochondrial anchoring switch can reduce the mean age of mitochondria. For this purpose, we studied the effect of reducing the value of a parameter that characterizes the probability of mitochondria transition to the stationary (anchored) state. The reduction in mitochondria mean age observed when the anchoring probability is reduced suggests that some injured neurons may be saved if the percentage of stationary mitochondria is decreased. The replacement of possibly damaged stationary mitochondria with newly synthesized ones may restore the energy supply in an injured axon. We also performed a sensitivity study of the mean age of stationary mitochondria to the parameter that determines what portion of mitochondria re-enter the axon and the parameter that determines the probability of mitochondria transition to the stationary state. The sensitivity of the mean age of stationary mitochondria to the mitochondria stopping probability increases linearly with the number of compartments in the axon. High stopping probability in long axons can significantly increase mitochondrial age.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
5
|
Sun G, Hwang C, Jung T, Liu J, Li R. Biased placement of Mitochondria fission facilitates asymmetric inheritance of protein aggregates during yeast cell division. PLoS Comput Biol 2023; 19:e1011588. [PMID: 38011208 PMCID: PMC10703421 DOI: 10.1371/journal.pcbi.1011588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/07/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023] Open
Abstract
Mitochondria are essential and dynamic eukaryotic organelles that must be inherited during cell division. In yeast, mitochondria are inherited asymmetrically based on quality, which is thought to be vital for maintaining a rejuvenated cell population; however, the mechanisms underlying mitochondrial remodeling and segregation during this process are not understood. We used high spatiotemporal imaging to quantify the key aspects of mitochondrial dynamics, including motility, fission, and fusion characteristics, upon aggregation of misfolded proteins in the mitochondrial matrix. Using these measured parameters, we developed an agent-based stochastic model of dynamics of mitochondrial inheritance. Our model predicts that biased mitochondrial fission near the protein aggregates facilitates the clustering of protein aggregates in the mitochondrial matrix, and this process underlies asymmetric mitochondria inheritance. These predictions are supported by live-cell imaging experiments where mitochondrial fission was perturbed. Our findings therefore uncover an unexpected role of mitochondrial dynamics in asymmetric mitochondrial inheritance.
Collapse
Affiliation(s)
- Gordon Sun
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christine Hwang
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tony Jung
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jian Liu
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Kuznetsov IA, Kuznetsov AV. Computation of the mitochondrial age distribution along the axon length. Comput Methods Biomech Biomed Engin 2023; 26:1582-1594. [PMID: 36226813 DOI: 10.1080/10255842.2022.2128784] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
Abstract
We describe a compartmental model of mitochondrial transport in axons, which we apply to compute mitochondrial age at different distances from the soma. The model predicts that at the tip of an axon that has a length of 1 cm, the average mitochondrial age is approximately 22 h. The mitochondria are youngest closest to the soma and their age scales approximately linearly with distance from the soma. To the best of the authors' knowledge, this is the first attempt to predict the spatial distribution of mitochondrial age within an axon. A sensitivity study of the mean age of mitochondria to various model parameters is also presented.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
7
|
Lewis GR, Marshall WF. Mitochondrial networks through the lens of mathematics. Phys Biol 2023; 20:051001. [PMID: 37290456 PMCID: PMC10347554 DOI: 10.1088/1478-3975/acdcdb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/10/2023]
Abstract
Mitochondria serve a wide range of functions within cells, most notably via their production of ATP. Although their morphology is commonly described as bean-like, mitochondria often form interconnected networks within cells that exhibit dynamic restructuring through a variety of physical changes. Further, though relationships between form and function in biology are well established, the extant toolkit for understanding mitochondrial morphology is limited. Here, we emphasize new and established methods for quantitatively describing mitochondrial networks, ranging from unweighted graph-theoretic representations to multi-scale approaches from applied topology, in particular persistent homology. We also show fundamental relationships between mitochondrial networks, mathematics, and physics, using ideas of graph planarity and statistical mechanics to better understand the full possible morphological space of mitochondrial network structures. Lastly, we provide suggestions for how examination of mitochondrial network form through the language of mathematics can inform biological understanding, and vice versa.
Collapse
Affiliation(s)
- Greyson R Lewis
- Biophysics Graduate Program, University of California—San Francisco, San Francisco, CA, United States of America
- NSF Center for Cellular Construction, Department of Biochemistry and Biophysics, UCSF, 600 16th St., San Francisco, CA, United States of America
- Department of Biochemistry and Biophysics, Center for Cellular Construction, University of California San Francisco, San Francisco, CA, United States of America
| | - Wallace F Marshall
- NSF Center for Cellular Construction, Department of Biochemistry and Biophysics, UCSF, 600 16th St., San Francisco, CA, United States of America
- Department of Biochemistry and Biophysics, Center for Cellular Construction, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
8
|
Kuznetsov IA, Kuznetsov AV. Mitochondrial Transport in Symmetric and Asymmetric Axons with Multiple Branching Junctions: A Computational Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529604. [PMID: 36865162 PMCID: PMC9980112 DOI: 10.1101/2023.02.22.529604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
We explore the impact of multiple branching junctions in axons on the mean age of mitochondria and their age density distributions in demand sites. The study looked at mitochondrial concentration, mean age, and age density distribution in relation to the distance from the soma. We developed models for a symmetric axon containing 14 demand sites and an asymmetric axon containing 10 demand sites. We examined how the concentration of mitochondria changes when an axon splits into two branches at the branching junction. We also studied whether mitochondria concentrations in the branches are affected by what proportion of mitochondrial flux enters the upper branch and what proportion of flux enters the lower branch. Additionally, we explored whether the distributions of mitochondria mean age and age density in branching axons are affected by how the mitochondrial flux splits at the branching junction. When the mitochondrial flux is split unevenly at the branching junction of an asymmetric axon, with a greater proportion of the flux entering the longer branch, the average age of mitochondria (system age) in the axon increases. Our findings elucidate the effects of axonal branching on mitochondria age. Mitochondria aging is the focus of this study as recent research suggests it may be involved in neurodegenerative disorders, such as Parkinson's disease.
Collapse
|
9
|
Glastad RC, Johnston IG. Mitochondrial network structure controls cell-to-cell mtDNA variability generated by cell divisions. PLoS Comput Biol 2023; 19:e1010953. [PMID: 36952562 PMCID: PMC10072490 DOI: 10.1371/journal.pcbi.1010953] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/04/2023] [Accepted: 02/15/2023] [Indexed: 03/25/2023] Open
Abstract
Mitochondria are highly dynamic organelles, containing vital populations of mitochondrial DNA (mtDNA) distributed throughout the cell. Mitochondria form diverse physical structures in different cells, from cell-wide reticulated networks to fragmented individual organelles. These physical structures are known to influence the genetic makeup of mtDNA populations between cell divisions, but their influence on the inheritance of mtDNA at divisions remains less understood. Here, we use statistical and computational models of mtDNA content inside and outside the reticulated network to quantify how mitochondrial network structure can control the variances of inherited mtDNA copy number and mutant load. We assess the use of moment-based approximations to describe heteroplasmy variance and identify several cases where such an approach has shortcomings. We show that biased inclusion of one mtDNA type in the network can substantially increase heteroplasmy variance (acting as a genetic bottleneck), and controlled distribution of network mass and mtDNA through the cell can conversely reduce heteroplasmy variance below a binomial inheritance picture. Network structure also allows the generation of heteroplasmy variance while controlling copy number inheritance to sub-binomial levels, reconciling several observations from the experimental literature. Overall, different network structures and mtDNA arrangements within them can control the variances of key variables to suit a palette of different inheritance priorities.
Collapse
Affiliation(s)
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
10
|
Kuznetsov IA, Kuznetsov AV. Effects of axon branching and asymmetry between the branches on transport, mean age, and age density distributions of mitochondria in neurons: A computational study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3648. [PMID: 36125402 PMCID: PMC9643662 DOI: 10.1002/cnm.3648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/17/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
We report a computational study of mitochondria transport in a branched axon with two branches of different sizes. For comparison, we also investigate mitochondria transport in an axon with symmetric branches and in a straight (unbranched) axon. The interest in understanding mitochondria transport in branched axons is motivated by the large size of arbors of dopaminergic neurons, which die in Parkinson's disease. Since the failure of energy supply of multiple demand sites located in various axonal branches may be a possible reason for the death of these neurons, we were interested in investigating how branching affects mitochondria transport. Besides investigating mitochondria fluxes between the demand sites and mitochondria concentrations, we also studied how the mean age of mitochondria and mitochondria age densities depend on the distance from the soma. We established that if the axon splits into two branches of unequal length, the mean ages of mitochondria and age density distributions in the demand sites are affected by how the mitochondria flux splits at the branching junction (what portion of mitochondria enter the shorter branch and what portion enter the longer branch). However, if the axon splits into two branches of equal length, the mean ages and age densities of mitochondria are independent of how the mitochondria flux splits at the branching junction. This even holds for the case when all mitochondria enter one branch, which is equivalent to a straight axon. Because the mitochondrial membrane potential (which many researchers view as a proxy for mitochondrial health) decreases with mitochondria age, the independence of mitochondria age on whether the axon is symmetrically branched or straight (providing the two axons are of the same length), and on how the mitochondria flux splits at the branching junction, may explain how dopaminergic neurons can sustain very large arbors and still maintain mitochondrial health across branch extremities.
Collapse
Affiliation(s)
- Ivan A. Kuznetsov
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrey V. Kuznetsov
- Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
11
|
Panda SP, Dhurandhar Y, Agrawal M. The interplay of epilepsy with impaired mitophagy and autophagy linked dementia (MAD): A review of therapeutic approaches. Mitochondrion 2022; 66:27-37. [PMID: 35842181 DOI: 10.1016/j.mito.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/21/2022] [Accepted: 07/10/2022] [Indexed: 12/28/2022]
Abstract
The duration and, age of dementia have been linked to a higher risk of seizures. The exact mechanism that drives epileptogenesis in impaired mitophagy and autophagy linked dementia (MAD) is fully defined after reviewing the Scopus, Publon, and Pubmed databases. The epileptogenesis in patients with Alzheimer's disease dementia (ADD) and Parkinson's disease dementia (PDD) is due to involvement of amyloid plaques (Aβ), phosphorylated tau (pTau), Parkin, NF-kB and NLRP3 inflammasome. Microglia, the prime protective and inflammatory cells in the brain exert crosstalk between mitophagy and inflammation. Several researchers believed that the inflammatory brain cells microglia could be a therapeutic target for the treatment of a MAD associated epilepsy. There are conventional antiepileptic drugs such as gabapentin, lamotrigine, phenytoin sodium, carbamazepine, oxcarbazepine, felbamate, lamotrigine, valproate sodium, and topiramate are prescribed by a psychiatrist to suppress seizure frequency. Also, the conventional drugs generate serious adverse effects and synergises dementia characteristics. The adverse effect of carbamazepine is neurotoxic and also, damages haemopoietic system and respiratory tract. The phenytoin treatment causes cerebellar defect and anemia. Dementia and epilepsy have a complicated relationship, thus targeting mitophagy for cure of epileptic dementia makes sense. Complementary and alternative medicine (CAM) is one of the rising strategies by many patients of the world, not only to suppress seizure frequency but also to mitigate dementia characteristics of patients. Therefore our present review focus on the interplay between epilepsy and MAD and their treatment with CAM approaches.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Yogita Dhurandhar
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Mehak Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
12
|
Choudhury S, Ananthanarayanan V, Ayappa KG. Coupling of mitochondrial population evolution to microtubule dynamics in fission yeast cells: a kinetic Monte Carlo study. SOFT MATTER 2022; 18:4483-4492. [PMID: 35670055 DOI: 10.1039/d2sm00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mitochondrial populations in cells are maintained by cycles of fission and fusion events. Perturbation of this balance has been observed in several diseases such as cancer and neurodegeneration. In fission yeast cells, the association of mitochondria with microtubules inhibits mitochondrial fission [Mehta et al., J. Biol. Chem., 2019, 294, 3385], illustrating the intricate coupling between mitochondria and the dynamic population of microtubules within the cell. In order to understand this coupling, we carried out kinetic Monte Carlo (KMC) simulations to predict the evolution of mitochondrial size distributions for different cases; wild-type cells, cells with short and long microtubules, and cells without microtubules. Comparisons are made with mitochondrial distributions reported in experiments with fission yeast cells. Using experimentally determined mitochondrial fission and fusion frequencies, simulations implemented without the coupling of microtubule dynamics predicted an increase in the mean number of mitochondria, equilibrating within 50 s. The mitochondrial length distribution in these models also showed a higher occurrence of shorter mitochondria, implying a greater tendency for fission, similar to the scenario observed in the absence of microtubules and cells with short microtubules. Interestingly, this resulted in overestimating the mean number of mitochondria and underestimating mitochondrial lengths in cells with wild-type and long microtubules. However, coupling mitochondria's fission and fusion events to the microtubule dynamics effectively captured the mitochondrial number and size distributions in wild-type and cells with long microtubules. Thus, the model provides greater physical insight into the temporal evolution of mitochondrial populations in different microtubule environments, allowing one to study both the short-time evolution as observed in the experiments (<5 minutes) as well as their transition towards a steady-state (>15 minutes). Our study illustrates the critical role of microtubules in mitochondrial dynamics and coupling microtubule growth and shrinkage dynamics is critical to predicting the evolution of mitochondrial populations within the cell.
Collapse
Affiliation(s)
- Samlesh Choudhury
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India.
| | | | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
13
|
Benaroya H. Understanding mitochondria and the utility of optimization as a canonical framework for identifying and modeling mitochondrial pathways. Rev Neurosci 2022; 33:657-690. [PMID: 35219282 DOI: 10.1515/revneuro-2021-0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/25/2022] [Indexed: 11/15/2022]
Abstract
The goal of this paper is to provide an overview of our current understanding of mitochondrial function as a framework to motivate the hypothesis that mitochondrial behavior is governed by optimization principles that are constrained by the laws of the physical and biological sciences. Then, mathematical optimization tools can generally be useful to model some of these processes under reasonable assumptions and limitations. We are specifically interested in optimizations via variational methods, which are briefly summarized. Within such an optimization framework, we suggest that the numerous mechanical instigators of cell and intracellular functioning can be modeled utilizing some of the principles of mechanics that govern engineered systems, as well as by the frequently observed feedback and feedforward mechanisms that coordinate the multitude of processes within cells. These mechanical aspects would need to be coupled to governing biochemical rules. Of course, biological systems are significantly more complex than engineered systems, and require considerably more experimentation to ascertain and characterize parameters and subsequent behavior. That complexity requires well-defined limitations and assumptions for any derived models. Optimality is being motivated as a framework to help us understand how cellular decisions are made, especially those that transition between physiological behaviors and dysfunctions along pathophysiological pathways. We elaborate on our interpretation of optimality and cellular decision making within the body of this paper, as we revisit these ideas in the numerous different contexts of mitochondrial functions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08901, USA
| |
Collapse
|
14
|
Scott ZC, Brown AI, Mogre SS, Westrate LM, Koslover EF. Diffusive search and trajectories on tubular networks: a propagator approach. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:80. [PMID: 34143351 PMCID: PMC8213674 DOI: 10.1140/epje/s10189-021-00083-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/25/2021] [Indexed: 05/11/2023]
Abstract
Several organelles in eukaryotic cells, including mitochondria and the endoplasmic reticulum, form interconnected tubule networks extending throughout the cell. These tubular networks host many biochemical pathways that rely on proteins diffusively searching through the network to encounter binding partners or localized target regions. Predicting the behavior of such pathways requires a quantitative understanding of how confinement to a reticulated structure modulates reaction kinetics. In this work, we develop both exact analytical methods to compute mean first passage times and efficient kinetic Monte Carlo algorithms to simulate trajectories of particles diffusing in a tubular network. Our approach leverages exact propagator functions for the distribution of transition times between network nodes and allows large simulation time steps determined by the network structure. The methodology is applied to both synthetic planar networks and organelle network structures, demonstrating key general features such as the heterogeneity of search times in different network regions and the functional advantage of broadly distributing target sites throughout the network. The proposed algorithms pave the way for future exploration of the interrelationship between tubular network structure and biomolecular reaction kinetics.
Collapse
Affiliation(s)
- Zubenelgenubi C Scott
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Aidan I Brown
- Department of Physics, Ryerson University, Toronto, Canada
| | - Saurabh S Mogre
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Laura M Westrate
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI, 49546, USA
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
15
|
Agrawal A, Koslover EF. Optimizing mitochondrial maintenance in extended neuronal projections. PLoS Comput Biol 2021; 17:e1009073. [PMID: 34106921 PMCID: PMC8216566 DOI: 10.1371/journal.pcbi.1009073] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/21/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
Neurons rely on localized mitochondria to fulfill spatially heterogeneous metabolic demands. Mitochondrial aging occurs on timescales shorter than the neuronal lifespan, necessitating transport of fresh material from the soma. Maintaining an optimal distribution of healthy mitochondria requires an interplay between a stationary pool localized to sites of high metabolic demand and a motile pool capable of delivering new material. Interchange between these pools can occur via transient fusion / fission events or by halting and restarting entire mitochondria. Our quantitative model of neuronal mitostasis identifies key parameters that govern steady-state mitochondrial health at discrete locations. Very infrequent exchange between stationary and motile pools optimizes this system. Exchange via transient fusion allows for robust maintenance, which can be further improved by selective recycling through mitophagy. These results provide a framework for quantifying how perturbations in organelle transport and interactions affect mitochondrial homeostasis in neurons, a key aspect underlying many neurodegenerative disorders.
Collapse
Affiliation(s)
- Anamika Agrawal
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
| | - Elena F. Koslover
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
16
|
Chustecki JM, Gibbs DJ, Bassel GW, Johnston IG. Network analysis of Arabidopsis mitochondrial dynamics reveals a resolved tradeoff between physical distribution and social connectivity. Cell Syst 2021; 12:419-431.e4. [PMID: 34015261 PMCID: PMC8136767 DOI: 10.1016/j.cels.2021.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 11/27/2022]
Abstract
Mitochondria in plant cells exist largely as individual organelles which move, colocalize, and interact, but the cellular priorities addressed by these dynamics remain incompletely understood. Here, we elucidate these principles by studying the dynamic "social networks" of mitochondria in Arabidopsis thaliana wildtype and mutants, describing the colocalization of individuals over time. We combine single-cell live imaging of hypocotyl mitochondrial dynamics with individual-based modeling and network analysis. We identify an inevitable tradeoff between mitochondrial physical priorities (an even cellular distribution of mitochondria) and “social” priorities (individuals interacting, to facilitate the exchange of chemicals and information). This tradeoff results in a tension between maintaining mitochondrial spacing and facilitating colocalization. We find that plant cells resolve this tension to favor efficient networks with high potential for exchanging contents. We suggest that this combination of physical modeling coupled to experimental data through network analysis can shed light on the fundamental principles underlying these complex organelle dynamics. A record of this paper’s transparent peer review process is included in the supplemental information. Dynamic social networks of plant mitochondria reflect physical organellar encounters Network analysis and modeling show priorities and tradeoffs for mitochondrial motion Mitochondria in plant cells trade off physical spacing against social connectivity Plant cells favor efficient networks with high potential for information exchange
Collapse
Affiliation(s)
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - George W Bassel
- Department of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Realfagbygget, Bergen 5007, Norway; Computational Biology Unit, University of Bergen, Høyteknologisenteret i Bergen, Bergen 5008, Norway.
| |
Collapse
|
17
|
Woo J, Cho H, Seol Y, Kim SH, Park C, Yousefian-Jazi A, Hyeon SJ, Lee J, Ryu H. Power Failure of Mitochondria and Oxidative Stress in Neurodegeneration and Its Computational Models. Antioxidants (Basel) 2021; 10:229. [PMID: 33546471 PMCID: PMC7913624 DOI: 10.3390/antiox10020229] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
The brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5'-triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with the pathogenesis of neurodegenerative disorders including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. In addition, we discuss state-of-the-art computational models of mitochondrial functions in relation to oxidative stress and neurodegeneration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate neuronal activity and prevent neurodegeneration.
Collapse
Affiliation(s)
- JunHyuk Woo
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
- Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 08826, Korea
| | - Hyesun Cho
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - YunHee Seol
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Soon Ho Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Chanhyeok Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA 02118, USA;
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
- Department of Neurology, Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
18
|
Theart RP, Kriel J, du Toit A, Loos B, Niesler TR. Mitochondrial event localiser (MEL) to quantitativelydescribe fission, fusion and depolarisation in the three-dimensional space. PLoS One 2020; 15:e0229634. [PMID: 33378337 PMCID: PMC7773280 DOI: 10.1371/journal.pone.0229634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial fission and fusion play an important role not only in maintaining mitochondrial homeostasis but also in preserving overall cellular viability. However, quantitative analysis based on the three-dimensional localisation of these highly dynamic mitochondrial events in the cellular context has not yet been accomplished. Moreover, it remains largely uncertain where in the mitochondrial network depolarisation is most likely to occur. We present the mitochondrial event localiser (MEL), a method that allows high-throughput, automated and deterministic localisation and quantification of mitochondrial fission, fusion and depolarisation events in large three-dimensional microscopy time-lapse sequences. In addition, MEL calculates the number of mitochondrial structures as well as their combined and average volume for each image frame in the time-lapse sequence. The mitochondrial event locations can subsequently be visualised by superposition over the fluorescence micrograph z-stack. We apply MEL to both control samples as well as to cells before and after treatment with hydrogen peroxide (H2O2). An average of 9.3/7.2/2.3 fusion/fission/depolarisation events per cell were observed respectively for every 10 sec in the control cells. With peroxide treatment, the rate initially shifted toward fusion with and average of 15/6/3 events per cell, before returning to a new equilibrium not far from that of the control cells, with an average of 6.2/6.4/3.4 events per cell. These MEL results indicate that both pre-treatment and control cells maintain a fission/fusion equilibrium, and that depolarisation is higher in the post-treatment cells. When individually validating mitochondrial events detected with MEL, for a representative cell for the control and treated samples, the true-positive events were 47%/49%/14% respectively for fusion/fission/depolarisation events. We conclude that MEL is a viable method of quantitative mitochondrial event analysis.
Collapse
Affiliation(s)
- Rensu P. Theart
- Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch, Western Cape, South Africa
- * E-mail:
| | - Jurgen Kriel
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - André du Toit
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Thomas R. Niesler
- Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| |
Collapse
|
19
|
Li W, Zhang S, Yang G. Dynamic organization of intracellular organelle networks. WIREs Mech Dis 2020; 13:e1505. [PMID: 32865347 DOI: 10.1002/wsbm.1505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/06/2020] [Accepted: 07/09/2020] [Indexed: 01/07/2023]
Abstract
Intracellular organelles are membrane-bound and biochemically distinct compartments constructed to serve specialized functions in eukaryotic cells. Through extensive interactions, they form networks to coordinate and integrate their specialized functions for cell physiology. A fundamental property of these organelle networks is that they constantly undergo dynamic organization via membrane fusion and fission to remodel their internal connections and to mediate direct material exchange between compartments. The dynamic organization not only enables them to serve critical physiological functions adaptively but also differentiates them from many other biological networks such as gene regulatory networks and cell signaling networks. This review examines this fundamental property of the organelle networks from a systems point of view. The focus is exclusively on homotypic networks formed by mitochondria, lysosomes, endosomes, and the endoplasmic reticulum, respectively. First, key mechanisms that drive the dynamic organization of these networks are summarized. Then, several distinct organizational properties of these networks are highlighted. Next, spatial properties of the dynamic organization of these networks are emphasized, and their functional implications are examined. Finally, some representative molecular machineries that mediate the dynamic organization of these networks are surveyed. Overall, the dynamic organization of intracellular organelle networks is emerging as a fundamental and unifying paradigm in the internal organization of eukaryotic cells. This article is categorized under: Metabolic Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Shuhao Zhang
- Laboratory of Computational Biology and Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
van den Ameele J, Li AY, Ma H, Chinnery PF. Mitochondrial heteroplasmy beyond the oocyte bottleneck. Semin Cell Dev Biol 2020; 97:156-166. [DOI: 10.1016/j.semcdb.2019.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022]
|
21
|
Kim E, Kim JY, Lee JY. Mathematical Modeling of p53 Pathways. Int J Mol Sci 2019; 20:ijms20205179. [PMID: 31635420 PMCID: PMC6834204 DOI: 10.3390/ijms20205179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022] Open
Abstract
Cells have evolved balanced systems that ensure an appropriate response to stress. The systems elicit repair responses in temporary or moderate stress but eliminate irreparable cells via apoptosis in detrimental conditions of prolonged or severe stress. The tumor suppressor p53 is a central player in these stress response systems. When activated under DNA damage stress, p53 regulates hundreds of genes that are involved in DNA repair, cell cycle, and apoptosis. Recently, increasing studies have demonstrated additional regulatory roles of p53 in metabolism and mitochondrial physiology. Due to the inherent complexity of feedback loops between p53 and its target genes, the application of mathematical modeling has emerged as a novel approach to better understand the multifaceted functions and dynamics of p53. In this review, we discuss several mathematical modeling approaches in exploring the p53 pathways.
Collapse
Affiliation(s)
- Eunjung Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea.
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea.
- Korea Basic Science Institute, Daejeon 34133, Korea.
| | - Joo-Yong Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea.
- Korea Basic Science Institute, Daejeon 34133, Korea.
| |
Collapse
|
22
|
Aryaman J, Bowles C, Jones NS, Johnston IG. Mitochondrial Network State Scales mtDNA Genetic Dynamics. Genetics 2019; 212:1429-1443. [PMID: 31253641 PMCID: PMC6707450 DOI: 10.1534/genetics.119.302423] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/28/2019] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations cause severe congenital diseases but may also be associated with healthy aging. mtDNA is stochastically replicated and degraded, and exists within organelles which undergo dynamic fusion and fission. The role of the resulting mitochondrial networks in the time evolution of the cellular proportion of mutated mtDNA molecules (heteroplasmy), and cell-to-cell variability in heteroplasmy (heteroplasmy variance), remains incompletely understood. Heteroplasmy variance is particularly important since it modulates the number of pathological cells in a tissue. Here, we provide the first wide-reaching theoretical framework which bridges mitochondrial network and genetic states. We show that, under a range of conditions, the (genetic) rate of increase in heteroplasmy variance and de novo mutation are proportionally modulated by the (physical) fraction of unfused mitochondria, independently of the absolute fission-fusion rate. In the context of selective fusion, we show that intermediate fusion:fission ratios are optimal for the clearance of mtDNA mutants. Our findings imply that modulating network state, mitophagy rate, and copy number to slow down heteroplasmy dynamics when mean heteroplasmy is low could have therapeutic advantages for mitochondrial disease and healthy aging.
Collapse
Affiliation(s)
- Juvid Aryaman
- Department of Mathematics, Imperial College London, SW7 2AZ, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, CB2 0QQ, United Kingdom
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, CB2 0XY, United Kingdom
| | - Charlotte Bowles
- School of Biosciences, University of Birmingham, B15 2TT, United Kingdom
| | - Nick S Jones
- Department of Mathematics, Imperial College London, SW7 2AZ, United Kingdom
- Engineering and Physical Sciences Research Council Centre for the Mathematics of Precision Healthcare, Imperial College London, SW7 2AZ, United Kingdom
| | - Iain G Johnston
- Faculty of Mathematics and Natural Sciences, University of Bergen, 5007, Norway
- Alan Turing Institute, London NW1 2DB, United Kingdom
| |
Collapse
|
23
|
Eckert SH, Gaca J, Kolesova N, Friedland K, Eckert GP, Muller WE. Mitochondrial Pharmacology of Dimebon (Latrepirdine) Calls for a New Look at its Possible Therapeutic Potential in Alzheimer's Disease. Aging Dis 2018; 9:729-744. [PMID: 30090660 PMCID: PMC6065284 DOI: 10.14336/ad.2017.1014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/14/2017] [Indexed: 12/14/2022] Open
Abstract
Dimebon (latrepirdine), an old antihistaminic drug, showed divergent results in two large clinical trials in Alzheimer disease (AD), which according to our review might be related to the specific pharmacological properties of the drug and the different patient populations included in both studies. Out of the many pharmacological effects of Dimebon, improvement of impaired mitochondrial function seeems to be most relevant for the substantial effects on cognition and behaviour reported in one of the studies, as these effects are already present at the low concentrations of dimebon measured in plasma and tissues of patients and experimental animals. Since impaired mitochondrial function seems to be the major driving force for the progression of the clinical symptoms and since most of the clinical benefits of dimebon originate from an effect on the symptomatic deterioration, mitochondrial improvement can also explain the lack of efficacy of this drug in another clinical trial where symptoms of the patiets remained stable for the time of the study. Accordingly, it seems worthwhile to reevaluate the clinical data to proof that clinical response is correlated with high levels of Neuropsychiatric Symptoms as these show a good relationship to the individual speed of symptomatic decline in AD patients related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Schamim H Eckert
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| | - Janett Gaca
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| | - Nathalie Kolesova
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| | - Kristina Friedland
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
- Deparment of Molecular and Clinical Pharmacy, University of Erlangen, D-91058 Erlangen, Germany
| | - Gunter P Eckert
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
- Department of Nutricional Sciences, University of Giessen, D-35392 Giessen, Germany
| | - Walter E Muller
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| |
Collapse
|
24
|
Bittig AT, Uhrmacher AM. ML-Space: Hybrid Spatial Gillespie and Particle Simulation of Multi-Level Rule-Based Models in Cell Biology. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:1339-1349. [PMID: 27514063 DOI: 10.1109/tcbb.2016.2598162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.
Collapse
|
25
|
Du J, Zhang X, Han J, Man K, Zhang Y, Chu ESH, Nan Y, Yu J. Pro-Inflammatory CXCR3 Impairs Mitochondrial Function in Experimental Non-Alcoholic Steatohepatitis. Theranostics 2017; 7:4192-4203. [PMID: 29158819 PMCID: PMC5695006 DOI: 10.7150/thno.21400] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/14/2017] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial dysfunction plays a crucial role in the development of non-alcoholic steatohepatitis (NASH). However, the regulator of mitochondrial dysfunction in the pathogenesis of NASH is still largely unclear. CXCR3 is an essential pro-inflammatory factor in chronic liver diseases. We explored the significance of CXCR3 in regulating mitochondrial function during NASH development in animal models and cultured hepatocytes. METHODS The effects of CXCR3 on mitochondrial function were evaluated by genetic knockout or pharmacological inhibition in mouse models and in vitro. The ultrastructural changes of mitochondria were assessed by transmission electron microscopy (TEM). Hepatic levels of mitochondrial reactive oxygen species (ROS), DNA damage, membrane potential and ATP were examined. RESULTS CXCR3 ablation by genetic knockout or pharmacological inhibition in mice protected against NASH development by influencing mitochondrial function. Similarly, depletion of CXCR3 reduced steatohepatitis injury in cultured hepatocytes. TEM analysis revealed that liver mitochondrial integrity was much improved in CXCR3 knockout (CXCR3-/-) compared to wildtype (WT) mice. In agreement with this, impaired mitochondrial function was pronounced in WT mice compared to CXCR3-/- mice, evidenced by increased protein expression of dynamic-related protein-1 (DRP1) and fission-1 (FIS1) and decreased protein expression of mitofusin-1 (MFN1). Mitochondrial dysfunction was induced in AML-12 hepatocytes by methionine and choline deficient medium and in HepG2 cells by palmitic acid. The impaired mitochondrial function in both cell lines was evidenced by reduced membrane potential and ATP content, and by increased mitochondrial ROS accumulation and DNA damage. However, CXCR3 knockdown by siCXCR3 significantly diminished the mitochondrial dysfunction in both AML-12 and HepG2 hepatocytes. In addition, inhibition of CXCR3 by CXCR3 specific antagonists SCH546738 and AMG487 restored mitochondrial function and inhibited mitochondrial-dependent apoptosis in the liver of WT mice fed with methionine and choline deficient diet. CONCLUSION CXCR3 induces mitochondrial dysfunction, which contributes to the pathogenesis of steatohepatitis. Pharmacologic blockade of CXCR3 prevents mitochondrial dysfunction and restores the severity of steatohepatitis, indicating a potential clinical impact for controlling the disease.
Collapse
|
26
|
Mollica MP, Mattace Raso G, Cavaliere G, Trinchese G, De Filippo C, Aceto S, Prisco M, Pirozzi C, Di Guida F, Lama A, Crispino M, Tronino D, Di Vaio P, Berni Canani R, Calignano A, Meli R. Butyrate Regulates Liver Mitochondrial Function, Efficiency, and Dynamics in Insulin-Resistant Obese Mice. Diabetes 2017; 66:1405-1418. [PMID: 28223285 DOI: 10.2337/db16-0924] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/14/2017] [Indexed: 12/15/2022]
Abstract
Fatty liver, oxidative stress, and mitochondrial dysfunction are key pathophysiological features of insulin resistance and obesity. Butyrate, produced by fermentation in the large intestine by gut microbiota, and its synthetic derivative, the N-(1-carbamoyl-2-phenyl-ethyl) butyramide, FBA, have been demonstrated to be protective against insulin resistance and fatty liver. Here, hepatic mitochondria were identified as the main target of the beneficial effect of both butyrate-based compounds in reverting insulin resistance and fat accumulation in diet-induced obese mice. In particular, butyrate and FBA improved respiratory capacity and fatty acid oxidation, activated the AMPK-acetyl-CoA carboxylase pathway, and promoted inefficient metabolism, as shown by the increase in proton leak. Both treatments consistently increased utilization of substrates, especially fatty acids, leading to the reduction of intracellular lipid accumulation and oxidative stress. Finally, the shift of the mitochondrial dynamic toward fusion by butyrate and FBA resulted in the improvement not only of mitochondrial cell energy metabolism but also of glucose homeostasis. In conclusion, butyrate and its more palatable synthetic derivative, FBA, modulating mitochondrial function, efficiency, and dynamics, can be considered a new therapeutic strategy to counteract obesity and insulin resistance.
Collapse
Affiliation(s)
| | | | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Chiara De Filippo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marina Prisco
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Diana Tronino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Paola Di Vaio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for Investigation of Food Induced Diseases, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnology, University of Naples Federico II, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
27
|
Ba Q, Yang G. Intracellular organelle networks: Understanding their organization and communication through systems-level modeling and analysis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-016-1436-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Dalmasso G, Marin Zapata PA, Brady NR, Hamacher-Brady A. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity. PLoS One 2017; 12:e0168198. [PMID: 28060865 PMCID: PMC5217980 DOI: 10.1371/journal.pone.0168198] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 11/28/2016] [Indexed: 12/25/2022] Open
Abstract
Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.
Collapse
Affiliation(s)
- Giovanni Dalmasso
- Lysosomal Systems Biology, German Cancer Research Center (DKFZ) and BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Paula Andrea Marin Zapata
- Lysosomal Systems Biology, German Cancer Research Center (DKFZ) and BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Nathan Ryan Brady
- Systems Biology of Cell Death Mechanisms, German Cancer Research Center (DKFZ) and BioQuant, University of Heidelberg, Heidelberg, Germany
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (NRB); (AH-B)
| | - Anne Hamacher-Brady
- Lysosomal Systems Biology, German Cancer Research Center (DKFZ) and BioQuant, University of Heidelberg, Heidelberg, Germany
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (NRB); (AH-B)
| |
Collapse
|
29
|
Kandul NP, Zhang T, Hay BA, Guo M. Selective removal of deletion-bearing mitochondrial DNA in heteroplasmic Drosophila. Nat Commun 2016; 7:13100. [PMID: 27841259 PMCID: PMC5114534 DOI: 10.1038/ncomms13100] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) often exists in a state of heteroplasmy, in which mutant mtDNA co-exists in cells with wild-type mtDNA. High frequencies of pathogenic mtDNA result in maternally inherited diseases; maternally and somatically acquired mutations also accumulate over time and contribute to diseases of ageing. Reducing heteroplasmy is therefore a therapeutic goal and in vivo models in post-mitotic tissues are needed to facilitate these studies. Here we describe a transgene-based model of a heteroplasmic lethal mtDNA deletion (mtDNAΔ) in adult Drosophila muscle. Stimulation of autophagy, activation of the PINK1/parkin pathway or decreased levels of mitofusin result in a selective decrease in mtDNAΔ. Decreased levels of mitofusin and increased levels of ATPIF1, an inhibitor of ATP synthase reversal-dependent mitochondrial repolarization, result in a further decrease in mtDNAΔ levels. These results show that an adult post-mitotic tissue can be cleansed of a deleterious genome, suggesting that therapeutic removal of mutant mtDNA can be achieved.
Collapse
Affiliation(s)
- Nikolay P. Kandul
- Division of Biology and Biological Engineering, California Institute of Technology, Mail Code 156-29, 1200 E. California blvd., Pasadena, California 91125, USA
| | - Ting Zhang
- Department of Neurology, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Molecular and Medical Pharmacology, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Bruce A. Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Mail Code 156-29, 1200 E. California blvd., Pasadena, California 91125, USA
| | - Ming Guo
- Department of Neurology, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Molecular and Medical Pharmacology, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
30
|
Stockburger C, Miano D, Baeumlisberger M, Pallas T, Arrey TN, Karas M, Friedland K, Müller WE. A Mitochondrial Role of SV2a Protein in Aging and Alzheimer's Disease: Studies with Levetiracetam. J Alzheimers Dis 2016; 50:201-15. [PMID: 26639968 DOI: 10.3233/jad-150687] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aberrant neuronal network activity associated with neuronal hyperexcitability seems to be an important cause of cognitive decline in aging and Alzheimer's disease (AD). Out of many antiepileptics, only levetiracetam improved cognitive dysfunction in AD patients and AD animal models by reducing hyperexcitability. As impaired inhibitory interneuronal function, rather than overactive neurons, seems to be the underlying cause, improving impaired neuronal function rather than quieting overactive neurons might be relevant in explaining the lack of activity of the other antiepileptics. Interestingly, improvement of cognitive deficits by levetiracetam caused by small levels of soluble Aβ was accompanied by improvement of synaptic function and plasticity. As the negative effects of Aβ on synaptic plasticity strongly correlate with mitochondrial dysfunction, wehypothesized that the effect of levetiracetam on synaptic activity might be raised by an improved mitochondrial function. Accordingly, we investigated possible effects of levetiracetam on neuronal deficits associated with mitochondrial dysfunction linked to aging and AD. Levetiracetam improved several aspects of mitochondrial dysfunction including alterations of fission and fusion balance in a cell model for aging and early late-onset AD. We demonstrate for the first time, using immunohistochemistry and proteomics, that the synaptic vesicle protein 2A (SV2a), the molecular target of levetiracetam, is expressed in mitochondria. In addition, levetiracetam shows significant effect on the opening of the mitochondrial permeability transition pore. Importantly, the effects of levetiracetam were significantly abolished when SV2a was knockdown using siRNA. In conclusion, interfering with the SV2a protein at the mitochondrial level and thereby improving mitochondrial function might represent an additional therapeutic effect of levetiracetam to improve symptoms of late-onset AD.
Collapse
Affiliation(s)
- Carola Stockburger
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/M, Germany
| | - Davide Miano
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/M, Germany
| | - Marion Baeumlisberger
- Institute of Pharmaceutical Chemistry, Cluster of Excellence "Macromolecular Complexes", Goethe-University Frankfurt, Frankfurt/M, Germany
| | - Thea Pallas
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/M, Germany
| | | | - Michael Karas
- Institute of Pharmaceutical Chemistry, Cluster of Excellence "Macromolecular Complexes", Goethe-University Frankfurt, Frankfurt/M, Germany
| | - Kristina Friedland
- Molecular and Clinical Pharmacy, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen/Nuremberg, Erlangen, Germany
| | - Walter E Müller
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/M, Germany
| |
Collapse
|
31
|
Enhanced Neuroplasticity by the Metabolic Enhancer Piracetam Associated with Improved Mitochondrial Dynamics and Altered Permeability Transition Pore Function. Neural Plast 2016; 2016:8075903. [PMID: 27747106 PMCID: PMC5056292 DOI: 10.1155/2016/8075903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial cascade hypothesis of dementia assumes mitochondrial dysfunction leading to reduced energy supply, impaired neuroplasticity, and finally cell death as one major pathomechanism underlying the continuum from brain aging over mild cognitive impairment to initial and advanced late onset Alzheimer's disease. Accordingly, improving mitochondrial function has become an important strategy to treat the early stages of this continuum. The metabolic enhancer piracetam has been proposed as possible prototype for those compounds by increasing impaired mitochondrial function and related aspects like mechanisms of neuroplasticity. We here report that piracetam at therapeutically relevant concentrations improves neuritogenesis in the human cell line SH-SY5Y over conditions mirroring the whole spectrum of age-associated cognitive decline. These effects go parallel with improvement of impaired mitochondrial dynamics shifting back fission and fusion balance to the energetically more favorable fusion site. Impaired fission and fusion balance can also be induced by a reduction of the mitochondrial permeability transition pore (mPTP) function as atractyloside which indicates the mPTP has similar effects on mitochondrial dynamics. These changes are also reduced by piracetam. These findings suggest the mPTP as an important target for the beneficial effects of piracetam on mitochondrial function.
Collapse
|
32
|
Quality Saving Mechanisms of Mitochondria during Aging in a Fully Time-Dependent Computational Biophysical Model. PLoS One 2016; 11:e0146973. [PMID: 26771181 PMCID: PMC4738421 DOI: 10.1371/journal.pone.0146973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/23/2015] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are essential for the energy production of eukaryotic cells. During aging mitochondria run through various processes which change their quality in terms of activity, health and metabolic supply. In recent years, many of these processes such as fission and fusion of mitochondria, mitophagy, mitochondrial biogenesis and energy consumption have been subject of research. Based on numerous experimental insights, it was possible to qualify mitochondrial behaviour in computational simulations. Here, we present a new biophysical model based on the approach of Figge et al. in 2012. We introduce exponential decay and growth laws for each mitochondrial process to derive its time-dependent probability during the aging of cells. All mitochondrial processes of the original model are mathematically and biophysically redefined and additional processes are implemented: Mitochondrial fission and fusion is separated into a metabolic outer-membrane part and a protein-related inner-membrane part, a quality-dependent threshold for mitophagy and mitochondrial biogenesis is introduced and processes for activity-dependent internal oxidative stress as well as mitochondrial repair mechanisms are newly included. Our findings reveal a decrease of mitochondrial quality and a fragmentation of the mitochondrial network during aging. Additionally, the model discloses a quality increasing mechanism due to the interplay of the mitophagy and biogenesis cycle and the fission and fusion cycle of mitochondria. It is revealed that decreased mitochondrial repair can be a quality saving process in aged cells. Furthermore, the model finds strategies to sustain the quality of the mitochondrial network in cells with high production rates of reactive oxygen species due to large energy demands. Hence, the model adds new insights to biophysical mechanisms of mitochondrial aging and provides novel understandings of the interdependency of mitochondrial processes.
Collapse
|
33
|
Sukhorukov VM, Meyer-Hermann M. Structural Heterogeneity of Mitochondria Induced by the Microtubule Cytoskeleton. Sci Rep 2015; 5:13924. [PMID: 26355039 PMCID: PMC4565121 DOI: 10.1038/srep13924] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/11/2015] [Indexed: 01/13/2023] Open
Abstract
By events of fusion and fission mitochondria generate a partially interconnected, irregular network of poorly specified architecture. Here, its organization is examined theoretically by taking into account the physical association of mitochondria with microtubules. Parameters of the cytoskeleton mesh are derived from the mechanics of single fibers. The model of the mitochondrial reticulum is formulated in terms of a dynamic spatial graph. The graph dynamics is modulated by the density of microtubules and their crossings. The model reproduces the full spectrum of experimentally found mitochondrial configurations. In centrosome-organized cells, the chondriome is predicted to develop strong structural inhomogeneity between the cell center and the periphery. An integrated analysis of the cytoskeletal and the mitochondrial components reveals that the structure of the reticulum depends on the balance between anterograde and retrograde motility of mitochondria on microtubules, in addition to fission and fusion. We propose that it is the combination of the two processes that defines synergistically the mitochondrial structure, providing the cell with ample capabilities for its regulative adaptation.
Collapse
Affiliation(s)
- Valerii M. Sukhorukov
- Department of Systems Immunology and Braunschweig Integrated Centre
of Systems Biology, Helmholtz Centre for Infection Research,
Inhoffenstr. 7, 38124
Braunschweig, Germany
- Frankfurt Institute for Advanced Studies, Goethe University of
Frankfurt am Main, Ruth-Moufang-Str. 1, 60438
Frankfurt am Main, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre
of Systems Biology, Helmholtz Centre for Infection Research,
Inhoffenstr. 7, 38124
Braunschweig, Germany
- Frankfurt Institute for Advanced Studies, Goethe University of
Frankfurt am Main, Ruth-Moufang-Str. 1, 60438
Frankfurt am Main, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics,
Technische Universität Braunschweig, Langer Kamp 19b,
38106
Braunschweig, Germany
| |
Collapse
|
34
|
Context-Dependent Role of Mitochondrial Fusion-Fission in Clonal Expansion of mtDNA Mutations. PLoS Comput Biol 2015; 11:e1004183. [PMID: 25996936 PMCID: PMC4440705 DOI: 10.1371/journal.pcbi.1004183] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/09/2015] [Indexed: 12/14/2022] Open
Abstract
The accumulation of mutant mitochondrial DNA (mtDNA) molecules in aged cells has been associated with mitochondrial dysfunction, age-related diseases and the ageing process itself. This accumulation has been shown to often occur clonally, where mutant mtDNA grow in number and overpopulate the wild-type mtDNA. However, the cell possesses quality control (QC) mechanisms that maintain mitochondrial function, in which dysfunctional mitochondria are isolated and removed by selective fusion and mitochondrial autophagy (mitophagy), respectively. The aim of this study is to elucidate the circumstances related to mitochondrial QC that allow the expansion of mutant mtDNA molecules. For the purpose of the study, we have developed a mathematical model of mitochondrial QC process by extending our previous validated model of mitochondrial turnover and fusion-fission. A global sensitivity analysis of the model suggested that the selectivity of mitophagy and fusion is the most critical QC parameter for clearing de novo mutant mtDNA molecules. We further simulated several scenarios involving perturbations of key QC parameters to gain a better understanding of their dynamic and synergistic interactions. Our model simulations showed that a higher frequency of mitochondrial fusion-fission can provide a faster clearance of mutant mtDNA, but only when mutant–rich mitochondria that are transiently created are efficiently prevented from re-fusing with other mitochondria and selectively removed. Otherwise, faster fusion-fission quickens the accumulation of mutant mtDNA. Finally, we used the insights gained from model simulations and analysis to propose a possible circumstance involving deterioration of mitochondrial QC that permits mutant mtDNA to expand with age. Mitochondria are responsible for most energy generation in human and animal cells. Loss or pathological alteration of mitochondrial function is a hallmark of many age-related diseases. Mitochondrial dysfunction may be a central and conserved feature of the ageing process. As part of quality control (QC), mitochondria are continually replicated and degraded. Furthermore, two mitochondria can fuse to form a single mitochondrion, and a mitochondrion can divide (fission) into two separate organelles. Despite this QC, mutant mitochondrial DNA (mtDNA) molecules have been observed to accumulate in cells with age which may lead to mitochondrial dysfunction. In this study, we created a detailed mathematical model of mitochondrial QC and performed model simulations to investigate circumstances allowing or preventing the accumulation of mutant mtDNA. We found that more frequent fusion-fission could quicken mutant mtDNA clearance, but only when mitochondria harboring a high fraction of mutant molecules were strongly prevented from fusing with other mitochondria and selectively degraded. Otherwise, faster fusion-fission would actually enhance the accumulation of mutant mtDNA. Our results suggested that the expansion of mutant mtDNA likely involves a decline in the selectivity of mitochondrial degradation and fusion. This insight might open new avenues for experiment and possible development of future therapies.
Collapse
|
35
|
Hoitzing H, Johnston IG, Jones NS. What is the function of mitochondrial networks? A theoretical assessment of hypotheses and proposal for future research. Bioessays 2015; 37:687-700. [PMID: 25847815 PMCID: PMC4672710 DOI: 10.1002/bies.201400188] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria can change their shape from discrete isolated organelles to a large continuous reticulum. The cellular advantages underlying these fused networks are still incompletely understood. In this paper, we describe and compare hypotheses regarding the function of mitochondrial networks. We use mathematical and physical tools both to investigate existing hypotheses and to generate new ones, and we suggest experimental and modelling strategies. Among the novel insights we underline from this work are the possibilities that (i) selective mitophagy is not required for quality control because selective fusion is sufficient; (ii) increased connectivity may have non-linear effects on the diffusion rate of proteins; and (iii) fused networks can act to dampen biochemical fluctuations. We hope to convey to the reader that quantitative approaches can drive advances in the understanding of the physiological advantage of these morphological changes.
Collapse
Affiliation(s)
- Hanne Hoitzing
- Department of Mathematics, Imperial College London, London, UK
| | - Iain G Johnston
- Department of Mathematics, Imperial College London, London, UK
| | - Nick S Jones
- Department of Mathematics, Imperial College London, London, UK
| |
Collapse
|
36
|
Jin K, Musso G, Vlasblom J, Jessulat M, Deineko V, Negroni J, Mosca R, Malty R, Nguyen-Tran DH, Aoki H, Minic Z, Freywald T, Phanse S, Xiang Q, Freywald A, Aloy P, Zhang Z, Babu M. Yeast Mitochondrial Protein–Protein Interactions Reveal Diverse Complexes and Disease-Relevant Functional Relationships. J Proteome Res 2015; 14:1220-37. [DOI: 10.1021/pr501148q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ke Jin
- Terrence
Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Gabriel Musso
- Cardiovascular
Division, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - James Vlasblom
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Matthew Jessulat
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Viktor Deineko
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jacopo Negroni
- Joint
IRB−BSC Program in Computational Biology, IRB, Barcelona 08028, Spain
| | - Roberto Mosca
- Joint
IRB−BSC Program in Computational Biology, IRB, Barcelona 08028, Spain
| | - Ramy Malty
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Diem-Hang Nguyen-Tran
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Zoran Minic
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Tanya Freywald
- Cancer Research
Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Sadhna Phanse
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Qian Xiang
- Terrence
Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Andrew Freywald
- Cancer Research
Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Patrick Aloy
- Joint
IRB−BSC Program in Computational Biology, IRB, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Zhaolei Zhang
- Terrence
Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Mohan Babu
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
37
|
Börlin CS, Lang V, Hamacher-Brady A, Brady NR. Agent-based modeling of autophagy reveals emergent regulatory behavior of spatio-temporal autophagy dynamics. Cell Commun Signal 2014; 12:56. [PMID: 25214434 PMCID: PMC4172826 DOI: 10.1186/s12964-014-0056-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/31/2014] [Indexed: 01/07/2023] Open
Abstract
Background Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. Results We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3 hours) under basal and activated autophagy conditions, and to measure the degree of cell-to-cell variability. Moreover, we experimentally confirmed two model predictions, namely (i) peri-nuclear concentration of autophagosomes and (ii) inhibitory lysosomal feedback on mTOR signaling. Conclusion Agent-based modeling represents a novel approach to investigate autophagy dynamics, function and dysfunction with high biological realism. Our model accurately recapitulates short-term behavior and cell-to-cell variability under basal and activated conditions of autophagy. Further, this approach also allows investigation of long-term behaviors emerging from biologically-relevant alterations to vesicle trafficking and metabolic state. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0056-8) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Predictive Modelling of Mitochondrial Spatial Structure and Health. COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY 2014. [DOI: 10.1007/978-3-319-12982-2_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
39
|
Rafelski SM. Mitochondrial network morphology: building an integrative, geometrical view. BMC Biol 2013; 11:71. [PMID: 23800141 PMCID: PMC3691739 DOI: 10.1186/1741-7007-11-71] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/18/2013] [Indexed: 01/26/2023] Open
Abstract
The morphology of mitochondrial networks is complex and highly varied, yet vital to cell function. The first step toward an integrative understanding of how mitochondrial morphology is generated and regulated is to define the interdependent geometrical features and their dynamics that together generate the morphology of a mitochondrial network within a cell. Distinct aspects of the size, shape, position, and dynamics of mitochondrial networks are described and examples of how these features depend on one another discussed.
Collapse
Affiliation(s)
- Susanne M Rafelski
- Department of Developmental and Cell Biology and Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA.
| |
Collapse
|