1
|
Lu X, Huang J. Molecular mechanisms of Na +-driven bile acid transport in human NTCP. Biophys J 2024; 123:1195-1210. [PMID: 38544409 PMCID: PMC11140467 DOI: 10.1016/j.bpj.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/17/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Human Na+ taurocholate co-transporting protein (hNTCP) is a key bile salt transporter to maintain enterohepatic circulation and is responsible for the recognition of hepatitis B and D viruses. Despite landmark cryoelectron microscopy studies revealing open-pore and inward-facing states of hNTCP stabilized by antibodies, the transport mechanism remains largely unknown. To address this knowledge gap, we used molecular dynamics and enhanced sampling metadynamics simulations to elucidate the intrinsic mechanism of hNTCP-mediated taurocholate acid (TCA) transport driven by Na+ binding. We uncovered three TCA-binding modes, including one that closely matched the limited cryoelectron microscopy density observed in the open-pore hNTCP. We also captured several key hNTCP conformations in the substrate transport cycle, particularly including an outward-facing, substrate-bound state. Furthermore, we provided thermodynamic evidence supporting that changes in the Na+-binding state drive the TCA transport by exploiting the amphiphilic nature of the substrate and modulating the protein environment, thereby enabling the TCA molecule to flip through. Understanding these mechanistic details of Na+-driven bile acid transport may aid in the development of hNTCP-targeted therapies for liver diseases.
Collapse
Affiliation(s)
- Xiaoli Lu
- Westlake AI Therapeutics Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jing Huang
- Westlake AI Therapeutics Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Janoš P, Magistrato A. Role of Monovalent Ions in the NKCC1 Inhibition Mechanism Revealed through Molecular Simulations. Int J Mol Sci 2022; 23:ijms232315439. [PMID: 36499764 PMCID: PMC9741434 DOI: 10.3390/ijms232315439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The secondary active Na-K-Cl cotransporter 1 (NKCC1) promotes electroneutral uptake of two chloride ions, one sodium ion and one potassium ion. NKCC1 regulates Cl- homeostasis, thus being implicated in transepithelial water transport and in neuronal excitability. Aberrant NKCC1 transport is linked to a variety of human diseases. The loop diuretic drugs bumetanide, furosemide, azosemide and ethacrynic acid target NKCC1, but are characterized by poor selectivity leading to severe side effects. Despite its therapeutic importance, the molecular details of the NKCC1 inhibition mechanism remain unclear. Using all-atom simulations, we predict a putative binding mode of these drugs to the zebrafish (z) and human (h) NKCC1 orthologs. Although differing in their specific interactions with NKCC1 and/or monovalent ions, all drugs can fit within the same cavity and engage in hydrophobic interactions with M304/M382 in z/hNKCC1, a proposed ion gating residue demonstrated to be key for bumetanide binding. Consistent with experimental evidence, all drugs take advantage of the K+/Na+ ions, which plastically respond to their binding. This study not only provides atomic-level insights useful for drug discovery campaigns of more selective/potent NKCC1 inhibitors aimed to tackle diseases related to deregulated Cl- homeostasis, but it also supplies a paradigmatic example of the key importance of dynamical effects when drug binding is mediated by monovalent ions.
Collapse
|
3
|
Zhang Q, Zhao N, Meng X, Yu F, Yao X, Liu H. The prediction of protein-ligand unbinding for modern drug discovery. Expert Opin Drug Discov 2021; 17:191-205. [PMID: 34731059 DOI: 10.1080/17460441.2022.2002298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Drug-target thermodynamic and kinetic information have perennially important roles in drug design. The prediction of protein-ligand unbinding, which can provide important kinetic information, in experiments continues to face great challenges. Uncovering protein-ligand unbinding through molecular dynamics simulations has become efficient and inexpensive with the progress and enhancement of computing power and sampling methods. AREAS COVERED In this review, various sampling methods for protein-ligand unbinding and their basic principles are firstly briefly introduced. Then, their applications in predicting aspects of protein-ligand unbinding, including unbinding pathways, dissociation rate constants, residence time and binding affinity, are discussed. EXPERT OPINION Although various sampling methods have been successfully applied in numerous systems, they still have shortcomings and deficiencies. Most enhanced sampling methods require researchers to possess a wealth of prior knowledge of collective variables or reaction coordinates. In addition, most systems studied at present are relatively simple, and the study of complex systems in real drug research remains greatly challenging. Through the combination of machine learning and enhanced sampling methods, prediction accuracy can be further improved, and some problems encountered in complex systems also may be solved.
Collapse
Affiliation(s)
| | - Nannan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaoxiao Meng
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Fansen Yu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Janoš P, Magistrato A. All-Atom Simulations Uncover the Molecular Terms of the NKCC1 Transport Mechanism. J Chem Inf Model 2021; 61:3649-3658. [PMID: 34213892 DOI: 10.1021/acs.jcim.1c00551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The secondary-active Na-K-Cl cotransporter 1 (NKCC1), member of the cation-chloride cotransporter (CCC) family, ensures the electroneutral movement of Cl-, Na+, and K+ ions across cellular membranes. NKCC1 regulates Cl- homeostasis and cell volume, handling a pivotal role in transepithelial water transport and neuronal excitability. Aberrant NKCC1 transport is hence implicated in a variety of human diseases (hypertension, renal disorders, neuropathies, and cancer). Building on the newly resolved NKCC1 cryo-EM structure, all-atom enhanced sampling simulations unprecedentedly unlock the mechanism of NKCC1-mediated ion transport, assessing the order and the molecular basis of its interdependent ion translocation. Our outcomes strikingly advance the understanding of the physiological mechanism of CCCs and disclose a key role of CCC-conserved asparagine residues, whose side-chain promiscuity ensures the transport of both negatively and positively charged ions along the same translocation route. This study sets a conceptual basis to devise NKCC-selective inhibitors to treat diseases linked to Cl- dishomeostasis.
Collapse
Affiliation(s)
- Pavel Janoš
- National Research Council (CNR)-IOM c/o International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- National Research Council (CNR)-IOM c/o International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
5
|
Spinello A, Borišek J, Pavlin M, Janoš P, Magistrato A. Computing Metal-Binding Proteins for Therapeutic Benefit. ChemMedChem 2021; 16:2034-2049. [PMID: 33740297 DOI: 10.1002/cmdc.202100109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 01/18/2023]
Abstract
Over one third of biomolecules rely on metal ions to exert their cellular functions. Metal ions can play a structural role by stabilizing the structure of biomolecules, a functional role by promoting a wide variety of biochemical reactions, and a regulatory role by acting as messengers upon binding to proteins regulating cellular metal-homeostasis. These diverse roles in biology ascribe critical implications to metal-binding proteins in the onset of many diseases. Hence, it is of utmost importance to exhaustively unlock the different mechanistic facets of metal-binding proteins and to harness this knowledge to rationally devise novel therapeutic strategies to prevent or cure pathological states associated with metal-dependent cellular dysfunctions. In this compendium, we illustrate how the use of a computational arsenal based on docking, classical, and quantum-classical molecular dynamics simulations can contribute to extricate the minutiae of the catalytic, transport, and inhibition mechanisms of metal-binding proteins at the atomic level. This knowledge represents a fertile ground and an essential prerequisite for selectively targeting metal-binding proteins with small-molecule inhibitors aiming to (i) abrogate deregulated metal-dependent (mis)functions or (ii) leverage metal-dyshomeostasis to selectively trigger harmful cells death.
Collapse
Affiliation(s)
- Angelo Spinello
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| | - Jure Borišek
- National Institute of Chemistry Institution Hajdrihova ulica 19, 1000, Ljubljana, Slovenia
| | - Matic Pavlin
- Laboratory of Microsensor Structures and Electronics Faculty of Electrical Engineering, University of Ljubljana Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Pavel Janoš
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| |
Collapse
|
6
|
Borišek J, Magistrato A. An Expanded Two-Zn2+-Ion Motif Orchestrates Pre-mRNA Maturation in the 3′-End Processing Endonuclease Machinery. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jure Borišek
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Alessandra Magistrato
- CNR-IOM-Democritos National Simulation Center c/o SISSA, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
7
|
Horx P, Geyer A. Defining the mobility range of a hinge-type connection using molecular dynamics and metadynamics. PLoS One 2020; 15:e0230962. [PMID: 32282813 PMCID: PMC7153902 DOI: 10.1371/journal.pone.0230962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/12/2020] [Indexed: 01/29/2023] Open
Abstract
A designed disulfide-rich β-hairpin peptide that dimerizes spontaneously served as a hinge-type connection between proteins. Here, we analyze the range of dynamics of this hinge dimer with the aim of proposing new applications for the DNA-encodable peptide and establishing guidelines for the computational analysis of other disulfide hinges. A recent structural analysis based on nuclear magnetic resonance spectroscopy and ion mobility spectrometry revealed an averaged conformation in the hinge region which motivated us to investigate the dynamic behavior using a combination of molecular dynamics simulation, metadynamics and free energy surface analysis to characterize the conformational space available to the hinge. Principal component analysis uncovered two slow modes of the peptide, namely, the opening and closing motion and twisting of the two β-hairpins assembling the hinge. Applying a collective variable (CV) that mimics the first dominating mode, led to a major expansion of the conformational space. The description of the dynamics could be achieved by analysis of the opening angle and the twisting of the β-hairpins and, thus, offers a methodology that can also be transferred to other derivatives. It has been demonstrated that the hinge peptide’s lowest energy conformation consists of a large opening angle and strong twist but is separated by small energy barriers and can, thus, adopt a closed and untwisted structure. With the aim of proposing further applications for the hinge peptide, we simulated its behavior in the sterically congested environment of a four-helix bundle. Preliminary investigations show that one helix is pushed out and a three-helix bundle forms. The insights gained into the dynamics of the tetra-disulfide peptide and analytical guidelines developed in this study may contribute to the understanding of the structure and function of more complex hinge-type proteins, such as the IgG antibody family.
Collapse
Affiliation(s)
- Philip Horx
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Armin Geyer
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
8
|
Hoias Teixeira M, Menegon Arantes G. Balanced internal hydration discriminates substrate binding to respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:541-548. [DOI: 10.1016/j.bbabio.2019.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022]
|
9
|
Nunes-Alves A, Zuckerman DM, Arantes GM. Escape of a Small Molecule from Inside T4 Lysozyme by Multiple Pathways. Biophys J 2019. [PMID: 29539393 DOI: 10.1016/j.bpj.2018.01.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The T4 lysozyme L99A mutant is often used as a model system to study small-molecule binding to proteins, but pathways for ligand entry and exit from the buried binding site and the associated protein conformational changes have not been fully resolved. Here, molecular dynamics simulations were employed to model benzene exit from its binding cavity using the weighted ensemble (WE) approach to enhance sampling of low-probability unbinding trajectories. Independent WE simulations revealed four pathways for benzene exit, which correspond to transient tunnels spontaneously formed in previous simulations of apo T4 lysozyme. Thus, benzene unbinding occurs through multiple pathways partially created by intrinsic protein structural fluctuations. Motions of several α-helices and side chains were involved in ligand escape from metastable microstates. WE simulations also provided preliminary estimates of rate constants for each exit pathway. These results complement previous works and provide a semiquantitative characterization of pathway heterogeneity for binding of small molecules to proteins.
Collapse
Affiliation(s)
- Ariane Nunes-Alves
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel M Zuckerman
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon.
| | | |
Collapse
|
10
|
Awasthi S, Nair NN. Exploring high‐dimensional free energy landscapes of chemical reactions. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1398] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shalini Awasthi
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh India
| | - Nisanth N. Nair
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh India
| |
Collapse
|
11
|
Ebert K, Ewers M, Bisha I, Sander S, Rasputniac T, Daniel H, Antes I, Witt H. Identification of essential amino acids for glucose transporter 5 (GLUT5)-mediated fructose transport. J Biol Chem 2017; 293:2115-2124. [PMID: 29259131 DOI: 10.1074/jbc.ra117.001442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 01/27/2023] Open
Abstract
Intestinal fructose uptake is mainly mediated by glucose transporter 5 (GLUT5/SLC2A5). Its closest relative, GLUT7, is also expressed in the intestine but does not transport fructose. For rat Glut5, a change of glutamine to glutamic acid at codon 166 (p.Q166E) has been reported to alter the substrate-binding specificity by shifting Glut5-mediated transport from fructose to glucose. Using chimeric proteins of GLUT5 and GLUT7, here we identified amino acid residues of GLUT5 that define its substrate specificity. The proteins were expressed in NIH-3T3 fibroblasts, and their activities were determined by fructose radiotracer flux. We divided the human GLUT5 sequence into 26 fragments and then replaced each fragment with the corresponding region in GLUT7. All fragments that yielded reduced fructose uptake were analyzed further by assessing the role of individual amino acid residues. Various positions in the first extracellular loop, in the fifth, seventh, eighth, ninth, and tenth transmembrane domains (TMDs), and in the regions between the ninth and tenth TMDs and tenth and 11th TMDs were identified as being important for proper fructose uptake. Although the p.Q167E change did not render the human protein into a glucose transporter, molecular dynamics simulations revealed a drastic change in the dynamics and a movement of the intracellular loop connecting the sixth and seventh TMDs, which covers the exit of the ligand. Finally, we generated a GLUT7-GLUT5 chimera consisting of the N-terminal part of GLUT7 and the C-terminal part of GLUT5. Although this chimera was inactive, we demonstrate fructose transport after introduction of four amino acids derived from GLUT5.
Collapse
Affiliation(s)
- Karolin Ebert
- From the Pediatric Nutritional Medicine, Klinikum rechts der Isar (MRI), Else Kröner-Fresenius-Zentrum für Ernährungsmedizin
| | - Maren Ewers
- From the Pediatric Nutritional Medicine, Klinikum rechts der Isar (MRI), Else Kröner-Fresenius-Zentrum für Ernährungsmedizin
| | - Ina Bisha
- Department of Biosciences and Center for Integrated Protein Science Munich, and
| | - Simone Sander
- From the Pediatric Nutritional Medicine, Klinikum rechts der Isar (MRI), Else Kröner-Fresenius-Zentrum für Ernährungsmedizin
| | - Tanja Rasputniac
- From the Pediatric Nutritional Medicine, Klinikum rechts der Isar (MRI), Else Kröner-Fresenius-Zentrum für Ernährungsmedizin
| | - Hannelore Daniel
- Nutritional Physiology, Technische Universität München, 85354 Freising, Germany
| | - Iris Antes
- Department of Biosciences and Center for Integrated Protein Science Munich, and
| | - Heiko Witt
- From the Pediatric Nutritional Medicine, Klinikum rechts der Isar (MRI), Else Kröner-Fresenius-Zentrum für Ernährungsmedizin,
| |
Collapse
|
12
|
Magistrato A. Direct in silico visualization of ligands channelling through proteins: The next-generation frontier of computational biology: Comment on 'Ligand diffusion via enhanced sampling molecular dynamics' by Jakub Rydzewski and Wieslaw Nowak. Phys Life Rev 2017; 22-23:82-84. [PMID: 28818495 DOI: 10.1016/j.plrev.2017.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Alessandra Magistrato
- CNR-IOM-Democritos c/o, International School for Advanced Studies (SISSA), Via Bonomea 265, 34135, Trieste, Italy.
| |
Collapse
|
13
|
Magistrato A, Sgrignani J, Krause R, Cavalli A. Single or Multiple Access Channels to the CYP450s Active Site? An Answer from Free Energy Simulations of the Human Aromatase Enzyme. J Phys Chem Lett 2017; 8:2036-2042. [PMID: 28423275 DOI: 10.1021/acs.jpclett.7b00697] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cytochromes P450 (CYP450s), in particular, CYP19A1 and CYP17A1, are key clinical targets of breast and prostate anticancer therapies, critical players in drug metabolism, and their overexpression in tumors is associated with drug resistance. In these enzymes, ligand (substrates, drugs) metabolism occurs in deeply buried active sites accessible only via several grueling channels, whose exact biological role remains unclear. Gaining direct insights on the mechanism by which ligands travel in and out is becoming increasingly important given that channels are involved in the modulation of binding/dissociation kinetics and the specificity of ligands toward a CYP450. This has profound implications for enzymatic efficiency and drug efficacy/toxicity. Here, by applying free energy methods, for a cumulative simulation time of 20 μs, we provide detailed atomistic characterization and free energy profiles of the entry/exit routes preferentially followed by a substrate (androstenedione) and a last-generation inhibitor (letrozole) to/from the catalytic site of CYP19A1 (the human aromatase (HA) enzyme), a key clinical target against breast cancer, studied here as prototypical CYP450. Despite the remarkably different size/shape/hydrophobicity of the ligands, two channels appear accessible to their entrance, while only one exit route appears to be preferential. Our study shows that the preferential paths may be conserved among different CYP450s. Moreover, our results highlight that, at least in the case of HA, ligand channeling is associated with large enzyme structural rearrangements. A wise choice of the computational method and very long simulations are, thus, required to obtain fully converged quantitative free energy profiles, which might be used to design novel biocatalysts or next-generation cytochrome inhibitors with an in silico tuned Km.
Collapse
Affiliation(s)
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI) , Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| | - Rolf Krause
- Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana (USI) , Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI) , Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| |
Collapse
|
14
|
Rydzewski J, Nowak W. Ligand diffusion in proteins via enhanced sampling in molecular dynamics. Phys Life Rev 2017; 22-23:58-74. [PMID: 28410930 DOI: 10.1016/j.plrev.2017.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/28/2016] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
Abstract
Computational simulations in biophysics describe the dynamics and functions of biological macromolecules at the atomic level. Among motions particularly important for life are the transport processes in heterogeneous media. The process of ligand diffusion inside proteins is an example of a complex rare event that can be modeled using molecular dynamics simulations. The study of physical interactions between a ligand and its biological target is of paramount importance for the design of novel drugs and enzymes. Unfortunately, the process of ligand diffusion is difficult to study experimentally. The need for identifying the ligand egress pathways and understanding how ligands migrate through protein tunnels has spurred the development of several methodological approaches to this problem. The complex topology of protein channels and the transient nature of the ligand passage pose difficulties in the modeling of the ligand entry/escape pathways by canonical molecular dynamics simulations. In this review, we report a methodology involving a reconstruction of the ligand diffusion reaction coordinates and the free-energy profiles along these reaction coordinates using enhanced sampling of conformational space. We illustrate the above methods on several ligand-protein systems, including cytochromes and G-protein-coupled receptors. The methods are general and may be adopted to other transport processes in living matter.
Collapse
Affiliation(s)
- J Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
| | - W Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
15
|
Zeuthen T, Gorraitz E, Her K, Wright EM, Loo DDF. Structural and functional significance of water permeation through cotransporters. Proc Natl Acad Sci U S A 2016; 113:E6887-E6894. [PMID: 27791155 PMCID: PMC5098644 DOI: 10.1073/pnas.1613744113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane transporters, in addition to their major role as specific carriers for ions and small molecules, can also behave as water channels. However, neither the location of the water pathway in the protein nor their functional importance is known. Here, we map the pathway for water and urea through the intestinal sodium/glucose cotransporter SGLT1. Molecular dynamics simulations using the atomic structure of the bacterial transporter vSGLT suggest that water permeates the same path as Na+ and sugar. On a structural model of SGLT1, based on the homology structure of vSGLT, we identified and mutated residues lining the sugar transport pathway to cysteine. The mutants were expressed in Xenopus oocytes, and the unitary water and urea permeabilities were determined before and after modifying the cysteine side chain with reversible methanethiosulfonate reagents. The results demonstrate that water and urea follow the sugar transport pathway through SGLT1. The changes in permeability, increases or decreases, with side-chain modifications depend on the location of the mutation in the region of external or internal gates, or the sugar binding site. These changes in permeability are hypothesized to be due to alterations in steric hindrance to water and urea, and/or changes in protein folding caused by mismatching of side chains in the water pathway. Water permeation through SGLT1 and other transporters bears directly on the structural mechanism for the transport of polar solutes through these proteins. Finally, in vitro experiments on mouse small intestine show that SGLT1 accounts for two-thirds of the passive water flow across the gut.
Collapse
Affiliation(s)
- Thomas Zeuthen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, DK 2200N, Copenhagen, Denmark;
| | - Edurne Gorraitz
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095-1751
| | - Ka Her
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095-1751
| | - Ernest M Wright
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095-1751
| | - Donald D F Loo
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095-1751
| |
Collapse
|
16
|
Abstract
Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state.
Collapse
|
17
|
Paloncýová M, Navrátilová V, Berka K, Laio A, Otyepka M. Role of Enzyme Flexibility in Ligand Access and Egress to Active Site: Bias-Exchange Metadynamics Study of 1,3,7-Trimethyluric Acid in Cytochrome P450 3A4. J Chem Theory Comput 2016; 12:2101-9. [DOI: 10.1021/acs.jctc.6b00075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Markéta Paloncýová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, tř.
17 Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Veronika Navrátilová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, tř.
17 Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Karel Berka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, tř.
17 Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Alessandro Laio
- SISSA - Scuola
Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, tř.
17 Listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
18
|
Bisha I, Magistrato A. The molecular mechanism of secondary sodium symporters elucidated through the lens of the computational microscope. RSC Adv 2016. [DOI: 10.1039/c5ra22131e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transport of molecules across cellular membranes is a key biological process for normal cell function. In this review we describe current state-of-the-art knowledge on molecular mechanism of secondary active transporters obtained by molecular simulations studies.
Collapse
Affiliation(s)
- Ina Bisha
- Theoretical Chemical Biology and Protein Modelling Group
- Technische Universität München
- 85354 Freising
- Germany
| | | |
Collapse
|
19
|
Napolitano LMR, Bisha I, De March M, Marchesi A, Arcangeletti M, Demitri N, Mazzolini M, Rodriguez A, Magistrato A, Onesti S, Laio A, Torre V. A structural, functional, and computational analysis suggests pore flexibility as the base for the poor selectivity of CNG channels. Proc Natl Acad Sci U S A 2015; 112:E3619-28. [PMID: 26100907 PMCID: PMC4500290 DOI: 10.1073/pnas.1503334112] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) ion channels, despite a significant homology with the highly selective K(+) channels, do not discriminate among monovalent alkali cations and are permeable also to several organic cations. We combined electrophysiology, molecular dynamics (MD) simulations, and X-ray crystallography to demonstrate that the pore of CNG channels is highly flexible. When a CNG mimic is crystallized in the presence of a variety of monovalent cations, including Na(+), Cs(+), and dimethylammonium (DMA(+)), the side chain of Glu66 in the selectivity filter shows multiple conformations and the diameter of the pore changes significantly. MD simulations indicate that Glu66 and the prolines in the outer vestibule undergo large fluctuations, which are modulated by the ionic species and the voltage. This flexibility underlies the coupling between gating and permeation and the poor ionic selectivity of CNG channels.
Collapse
Affiliation(s)
| | - Ina Bisha
- International School for Advanced Studies, Trieste 34136, Italy
| | - Matteo De March
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Trieste 34149, Italy
| | - Arin Marchesi
- International School for Advanced Studies, Trieste 34136, Italy
| | | | - Nicola Demitri
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Trieste 34149, Italy
| | | | - Alex Rodriguez
- International School for Advanced Studies, Trieste 34136, Italy
| | - Alessandra Magistrato
- International School for Advanced Studies, Trieste 34136, Italy; National Research Council-Institute of Materials (CNR-IOM)-Democritos National Simulation Center c/o International School for Advanced Studies, Trieste 34136, Italy
| | - Silvia Onesti
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Trieste 34149, Italy;
| | - Alessandro Laio
- International School for Advanced Studies, Trieste 34136, Italy;
| | - Vincent Torre
- International School for Advanced Studies, Trieste 34136, Italy;
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Galactose - a key source of energy and a crucial structural element in complex molecules - is particularly important for early human development. However, galactose metabolism might be important not only for fetal and neonatal development but also for adulthood, as evidenced by the inherited disorders of galactose metabolism. The purpose of this review is to summarize the current evidence of galactose metabolism in health and disease. RECENT FINDINGS The biological importance of galactose goes beyond its importance as a nutrient and a metabolite. Galactose has been selected by evolutionary pressure to exert also a crucial structural role in macromolecules. Additionally, galactose has recently been reported as beneficial in a number of diseases, particularly in those affecting the brain. SUMMARY Galactose is crucial for human metabolism, with an established role in energy delivery and galactosylation of complex molecules, and evidence for other roles is emerging.
Collapse
Affiliation(s)
- Ana I Coelho
- aDepartment of Pediatrics and Laboratory Genetic Metabolic Diseases, Maastricht University Medical Center, Maastricht, The Netherlands bThe Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA *Gerard T. Berry and M. Estela Rubio-Gozalbo contributed equally to the writing of this article
| | | | | |
Collapse
|
21
|
Li J, Wen PC, Moradi M, Tajkhorshid E. Computational characterization of structural dynamics underlying function in active membrane transporters. Curr Opin Struct Biol 2015; 31:96-105. [PMID: 25913536 PMCID: PMC4476910 DOI: 10.1016/j.sbi.2015.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 11/21/2022]
Abstract
Active transport of materials across the cellular membrane is one the most fundamental processes in biology. In order to accomplish this task, membrane transporters rely on a wide range of conformational changes spanning multiple time and size scales. These molecular events govern key functional aspects in membrane transporters, namely, coordinated gating motions underlying the alternating access mode of operation, and coupling of uphill transport of substrate to various sources of energy, for example, transmembrane electrochemical gradients and ATP binding and hydrolysis. Computational techniques such as molecular dynamics simulations and free energy calculations have equipped us with a powerful repertoire of biophysical tools offering unparalleled spatial and temporal resolutions that can effectively complement experimental methodologies, and therefore help fill the gap of knowledge in understanding the molecular basis of function in membrane transporters.
Collapse
Affiliation(s)
- Jing Li
- Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Po-Chao Wen
- Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Mahmoud Moradi
- Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|