1
|
Barrett S, Zahid MU, Enderling H, Marignol L. Predicting Individual Tumor Response Dynamics in Locally Advanced Non-Small Cell Lung Cancer Radiation Therapy: A Mathematical Modelling Study. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03563-6. [PMID: 39641707 DOI: 10.1016/j.ijrobp.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/05/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE To predict individual tumor responses to radiation therapy (RT) in non-small cell lung cancer. MATERIALS AND METHODS The proliferation saturation index (PSI) model, which models tumor dynamics in response to RT as an instantaneous reduction in tumor volume, was fit to n = 162 patients with 4 distinct dose fractionation schedules (30-32 fractions × 2 Gy, 23-24 fractions × 2.75 Gy, 32-42 fractions × 1.8 Gy, and 30 fractions × 1.5 Gy Bidaily, followed by 5-12 fractions × 2 Gy daily). Following initial training, the predictive power of the model was tested using only the first 3 tumor volume measurements as measured on daily imaging. The remainder of tumor volume regression during RT was simulated using the PSI model. Comparisons of the measured to the simulated volumes were made using scatter plots, coefficient of determination (R2), and Pearson correlation coefficient values. RESULTS The PSI model predicted tumor volume regression during RT with a high degree of accuracy. Comparison of the measured versus predicted volumes resulted in R2 values of 0.968, 0.954, 0.968, and 0.937, and Pearson correlation coefficient values of 0.984, 0.977, 0.984, and 0.968 in the 2 Gy, 1.8 Gy, 2.75 Gy, and Bidaily groups, respectively. CONCLUSION The proliferation saturation model can predict, with a high degree of accuracy, non-small cell lung cancer tumor volume regression in response to RT in 4 distinct dose fractionation schedules.
Collapse
Affiliation(s)
- Sarah Barrett
- Applied Radiation Therapy Trinity, Trinity St. James's Cancer Institute, Discipline of Radiation Therapy, Trinity College, Dublin, Ireland.
| | - Mohammad U Zahid
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heiko Enderling
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laure Marignol
- Applied Radiation Therapy Trinity, Trinity St. James's Cancer Institute, Discipline of Radiation Therapy, Trinity College, Dublin, Ireland
| |
Collapse
|
2
|
Shultes PV, Weaver DT, Tadele DS, Barker-Clarke RJ, Scott JG. Cell-cell fusion in cancer: The next cancer hallmark? Int J Biochem Cell Biol 2024; 175:106649. [PMID: 39186970 DOI: 10.1016/j.biocel.2024.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
In this review, we consider the role of cell-cell fusion in cancer development and progression through an evolutionary lens. We begin by summarizing the origins of fusion proteins (fusogens), of which there are many distinct classes that have evolved through convergent evolution. We then use an evolutionary framework to highlight how the persistence of fusion over generations and across different organisms can be attributed to traits that increase fitness secondary to fusion; these traits map well to the expanded hallmarks of cancer. By studying the tumor microenvironment, we can begin to identify the key selective pressures that may favor higher rates of fusion compared to healthy tissues. The paper concludes by discussing the increasing number of research questions surrounding fusion, recommendations for how to answer them, and the need for a greater interest in exploring cell fusion and evolutionary principles in oncology moving forward.
Collapse
Affiliation(s)
- Paulameena V Shultes
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA
| | - Davis T Weaver
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA
| | - Dagim S Tadele
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; Oslo University Hospital, Ullevål, Department of Medical Genetics, Oslo, Norway
| | - Rowan J Barker-Clarke
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA
| | - Jacob G Scott
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA; Physics Department, Case Western Reserve University, Cleveland, OH 44120, USA.
| |
Collapse
|
3
|
Possenti L, Vitullo P, Cicchetti A, Zunino P, Rancati T. Modeling hypoxia-induced radiation resistance and the impact of radiation sources. Comput Biol Med 2024; 173:108334. [PMID: 38520919 DOI: 10.1016/j.compbiomed.2024.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Hypoxia contributes significantly to resistance in radiotherapy. Our research rigorously examines the influence of microvascular morphology on radiotherapy outcome, specifically focusing on how microvasculature shapes hypoxia within the microenvironment and affects resistance to a standard treatment regimen (30×2GyRBE). Our computational modeling extends to the effects of different radiation sources. For photons and protons, our analysis establishes a clear correlation between hypoxic volume distribution and treatment effectiveness, with vascular density and regularity playing a crucial role in treatment success. On the contrary, carbon ions exhibit distinct effectiveness, even in areas of intense hypoxia and poor vascularization. This finding points to the potential of carbon-based hadron therapy in overcoming hypoxia-induced resistance to RT. Considering that the spatial scale analyzed in this study is closely aligned with that of imaging data voxels, we also address the implications of these findings in a clinical context envisioning the possibility of detecting subvoxel hypoxia.
Collapse
Affiliation(s)
- Luca Possenti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy.
| | - Piermario Vitullo
- MOX, Department of Mathematics, Politecnico di Milano, P.zza Da Vinci 32, Milan, 20133, Italy
| | - Alessandro Cicchetti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, P.zza Da Vinci 32, Milan, 20133, Italy
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| |
Collapse
|
4
|
King ES, Tadele DS, Pierce B, Hinczewski M, Scott JG. Diverse mutant selection windows shape spatial heterogeneity in evolving populations. PLoS Comput Biol 2024; 20:e1011878. [PMID: 38386690 PMCID: PMC10914271 DOI: 10.1371/journal.pcbi.1011878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 03/05/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Mutant selection windows (MSWs), the range of drug concentrations that select for drug-resistant mutants, have long been used as a model for predicting drug resistance and designing optimal dosing strategies in infectious disease. The canonical MSW model offers comparisons between two subtypes at a time: drug-sensitive and drug-resistant. In contrast, the fitness landscape model with N alleles, which maps genotype to fitness, allows comparisons between N genotypes simultaneously, but does not encode continuous drug response data. In clinical settings, there may be a wide range of drug concentrations selecting for a variety of genotypes in both cancer and infectious diseases. Therefore, there is a need for a more robust model of the pathogen response to therapy to predict resistance and design new therapeutic approaches. Fitness seascapes, which model genotype-by-environment interactions, permit multiple MSW comparisons simultaneously by encoding genotype-specific dose-response data. By comparing dose-response curves, one can visualize the range of drug concentrations where one genotype is selected over another. In this work, we show how N-allele fitness seascapes allow for N * 2N-1 unique MSW comparisons. In spatial drug diffusion models, we demonstrate how fitness seascapes reveal spatially heterogeneous MSWs, extending the MSW model to more fully reflect the selection of drug resistant genotypes. Furthermore, using synthetic data and empirical dose-response data in cancer, we find that the spatial structure of MSWs shapes the evolution of drug resistance in an agent-based model. By simulating a tumor treated with cyclic drug therapy, we find that mutant selection windows introduced by drug diffusion promote the proliferation of drug resistant cells. Our work highlights the importance and utility of considering dose-dependent fitness seascapes in evolutionary medicine.
Collapse
Affiliation(s)
- Eshan S. King
- Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Dagim S. Tadele
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America
- Oslo University Hospital, Ullevål, Department of Medical Genetics, Oslo, Norway
| | - Beck Pierce
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jacob G. Scott
- Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Physics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
5
|
Mohsin N, Enderling H, Brady-Nicholls R, Zahid MU. Simulating tumor volume dynamics in response to radiotherapy: Implications of model selection. J Theor Biol 2024; 576:111656. [PMID: 37952611 DOI: 10.1016/j.jtbi.2023.111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
From the beginning of the usage of radiotherapy (RT) for cancer treatment, mathematical modeling has been integral to understanding radiobiology and for designing treatment approaches and schedules. There has been extensive modeling of response to RT with the inclusion of various degrees of biological complexity. In this study, we compare three models of tumor volume dynamics: (1) exponential growth with RT directly reducing tumor volume, (2) logistic growth with direct tumor volume reduction, and (3) logistic growth with RT reducing the tumor carrying capacity with the objective of understanding the implications of model selection and informing the process of model calibration and parameterization. For all three models, we: examined the rates of change in tumor volume during and RT treatment course; performed parameter sensitivity and identifiability analyses; and investigated the impact of the parameter sensitivity on the tumor volume trajectories. In examining the tumor volume dynamics trends, we coined a new metric - the point of maximum reduction of tumor volume (MRV) - to quantify the magnitude and timing of the expected largest impact of RT during a treatment course. We found distinct timing differences in MRV, dependent on model selection. The parameter identifiability and sensitivity analyses revealed the interdependence of the different model parameters and that it is only possible to independently identify tumor growth and radiation response parameters if the underlying tumor growth rate is sufficiently large. Ultimately, the results of these analyses help us to better understand the implications of model selection while simultaneously generating falsifiable hypotheses about MRV timing that can be tested on longitudinal measurements of tumor volume from pre-clinical or clinical data with high acquisition frequency. Although, our study only compares three particular models, the results demonstrate that caution is necessary in selecting models of response to RT, given the artifacts imposed by each model.
Collapse
Affiliation(s)
- Nuverah Mohsin
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Heiko Enderling
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renee Brady-Nicholls
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.
| | - Mohammad U Zahid
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.
| |
Collapse
|
6
|
Johnson JA, Stein-O’Brien GL, Booth M, Heiland R, Kurtoglu F, Bergman DR, Bucher E, Deshpande A, Forjaz A, Getz M, Godet I, Lyman M, Metzcar J, Mitchell J, Raddatz A, Rocha H, Solorzano J, Sundus A, Wang Y, Gilkes D, Kagohara LT, Kiemen AL, Thompson ED, Wirtz D, Wu PH, Zaidi N, Zheng L, Zimmerman JW, Jaffee EM, Hwan Chang Y, Coussens LM, Gray JW, Heiser LM, Fertig EJ, Macklin P. Digitize your Biology! Modeling multicellular systems through interpretable cell behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.557982. [PMID: 37745323 PMCID: PMC10516032 DOI: 10.1101/2023.09.17.557982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cells are fundamental units of life, constantly interacting and evolving as dynamical systems. While recent spatial multi-omics can quantitate individual cells' characteristics and regulatory programs, forecasting their evolution ultimately requires mathematical modeling. We develop a conceptual framework-a cell behavior hypothesis grammar-that uses natural language statements (cell rules) to create mathematical models. This allows us to systematically integrate biological knowledge and multi-omics data to make them computable. We can then perform virtual "thought experiments" that challenge and extend our understanding of multicellular systems, and ultimately generate new testable hypotheses. In this paper, we motivate and describe the grammar, provide a reference implementation, and demonstrate its potential through a series of examples in tumor biology and immunotherapy. Altogether, this approach provides a bridge between biological, clinical, and systems biology researchers for mathematical modeling of biological systems at scale, allowing the community to extrapolate from single-cell characterization to emergent multicellular behavior.
Collapse
Affiliation(s)
- Jeanette A.I. Johnson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Genevieve L. Stein-O’Brien
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Neuroscience, Johns Hopkins University. Baltimore, MD USA
| | - Max Booth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
| | - Randy Heiland
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Furkan Kurtoglu
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Daniel R. Bergman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Elmar Bucher
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Atul Deshpande
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - André Forjaz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University. Baltimore, MD USA
| | - Michael Getz
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Ines Godet
- Memorial Sloan Kettering Cancer Center. New York, NY USA
| | - Melissa Lyman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - John Metzcar
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
- Department of Informatics, Indiana University. Bloomington, IN USA
| | - Jacob Mitchell
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Human Genetics, Johns Hopkins University. Baltimore, MD USA
| | - Andrew Raddatz
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University. Atlanta, GA USA
| | - Heber Rocha
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Jacobo Solorzano
- Centre de Recherches en Cancerologie de Toulouse. Toulouse, France
| | - Aneequa Sundus
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Yafei Wang
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Danielle Gilkes
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
| | - Luciane T. Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Ashley L. Kiemen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Pathology, Johns Hopkins University. Baltimore, MD USA
| | | | - Denis Wirtz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University. Baltimore, MD USA
- Department of Pathology, Johns Hopkins University. Baltimore, MD USA
- Department of Materials Science and Engineering, Johns Hopkins University. Baltimore, MD USA
| | - Pei-Hsun Wu
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University. Baltimore, MD USA
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Jacquelyn W. Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Elizabeth M. Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University. Portland, OR USA
| | - Lisa M. Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University. Portland, OR USA
| | - Joe W. Gray
- Department of Biomedical Engineering, Oregon Health & Science University. Portland, OR USA
| | - Laura M. Heiser
- Department of Biomedical Engineering, Oregon Health & Science University. Portland, OR USA
| | - Elana J. Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University. Baltimore, MD USA
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| |
Collapse
|
7
|
Vitullo P, Cicci L, Possenti L, Coclite A, Costantino ML, Zunino P. Sensitivity analysis of a multi-physics model for the vascular microenvironment. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3752. [PMID: 37455669 DOI: 10.1002/cnm.3752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/17/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
The vascular microenvironment is the scale at which microvascular transport, interstitial tissue properties and cell metabolism interact. The vascular microenvironment has been widely studied by means of quantitative approaches, including multi-physics mathematical models as it is a central system for the pathophysiology of many diseases, such as cancer. The microvascular architecture is a key factor for fluid balance and mass transfer in the vascular microenvironment, together with the physical parameters characterizing the vascular wall and the interstitial tissue. The scientific literature of this field has witnessed a long debate about which factor of this multifaceted system is the most relevant. The purpose of this work is to combine the interpretative power of an advanced multi-physics model of the vascular microenvironment with state of the art and robust sensitivity analysis methods, in order to determine the factors that most significantly impact quantities of interest, related in particular to cancer treatment. We are particularly interested in comparing the factors related to the microvascular architecture with the ones affecting the physics of microvascular transport. Ultimately, this work will provide further insight into how the vascular microenvironment affects cancer therapies, such as chemotherapy, radiotherapy or immunotherapy.
Collapse
Affiliation(s)
| | - Ludovica Cicci
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
- School of Biomedical Engineering & Imaging Sciences, King's College, London, UK
| | - Luca Possenti
- Data Science Unit, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Alessandro Coclite
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, Bari, Italy
| | - Maria Laura Costantino
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| |
Collapse
|
8
|
Yang H, Lin H, Sun X. Multiscale modeling of drug resistance in glioblastoma with gene mutations and angiogenesis. Comput Struct Biotechnol J 2023; 21:5285-5295. [PMID: 37941656 PMCID: PMC10628546 DOI: 10.1016/j.csbj.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
Drug resistance is a prominent impediment to the efficacy of targeted therapies across various cancer types, including glioblastoma (GBM). However, comprehending the intricate intracellular and extracellular mechanisms underlying drug resistance remains elusive. Empirical investigations have elucidated that genetic aberrations, such as gene mutations, along with microenvironmental adaptation, notably angiogenesis, act as pivotal drivers of tumor progression and drug resistance. Nonetheless, mathematical models frequently compartmentalize these factors in isolation. In this study, we present a multiscale agent-based model of GBM, encompassing cellular dynamics, intricate signaling pathways, gene mutations, angiogenesis, and therapeutic interventions. This integrative framework facilitates an exploration of the interplay between genetic mutations and the vascular microenvironment in shaping the dynamic evolution of tumors during treatment with tyrosine kinase inhibitor. Our simulations unveil that mutations influencing the migration and proliferation of tumor cells expedite the emergence of phenotype heterogeneity, thereby exacerbating tumor invasion under both treated and untreated conditions. Moreover, angiogenesis proximate to the tumor fosters a protumoral milieu, augmenting mutation-induced drug resistance by increasing the survival rate of tumor cells. Collectively, our findings underscore the dual roles of intrinsic genetic mutations and extrinsic microenvironmental adaptations in steering tumor growth and drug resistance. Finally, we substantiate our model predictions concerning the impact of gene mutations and angiogenesis on the responsiveness of targeted therapies by integrating single-cell RNA-seq, spatial transcriptomics, bulk RNA-seq, and clinical data from GBM patients. The multidimensional approach enhances our understanding of the complexities governing drug resistance in glioma and offers insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Heng Yang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haofeng Lin
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaoqiang Sun
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Chen Y, Yang J, Jin H, Wen W, Xu Y, Zhang X, Wang Y. HtrA3: a promising prognostic biomarker and therapeutic target for head and neck squamous cell carcinoma. PeerJ 2023; 11:e16237. [PMID: 37842043 PMCID: PMC10573296 DOI: 10.7717/peerj.16237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Objective The dysregulation of the human high-temperature requirement A (HtrA) family of serine proteases is associated with many malignancies. However, there are few reports on HtrAs in head and neck squamous cell carcinoma (HNSCC). The aim of this study was to investigate the expression, prognostic value, and biological functions of HtrAs in HNSCC. Methods The RNA-sequencing data and clinical data of HNSCC were downloaded from The Cancer Genome Atlas (TCGA) database. The GSE30784 and GSE31056 datasets from the Gene Expression Omnibus (GEO) database were used for further verification. This study explored the differential expression of HtrAs and assessed their potential impact on the prognosis of HNSCC patients using a survival module. Correlations between clinical characteristics and HtrA expression levels were then explored using a Wilcoxon rank sum test. A Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were performed using "clusterProfile" in the R software. A Pearson/Spearman correlation test was applied to analyze the relationship between HtrAs and immune infiltration level/checkpoint genes. Validation of HtrA expression levels were carried out by RT-PCR and western blot in human squamous carcinoma cell lines (Fadu and Cal-27) and human non-tumorigenic bronchial epithelium cells (BEAS-2B). Finally, through cell transfection, CCK-8, Ki-67 immunofluorescence, and flow cytometry assays, the effect of HtrA3 knockdown on the malignant biological behavior of HNSCC cells was explored. Results The gene expression levels of HtrAs were significantly upregulated and associated with patient age, TNM stage, clinical stage, and TP53 mutation status in the TCGA-HNSCC cohort. High expressions of HtrA1/3 were associated with shorter overall survival, shorter progress-free interval, and lower disease-specific survival in HNSCC. A nomogram for HtrAs was constructed and validated. HtrA-related genes were significantly enriched in the immune response and cell apoptosis pathway. In addition, the expression of HtrAs showed significant correlations with B cells, M cells, DC cell infiltration, and immune infiltration checkpoint (CD276, TNFRSF14). Validation of HtrA expression was carried out by RT-PCR and western blot. Results of in vitro experiments indicated that HtrA3 gene knockdown inhibits the proliferation of FaDu and Cal-27 cells while concurrently promoting apoptosis. Conclusions HtrA3 shows significant potential as both a prognostic marker and a promising therapeutic target for HNSCC, highlighting its relevance and importance in future research and potential clinical applications.
Collapse
Affiliation(s)
- Yan Chen
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, China
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, China
| | - Weiwei Wen
- Department of Dermatology, Third People’s Hospital of Hangzhou, Hangzhou, China
| | - Ying Xu
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, China
| | - Yu Wang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, China
| |
Collapse
|
10
|
King ES, Pierce B, Hinczewski M, Scott JG. Diverse mutant selection windows shape spatial heterogeneity in evolving populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531899. [PMID: 37732215 PMCID: PMC10508720 DOI: 10.1101/2023.03.09.531899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Mutant selection windows (MSWs), the range of drug concentrations that select for drug-resistant mutants, have long been used as a model for predicting drug resistance and designing optimal dosing strategies in infectious disease. The canonical MSW model offers comparisons between two subtypes at a time: drug-sensitive and drug-resistant. In contrast, the fitness landscape model with N alleles, which maps genotype to fitness, allows comparisons between N genotypes simultaneously, but does not encode continuous drug response data. In clinical settings, there may be a wide range of drug concentrations selecting for a variety of genotypes. Therefore, there is a need for a more robust model of the pathogen response to therapy to predict resistance and design new therapeutic approaches. Fitness seascapes, which model genotype-by-environment interactions, permit multiple MSW comparisons simultaneously by encoding genotype-specific dose-response data. By comparing dose-response curves, one can visualize the range of drug concentrations where one genotype is selected over another. In this work, we show how N-allele fitness seascapes allow for N*2N-1 unique MSW comparisons. In spatial drug diffusion models, we demonstrate how fitness seascapes reveal spatially heterogeneous MSWs, extending the MSW model to more accurately reflect the selection fo drug resistant genotypes. Furthermore, we find that the spatial structure of MSWs shapes the evolution of drug resistance in an agent-based model. Our work highlights the importance and utility of considering dose-dependent fitness seascapes in evolutionary medicine.
Collapse
Affiliation(s)
- Eshan S. King
- Systems Biology and Bioinformatics Program, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Beck Pierce
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
| | - Jacob G. Scott
- Systems Biology and Bioinformatics Program, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
- Department of Translational Hematology and Oncology Research and Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
11
|
Cho YB, Yoon N, Suh JH, Scott JG. Radio-immune response modelling for spatially fractionated radiotherapy. Phys Med Biol 2023; 68:165010. [PMID: 37459862 PMCID: PMC10409909 DOI: 10.1088/1361-6560/ace819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Objective.Radiation-induced cell death is a complex process influenced by physical, chemical and biological phenomena. Although consensus on the nature and the mechanism of the bystander effect were not yet made, the immune process presumably plays an important role in many aspects of the radiotherapy including the bystander effect. A mathematical model of immune response during and after radiation therapy is presented.Approach.Immune response of host body and immune suppression of tumor cells are modelled with four compartments in this study; viable tumor cells, T cell lymphocytes, immune triggering cells, and doomed cells. The growth of tumor was analyzed in two distinctive modes of tumor status (immune limited and immune escape) and its bifurcation condition.Main results.Tumors in the immune limited mode can grow only up to a finite size, named as terminal tumor volume analytically calculated from the model. The dynamics of the tumor growth in the immune escape mode is much more complex than the tumors in the immune limited mode especially when the status of tumor is close to the bifurcation condition. Radiation can kill tumor cells not only by radiation damage but also by boosting immune reaction.Significance.The model demonstrated that the highly heterogeneous dose distribution in spatially fractionated radiotherapy (SFRT) can make a drastic difference in tumor cell killing compared to the homogeneous dose distribution. SFRT cannot only enhance but also moderate the cell killing depending on the immune response triggered by many factors such as dose prescription parameters, tumor volume at the time of treatment and tumor characteristics. The model was applied to the lifted data of 67NR tumors on mice and a sarcoma patient treated multiple times over 1200 days for the treatment of tumor recurrence as a demonstration.
Collapse
Affiliation(s)
- Young-Bin Cho
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, United States of America
- Department of Radiation Oncology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States of America
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States of America
| | - Nara Yoon
- Departmentof Mathematics and Computer Science, Adelphi University, New York, United States of America
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, United States of America
- Department of Radiation Oncology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States of America
| | - Jacob G Scott
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, United States of America
- Department of Radiation Oncology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States of America
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States of America
- Department of Physics, Case Western Reserve University, Cleveland, United States of America
| |
Collapse
|
12
|
Bull JA, Byrne HM. Quantification of spatial and phenotypic heterogeneity in an agent-based model of tumour-macrophage interactions. PLoS Comput Biol 2023; 19:e1010994. [PMID: 36972297 PMCID: PMC10079237 DOI: 10.1371/journal.pcbi.1010994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/06/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023] Open
Abstract
We introduce a new spatial statistic, the weighted pair correlation function (wPCF). The wPCF extends the existing pair correlation function (PCF) and cross-PCF to describe spatial relationships between points marked with combinations of discrete and continuous labels. We validate its use through application to a new agent-based model (ABM) which simulates interactions between macrophages and tumour cells. These interactions are influenced by the spatial positions of the cells and by macrophage phenotype, a continuous variable that ranges from anti-tumour to pro-tumour. By varying model parameters that regulate macrophage phenotype, we show that the ABM exhibits behaviours which resemble the 'three Es of cancer immunoediting': Equilibrium, Escape, and Elimination. We use the wPCF to analyse synthetic images generated by the ABM. We show that the wPCF generates a 'human readable' statistical summary of where macrophages with different phenotypes are located relative to both blood vessels and tumour cells. We also define a distinct 'PCF signature' that characterises each of the three Es of immunoediting, by combining wPCF measurements with the cross-PCF describing interactions between vessels and tumour cells. By applying dimension reduction techniques to this signature, we identify its key features and train a support vector machine classifier to distinguish between simulation outputs based on their PCF signature. This proof-of-concept study shows how multiple spatial statistics can be combined to analyse the complex spatial features that the ABM generates, and to partition them into interpretable groups. The intricate spatial features produced by the ABM are similar to those generated by state-of-the-art multiplex imaging techniques which distinguish the spatial distribution and intensity of multiple biomarkers in biological tissue regions. Applying methods such as the wPCF to multiplex imaging data would exploit the continuous variation in biomarker intensities and generate more detailed characterisation of the spatial and phenotypic heterogeneity in tissue samples.
Collapse
Affiliation(s)
- Joshua A. Bull
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Helen M. Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Rentzeperis F, Miller N, Ibrahim-Hashim A, Gillies RJ, Gatenby RA, Wallace D. A simulation of parental and glycolytic tumor phenotype competition predicts observed responses to pH changes and increased glycolysis after anti-VEGF therapy. Math Biosci 2022; 352:108909. [PMID: 36108797 DOI: 10.1016/j.mbs.2022.108909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
Abstract
Clinical cancers are typically spatially and temporally heterogeneous, containing multiple microenvironmental habitats and diverse phenotypes and/or genotypes, which can interact through resource competition and direct or indirect interference. A common intratumoral evolutionary pathway, probably initiated as adaptation to hypoxia, leads to the "Warburg phenotype" which maintains high glycolytic rates and acid production, even in normoxic conditions. Since individual cancer cells are the unit of Darwinian selection, intraspecific competition dominates intratumoral evolution. Thus, elements of the Warburg phenotype become key "strategies" in competition with cancer cell populations that retain the metabolism of the parental normal cells. Here we model the complex interactions of cell populations with Warburg and parental phenotypes as they compete for access to vasculature, while subject to direct interference by Warburg-related acidosis. In this competitive environment, vasculature delivers nutrients, removes acid and necrotic detritus, and responds to signaling molecules (VEGF and TNF-α). The model is built in a nested fashion and growth parameters are derived from monolayer, spheroid, and xenograft experiments on prostate cancer. The resulting model of in vivo tumor growth reaches a steady state, displaying linear growth and coexistence of both glycolytic and parental phenotypes consistent with experimental observations. The model predicts that increasing tumor pH sufficiently early can arrest the development of the glycolytic phenotype, while decreasing tumor pH accelerates this evolution and increases VEGF production. The model's predicted dual effects of VEGF blockers in decreasing tumor growth while increasing the glycolytic fraction of tumor cells has potential implications for optimizing angiogenic inhibitors.
Collapse
Affiliation(s)
- Frederika Rentzeperis
- Department of Mathematics, Dartmouth College, 1145 Hinman, Hanover, 03755-3551, NH, USA.
| | - Naomi Miller
- Department of Mathematics, Dartmouth College, 1145 Hinman, Hanover, 03755-3551, NH, USA
| | - Arig Ibrahim-Hashim
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Robert A Gatenby
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Dorothy Wallace
- Department of Mathematics, Dartmouth College, 1145 Hinman, Hanover, 03755-3551, NH, USA.
| |
Collapse
|
14
|
Scarborough JA, Scott JG. Translation of Precision Medicine Research Into Biomarker-Informed Care in Radiation Oncology. Semin Radiat Oncol 2022; 32:42-53. [PMID: 34861995 PMCID: PMC8667861 DOI: 10.1016/j.semradonc.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The reach of personalized medicine in radiation oncology has expanded greatly over the past few decades as technical precision has improved the delivery of radiation to each patient's unique anatomy. Yet, the consideration of biological heterogeneity between patients has largely not been translated to clinical care. There are innumerable promising advancements in the discovery and validation of biomarkers, which could be used to alter radiation therapy directly or indirectly. Directly, biomarker-informed care may alter treatment dose or identify patients who would benefit most from radiation therapy and who could safely avoid more aggressive care. Indirectly, a variety of biomarkers could assist with choosing the best radiosensitizing chemotherapies. The translation of these advancements into clinical practice will bring radiation oncology even further into the era of precision medicine, treating patients according to their unique anatomical and biological differences.
Collapse
Affiliation(s)
- Jessica A Scarborough
- Translational Hematology and Oncology Research Department, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland,OH; Systems Biology and Bioinformatics Program, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Jacob G Scott
- Translational Hematology and Oncology Research Department, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland,OH; Radiation Oncology Department, Taussig Cancer Institute, Cleveland Clinic Foundation, 10201 Carnegie Ave, Cleveland, OH.
| |
Collapse
|
15
|
Yoon N, Krishnan N, Scott J. Theoretical modeling of collaterally sensitive drug cycles: shaping heterogeneity to allow adaptive therapy. J Math Biol 2021; 83:47. [PMID: 34632539 DOI: 10.1007/s00285-021-01671-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 07/15/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
In previous work, we focused on the optimal therapeutic strategy with a pair of drugs which are collaterally sensitive to each other, that is, a situation in which evolution of resistance to one drug induces sensitivity to the other, and vice versa. Yoona (Bull Math Biol 8:1-34,Yoon et al. 2018) Here, we have extended this exploration to the optimal strategy with a collaterally sensitive drug sequence of an arbitrary length, N. To explore this, we have developed a dynamical model of sequential drug therapies with N drugs. In this model, tumor cells are classified as one of N subpopulations represented as [Formula: see text]. Each subpopulation, [Formula: see text], is resistant to '[Formula: see text]' and each subpopulation, [Formula: see text] (or [Formula: see text], if [Formula: see text]), is sensitive to it, so that [Formula: see text] increases under '[Formula: see text]' as it is resistant to it, and after drug-switching, decreases under '[Formula: see text]' as it is sensitive to that drug(s). Similar to our previous work examining optimal therapy with two drugs, we found that there is an initial period of time in which the tumor is 'shaped' into a specific makeup of each subpopulation, at which time all the drugs are equally effective ([Formula: see text]). After this shaping period, all the drugs are quickly switched with duration relative to their efficacy in order to maintain each subpopulation, consistent with the ideas underlying adaptive therapy. West(Canver Res 80(7):578-589Gatenby et al. 2009) and Gatenby (Cancer Res 67(11):4894-4903West et al. 2020). Additionally, we have developed methodologies to administer the optimal regimen under clinical or experimental situations in which no drug parameters and limited information of trackable populations data (all the subpopulations or only total population) are known. The therapy simulation based on these methodologies showed consistency with the theoretical effect of optimal therapy .
Collapse
Affiliation(s)
- Nara Yoon
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
- Department of Mathematics and Computer Science, Adelphi University, Garden City, NY, USA
| | - Nikhil Krishnan
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jacob Scott
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
16
|
Scarborough JA, Tom MC, Kattan MW, Scott JG. Revisiting a Null Hypothesis: Exploring the Parameters of Oligometastasis Treatment. Int J Radiat Oncol Biol Phys 2021; 110:371-381. [PMID: 33484786 PMCID: PMC8122026 DOI: 10.1016/j.ijrobp.2020.12.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE In the treatment of patients with metastatic cancer, the current paradigm states that metastasis-directed therapy does not prolong life. This paradigm forms the basis of clinical trial null hypotheses, where trials are built to test the null hypothesis that patients garner no overall survival benefit from targeting metastatic lesions. However, with advancing imaging technology and increasingly precise techniques for targeting lesions, a much larger proportion of metastatic disease can be treated. As a result, the life-extending benefit of targeting metastatic disease is becoming increasingly clear. METHODS AND MATERIALS In this work, we suggest shifting this qualitative null hypothesis and describe a mathematical model that can be used to frame a new, quantitative null. We begin with a very simple formulation of tumor growth, an exponential function, and illustrate how the same intervention (removing a given number of cells from the tumor) at different times affects survival. Additionally, we postulate where recent clinical trials fit into this parameter space and discuss the implications of clinical trial design in changing these quantitative parameters. RESULTS Our model shows that although any amount of cell kill will extend survival, in many cases the extent is so small as to be unnoticeable in a clinical context or is outweighed by factors related to toxicity and treatment time. CONCLUSIONS Recasting the null in these quantitative terms will allow trialists to design trials specifically to increase understanding of the circumstances (patient selection, disease burden, tumor growth kinetics) that can lead to improved overall survival when targeting metastatic lesions, rather than whether targeting metastases extends survival for patients with (oligo-) metastatic disease.
Collapse
Affiliation(s)
- Jessica A Scarborough
- Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio; Systems Biology and Bioinformatics Program, Department of Nutrition, Case Western Reserve School of Medicine, Cleveland, Ohio
| | - Martin C Tom
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Michael W Kattan
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Jacob G Scott
- Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio; Systems Biology and Bioinformatics Program, Department of Nutrition, Case Western Reserve School of Medicine, Cleveland, Ohio; Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
17
|
Scott JG, Sedor G, Scarborough JA, Kattan MW, Peacock J, Grass GD, Mellon EA, Thapa R, Schell M, Waller A, Poppen S, Andl G, Teer J, Eschrich SA, Dilling TJ, Dalton WS, Harrison LB, Fox T, Torres-Roca JF. Personalizing Radiotherapy Prescription Dose Using Genomic Markers of Radiosensitivity and Normal Tissue Toxicity in NSCLC. J Thorac Oncol 2021; 16:428-438. [PMID: 33301984 PMCID: PMC8549863 DOI: 10.1016/j.jtho.2020.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cancer sequencing efforts have revealed that cancer is the most complex and heterogeneous disease that affects humans. However, radiation therapy (RT), one of the most common cancer treatments, is prescribed on the basis of an empirical one-size-fits-all approach. We propose that the field of radiation oncology is operating under an outdated null hypothesis: that all patients are biologically similar and should uniformly respond to the same dose of radiation. METHODS We have previously developed the genomic-adjusted radiation dose, a method that accounts for biological heterogeneity and can be used to predict optimal RT dose for an individual patient. In this article, we use genomic-adjusted radiation dose to characterize the biological imprecision of one-size-fits-all RT dosing schemes that result in both over- and under-dosing for most patients treated with RT. To elucidate this inefficiency, and therefore the opportunity for improvement using a personalized dosing scheme, we develop a patient-specific competing hazards style mathematical model combining the canonical equations for tumor control probability and normal tissue complication probability. This model simultaneously optimizes tumor control and toxicity by personalizing RT dose using patient-specific genomics. RESULTS Using data from two prospectively collected cohorts of patients with NSCLC, we validate the competing hazards model by revealing that it predicts the results of RTOG 0617. We report how the failure of RTOG 0617 can be explained by the biological imprecision of empirical uniform dose escalation which results in 80% of patients being overexposed to normal tissue toxicity without potential tumor control benefit. CONCLUSIONS Our data reveal a tapestry of radiosensitivity heterogeneity, provide a biological framework that explains the failure of empirical RT dose escalation, and quantify the opportunity to improve clinical outcomes in lung cancer by incorporating genomics into RT.
Collapse
Affiliation(s)
- Jacob G. Scott
- Departments of Translational Hematology and Oncology Research and Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Case Western Reserve University School Of Medicine, Cleveland, OH
| | - Geoff Sedor
- Case Western Reserve University School Of Medicine, Cleveland, OH
| | - Jessica A. Scarborough
- Departments of Translational Hematology and Oncology Research and Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Case Western Reserve University School Of Medicine, Cleveland, OH
| | - Michael W. Kattan
- Department of Quantiative Health Sciences, Lerner Research Institiute, Cleveland Clinic, Cleveland, OH
| | - Jeffrey Peacock
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL
| | - G. Daniel Grass
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL
| | - Eric A. Mellon
- Department of Radiation Oncology, University of Miami, Miami, FL
| | - Ram Thapa
- Department of Biostatistics, Moffitt Cancer Center, Tampa, FL
| | - Michael Schell
- Department of Biostatistics, Moffitt Cancer Center, Tampa, FL
| | | | | | | | - Jamie Teer
- Department of Biostatistics, Moffitt Cancer Center, Tampa, FL
| | | | | | - William S. Dalton
- DeBartolo Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | | | - Tim Fox
- Varian Medical Systems, Palo Alto, CA
| | - Javier F. Torres-Roca
- Department of Quantiative Health Sciences, Lerner Research Institiute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
18
|
Scott JG, Maini PK, Anderson ARA, Fletcher AG. Inferring Tumor Proliferative Organization from Phylogenetic Tree Measures in a Computational Model. Syst Biol 2021; 69:623-637. [PMID: 31665523 DOI: 10.1093/sysbio/syz070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 01/15/2023] Open
Abstract
We use a computational modeling approach to explore whether it is possible to infer a solid tumor's cellular proliferative hierarchy under the assumptions of the cancer stem cell hypothesis and neutral evolution. We work towards inferring the symmetric division probability for cancer stem cells, since this is believed to be a key driver of progression and therapeutic response. Motivated by the advent of multiregion sampling and resulting opportunities to infer tumor evolutionary history, we focus on a suite of statistical measures of the phylogenetic trees resulting from the tumor's evolution in different regions of parameter space and through time. We find strikingly different patterns in these measures for changing symmetric division probability which hinge on the inclusion of spatial constraints. These results give us a starting point to begin stratifying tumors by this biological parameter and also generate a number of actionable clinical and biological hypotheses regarding changes during therapy, and through tumor evolutionary time. [Cancer; evolution; phylogenetics.].
Collapse
Affiliation(s)
- Jacob G Scott
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK.,Departments of Translational Hematology and Oncology Research and Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Alexander R A Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
19
|
Grimes DR, Jansen M, Macauley RJ, Scott JG, Basanta D. Evidence for hypoxia increasing the tempo of evolution in glioblastoma. Br J Cancer 2020; 123:1562-1569. [PMID: 32848201 PMCID: PMC7653934 DOI: 10.1038/s41416-020-1021-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/24/2020] [Accepted: 07/23/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Tumour hypoxia is associated with metastatic disease, and while there have been many mechanisms proposed for why tumour hypoxia is associated with metastatic disease, it remains unclear whether one precise mechanism is the key reason or several in concert. Somatic evolution drives cancer progression and treatment resistance, fuelled not only by genetic and epigenetic mutation but also by selection from interactions between tumour cells, normal cells and physical micro-environment. Ecological habitats influence evolutionary dynamics, but the impact on tempo of evolution is less clear. METHODS We explored this complex dialogue with a combined clinical-theoretical approach by simulating a proliferative hierarchy under heterogeneous oxygen availability with an agent-based model. Predictions were compared against histology samples taken from glioblastoma patients, stained to elucidate areas of necrosis and TP53 expression heterogeneity. RESULTS Results indicate that cell division in hypoxic environments is effectively upregulated, with low-oxygen niches providing avenues for tumour cells to spread. Analysis of human data indicates that cell division is not decreased under hypoxia, consistent with our results. CONCLUSIONS Our results suggest that hypoxia could be a crucible that effectively warps evolutionary velocity, making key mutations more likely. Thus, key tumour ecological niches such as hypoxic regions may alter the evolutionary tempo, driving mutations fuelling tumour heterogeneity.
Collapse
Affiliation(s)
- David Robert Grimes
- School of Physical Sciences, Dublin City University, Dublin 9, Ireland.
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Marnix Jansen
- Departments of Endoscopy and Pathology, University College London Hospital, London, UK
| | - Robert J Macauley
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jacob G Scott
- Departments of Translational Hematology and Oncology Research and Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - David Basanta
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
20
|
Abnormal morphology biases hematocrit distribution in tumor vasculature and contributes to heterogeneity in tissue oxygenation. Proc Natl Acad Sci U S A 2020; 117:27811-27819. [PMID: 33109723 PMCID: PMC7668105 DOI: 10.1073/pnas.2007770117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Oxygen heterogeneity in solid tumors is recognized as a limiting factor for therapeutic efficacy. This heterogeneity arises from the abnormal tumor vascular structure. We investigate the role that anomalies in red blood cell transport plays in establishing oxygen heterogeneity in tumor tissue. We introduce a metric to characterize tumor vasculature (mean vessel length-to-diameter ratio, λ) and demonstrate how it predicts tissue-oxygen heterogeneity. We also report an increase in λ following treatment with the antiangiogenic agent DC101. Together, we propose λ as an effective way of monitoring the action of antiangiogenic agents and a proxy measure of oxygen heterogeneity in tumor tissue. Unraveling the causal relationship between tumor vascular structure and tissue oxygenation will pave the way for new personalized therapeutic approaches. Oxygen heterogeneity in solid tumors is recognized as a limiting factor for therapeutic efficacy. This heterogeneity arises from the abnormal vascular structure of the tumor, but the precise mechanisms linking abnormal structure and compromised oxygen transport are only partially understood. In this paper, we investigate the role that red blood cell (RBC) transport plays in establishing oxygen heterogeneity in tumor tissue. We focus on heterogeneity driven by network effects, which are challenging to observe experimentally due to the reduced fields of view typically considered. Motivated by our findings of abnormal vascular patterns linked to deviations from current RBC transport theory, we calculated average vessel lengths L¯ and diameters d¯ from tumor allografts of three cancer cell lines and observed a substantial reduction in the ratio λ=L¯/d¯ compared to physiological conditions. Mathematical modeling reveals that small values of the ratio λ (i.e., λ<6) can bias hematocrit distribution in tumor vascular networks and drive heterogeneous oxygenation of tumor tissue. Finally, we show an increase in the value of λ in tumor vascular networks following treatment with the antiangiogenic cancer agent DC101. Based on our findings, we propose λ as an effective way of monitoring the efficacy of antiangiogenic agents and as a proxy measure of perfusion and oxygenation in tumor tissue undergoing antiangiogenic treatment.
Collapse
|
21
|
Gorochowski TE, Hauert S, Kreft JU, Marucci L, Stillman NR, Tang TYD, Bandiera L, Bartoli V, Dixon DOR, Fedorec AJH, Fellermann H, Fletcher AG, Foster T, Giuggioli L, Matyjaszkiewicz A, McCormick S, Montes Olivas S, Naylor J, Rubio Denniss A, Ward D. Toward Engineering Biosystems With Emergent Collective Functions. Front Bioeng Biotechnol 2020; 8:705. [PMID: 32671054 PMCID: PMC7332988 DOI: 10.3389/fbioe.2020.00705] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
Many complex behaviors in biological systems emerge from large populations of interacting molecules or cells, generating functions that go beyond the capabilities of the individual parts. Such collective phenomena are of great interest to bioengineers due to their robustness and scalability. However, engineering emergent collective functions is difficult because they arise as a consequence of complex multi-level feedback, which often spans many length-scales. Here, we present a perspective on how some of these challenges could be overcome by using multi-agent modeling as a design framework within synthetic biology. Using case studies covering the construction of synthetic ecologies to biological computation and synthetic cellularity, we show how multi-agent modeling can capture the core features of complex multi-scale systems and provide novel insights into the underlying mechanisms which guide emergent functionalities across scales. The ability to unravel design rules underpinning these behaviors offers a means to take synthetic biology beyond single molecules or cells and toward the creation of systems with functions that can only emerge from collectives at multiple scales.
Collapse
Affiliation(s)
| | - Sabine Hauert
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Jan-Ulrich Kreft
- School of Biosciences and Institute of Microbiology and Infection and Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Namid R. Stillman
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - T.-Y. Dora Tang
- Max Plank Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Physics of Life, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| | - Lucia Bandiera
- School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Vittorio Bartoli
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | | | - Alex J. H. Fedorec
- Division of Biosciences, University College London, London, United Kingdom
| | - Harold Fellermann
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexander G. Fletcher
- Bateson Centre and School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
| | - Tim Foster
- School of Biosciences and Institute of Microbiology and Infection and Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Luca Giuggioli
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | | | - Scott McCormick
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Sandra Montes Olivas
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Jonathan Naylor
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Rubio Denniss
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Daniel Ward
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
22
|
Hahn A, Bode J, Krüwel T, Kampf T, Buschle LR, Sturm VJF, Zhang K, Tews B, Schlemmer HP, Heiland S, Bendszus M, Ziener CH, Breckwoldt MO, Kurz FT. Gibbs point field model quantifies disorder in microvasculature of U87-glioblastoma. J Theor Biol 2020; 494:110230. [PMID: 32142806 DOI: 10.1016/j.jtbi.2020.110230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 10/28/2019] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
Microvascular proliferation in glioblastoma multiforme is a biological key mechanism to facilitate tumor growth and infiltration and a main target for treatment interventions. The vascular architecture can be obtained by Single Plane Illumination Microscopy (SPIM) to evaluate vascular heterogeneity in tumorous tissue. We make use of the Gibbs point field model to quantify the order of regularity in capillary distributions found in the U87 glioblastoma model in a murine model and to compare tumorous and healthy brain tissue. A single model parameter Γ was assigned that is linked to tissue-specific vascular topology through Monte-Carlo simulations. Distributions of the model parameter Γ differ significantly between glioblastoma tissue with mean 〈ΓG〉=2.1±0.4, as compared to healthy brain tissue with mean 〈ΓH〉=4.9±0.4, suggesting that the average Γ-value allows for tissue differentiation. These results may be used for diagnostic magnetic resonance imaging, where it has been shown recently that Γ is linked to tissue-inherent relaxation parameters.
Collapse
Affiliation(s)
- Artur Hahn
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Physics and Astronomy, University of Heidelberg, Im Neuenheimer Feld 226, Heidelberg 69120, Germany
| | - Julia Bode
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Thomas Krüwel
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Thomas Kampf
- Department of Experimental Physics 5, University of Würzburg, Am Hubland, Würzburg 97074, Germany; Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider-Straße 2, Würzburg 97080, Germany
| | - Lukas R Buschle
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Volker J F Sturm
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Ke Zhang
- Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Björn Tews
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Heinz-Peter Schlemmer
- Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| | - Christian H Ziener
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
23
|
Chamseddine IM, Rejniak KA. Hybrid modeling frameworks of tumor development and treatment. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1461. [PMID: 31313504 PMCID: PMC6898741 DOI: 10.1002/wsbm.1461] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022]
Abstract
Tumors are complex multicellular heterogeneous systems comprised of components that interact with and modify one another. Tumor development depends on multiple factors: intrinsic, such as genetic mutations, altered signaling pathways, or variable receptor expression; and extrinsic, such as differences in nutrient supply, crosstalk with stromal or immune cells, or variable composition of the surrounding extracellular matrix. Tumors are also characterized by high cellular heterogeneity and dynamically changing tumor microenvironments. The complexity increases when this multiscale, multicomponent system is perturbed by anticancer treatments. Modeling such complex systems and predicting how tumors will respond to therapies require mathematical models that can handle various types of information and combine diverse theoretical methods on multiple temporal and spatial scales, that is, hybrid models. In this update, we discuss the progress that has been achieved during the last 10 years in the area of the hybrid modeling of tumors. The classical definition of hybrid models refers to the coupling of discrete descriptions of cells with continuous descriptions of microenvironmental factors. To reflect on the direction that the modeling field has taken, we propose extending the definition of hybrid models to include of coupling two or more different mathematical frameworks. Thus, in addition to discussing recent advances in discrete/continuous modeling, we also discuss how these two mathematical descriptions can be coupled with theoretical frameworks of optimal control, optimization, fluid dynamics, game theory, and machine learning. All these methods will be illustrated with applications to tumor development and various anticancer treatments. This article is characterized under:Analytical and Computational Methods > Computational Methods Translational, Genomic, and Systems Medicine > Therapeutic Methods Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models
Collapse
Affiliation(s)
- Ibrahim M. Chamseddine
- Department of Integrated Mathematical OncologyH. Lee Moffitt Cancer Center and Research InstituteTampaFlorida
| | - Katarzyna A. Rejniak
- Department of Integrated Mathematical OncologyH. Lee Moffitt Cancer Center and Research InstituteTampaFlorida
- Department of Oncologic Sciences, Morsani College of MedicineUniversity of South FloridaTampaFlorida
| |
Collapse
|
24
|
Karolak A, Markov DA, McCawley LJ, Rejniak KA. Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues. J R Soc Interface 2019; 15:rsif.2017.0703. [PMID: 29367239 DOI: 10.1098/rsif.2017.0703] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
A main goal of mathematical and computational oncology is to develop quantitative tools to determine the most effective therapies for each individual patient. This involves predicting the right drug to be administered at the right time and at the right dose. Such an approach is known as precision medicine. Mathematical modelling can play an invaluable role in the development of such therapeutic strategies, since it allows for relatively fast, efficient and inexpensive simulations of a large number of treatment schedules in order to find the most effective. This review is a survey of mathematical models that explicitly take into account the spatial architecture of three-dimensional tumours and address tumour development, progression and response to treatments. In particular, we discuss models of epithelial acini, multicellular spheroids, normal and tumour spheroids and organoids, and multi-component tissues. Our intent is to showcase how these in silico models can be applied to patient-specific data to assess which therapeutic strategies will be the most efficient. We also present the concept of virtual clinical trials that integrate standard-of-care patient data, medical imaging, organ-on-chip experiments and computational models to determine personalized medical treatment strategies.
Collapse
Affiliation(s)
- Aleksandra Karolak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Dmitry A Markov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Lisa J McCawley
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Katarzyna A Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA .,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
25
|
Spring BQ, Lang RT, Kercher EM, Rizvi I, Wenham RM, Conejo-Garcia JR, Hasan T, Gatenby RA, Enderling H. Illuminating the Numbers: Integrating Mathematical Models to Optimize Photomedicine Dosimetry and Combination Therapies. FRONTIERS IN PHYSICS 2019; 7:46. [PMID: 31123672 PMCID: PMC6529192 DOI: 10.3389/fphy.2019.00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cancer photomedicine offers unique mechanisms for inducing local tumor damage with the potential to stimulate local and systemic anti-tumor immunity. Optically-active nanomedicine offers these features as well as spatiotemporal control of tumor-focused drug release to realize synergistic combination therapies. Achieving quantitative dosimetry is a major challenge, and dosimetry is fundamental to photomedicine for personalizing and tailoring therapeutic regimens to specific patients and anatomical locations. The challenge of dosimetry is perhaps greater for photomedicine than many standard therapies given the complexity of light delivery and light-tissue interactions as well as the resulting photochemistry responsible for tumor damage and drug-release, in addition to the usual intricacies of therapeutic agent delivery. An emerging multidisciplinary approach in oncology utilizes mathematical and computational models to iteratively and quantitively analyze complex dosimetry, and biological response parameters. These models are parameterized by preclinical and clinical observations and then tested against previously unseen data. Such calibrated and validated models can be deployed to simulate treatment doses, protocols, and combinations that have not yet been experimentally or clinically evaluated and can provide testable optimal treatment outcomes in a practical workflow. Here, we foresee the utility of these computational approaches to guide adaptive therapy, and how mathematical models might be further developed and integrated as a novel methodology to guide precision photomedicine.
Collapse
Affiliation(s)
- Bryan Q. Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ryan T. Lang
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Eric M. Kercher
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert M. Wenham
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - José R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Robert A. Gatenby
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
26
|
Victori P, Buffa FM. The many faces of mathematical modelling in oncology. Br J Radiol 2019; 92:20180856. [PMID: 30485129 PMCID: PMC6435080 DOI: 10.1259/bjr.20180856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 11/05/2022] Open
Abstract
The application of modelling to solve problems in biology and medicine, and specifically in oncology and radiation therapy, is increasingly established and holds big promise. We provide an overview of the basic concepts of the field and its current state, along with new tools available and future directions for research. We will outline radiobiology models, examples of other anticancer therapy models, multiscale modelling, and we will discuss mechanistic and phenomenological approaches to modelling.
Collapse
Affiliation(s)
- Pedro Victori
- CRUK/MRC Oxford Institute, Department of Oncology, Medical Science Division, University of Oxford, Oxford, United Kingdom
| | - Francesca M Buffa
- CRUK/MRC Oxford Institute, Department of Oncology, Medical Science Division, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Norton KA, Jin K, Popel AS. Modeling triple-negative breast cancer heterogeneity: Effects of stromal macrophages, fibroblasts and tumor vasculature. J Theor Biol 2018; 452:56-68. [PMID: 29750999 DOI: 10.1016/j.jtbi.2018.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/13/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
Abstract
A hallmark of breast tumors is its spatial heterogeneity that includes its distribution of cancer stem cells and progenitor cells, but also heterogeneity in the tumor microenvironment. In this study we focus on the contributions of stromal cells, specifically macrophages, fibroblasts, and endothelial cells on tumor progression. We develop a computational model of triple-negative breast cancer based on our previous work and expand it to include macrophage infiltration, fibroblasts, and angiogenesis. In vitro studies have shown that the secretomes of tumor-educated macrophages and fibroblasts increase both the migration and proliferation rates of triple-negative breast cancer cells. In vivo studies also demonstrated that blocking signaling of selected secreted factors inhibits tumor growth and metastasis in mouse xenograft models. We investigate the influences of increased migration and proliferation rates on tumor growth, the effect of the presence on fibroblasts or macrophages on growth and morphology, and the contributions of macrophage infiltration on tumor growth. We find that while the presence of macrophages increases overall tumor growth, the increase in macrophage infiltration does not substantially increase tumor growth and can even stifle tumor growth at excessive rates.
Collapse
Affiliation(s)
| | - Kideok Jin
- Department of Biomedical Engineering; Department of Pharmaceutical Science, Albany College of Pharmacy and Health Science, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, USA
| |
Collapse
|
28
|
Yoon N, Vander Velde R, Marusyk A, Scott JG. Optimal Therapy Scheduling Based on a Pair of Collaterally Sensitive Drugs. Bull Math Biol 2018; 80:1776-1809. [PMID: 29736596 DOI: 10.1007/s11538-018-0434-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/17/2018] [Indexed: 12/15/2022]
Abstract
Despite major strides in the treatment of cancer, the development of drug resistance remains a major hurdle. One strategy which has been proposed to address this is the sequential application of drug therapies where resistance to one drug induces sensitivity to another drug, a concept called collateral sensitivity. The optimal timing of drug switching in these situations, however, remains unknown. To study this, we developed a dynamical model of sequential therapy on heterogeneous tumors comprised of resistant and sensitive cells. A pair of drugs (DrugA, DrugB) are utilized and are periodically switched during therapy. Assuming resistant cells to one drug are collaterally sensitive to the opposing drug, we classified cancer cells into two groups, [Formula: see text] and [Formula: see text], each of which is a subpopulation of cells resistant to the indicated drug and concurrently sensitive to the other, and we subsequently explored the resulting population dynamics. Specifically, based on a system of ordinary differential equations for [Formula: see text] and [Formula: see text], we determined that the optimal treatment strategy consists of two stages: an initial stage in which a chosen effective drug is utilized until a specific time point, T, and a second stage in which drugs are switched repeatedly, during which each drug is used for a relative duration (i.e., [Formula: see text]-long for DrugA and [Formula: see text]-long for DrugB with [Formula: see text] and [Formula: see text]). We prove that the optimal duration of the initial stage, in which the first drug is administered, T, is shorter than the period in which it remains effective in decreasing the total population, contrary to current clinical intuition. We further analyzed the relationship between population makeup, [Formula: see text], and the effect of each drug. We determine a critical ratio, which we term [Formula: see text], at which the two drugs are equally effective. As the first stage of the optimal strategy is applied, [Formula: see text] changes monotonically to [Formula: see text] and then, during the second stage, remains at [Formula: see text] thereafter. Beyond our analytic results, we explored an individual-based stochastic model and presented the distribution of extinction times for the classes of solutions found. Taken together, our results suggest opportunities to improve therapy scheduling in clinical oncology.
Collapse
Affiliation(s)
- Nara Yoon
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Robert Vander Velde
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Andriy Marusyk
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jacob G Scott
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
29
|
de la Cruz R, Guerrero P, Calvo J, Alarcón T. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth. JOURNAL OF COMPUTATIONAL PHYSICS 2017; 350:974-991. [PMID: 29200499 PMCID: PMC5656096 DOI: 10.1016/j.jcp.2017.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 05/10/2023]
Abstract
The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.
Collapse
Affiliation(s)
- Roberto de la Cruz
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra (Barcelona), Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Pilar Guerrero
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
| | - Juan Calvo
- Departmento de Matemática Aplicada, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Tomás Alarcón
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra (Barcelona), Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| |
Collapse
|
30
|
Guo Y, Nie Q, MacLean AL, Li Y, Lei J, Li S. Multiscale Modeling of Inflammation-Induced Tumorigenesis Reveals Competing Oncogenic and Oncoprotective Roles for Inflammation. Cancer Res 2017; 77:6429-6441. [PMID: 28951462 DOI: 10.1158/0008-5472.can-17-1662] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/03/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022]
Abstract
Chronic inflammation is a serious risk factor for cancer; however, the routes from inflammation to cancer are poorly understood. On the basis of the processes implicated by frequently mutated genes associated with inflammation and cancer in three organs (stomach, colon, and liver) extracted from the Gene Expression Omnibus, The Cancer Genome Atlas, and Gene Ontology databases, we present a multiscale model of the long-term evolutionary dynamics leading from inflammation to tumorigenesis. The model incorporates cross-talk among interactions on several scales, including responses to DNA damage, gene mutation, cell-cycle behavior, population dynamics, inflammation, and metabolism-immune balance. Model simulations revealed two stages of inflammation-induced tumorigenesis: a precancerous state and tumorigenesis. The precancerous state was mainly caused by mutations in the cell proliferation pathway; the transition from the precancerous to tumorigenic states was induced by mutations in pathways associated with apoptosis, differentiation, and metabolism-immune balance. We identified opposing effects of inflammation on tumorigenesis. Mild inflammation removed cells with DNA damage through DNA damage-induced cell death, whereas severe inflammation accelerated accumulation of mutations and hence promoted tumorigenesis. These results provide insight into the evolutionary dynamics of inflammation-induced tumorigenesis and highlight the combinatorial effects of inflammation and metabolism-immune balance. This approach establishes methods for quantifying cancer risk, for the discovery of driver pathways in inflammation-induced tumorigenesis, and has direct relevance for early detection and prevention and development of new treatment regimes. Cancer Res; 77(22); 6429-41. ©2017 AACR.
Collapse
Affiliation(s)
- Yucheng Guo
- MOE Key Laboratory of Bioinformatics and TCM-X Center/Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China
| | - Qing Nie
- Department of Mathematics, Department of Development and Cell Biology, Center for Mathematical and Computational Biology, University of California, Irvine, Irvine, California
| | - Adam L MacLean
- Department of Mathematics, Department of Development and Cell Biology, Center for Mathematical and Computational Biology, University of California, Irvine, Irvine, California
| | - Yanda Li
- MOE Key Laboratory of Bioinformatics and TCM-X Center/Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China
| | - Jinzhi Lei
- Zhou Pei-Yuan Center for Applied Mathematics, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.
| | - Shao Li
- MOE Key Laboratory of Bioinformatics and TCM-X Center/Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing, China.
| |
Collapse
|
31
|
Szabó A, Merks RMH. Blood vessel tortuosity selects against evolution of aggressive tumor cells in confined tissue environments: A modeling approach. PLoS Comput Biol 2017; 13:e1005635. [PMID: 28715420 PMCID: PMC5536454 DOI: 10.1371/journal.pcbi.1005635] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/31/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer is a disease of cellular regulation, often initiated by genetic mutation within cells, and leading to a heterogeneous cell population within tissues. In the competition for nutrients and growth space within the tumors the phenotype of each cell determines its success. Selection in this process is imposed by both the microenvironment (neighboring cells, extracellular matrix, and diffusing substances), and the whole of the organism through for example the blood supply. In this view, the development of tumor cells is in close interaction with their increasingly changing environment: the more cells can change, the more their environment will change. Furthermore, instabilities are also introduced on the organism level: blood supply can be blocked by increased tissue pressure or the tortuosity of the tumor-neovascular vessels. This coupling between cell, microenvironment, and organism results in behavior that is hard to predict. Here we introduce a cell-based computational model to study the effect of blood flow obstruction on the micro-evolution of cells within a cancerous tissue. We demonstrate that stages of tumor development emerge naturally, without the need for sequential mutation of specific genes. Secondly, we show that instabilities in blood supply can impact the overall development of tumors and lead to the extinction of the dominant aggressive phenotype, showing a clear distinction between the fitness at the cell level and survival of the population. This provides new insights into potential side effects of recent tumor vasculature normalization approaches.
Collapse
Affiliation(s)
- András Szabó
- Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
| | - Roeland M. H. Merks
- Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| |
Collapse
|
32
|
Scott J, Marusyk A. Somatic clonal evolution: A selection-centric perspective. Biochim Biophys Acta Rev Cancer 2017; 1867:139-150. [DOI: 10.1016/j.bbcan.2017.01.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/29/2017] [Accepted: 01/30/2017] [Indexed: 12/31/2022]
|
33
|
The proportion of cancer-related entries in PubMed has increased considerably; is cancer truly "The Emperor of All Maladies"? PLoS One 2017; 12:e0173671. [PMID: 28282418 PMCID: PMC5345838 DOI: 10.1371/journal.pone.0173671] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/26/2017] [Indexed: 02/07/2023] Open
Abstract
In this work, the public database of biomedical literature PubMed was mined using queries with combinations of keywords and year restrictions. It was found that the proportion of Cancer-related entries per year in PubMed has risen from around 6% in 1950 to more than 16% in 2016. This increase is not shared by other conditions such as AIDS, Malaria, Tuberculosis, Diabetes, Cardiovascular, Stroke and Infection some of which have, on the contrary, decreased as a proportion of the total entries per year. Organ-related queries were performed to analyse the variation of some specific cancers. A series of queries related to incidence, funding, and relationship with DNA, Computing and Mathematics, were performed to test correlation between the keywords, with the hope of elucidating the cause behind the rise of Cancer in PubMed. Interestingly, the proportion of Cancer-related entries that contain “DNA”, “Computational” or “Mathematical” have increased, which suggests that the impact of these scientific advances on Cancer has been stronger than in other conditions. It is important to highlight that the results obtained with the data mining approach here presented are limited to the presence or absence of the keywords on a single, yet extensive, database. Therefore, results should be observed with caution. All the data used for this work is publicly available through PubMed and the UK’s Office for National Statistics. All queries and figures were generated with the software platform Matlab and the files are available as supplementary material.
Collapse
|
34
|
Grogan JA, Markelc B, Connor AJ, Muschel RJ, Pitt-Francis JM, Maini PK, Byrne HM. Predicting the Influence of Microvascular Structure On Tumor Response to Radiotherapy. IEEE Trans Biomed Eng 2017; 64:504-511. [PMID: 27623567 DOI: 10.1109/tbme.2016.2606563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
OBJECTIVE The purpose of this study is to investigate how theoretical predictions of tumor response to radiotherapy (RT) depend on the morphology and spatial representation of the microvascular network. METHODS A hybrid multiscale model, which couples a cellular automaton model of tumor growth with a model for oxygen transport from blood vessels, is used to predict the viable fraction of cells following one week of simulated RT. Both artificial and biologically derived three-dimensional (3-D) vessel networks of well vascularized tumors are considered and predictions compared with 2-D descriptions. RESULTS For literature-derived values of the cellular oxygen consumption rate there is little difference in predicted viable fraction when 3-D network representations of biological or artificial vessel networks are employed. Different 2-D representations are shown to either over- or under-estimate viable fractions relative to the 3-D cases, with predictions based on point-wise descriptions shown to have greater sensitivity to vessel network morphology. CONCLUSION The predicted RT response is relatively insensitive to the morphology of the microvessel network when 3-D representations are adopted, however, sensitivity is greater in certain 2-D representations. SIGNIFICANCE By using realistic 3-D vessel network geometries this study shows that real and artificial network descriptions and assumptions of spatially uniform oxygen distributions lead to similar RT response predictions in relatively small tissue volumes. This suggests that either a more detailed description of oxygen transport in the microvasculature is required or that the oxygen enhancement ratio used in the well known linear-quadratic RT response model is relatively insensitive to microvascular structure.
Collapse
Affiliation(s)
- James A Grogan
- Mathematical Institute, University of Oxford, Oxford, U.K
| | - Bostjan Markelc
- Department of OncologyCRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford
| | | | - Ruth J Muschel
- Department of OncologyCRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford
| | | | | | | |
Collapse
|
35
|
Wang KF, Mo LQ, Kong DX. Role of mathematical medicine in gastrointestinal carcinoma: Current status and perspectives. Shijie Huaren Xiaohua Zazhi 2017; 25:114-121. [DOI: 10.11569/wcjd.v25.i2.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mathematical medicine has already played an important role in clinical and basic research as a major interdisciplinary branch of medicine. Mathematical medicine has an important role not only in imaging diagnosis, image storage and transmission in gastrointestinal (GI) cancer, but also in tumor precision therapy. Specifically, in the field of minimally invasive treatment such as precise ablation, 3-dimension modeling, navigation, and surgical simulation significantly improve the therapeutic safety and efficiency in GI cancer. In addition, in the era of big data, data analysis and individualized therapy using mathematical medicine will become a trend in the future, offering an effective method for diagnosing and treating GI cancer and promoting clinical and scientific research.
Collapse
|
36
|
Cruz RDL, Guerrero P, Spill F, Alarcón T. Stochastic multi-scale models of competition within heterogeneous cellular populations: Simulation methods and mean-field analysis. J Theor Biol 2016; 407:161-183. [PMID: 27457092 PMCID: PMC5016039 DOI: 10.1016/j.jtbi.2016.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/07/2016] [Accepted: 07/20/2016] [Indexed: 01/21/2023]
Abstract
We propose a modelling framework to analyse the stochastic behaviour of heterogeneous, multi-scale cellular populations. We illustrate our methodology with a particular example in which we study a population with an oxygen-regulated proliferation rate. Our formulation is based on an age-dependent stochastic process. Cells within the population are characterised by their age (i.e. time elapsed since they were born). The age-dependent (oxygen-regulated) birth rate is given by a stochastic model of oxygen-dependent cell cycle progression. Once the birth rate is determined, we formulate an age-dependent birth-and-death process, which dictates the time evolution of the cell population. The population is under a feedback loop which controls its steady state size (carrying capacity): cells consume oxygen which in turn fuels cell proliferation. We show that our stochastic model of cell cycle progression allows for heterogeneity within the cell population induced by stochastic effects. Such heterogeneous behaviour is reflected in variations in the proliferation rate. Within this set-up, we have established three main results. First, we have shown that the age to the G1/S transition, which essentially determines the birth rate, exhibits a remarkably simple scaling behaviour. Besides the fact that this simple behaviour emerges from a rather complex model, this allows for a huge simplification of our numerical methodology. A further result is the observation that heterogeneous populations undergo an internal process of quasi-neutral competition. Finally, we investigated the effects of cell-cycle-phase dependent therapies (such as radiation therapy) on heterogeneous populations. In particular, we have studied the case in which the population contains a quiescent sub-population. Our mean-field analysis and numerical simulations confirm that, if the survival fraction of the therapy is too high, rescue of the quiescent population occurs. This gives rise to emergence of resistance to therapy since the rescued population is less sensitive to therapy.
Collapse
Affiliation(s)
- Roberto de la Cruz
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain; Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pilar Guerrero
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
| | - Fabian Spill
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA
| | - Tomás Alarcón
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain; Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| |
Collapse
|