1
|
Oliveira Soté W, Comar Junior M. Exploring Binding Sites in Chagas Disease Protein TcP21 Using Integrated Mixed Solvent Molecular Dynamics Approaches. J Chem Inf Model 2025; 65:363-377. [PMID: 39686861 PMCID: PMC11733930 DOI: 10.1021/acs.jcim.4c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, remains a significant global health burden, particularly in Latin America, where millions are at risk. This disease predominantly affects socioeconomically vulnerable populations, aggravating economic inequality, marginalization, and low political visibility. Despite extensive research, effective treatments are still lacking, partly due to the complex biology of the parasite and its infection mechanisms. This study focuses on TcP21, a novel 21 kDa protein secreted by extracellular amastigotes, which has been implicated in T. cruzi infection via an alternative infective pathway. Although the potential of TcP21 for understanding Chagas disease is promising, further exploration is necessary, particularly in identifying potential binding sites on its surface. Computational tools offer a versatile and effective strategy for preliminary binding site assessment, facilitating a more cost-efficient allocation of experimental resources. In this study, we employed three independent computational approaches─mixed solvent molecular dynamics simulations (MSMD), fragment-based molecular docking, and pharmacophore model docking coupled with molecular dynamics simulations─to identify potential binding sites and provide comprehensive insights into TcP21. The three methodologies converged on a common site located on the external surface of the protein, characterized by key residues such as GLU55, ASP52, VAL70, ILE62, and TRP77. The protonated amino, acetamido, and phenyl groups of the pharmacophore probe were consistently observed to interact with the site via a network of salt bridges, hydrogen bonds, charge-charge interactions, and alkyl-π interactions, suggesting these groups play a significant role in ligand binding. This study does not aim to propose specific therapeutic hits but to highlight a still unknown and unexplored protein involved in T. cruzi cell invasion. In this regard, given the strong correlation between the three distinct approaches used for mapping, we consider this study offers valuable insights for further research into P21 and its role in Chagas disease.
Collapse
Affiliation(s)
- William Oliveira Soté
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, Brazil
| | - Moacyr Comar Junior
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, Brazil
| |
Collapse
|
2
|
Rathi A, Noor S, Sulaimani MN, Ahmed S, Taiyab A, AlAjmi MF, Khan FI, Hassan MI, Haque MM. FDA-approved drugs as PIM-1 kinase inhibitors: A drug repurposed approach for cancer therapy. Int J Biol Macromol 2024; 292:139107. [PMID: 39722389 DOI: 10.1016/j.ijbiomac.2024.139107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
PIM-1 kinase, a member of the Serine/Threonine kinase family, has emerged as a promising therapeutic target in various cancers due to its role in promoting tumor growth and resistance to conventional therapies. In this study, we employed a structure-based approach to screen 3800 FDA-approved drugs to discover potential inhibitors of PIM-1. After an initial selection of 50 candidates based on high docking scores, four drugs, stanozolol, alfaxalone, rifaximin, and telmisartan, were identified as strong PIM-1 binders, interacting with key residues in the ATP-binding pocket of the kinase. To assess the stability of these interactions, we conducted all-atom molecular dynamic simulations, confirming favorable dynamics. Experimental validation via a kinase inhibition assay on recombinant PIM-1 showed that rifaximin significantly inhibited PIM-1 activity, with an IC50 of ∼26 μM. Fluorescence binding assays further demonstrated a strong binding affinity for rifaximin, with a binding constant, corroborated by isothermal titration calorimetry studies. Our findings suggest that rifaximin may serve as a potential repurposed drug for targeting PIM-1 in cancer treatment. However, further validations are required in a clinical setting before the final therapeutic implications.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shahbaz Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faez Iqbal Khan
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
3
|
Vishwakarma KK, Kolthur US, Venkatramani R. Multiple Functional Protein-Protein Interaction Interfaces Allosterically Regulate ATP-Binding in Cyclin-Dependent Kinase-1. Proteins 2024; 92:1329-1342. [PMID: 39012208 DOI: 10.1002/prot.26729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
The ATP-dependent phosphorylation activity of cyclin-dependent kinase 1 (CDK1), an essential enzyme for cell cycle progression, is regulated by interactions with Cyclin-B, substrate, and Cks proteins. We have recently shown that active site acetylation in CDK1 abrogated binding to Cyclin-B which posits an intriguing long-range communication between the catalytic site and the protein-protein interaction (PPI) interface. Now, we demonstrate a general allosteric link between the CDK1 active site and all three of its PPI interfaces through atomistic molecular dynamics (MD) simulations. Specifically, we examined ATP binding free energies to CDK1 in native nonacetylated (K33wt) and acetylated (K33Ac) forms as well as the acetyl-mimic K33Q and the acetyl-null K33R mutant forms, which are accessible in vitro. In agreement with experiments, ATP binding is stronger in K33wt relative to the other three perturbed states. Free energy decomposition reveals, in addition to expected local changes, significant and selective nonlocal entropic responses to ATP binding/perturbation of K33 from theαC -helix, activation loop (A-loop), andαG -α H segments in CDK1 which interface with Cyclin-B, substrate, and Cks proteins, respectively. Statistical analysis reveals that while entropic responses of protein segments to active site perturbations are on average correlated with their dynamical changes, such correlations are lost in about 9%-48% of the dataset depending on the segment. Besides proving the bi-directional communication between the active site and the CDK1:Cyclin-B interface, our study uncovers a hitherto unknown mode of ATP binding regulation by multiple PPI interfaces in CDK1.
Collapse
Affiliation(s)
| | - Ullas Seetharam Kolthur
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
4
|
de Brevern AG. Special Issue: "Molecular Dynamics Simulations and Structural Analysis of Protein Domains". Int J Mol Sci 2024; 25:10793. [PMID: 39409122 PMCID: PMC11477144 DOI: 10.3390/ijms251910793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The 3D protein structure is the basis for all their biological functions [...].
Collapse
Affiliation(s)
- Alexandre G. de Brevern
- DSIMB Bioinformatics Team, BIGR, INSERM, Université Paris Cité, F-75015 Paris, France; ; Tel.: +33-1-4449-3000
- DSIMB Bioinformatics Team, BIGR, INSERM, Université de la Réunion, F-97715 Saint Denis, France
| |
Collapse
|
5
|
AlRawashdeh S, Mosa FES, Barakat KH. Computational insights into the mechanisms underlying structural destabilization and recovery in trafficking-deficient hERG mutants. Front Mol Biosci 2024; 11:1341727. [PMID: 39193219 PMCID: PMC11347279 DOI: 10.3389/fmolb.2024.1341727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Cardiovascular diseases are a major global health concern, responsible for a significant number of deaths each year, often linked to cardiac arrhythmias resulting from dysfunction in ion channels. Hereditary Long QT Syndrome (LQTS) is a condition characterized by a prolonged QT interval on ECG, increasing the risk of sudden cardiac death. The most common type of LQTS, LQT2, is caused by mutations in the hERG gene, affecting a potassium ion channel. The majority of these mutations disrupt the channel's trafficking to the cell membrane, leading to intracellular retention. Specific high-affinity hERG blockers (e.g., E-4031) can rescue this mutant phenotype, but the exact mechanism is unknown. This study used accelerated molecular dynamics simulations to investigate how these mutations affect the hERG channel's structure, folding, endoplasmic reticulum (ER) retention, and trafficking. We reveal that these mutations induce structural changes in the channel, narrowing its central pore and altering the conformation of the intracellular domains. These changes expose internalization signals that contribute to ER retention and degradation of the mutant hERG channels. Moreover, the study found that the trafficking rescue drug E-4031 can inhibit these structural changes, potentially rescuing the mutant channels. This research offers valuable insights into the structural issues responsible for the degradation of rescuable transmembrane trafficking mutants. Understanding the defective trafficking structure of the hERG channel could help identify binding sites for small molecules capable of restoring proper folding and facilitating channel trafficking. This knowledge has the potential to lead to mechanism-based therapies that address the condition at the cellular level, which may prove more effective than treating clinical symptoms, ultimately offering hope for individuals with hereditary Long QT Syndrome.
Collapse
Affiliation(s)
| | | | - Khaled H. Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Sinha K, Basu I, Shah Z, Shah S, Chakrabarty S. Leveraging Bidirectional Nature of Allostery To Inhibit Protein-Protein Interactions (PPIs): A Case Study of PCSK9-LDLR Interaction. J Chem Inf Model 2024; 64:3923-3932. [PMID: 38615325 DOI: 10.1021/acs.jcim.4c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The protein PCSK9 (proprotein convertase subtilisin/Kexin type 9) negatively regulates the recycling of LDLR (low-density lipoprotein receptor), leading to an elevated plasma level of LDL. Inhibition of PCSK9-LDLR interaction has emerged as a promising therapeutic strategy to manage hypercholesterolemia. However, the large interaction surface area between PCSK9 and LDLR makes it challenging to identify a small molecule competitive inhibitor. An alternative strategy would be to identify distal cryptic sites as targets for allosteric inhibitors that can remotely modulate PCSK9-LDLR interaction. Using several microseconds long molecular dynamics (MD) simulations, we demonstrate that on binding with LDLR, there is a significant conformational change (population shift) in a distal loop (residues 211-222) region of PCSK9. Consistent with the bidirectional nature of allostery, we establish a clear correlation between the loop conformation and the binding affinity with LDLR. Using a thermodynamic argument, we establish that the loop conformations predominantly present in the apo state of PCSK9 would have lower LDLR binding affinity, and they would be potential targets for designing allosteric inhibitors. We elucidate the molecular origin of the allosteric coupling between this loop and the LDLR binding interface in terms of the population shift in a set of salt bridges and hydrogen bonds. Overall, our work provides a general strategy toward identifying allosteric hotspots: compare the conformational ensemble of the receptor between the apo and bound states of the protein and identify distal conformational changes, if any. The inhibitors should be designed to bind and stabilize the apo-specific conformations.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700 106, India
| | - Ipsita Basu
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700 106, India
| | - Zacharia Shah
- Hingez Therapeutics Inc., 8000 Towers Crescent Drive, STE 1331, Vienna, Virginia 22182, United States
| | - Salim Shah
- Hingez Therapeutics Inc., 8000 Towers Crescent Drive, STE 1331, Vienna, Virginia 22182, United States
| | - Suman Chakrabarty
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700 106, India
| |
Collapse
|
7
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Sankaran S, Krishnan SR, Sayed Y, Gromiha MM. Mechanism of drug resistance in HIV-1 protease subtype C in the presence of Atazanavir. Curr Res Struct Biol 2024; 7:100132. [PMID: 38435053 PMCID: PMC10907180 DOI: 10.1016/j.crstbi.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
AIDS is one of the deadliest diseases in the history of humankind caused by HIV. Despite the technological development, curtailing the viral infection inside human host still remains a challenge. Therapies such as HAART uses a combination of drugs to inhibit the viral activity. One of the important targets includes HIV protease and inhibiting its activity will minimize the production of mature structural proteins. However, the genetic diversity and the occurrence of drug resistant mutations adds complexity to effective drug design. In this study, we aimed at understanding the drug binding mechanism of one such subtype, namely subtype C and its insertion variant L38HL. We performed multiple molecular dynamics simulations along with binding free energy analysis of wild-type and L38HL bound to Atazanavir (ATV). From the analysis, we revealed that the insertion alters the hydrogen bond and hydrophobic interaction networks. The alterations in the interaction networks increase flexibility at the hinge-fulcrum interface. Further, the effects of these changes affect flap tip curling. Moreover, the changes in the hinge-fulcrum-cantilever interface alters the concerted motion of the functional regions leading to change in the direction of flap movement thus causing a subtle change in the active site volume. Additionally, formation of intramolecular hydrogen bonds in the ATV docked to L38HL restricted the movement of R1 and R2 groups thereby altering the interactions. Overall, the changes in the flexibility of flap together with the changes in the active site volume and compactness of the ligand provide insights for increased binding affinity of ATV with L38HL.
Collapse
Affiliation(s)
- S.V. Sankaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sowmya R. Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
9
|
Nam K, Shao Y, Major DT, Wolf-Watz M. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS OMEGA 2024; 9:7393-7412. [PMID: 38405524 PMCID: PMC10883025 DOI: 10.1021/acsomega.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
10
|
Godbole SS, Dokholyan NV. Allosteric regulation of kinase activity in living cells. eLife 2023; 12:RP90574. [PMID: 37943025 PMCID: PMC10635643 DOI: 10.7554/elife.90574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities, making it difficult to specifically target one kinase, and allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss the methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or 'sensors,' are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
Collapse
Affiliation(s)
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of MedicineHersheyUnited States
- Department of Biomedical Engineering, Penn State University, University ParkHersheyUnited States
- Department of Engineering Science and Mechanics, Penn State University, University ParkHersheyUnited States
- Department of Biochemistry & Molecular Biology, Penn State College of MedicineHersheyUnited States
- Department of Chemistry, Penn State University, University ParkHersheyUnited States
| |
Collapse
|
11
|
Di Marino D, Conflitti P, Motta S, Limongelli V. Structural basis of dimerization of chemokine receptors CCR5 and CXCR4. Nat Commun 2023; 14:6439. [PMID: 37833254 PMCID: PMC10575954 DOI: 10.1038/s41467-023-42082-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are prominent drug targets responsible for extracellular-to-intracellular signal transduction. GPCRs can form functional dimers that have been poorly characterized so far. Here, we show the dimerization mechanism of the chemokine receptors CCR5 and CXCR4 by means of an advanced free-energy technique named coarse-grained metadynamics. Our results reproduce binding events between the GPCRs occurring in the minute timescale, revealing a symmetric and an asymmetric dimeric structure for each of the three investigated systems, CCR5/CCR5, CXCR4/CXCR4, and CCR5/CXCR4. The transmembrane helices TM4-TM5 and TM6-TM7 are the preferred binding interfaces for CCR5 and CXCR4, respectively. The identified dimeric states differ in the access to the binding sites of the ligand and G protein, indicating that dimerization may represent a fine allosteric mechanism to regulate receptor activity. Our study offers structural basis for the design of ligands able to modulate the formation of CCR5 and CXCR4 dimers and in turn their activity, with therapeutic potential against HIV, cancer, and immune-inflammatory diseases.
Collapse
Affiliation(s)
- Daniele Di Marino
- Department of Life and Environmental Sciences - New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri 2, 20156, Milan, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Paolo Conflitti
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler Institute, Via G. Buffi 13, CH-6900, Lugano, Switzerland
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Vittorio Limongelli
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler Institute, Via G. Buffi 13, CH-6900, Lugano, Switzerland.
| |
Collapse
|
12
|
Godbole S, Dokholyan NV. Allosteric regulation of kinase activity in living cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549709. [PMID: 37503033 PMCID: PMC10370130 DOI: 10.1101/2023.07.19.549709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities making it difficult to specifically target one kinase, allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or "sensors" are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
Collapse
Affiliation(s)
- Shivani Godbole
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Wang Y, Yu L, Shao J, Zhu Z, Zhang L. Structure-driven protein engineering for production of valuable natural products. TRENDS IN PLANT SCIENCE 2023; 28:460-470. [PMID: 36473772 DOI: 10.1016/j.tplants.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/25/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Proteins are the most frequently used biocatalysts, and their structures determine their functions. Modifying the functions of proteins on the basis of their structures lies at the heart of protein engineering, opening a new horizon for metabolic engineering by efficiently generating stable enzymes. Many attempts at classical metabolic engineering have focused on improving specific metabolic fluxes and producing more valuable natural products by increasing gene expression levels and enzyme concentrations. However, most naturally occurring enzymes show limitations, and such limitations have hindered practical applications. Here we review recent advances in protein engineering in synthetic biology, chemoenzymatic synthesis, and plant metabolic engineering and describe opportunities for designing and constructing novel enzymes or proteins with desirable properties to obtain more active natural products.
Collapse
Affiliation(s)
- Yun Wang
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China; Biomedical Innovation R&D Centre, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Luyao Yu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jie Shao
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China; Biomedical Innovation R&D Centre, School of Medicine, Shanghai University, Shanghai 200444, China; Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
14
|
Cowan B, Beveridge DL, Thayer KM. Allosteric Signaling in PDZ Energetic Networks: Embedding Error Analysis. J Phys Chem B 2023; 127:623-633. [PMID: 36626697 PMCID: PMC9884075 DOI: 10.1021/acs.jpcb.2c06546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/23/2022] [Indexed: 01/12/2023]
Abstract
Allosteric signaling in proteins has been known for some half a century, yet how the signal traverses the protein remains an active area of research. Recently, the importance of electrostatics to achieve long-range signaling has become increasingly appreciated. Our laboratory has been working on developing network approaches to capture such interactions. In this study, we turn our attention to the well-studied allosteric model protein, PDZ. We study the allosteric dynamics on a per-residue basis in key constructs involving the PDZ domain, its allosteric effector, and its peptide ligand. We utilize molecular dynamics trajectories to create the networks for the constructs to explore the allosteric effect by plotting the heat kernel results onto axes defined by principal components. We introduce a new metric to quantitate the volume sampled by a residue in the latent space. We relate our findings to PDZ and the greater field of allostery.
Collapse
Affiliation(s)
- Benjamin
S. Cowan
- Department
of Computer Science, Wesleyan University, Middletown, Connecticut06457, United States
- College
of Integrative Sciences, Wesleyan University, Middletown, Connecticut06457, United States
| | - David L. Beveridge
- Molecular
Biophysics Program, Wesleyan University, Middletown, Connecticut06457, United States
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut06457, United States
| | - Kelly M. Thayer
- Department
of Computer Science, Wesleyan University, Middletown, Connecticut06457, United States
- Molecular
Biophysics Program, Wesleyan University, Middletown, Connecticut06457, United States
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut06457, United States
- College
of Integrative Sciences, Wesleyan University, Middletown, Connecticut06457, United States
| |
Collapse
|
15
|
Armour-Garb I, Han ISM, Cowan BS, Thayer KM. Variable Regions of p53 Isoforms Allosterically Hard Code DNA Interaction. J Phys Chem B 2022; 126:8495-8507. [PMID: 36245142 PMCID: PMC9623584 DOI: 10.1021/acs.jpcb.2c06229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Allosteric regulation of protein activity pervades biology as the "second secret of life." We have been examining the allosteric regulation and mutant reactivation of the tumor suppressor protein p53. We have found that generalizing the definition of allosteric effector to include entire proteins and expanding the meaning of binding site to include the interface of a transcription factor with its DNA to be useful in understanding the modulation of protein activity. Here, we cast the variable regions of p53 isoforms as allosteric regulators of p53 interactions with its consensus DNA. We implemented molecular dynamics simulations and our lab's new techniques of molecular dynamics (MD) sectors and MD-Markov state models to investigate the effects of nine naturally occurring splice variant isoforms of p53. We find that all of the isoforms differ from wild type in their dynamic properties and how they interact with the DNA. We consider the implications of these findings on allostery and cancer treatment.
Collapse
Affiliation(s)
- Isabel Armour-Garb
- †Department
of Mathematics and Computer Science, ‡Department of Chemistry, and §College of Integrative
Sciences, Wesleyan University, Middletown, Connecticut 06457, United States
| | - In Sub Mark Han
- †Department
of Mathematics and Computer Science, ‡Department of Chemistry, and §College of Integrative
Sciences, Wesleyan University, Middletown, Connecticut 06457, United States
| | - Benjamin S. Cowan
- †Department
of Mathematics and Computer Science, ‡Department of Chemistry, and §College of Integrative
Sciences, Wesleyan University, Middletown, Connecticut 06457, United States
| | - Kelly M. Thayer
- †Department
of Mathematics and Computer Science, ‡Department of Chemistry, and §College of Integrative
Sciences, Wesleyan University, Middletown, Connecticut 06457, United States,
| |
Collapse
|
16
|
Arantes PR, Patel AC, Palermo G. Emerging Methods and Applications to Decrypt Allostery in Proteins and Nucleic Acids. J Mol Biol 2022; 434:167518. [PMID: 35240127 PMCID: PMC9398933 DOI: 10.1016/j.jmb.2022.167518] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022]
Abstract
Many large protein-nucleic acid complexes exhibit allosteric regulation. In these systems, the propagation of the allosteric signaling is strongly coupled to conformational dynamics and catalytic function, challenging state-of-the-art analytical methods. Here, we review established and innovative approaches used to elucidate allosteric mechanisms in these complexes. Specifically, we report network models derived from graph theory and centrality analyses in combination with molecular dynamics (MD) simulations, introducing novel schemes that implement the synergistic use of graph theory with enhanced simulations methods and ab-initio MD. Accelerated MD simulations are used to construct "enhanced network models", describing the allosteric response over long timescales and capturing the relation between allostery and conformational changes. "Ab-initio network models" combine graph theory with ab-initio MD and quantum mechanics/molecular mechanics (QM/MM) simulations to describe the allosteric regulation of catalysis by following the step-by-step dynamics of biochemical reactions. This approach characterizes how the allosteric regulation changes from reactants to products and how it affects the transition state, revealing a tense-to-relaxed allosteric regulation along the chemical step. Allosteric models and applications are showcased for three paradigmatic examples of allostery in protein-nucleic acid complexes: (i) the nucleosome core particle, (ii) the CRISPR-Cas9 genome editing system and (iii) the spliceosome. These methods and applications create innovative protocols to determine allosteric mechanisms in protein-nucleic acid complexes that show tremendous promise for medicine and bioengineering.
Collapse
Affiliation(s)
- Pablo R Arantes
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States; Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States. https://twitter.com/pablitoarantes
| | - Amun C Patel
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States; Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States; Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States.
| |
Collapse
|
17
|
Huang J, Chu X, Luo Y, Wang Y, Zhang Y, Zhang Y, Li H. Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling. ACS Chem Biol 2022; 17:1951-1962. [PMID: 35675581 DOI: 10.1021/acschembio.2c00393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allosteric regulation plays a fundamental role in innumerable biological processes. Understanding its dynamic mechanism and impact at the molecular level is of great importance in disease diagnosis and drug discovery. Glycogen phosphorylase (GP) is a phosphoprotein responding to allosteric regulation and has significant biological importance to glycogen metabolism. Although the atomic structures of GP have been previously solved, the conformational dynamics of GP related to allostery regulation remain largely elusive due to its macromolecular size (∼196 kDa). Here, we integrated native top-down mass spectrometry (nTD-MS), hydrogen-deuterium exchange MS (HDX-MS), protection factor (PF) analysis, molecular dynamics (MD) simulations, and allostery signaling analysis to examine the structural basis and dynamics for the allosteric regulation of GP by phosphorylation. nTD-MS reveals differences in structural stability as well as oligomeric state between the unphosphorylated (GPb) and phosphorylated (GPa) forms. HDX-MS, PF analysis, and MD simulations further pinpoint the structural differences between GPb and GPa involving the binding interfaces (the N-terminal and tower-tower helices), catalytic site, and PLP-binding region. More importantly, it also allowed us to complete the missing link of the long-range communication process from the N-terminal tail to the catalytic site caused by phosphorylation. This integrative MS and in silico-based platform is highly complementary to biophysical approaches and yields valuable insights into protein structures and dynamic regulation.
Collapse
Affiliation(s)
- Jing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, No. 132 Wai Huan Dong Lu, Guangzhou 510006, China
| | - Xiakun Chu
- Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong 511400, China
| | - Yuxiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, No. 132 Wai Huan Dong Lu, Guangzhou 510006, China
| | - Yong Wang
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, College of Life Sciences, Shanghai Institute for Advanced Study, Institute of Quantitative Biology, Zhejiang University, Haining 314400, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, No. 132 Wai Huan Dong Lu, Guangzhou 510006, China
| | - Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, No. 132 Wai Huan Dong Lu, Guangzhou 510006, China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
18
|
Wu X, Xu LY, Li EM, Dong G. Application of molecular dynamics simulation in biomedicine. Chem Biol Drug Des 2022; 99:789-800. [PMID: 35293126 DOI: 10.1111/cbdd.14038] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 02/05/2023]
Abstract
Molecular dynamics (MD) simulation has been widely used in the field of biomedicine to study the conformational transition of proteins caused by mutation or ligand binding/unbinding. It provides some perspectives those are difficult to find in traditional biochemical or pathological experiments, for example, detailed effects of mutations on protein structure and protein-protein/ligand interaction at the atomic level. In this review, a broad overview on conformation changes and drug discovery by MD simulation is given. We first discuss the preparation of protein structure for MD simulation, which is a key step that determines the accuracy of the simulation. Then, we summarize the applications of commonly used force fields and MD simulations in scientific research. Finally, enhanced sampling methods and common applications of these methods are introduced. In brief, MD simulation is a powerful tool and it can be used to guide experimental study. The combination of MD simulation and experimental techniques is an a priori means to solve the biomedical problems and give a deep understanding on the relationship between protein structure and function.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
19
|
Integration of machine learning with computational structural biology of plants. Biochem J 2022; 479:921-928. [PMID: 35484946 DOI: 10.1042/bcj20200942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
Computational structural biology of proteins has developed rapidly in recent decades with the development of new computational tools and the advancement of computing hardware. However, while these techniques have widely been used to make advancements in human medicine, these methods have seen less utilization in the plant sciences. In the last several years, machine learning methods have gained popularity in computational structural biology. These methods have enabled the development of new tools which are able to address the major challenges that have hampered the wide adoption of the computational structural biology of plants. This perspective examines the remaining challenges in computational structural biology and how the development of machine learning techniques enables more in-depth computational structural biology of plants.
Collapse
|
20
|
SenseNet, a tool for analysis of protein structure networks obtained from molecular dynamics simulations. PLoS One 2022; 17:e0265194. [PMID: 35298511 PMCID: PMC8929561 DOI: 10.1371/journal.pone.0265194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/25/2022] [Indexed: 12/05/2022] Open
Abstract
Computational methods play a key role for investigating allosteric mechanisms in proteins, with the potential of generating valuable insights for innovative drug design. Here we present the SenseNet (“Structure ENSEmble NETworks”) framework for analysis of protein structure networks, which differs from established network models by focusing on interaction timelines obtained by molecular dynamics simulations. This approach is evaluated by predicting allosteric residues reported by NMR experiments in the PDZ2 domain of hPTP1e, a reference system for which previous computational predictions have shown considerable variance. We applied two models based on the mutual information between interaction timelines to estimate the conformational influence of each residue on its local environment. In terms of accuracy our prediction model is comparable to the top performing model published for this system, but by contrast benefits from its independence from NMR structures. Our results are complementary to experimental data and the consensus of previous predictions, demonstrating the potential of our new analysis tool SenseNet. Biochemical interpretation of our model suggests that allosteric residues in the PDZ2 domain form two distinct clusters of contiguous sidechain surfaces. SenseNet is provided as a plugin for the network analysis software Cytoscape, allowing for ease of future application and contributing to a system of compatible tools bridging the fields of system and structural biology.
Collapse
|
21
|
Xue W, Fu T, Deng S, Yang F, Yang J, Zhu F. Molecular Mechanism for the Allosteric Inhibition of the Human Serotonin Transporter by Antidepressant Escitalopram. ACS Chem Neurosci 2022; 13:340-351. [PMID: 35041375 DOI: 10.1021/acschemneuro.1c00694] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human serotine transporter (hSERT) is one of the most influential drug targets, and its allosteric modulators (e.g., escitalopram) have emerged to be the next-generation medication for psychiatric disorders. However, the molecular mechanism underlying the allosteric modulation of hSERT is still elusive. Here, the simulation strategies of conventional (cMD) and steered (SMD) molecular dynamics were applied to investigate this molecular mechanism from distinct perspectives. First, cMD simulations revealed that escitalopram's binding to hSERT's allosteric site simultaneously enhanced its binding to the orthosteric site. Then, SMD simulation identified that the occupation of hSERT's allosteric site by escitalopram could also block its dissociation from the orthosteric site. Finally, by comparing the simulated structures of two hSERT-escitalopram complexes with and without allosteric modulation, a new conformational coupling between an extracellular (Arg104-Glu494) and an intracellular (Lys490-Glu494) salt bridge was identified. In summary, this study explored the mechanism underlying the allosteric modulation of hSERT by collectively applying two MD simulation strategies, which could facilitate our understanding of the allosteric modulations of not only hSERT but also other clinically important therapeutic targets.
Collapse
Affiliation(s)
- Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou 646000, China
| | - Tingting Fu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Shengzhe Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Fengyuan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jingyi Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
22
|
Abstract
Correlated motions in proteins arising from the collective movements of residues have long been proposed to be fundamentally important to key properties of proteins, from allostery and catalysis to evolvability. Recent breakthroughs in structural biology have made it possible to capture proteins undergoing complex conformational changes, yet intrinsic correlated motions within a conformation remain one of the least understood facets of protein structure. For many decades, the analysis of total X-ray scattering held the promise of animating crystal structures with correlated motions. With recent advances in both X-ray detectors and data interpretation methods, this long-held promise can now be met. In this Perspective, we will introduce how correlated motions are captured in total scattering and provide guidelines for the collection, interpretation, and validation of data. As structural biology continues to push the boundaries, we see an opportunity to gain atomistic insight into correlated motions using total scattering as a bridge between theory and experiment.
Collapse
Affiliation(s)
- Da Xu
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, New York 14853, United States
| | - Steve P Meisburger
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, New York 14853, United States
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, New York 14853, United States
| |
Collapse
|
23
|
Ma J, Ayres CM, Hellman LM, Devlin JR, Baker BM. Dynamic allostery controls the peptide sensitivity of the Ly49C natural killer receptor. J Biol Chem 2021; 296:100686. [PMID: 33891944 PMCID: PMC8138769 DOI: 10.1016/j.jbc.2021.100686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Using a variety of activating and inhibitory receptors, natural killer (NK) cells protect against disease by eliminating cells that have downregulated class I major histocompatibility complex (MHC) proteins, such as in response to cell transformation or viral infection. The inhibitory murine NK receptor Ly49C specifically recognizes the class I MHC protein H-2Kb. Unusual among NK receptors, Ly49C exhibits a peptide-dependent sensitivity to H-2Kb recognition, which has not been explained despite detailed structural studies. To gain further insight into Ly49C peptide sensitivity, we examined Ly49C recognition biochemically and through the lens of dynamic allostery. We found that the peptide sensitivity of Ly49C arises through small differences in H-2Kb-binding affinity. Although molecular dynamics simulations supported a role for peptide-dependent protein dynamics in producing these differences in binding affinity, calorimetric measurements indicated an enthalpically as opposed to entropically driven process. A quantitative linkage analysis showed that this emerges from peptide-dependent dynamic tuning of electrostatic interactions across the Ly49C–H-2Kb interface. We propose a model whereby different peptides alter the flexibility of H-2Kb, which in turn changes the strength of electrostatic interactions across the protein–protein interface. Our results provide a quantitative assessment of how peptides alter Ly49C-binding affinity, suggest the underlying mechanism, and demonstrate peptide-driven allostery at work in class I MHC proteins. Lastly, our model provides a solution for how dynamic allostery could impact binding of some, but not all, class I MHC partners depending on the structural and chemical composition of the interfaces.
Collapse
Affiliation(s)
- Jiaqi Ma
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Cory M Ayres
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lance M Hellman
- Department of Physical and Life Sciences, Nevada State College, Henderson, Nevada, USA
| | - Jason R Devlin
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brian M Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
24
|
Bage MG, Almohammed R, Cowling VH, Pisliakov A. A novel RNA pol II CTD interaction site on the mRNA capping enzyme is essential for its allosteric activation. Nucleic Acids Res 2021; 49:3109-3126. [PMID: 33684220 PMCID: PMC8034621 DOI: 10.1093/nar/gkab130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 11/12/2022] Open
Abstract
Recruitment of the mRNA capping enzyme (CE/RNGTT) to the site of transcription is essential for the formation of the 5' mRNA cap, which in turn ensures efficient transcription, splicing, polyadenylation, nuclear export and translation of mRNA in eukaryotic cells. The CE GTase is recruited and activated by the Serine-5 phosphorylated carboxyl-terminal domain (CTD) of RNA polymerase II. Through the use of molecular dynamics simulations and enhanced sampling techniques, we provide a systematic and detailed characterization of the human CE-CTD interface, describing the effect of the CTD phosphorylation state, length and orientation on this interaction. Our computational analyses identify novel CTD interaction sites on the human CE GTase surface and quantify their relative contributions to CTD binding. We also identify, for the first time, allosteric connections between the CE GTase active site and the CTD binding sites, allowing us to propose a mechanism for allosteric activation. Through binding and activity assays we validate the novel CTD binding sites and show that the CDS2 site is essential for CE GTase activity stimulation. Comparison of the novel sites with cocrystal structures of the CE-CTD complex in different eukaryotic taxa reveals that this interface is considerably more conserved than previous structures have indicated.
Collapse
Affiliation(s)
- Marcus G Bage
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rajaei Almohammed
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Andrei V Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Physics, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
25
|
Wang H, Cao D, Gillespie JC, Mendez RE, Selley DE, Liu-Chen LY, Zhang Y. Exploring the putative mechanism of allosteric modulations by mixed-action kappa/mu opioid receptor bitopic modulators. Future Med Chem 2021; 13:551-573. [PMID: 33590767 PMCID: PMC8027703 DOI: 10.4155/fmc-2020-0308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
The modulation and selectivity mechanisms of seven mixed-action kappa opioid receptor (KOR)/mu opioid receptor (MOR) bitopic modulators were explored. Molecular modeling results indicated that the 'message' moiety of seven bitopic modulators shared the same binding mode with the orthosteric site of the KOR and MOR, whereas the 'address' moiety bound with different subdomains of the allosteric site of the KOR and MOR. The 'address' moiety of seven bitopic modulators bound to different subdomains of the allosteric site of the KOR and MOR may exhibit distinguishable allosteric modulations to the binding affinity and/or efficacy of the 'message' moiety. Moreover, the 3-hydroxy group on the phenolic moiety of the seven bitopic modulators induced selectivity to the KOR over the MOR.
Collapse
Affiliation(s)
- Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Danni Cao
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - James C Gillespie
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rolando E Mendez
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Dana E Selley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
26
|
Hongdusit A, Fox JM. Optogenetic Analysis of Allosteric Control in Protein Tyrosine Phosphatases. Biochemistry 2021; 60:254-258. [PMID: 33450156 DOI: 10.1021/acs.biochem.0c00841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allosteric regulation enables dynamic adjustments to protein function that permit tight control over cellular biochemistry. Discrepancies in the allosteric systems of related proteins can thus reveal important differences in their susceptibilities to influential stimuli (e.g., allosteric ligands, mutations, or post-translational modifications). This study uses an optogenetic actuator as a tool to compare the allosteric systems of two structurally related regulatory proteins: protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TCPTP). It begins with an interesting observation: The fusion of a protein light switch to the allosterically influential α7 helix of PTP1B permits optical modulation of its catalytic activity, but a similar fusion to TCPTP does not. A subsequent analysis of different PTP chimeras shows that replacing regions of TCPTP with homologous regions from PTP1B can enhance photocontrol; as TCPTP becomes more "PTP1B-like", its photosensitivity increases. Interestingly, the structural changes required for photocontrol also enhance the sensitivity of TCPTP to other allosteric inputs, notably, an allosteric inhibitor and a newly reported activating mutation. Our findings indicate that the allosteric functionality of the α7 helix of PTP1B is not conserved across the PTP family and highlight residues necessary to transfer this functionality to other PTPs. More broadly, our results suggest that simple gene fusion events can strengthen allosteric communication within individual protein domains and describe an intriguing application for optogenetic actuators as structural probes-a sort of physically disruptive "ratchet"-for studying protein allostery.
Collapse
Affiliation(s)
- Akarawin Hongdusit
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| |
Collapse
|
27
|
Ghode A, Gross LZF, Tee WV, Guarnera E, Berezovsky IN, Biondi RM, Anand GS. Synergistic Allostery in Multiligand-Protein Interactions. Biophys J 2020; 119:1833-1848. [PMID: 33086047 PMCID: PMC7677135 DOI: 10.1016/j.bpj.2020.09.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Amide hydrogen-deuterium exchange mass spectrometry is powerful for describing combinatorial coupling effects of a cooperative ligand pair binding at noncontiguous sites: adenosine at the ATP-pocket and a docking peptide (PIFtide) at the PIF-pocket, on a model protein kinase PDK1. Binding of two ligands to PDK1 reveal multiple hotspots of synergistic allostery with cumulative effects greater than the sum of individual effects mediated by each ligand. We quantified this synergism and ranked these hotspots using a difference in deuteration-based approach, which showed that the strongest synergistic effects were observed at three of the critical catalytic loci of kinases: the αB-αC helices, and HRD-motif loop, and DFG-motif. Additionally, we observed weaker synergistic effects at a distal GHI-subdomain locus. Synergistic changes in deuterium exchange observed at a distal site but not at the intermediate sites of the large lobe of the kinase reveals allosteric propagation in proteins to operate through two modes. Direct electrostatic interactions between polar and charged amino acids that mediate targeted relay of allosteric signals, and diffused relay of allosteric signals through soft matter-like hydrophobic core amino acids. Furthermore, we provide evidence that the conserved β-3 strand lysine of protein kinases (Lys111 of PDK1) functions as an integrator node to coordinate allosteric coupling of the two ligand-binding sites. It maintains indirect interactions with the ATP-pocket and mediates a critical salt bridge with a glutamate (Glu130) of αC helix, which is conserved across all kinases. In summary, allosteric propagation in cooperative, dual-liganded enzyme targets is bidirectional and synergistic and offers a strategy for combinatorial drug development.
Collapse
Affiliation(s)
- Abhijeet Ghode
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Lissy Z F Gross
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Wei-Ven Tee
- Department of Biological Sciences, National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research, Matrix, Singapore
| | - Enrico Guarnera
- Bioinformatics Institute, Agency for Science, Technology and Research, Matrix, Singapore
| | - Igor N Berezovsky
- Department of Biological Sciences, National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research, Matrix, Singapore
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
28
|
Engineering and application of a biosensor with focused ligand specificity. Nat Commun 2020; 11:4851. [PMID: 32978386 PMCID: PMC7519686 DOI: 10.1038/s41467-020-18400-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/20/2020] [Indexed: 02/01/2023] Open
Abstract
Cell factories converting bio-based precursors to chemicals present an attractive avenue to a sustainable economy, yet screening of genetically diverse strain libraries to identify the best-performing whole-cell biocatalysts is a low-throughput endeavor. For this reason, transcriptional biosensors attract attention as they allow the screening of vast libraries when used in combination with fluorescence-activated cell sorting (FACS). However, broad ligand specificity of transcriptional regulators (TRs) often prohibits the development of such ultra-high-throughput screens. Here, we solve the structure of the TR LysG of Corynebacterium glutamicum, which detects all three basic amino acids. Based on this information, we follow a semi-rational engineering approach using a FACS-based screening/counterscreening strategy to generate an l-lysine insensitive LysG-based biosensor. This biosensor can be used to isolate l-histidine-producing strains by FACS, showing that TR engineering towards a more focused ligand spectrum can expand the scope of application of such metabolite sensors. Transcriptional biosensors represent powerful tools for the screening of vast strain libraries, but the broad ligand specificity of some transcriptional regulators (TRs) can prohibit such applications. Here authors present the engineering of a LysG-based biosensor with a focused ligand specificity to isolate L-histidine-producing strains.
Collapse
|
29
|
Torrens-Fontanals M, Stepniewski TM, Aranda-García D, Morales-Pastor A, Medel-Lacruz B, Selent J. How Do Molecular Dynamics Data Complement Static Structural Data of GPCRs. Int J Mol Sci 2020; 21:E5933. [PMID: 32824756 PMCID: PMC7460635 DOI: 10.3390/ijms21165933] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are implicated in nearly every physiological process in the human body and therefore represent an important drug targeting class. Advances in X-ray crystallography and cryo-electron microscopy (cryo-EM) have provided multiple static structures of GPCRs in complex with various signaling partners. However, GPCR functionality is largely determined by their flexibility and ability to transition between distinct structural conformations. Due to this dynamic nature, a static snapshot does not fully explain the complexity of GPCR signal transduction. Molecular dynamics (MD) simulations offer the opportunity to simulate the structural motions of biological processes at atomic resolution. Thus, this technique can incorporate the missing information on protein flexibility into experimentally solved structures. Here, we review the contribution of MD simulations to complement static structural data and to improve our understanding of GPCR physiology and pharmacology, as well as the challenges that still need to be overcome to reach the full potential of this technique.
Collapse
Affiliation(s)
- Mariona Torrens-Fontanals
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
- InterAx Biotech AG, PARK innovAARE, 5234 Villigen, Switzerland
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - David Aranda-García
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Adrián Morales-Pastor
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Brian Medel-Lacruz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| |
Collapse
|
30
|
Verkhivker GM, Agajanian S, Hu G, Tao P. Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning. Front Mol Biosci 2020; 7:136. [PMID: 32733918 PMCID: PMC7363947 DOI: 10.3389/fmolb.2020.00136] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Allosteric regulation is a common mechanism employed by complex biomolecular systems for regulation of activity and adaptability in the cellular environment, serving as an effective molecular tool for cellular communication. As an intrinsic but elusive property, allostery is a ubiquitous phenomenon where binding or disturbing of a distal site in a protein can functionally control its activity and is considered as the "second secret of life." The fundamental biological importance and complexity of these processes require a multi-faceted platform of synergistically integrated approaches for prediction and characterization of allosteric functional states, atomistic reconstruction of allosteric regulatory mechanisms and discovery of allosteric modulators. The unifying theme and overarching goal of allosteric regulation studies in recent years have been integration between emerging experiment and computational approaches and technologies to advance quantitative characterization of allosteric mechanisms in proteins. Despite significant advances, the quantitative characterization and reliable prediction of functional allosteric states, interactions, and mechanisms continue to present highly challenging problems in the field. In this review, we discuss simulation-based multiscale approaches, experiment-informed Markovian models, and network modeling of allostery and information-theoretical approaches that can describe the thermodynamics and hierarchy allosteric states and the molecular basis of allosteric mechanisms. The wealth of structural and functional information along with diversity and complexity of allosteric mechanisms in therapeutically important protein families have provided a well-suited platform for development of data-driven research strategies. Data-centric integration of chemistry, biology and computer science using artificial intelligence technologies has gained a significant momentum and at the forefront of many cross-disciplinary efforts. We discuss new developments in the machine learning field and the emergence of deep learning and deep reinforcement learning applications in modeling of molecular mechanisms and allosteric proteins. The experiment-guided integrated approaches empowered by recent advances in multiscale modeling, network science, and machine learning can lead to more reliable prediction of allosteric regulatory mechanisms and discovery of allosteric modulators for therapeutically important protein targets.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
31
|
Revisiting allostery in CREB-binding protein (CBP) using residue-based interaction energy. J Comput Aided Mol Des 2020; 34:965-974. [PMID: 32430574 DOI: 10.1007/s10822-020-00316-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
CREB-binding protein (CBP) is a multi-subunit scaffold protein complex in transcription regulation process, binding and interacting with ligands such as mixed-lineage leukemia (MLL) and c-Myb allosterically. Here in this study, we have revisited the concept of allostery in CBP via residue-based interaction energy calculation based on molecular dynamics (MD) simulations. To this end, we conducted MD simulations of KIX:MLL:c-Myb ternary complex, its binary components and kinase-inducible domain (KID) interacting domain (KIX) backbone. Interaction energy profiles and cross correlation analysis were performed and the results indicated that KIX:MLL and KIX:c-Myb:MLL complexes demonstrate significant similarities according to both analysis methods. Two regions in the KIX backbone were apparent from the interaction energy and cross correlation maps that hold a key to allostery phenomena observed in CBP. While one of these regions are related to the ligand binding residues, the other comprises of L12-G2 loop and α3 helix regions that have been found to have a significant role in allosteric signal propagation. All in all, residue-based interaction energy calculation method is demonstrated to be a valuable calculation technique for the detection of allosteric signal propagation and ligand interaction regions.
Collapse
|
32
|
Kuroda D, Tsumoto K. Engineering Stability, Viscosity, and Immunogenicity of Antibodies by Computational Design. J Pharm Sci 2020; 109:1631-1651. [DOI: 10.1016/j.xphs.2020.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/25/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
|
33
|
Lakhani B, Thayer KM, Black E, Beveridge DL. Spectral analysis of molecular dynamics simulations on PDZ: MD sectors. J Biomol Struct Dyn 2020; 38:781-790. [PMID: 31262238 PMCID: PMC7307555 DOI: 10.1080/07391102.2019.1588169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
The idea of protein "sectors" posits that sparse subsets of amino acid residues form cooperative networks that are key elements of protein stability, ligand binding, and allosterism. To date, protein sectors have been calculated by the statistical coupling analysis (SCA) method of Ranganathan and co-workers via the spectral analysis of conservation-weighted evolutionary covariance matrices obtained from a multiple sequence alignments of homologous families of proteins. SCA sectors, a knowledge-based protocol, have been indentified with functional properties and allosterism for a number of systems. In this study, we investigate the utility of the sector idea for the analysis of physics-based molecular dynamics (MD) trajectories of proteins. Our test case for this procedure is PSD95- PDZ3, one of the smallest proteins for which allosterism has been observed. It has served previously as a model system for a number of prediction algorithms, and is well characterized by X-ray crystallography, NMR spectroscopy and site specific mutagenisis. All-atom MD simulations were performed for a total of 500 nanoseconds using AMBER, and MD-calculated covariance matrices for the fluctuations of residue displacements and non-bonded interaction energies were subjected to spectral analysis in a manner analogous to that of SCA. The composition of MD sectors was compared with results from SCA, site specific mutagenesis, and allosterism. The concordance indicates that MD sectors are a viable protocol for analyzing MD trajectories and provide insight into the physical origin of the phenomenon.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bharat Lakhani
- Program in Molecular Biophysics, Wesleyan University, Middletown CT 06459, USA
- Department of Molecular Biology & Biochemistry, Wesleyan University, Middletown CT 06459, USA
| | - Kelly M. Thayer
- Program in Molecular Biophysics, Wesleyan University, Middletown CT 06459, USA
- Chemistry Department, Wesleyan University, Middletown CT 06459, USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown CT 06459, USA
| | - Emily Black
- Program in Molecular Biophysics, Wesleyan University, Middletown CT 06459, USA
| | - David L. Beveridge
- Program in Molecular Biophysics, Wesleyan University, Middletown CT 06459, USA
- Chemistry Department, Wesleyan University, Middletown CT 06459, USA
| |
Collapse
|
34
|
Sheik Amamuddy O, Veldman W, Manyumwa C, Khairallah A, Agajanian S, Oluyemi O, Verkhivker GM, Tastan Bishop Ö. Integrated Computational Approaches and Tools forAllosteric Drug Discovery. Int J Mol Sci 2020; 21:E847. [PMID: 32013012 PMCID: PMC7036869 DOI: 10.3390/ijms21030847] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding molecular mechanisms underlying the complexity of allosteric regulationin proteins has attracted considerable attention in drug discovery due to the benefits and versatilityof allosteric modulators in providing desirable selectivity against protein targets while minimizingtoxicity and other side effects. The proliferation of novel computational approaches for predictingligand-protein interactions and binding using dynamic and network-centric perspectives has ledto new insights into allosteric mechanisms and facilitated computer-based discovery of allostericdrugs. Although no absolute method of experimental and in silico allosteric drug/site discoveryexists, current methods are still being improved. As such, the critical analysis and integration ofestablished approaches into robust, reproducible, and customizable computational pipelines withexperimental feedback could make allosteric drug discovery more efficient and reliable. In this article,we review computational approaches for allosteric drug discovery and discuss how these tools can beutilized to develop consensus workflows for in silico identification of allosteric sites and modulatorswith some applications to pathogen resistance and precision medicine. The emerging realization thatallosteric modulators can exploit distinct regulatory mechanisms and can provide access to targetedmodulation of protein activities could open opportunities for probing biological processes and insilico design of drug combinations with improved therapeutic indices and a broad range of activities.
Collapse
Affiliation(s)
- Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Colleen Manyumwa
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Afrah Khairallah
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
| | - Odeyemi Oluyemi
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| |
Collapse
|
35
|
Bueren-Calabuig JA, G Bage M, Cowling VH, Pisliakov AV. Mechanism of allosteric activation of human mRNA cap methyltransferase (RNMT) by RAM: insights from accelerated molecular dynamics simulations. Nucleic Acids Res 2019; 47:8675-8692. [PMID: 31329932 PMCID: PMC7145595 DOI: 10.1093/nar/gkz613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 02/04/2023] Open
Abstract
The RNA guanine-N7 methyltransferase (RNMT) in complex with RNMT-activating miniprotein (RAM) catalyses the formation of a N7-methylated guanosine cap structure on the 5' end of nascent RNA polymerase II transcripts. The mRNA cap protects the primary transcript from exonucleases and recruits cap-binding complexes that mediate RNA processing, export and translation. By using microsecond standard and accelerated molecular dynamics simulations, we provide for the first time a detailed molecular mechanism of allosteric regulation of RNMT by RAM. We show that RAM selects the RNMT active site conformations that are optimal for binding of substrates (AdoMet and the cap), thus enhancing their affinity. Furthermore, our results strongly suggest the likely scenario in which the cap binding promotes the subsequent AdoMet binding, consistent with the previously suggested cooperative binding model. By employing the network community analyses, we revealed the underlying long-range allosteric networks and paths that are crucial for allosteric regulation by RAM. Our findings complement and explain previous experimental data on RNMT activity. Moreover, this study provides the most complete description of the cap and AdoMet binding poses and interactions within the enzyme's active site. This information is critical for the drug discovery efforts that consider RNMT as a promising anti-cancer target.
Collapse
Affiliation(s)
- Juan A Bueren-Calabuig
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Marcus G Bage
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Andrei V Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| |
Collapse
|
36
|
Mallawarachchi S, Gejji V, Sierra LS, Wang H, Fernando S. Electrical Field Reversibly Modulates Enzyme Kinetics of Hexokinase Entrapped in an Electro-Responsive Hydrogel. ACS APPLIED BIO MATERIALS 2019; 2:5676-5686. [DOI: 10.1021/acsabm.9b00748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Samavath Mallawarachchi
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Varun Gejji
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Laura Soto Sierra
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Haoqi Wang
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Sandun Fernando
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
37
|
Hayatshahi HS, Ahuactzin E, Tao P, Wang S, Liu J. Probing Protein Allostery as a Residue-Specific Concept via Residue Response Maps. J Chem Inf Model 2019; 59:4691-4705. [PMID: 31589429 DOI: 10.1021/acs.jcim.9b00447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allosteric regulation is a well-established phenomenon defined as a distal conformational or dynamical change of the protein upon allosteric effector binding. Here, we developed a novel approach to delineate allosteric effects in proteins. In this approach, we applied robust machine learning methods, including deep neural network and random forest, on extensive molecular dynamics (MD) simulations to distinguish otherwise similar allosteric states of proteins. Using the PDZ3 domain of PDS-95 as a model protein, we demonstrated that the allosteric effects could be represented as residue-specific properties through two-dimensional property-residue maps, which we refer to as "residue response maps". These maps were constructed through two machine learning methods and could accurately describe how different properties of various residues are affected upon allosteric perturbation on protein. Based on the "residue response maps", we propose allostery as a residue-specific concept, suggesting that all residues could be considered as allosteric residues because each residue "senses" the allosteric events through changing its single or multiple attributes in a quantitatively unique way. The "residue response maps" could be used to fingerprint a protein based on the unique patterns of residue responses upon binding events, providing a novel way to systematically describe the protein allosteric effects of each residue upon perturbation.
Collapse
Affiliation(s)
- Hamed S Hayatshahi
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy , University of North Texas Health Science Center , 3500 Camp Bowie Blvd. , Fort Worth , Texas 76107 , United States
| | - Emilio Ahuactzin
- Harmony School of Innovation-Fort Worth , 8100 S. Hulen St. , Fort Worth , Texas 76123 , United States
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Shouyi Wang
- Department of Industrial, Manufacturing, & Systems Engineering, College of Engineering , University of Texas at Arlington , 701 S. Nedderman Dr. , Arlington , Texas 76019 , United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy , University of North Texas Health Science Center , 3500 Camp Bowie Blvd. , Fort Worth , Texas 76107 , United States
| |
Collapse
|
38
|
Astl L, Verkhivker GM. Data-driven computational analysis of allosteric proteins by exploring protein dynamics, residue coevolution and residue interaction networks. Biochim Biophys Acta Gen Subj 2019:S0304-4165(19)30179-5. [PMID: 31330173 DOI: 10.1016/j.bbagen.2019.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Computational studies of allosteric interactions have witnessed a recent renaissance fueled by the growing interest in modeling of the complex molecular assemblies and biological networks. Allosteric interactions in protein structures allow for molecular communication in signal transduction networks. METHODS In this work, we performed a large scale comprehensive and multi-faceted analysis of >300 diverse allosteric proteins and complexes with allosteric modulators. By modeling and exploring coarse-grained dynamics, residue coevolution, and residue interaction networks for allosteric proteins, we have determined unifying molecular signatures shared by allosteric systems. RESULTS The results of this study have suggested that allosteric inhibitors and allosteric activators may differentially affect global dynamics and network organization of protein systems, leading to diverse allosteric mechanisms. By using structural and functional data on protein kinases, we present a detailed case study that that included atomic-level analysis of coevolutionary networks in kinases bound with allosteric inhibitors and activators. CONCLUSIONS We have found that coevolutionary networks can form direct communication pathways connecting functional regions and can recapitulate key regulatory sites and interactions responsible for allosteric signaling in the studied protein systems. The results of this computational investigation are compared with the experimental studies and reveal molecular signatures of known regulatory hotspots in protein kinases. GENERAL SIGNIFICANCE This study has shown that allosteric inhibitors and allosteric activators can have a different effect on residue interaction networks and can exploit distinct regulatory mechanisms, which could open up opportunities for probing allostery and new drug combinations with broad range of activities.
Collapse
Affiliation(s)
- Lindy Astl
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, United States of America
| | - Gennady M Verkhivker
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, United States of America; Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States of America.
| |
Collapse
|
39
|
On the perturbation nature of allostery: sites, mutations, and signal modulation. Curr Opin Struct Biol 2019; 56:18-27. [DOI: 10.1016/j.sbi.2018.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
|
40
|
Lamim Ribeiro JM, Filizola M. Allostery in G protein-coupled receptors investigated by molecular dynamics simulations. Curr Opin Struct Biol 2019; 55:121-128. [PMID: 31096158 DOI: 10.1016/j.sbi.2019.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/14/2023]
Abstract
G-protein-coupled receptors (GPCRs) are allosteric signaling machines that trigger distinct functional responses depending on the particular conformational state they adopt upon binding. This so-called GPCR functional selectivity is prompted by ligands of different efficacy binding at orthosteric or allosteric sites on the receptor, as well as by interactions with intracellular protein partners or other receptor types. Molecular dynamics (MD) simulations can provide important mechanistic, thermodynamic, and kinetic insights into these interactions at a level of molecular detail that is necessary to rightly inform modern drug discovery. Here, we review the most recent MD contributions to understanding GPCR allostery, with an emphasis on their strengths and limitations.
Collapse
Affiliation(s)
- João Marcelo Lamim Ribeiro
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, NY, 10029, USA
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, NY, 10029, USA.
| |
Collapse
|
41
|
Hanževački M, Čondić-Jurkić K, Banhatti RD, Smith AS, Smith DM. The Influence of Chemical Change on Protein Dynamics: A Case Study with Pyruvate Formate-Lyase. Chemistry 2019; 25:8741-8753. [PMID: 30901109 DOI: 10.1002/chem.201900663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Indexed: 12/15/2022]
Abstract
Pyruvate formate-lyase (PFL) catalyzes the reversible conversion of pyruvate and coenzyme A (CoA) into formate and acetyl-CoA in two half-reactions. For the second half-reaction to take place, the S-H group of CoA must enter the active site of the enzyme to retrieve a protein-bound acetyl group. However, CoA is bound at the protein surface, whereas the active site is buried in the protein interior, some 20-30 Å away. The PFL system was therefore subjected to a series of extensive molecular dynamics simulations (in the μs range) and a host of advanced analysis procedures. Models representing PFL before and after the first half-reaction were used to examine the possible effect of enzyme acetylation. All simulated structures were found to be relatively stable compared to the initial crystal structure. Although the adenine portion of CoA remained predominantly bound at the protein surface, the binding of the S-H group was significantly more labile. A potential entry channel for CoA, which would allow the S-H group to reach the active site, was identified and characterized. The channel was found to be associated with accentuated fluctuations and a higher probability of being in an open state in acetylated systems. This result suggests that the acetylation of the enzyme assumes a prominent functional role, whereby the formation of the acyl intermediate serves to initiate a subtle signaling cascade that influences the protein dynamics and facilitates the entry of the second substrate.
Collapse
Affiliation(s)
- Marko Hanževački
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Staudtstraße 7, Erlangen, Germany
| | - Karmen Čondić-Jurkić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Radha Dilip Banhatti
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Ana-Sunčana Smith
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Staudtstraße 7, Erlangen, Germany
| | - David M Smith
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| |
Collapse
|
42
|
Astl L, Verkhivker GM. Atomistic Modeling of the ABL Kinase Regulation by Allosteric Modulators Using Structural Perturbation Analysis and Community-Based Network Reconstruction of Allosteric Communications. J Chem Theory Comput 2019; 15:3362-3380. [PMID: 31017783 DOI: 10.1021/acs.jctc.9b00119] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, we have examined the molecular mechanisms of allosteric regulation of the ABL tyrosine kinase at the atomic level. Atomistic modeling of the ABL complexes with a panel of allosteric modulators has been performed using a combination of molecular dynamics simulations, structural residue perturbation scanning, and a novel community analysis of the residue interaction networks. Our results have indicated that allosteric inhibitors and activators may exert a differential control on allosteric signaling between the kinase binding sites and functional regions. While the inhibitor binding can strengthen the closed ABL state and induce allosteric communications directed from the allosteric pocket to the ATP binding site, the DPH activator may induce a more dynamic open form and activate allosteric couplings between the ATP and substrate binding sites. By leveraging a network-centric theoretical framework, we have introduced a novel community analysis method and global topological parameters that have unveiled the hierarchical modularity and the intercommunity bridging sites in the residue interaction network. We have found that allosteric functional hotspots responsible for the kinase regulation may serve the intermodular bridges in the global interaction network. The central conclusion from this analysis is that the regulatory switch centers play a fundamental role in the modular network organization of ABL as the unique intercommunity bridges that connect the SH2 and SH3 domains with the catalytic core into a functional kinase assembly. The hierarchy of network organization in the ABL regulatory complexes may allow for the synergistic action of dense intercommunity links required for the robust signal transfer in the catalytic core and sparse network bridges acting as the regulatory control points that orchestrate allosteric transitions between the inhibited and active kinase forms.
Collapse
Affiliation(s)
- Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology , Chapman University , One University Drive , Orange , California 92866 , United States
| | - Gennady M Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology , Chapman University , One University Drive , Orange , California 92866 , United States.,Department of Biomedical and Pharmaceutical Sciences , Chapman University School of Pharmacy , Irvine , California 92618 , United States
| |
Collapse
|
43
|
Lu S, He X, Ni D, Zhang J. Allosteric Modulator Discovery: From Serendipity to Structure-Based Design. J Med Chem 2019; 62:6405-6421. [PMID: 30817889 DOI: 10.1021/acs.jmedchem.8b01749] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Xinheng He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Duan Ni
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
44
|
Dissecting a novel allosteric mechanism of cruzain: A computer-aided approach. PLoS One 2019; 14:e0211227. [PMID: 30682119 PMCID: PMC6347273 DOI: 10.1371/journal.pone.0211227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/09/2019] [Indexed: 02/08/2023] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a neglected infection affecting millions of people in tropical regions. There are several chemotherapeutic agents for the treatment of this disease, but most of them are highly toxic and generate resistance. Currently, the development of allosteric inhibitors constitutes a promising research field, since it can improve the accessibility to more selective and less toxic medicines. To date, the allosteric drugs prediction is a state-of-the-art topic in rational structure-based computational design. In this work, a simulation strategy was developed for computational discovery of allosteric inhibitors, and it was applied to cruzain, a promising target and the major cysteine protease of T. cruzi. Molecular dynamics simulations, binding free energy calculations and network-based modelling of residue interactions were combined to characterize and compare molecular distinctive features of the apo form and the cruzain-allosteric inhibitor complexes. By using geometry-based criteria on trajectory snapshots, we predicted two main allosteric sites suitable for drug targeting. The results suggest dissimilar mechanisms exerted by the same allosteric site when binding different potential allosteric inhibitors. Finally, we identified the residues involved in suboptimal paths linking the identified site and the orthosteric site. The present study constitutes the first approximation to the design of cruzain allosteric inhibitors and may serve for future pharmacological intervention. Here, no major effects on active site structure were observed due to compound binding (modification of distance and angles between catalytic residues), which indicates that allosteric regulation in cruzain might be mediated via alterations of its dynamical properties similarly to allosteric inhibition of human cathepsin K (HCatK). The current findings are particularly relevant for the design of allosteric modulators of papain-like cysteine proteases.
Collapse
|
45
|
Rejwan Ali M, Sadoqi M, Boutajangout A, Mezei M. Virtual screening of a natural compound library at orthosteric and allosteric binding sites of the neurotensin receptor. J Biomol Struct Dyn 2019; 37:4494-4506. [DOI: 10.1080/07391102.2018.1552200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- M. Rejwan Ali
- Department of Physics, St John’s University, Queens, NY, USA
| | - Mostafa Sadoqi
- Department of Physics, St John’s University, Queens, NY, USA
- Department of Pharmaceutical Sciences, St John’s University, Queens, NY, USA
| | - Allal Boutajangout
- Department of Neurology and Neuroscience & Physiology and Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
46
|
|
47
|
Yu M, Chen Y, Wang ZL, Liu Z. Fluctuation correlations as major determinants of structure- and dynamics-driven allosteric effects. Phys Chem Chem Phys 2019; 21:5200-5214. [DOI: 10.1039/c8cp07859a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Both structure- and dynamics-driven allosteric effects are determined by the correlation of distance fluctuations in proteins.
Collapse
Affiliation(s)
- Miao Yu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Yixin Chen
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Zi-Le Wang
- Department of Physics
- Tsinghua University
- Beijing 100084
- China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
- Center for Quantitative Biology
| |
Collapse
|
48
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
49
|
He X, Ni D, Lu S, Zhang J. Characteristics of Allosteric Proteins, Sites, and Modulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:107-139. [DOI: 10.1007/978-981-13-8719-7_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Hong L, Vani BP, Thiede EH, Rust MJ, Dinner AR. Molecular dynamics simulations of nucleotide release from the circadian clock protein KaiC reveal atomic-resolution functional insights. Proc Natl Acad Sci U S A 2018; 115:E11475-E11484. [PMID: 30442665 PMCID: PMC6298084 DOI: 10.1073/pnas.1812555115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The cyanobacterial clock proteins KaiA, KaiB, and KaiC form a powerful system to study the biophysical basis of circadian rhythms, because an in vitro mixture of the three proteins is sufficient to generate a robust ∼24-h rhythm in the phosphorylation of KaiC. The nucleotide-bound states of KaiC critically affect both KaiB binding to the N-terminal domain (CI) and the phosphotransfer reactions that (de)phosphorylate the KaiC C-terminal domain (CII). However, the nucleotide exchange pathways associated with transitions among these states are poorly understood. In this study, we integrate recent advances in molecular dynamics methods to elucidate the structure and energetics of the pathway for Mg·ADP release from the CII domain. We find that nucleotide release is coupled to large-scale conformational changes in the KaiC hexamer. Solvating the nucleotide requires widening the subunit interface leading to the active site, which is linked to extension of the A-loop, a structure implicated in KaiA binding. These results provide a molecular hypothesis for how KaiA acts as a nucleotide exchange factor. In turn, structural parallels between the CI and CII domains suggest a mechanism for allosteric coupling between the domains. We relate our results to structures observed for other hexameric ATPases, which perform diverse functions.
Collapse
Affiliation(s)
- Lu Hong
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL 60637
| | - Bodhi P Vani
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Erik H Thiede
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637;
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637
| | - Aaron R Dinner
- Department of Chemistry, The University of Chicago, Chicago, IL 60637;
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
- James Franck Institute, The University of Chicago, Chicago, IL 60637
| |
Collapse
|