1
|
Chamorro Y, Betz LT, Philipsen A, Kambeitz J, Ettinger U. The Eyes Have It: A Meta-analysis of Oculomotor Inhibition in Attention-Deficit/Hyperactivity Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1090-1102. [PMID: 34052459 DOI: 10.1016/j.bpsc.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Diminished inhibitory control is one of the main characteristics of attention-deficit/hyperactivity disorder (ADHD), and impairments in oculomotor inhibition have been proposed as a potential biomarker of the disorder. The present meta-analysis summarizes the effects reported in studies comparing oculomotor inhibition in ADHD patients and healthy control subjects. METHODS Inhibitory outcomes were derived from oculomotor experimental paradigms including the antisaccade (AS), memory-guided saccade, and prolonged fixation tasks. Temporal and spatial measures were also extracted from these tasks and from visually guided saccade tasks as secondary outcomes. Data were available from k = 31 studies (N = 1567 participants). Summary effect sizes were computed using random-effects models and a restricted maximum-likelihood estimator. RESULTS Among inhibitory outcomes, direction errors in AS, after correcting for publication bias, showed a moderate effect and large between-study heterogeneity (k = 18, n = 739, g = 0.57, 95% confidence interval [CI] [0.27, 0.88], I2= 74%); anticipatory saccades in memory-guided saccade showed a large effect and low heterogeneity (k = 11, n = 487; g = 0.86, 95% CI [0.64, 1.08], I2 = 17.7%); and saccades during prolonged fixation evidenced large effect size and heterogeneity (k = 6, n = 325 g = 1.11, 95% CI [0.56, 1.65], I2 = 79.1%) partially related to age. Among secondary outcomes, saccadic reaction time in AS (k = 22, n = 932, g = 0.34, 95% CI [0.06, 0.63], I2 = 53.12%) and coefficient of variability in visually guided saccade (k = 5, n = 282, g = 0.53, 95% CI [0.28, 0.78], I2 = 0.01%) indicated significant effects with small to moderate effects sizes. CONCLUSIONS ADHD groups commit more oculomotor inhibition failures than control groups. The substantial effects support the conclusion that oculomotor disinhibition is a relevant ADHD-related mechanism. Moderate effects observed in saccadic reaction time variability suggest that fluctuant performance in oculomotor tasks is another relevant characteristic of ADHD.
Collapse
Affiliation(s)
- Yaira Chamorro
- Institute of Neurosciences, University of Guadalajara, Guadalajara, Mexico.
| | - Linda T Betz
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | | |
Collapse
|
2
|
Frischkorn GT, Wilhelm O, Oberauer K. Process-oriented intelligence research: A review from the cognitive perspective. INTELLIGENCE 2022. [DOI: 10.1016/j.intell.2022.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Faßbender K, Bey K, Lippold JV, Aslan B, Hurlemann R, Ettinger U. GABAergic modulation of performance in response inhibition and interference control tasks. J Psychopharmacol 2021; 35:1496-1509. [PMID: 34278874 DOI: 10.1177/02698811211032440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Inhibitory control is a crucial executive function with high relevance to mental and physical well-being. However, there are still unanswered questions regarding its neural mechanisms, including the role of the major inhibitory neurotransmitter, γ-aminobutyric acid (GABA). AIMS This study examined the effects of lorazepam (0.5 mg and 1 mg), a positive allosteric modulator at the GABAA receptor, on response inhibition and interference control. We also explored the heterogeneity of inhibitory control and calculated delta plots to explore whether lorazepam affects the gradual build-up of inhibition and activation over time. METHODS N = 50 healthy participants performed antisaccade, Eriksen flanker and Simon tasks in a within-subjects, placebo-controlled, double-blind randomized design. RESULTS Lorazepam increased reaction time (RT) and error rates dose dependently in all tasks (p ⩽ 0.005). In the antisaccade and Simon tasks, lorazepam increased congruency effects for error rate (p ⩽ 0.029) but not RT (p ⩾ 0.587). In the Eriksen flanker task, both congruency effects were increased by the drug (p ⩽ 0.031). Delta plots did not reflect drug-induced changes in inhibition and activation over time. Delta plots for RT in the Simon task were negative-going, as expected, whereas those for the antisaccade and flanker tasks were positive-going. CONCLUSIONS This study provides evidence for GABAergic involvement in performance on response inhibition and interference control tasks. Furthermore, our findings highlight the diversity of the broader construct of inhibitory control while also pointing out similarities between different inhibitory control tasks. In contrast to RT and error rates, the cognitive processes indexed by delta plots may not be sensitive to GABAergic modulation.
Collapse
Affiliation(s)
- Kaja Faßbender
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | | | - Behrem Aslan
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | | |
Collapse
|
4
|
Frässle S, Aponte EA, Bollmann S, Brodersen KH, Do CT, Harrison OK, Harrison SJ, Heinzle J, Iglesias S, Kasper L, Lomakina EI, Mathys C, Müller-Schrader M, Pereira I, Petzschner FH, Raman S, Schöbi D, Toussaint B, Weber LA, Yao Y, Stephan KE. TAPAS: An Open-Source Software Package for Translational Neuromodeling and Computational Psychiatry. Front Psychiatry 2021; 12:680811. [PMID: 34149484 PMCID: PMC8206497 DOI: 10.3389/fpsyt.2021.680811] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Abstract
Psychiatry faces fundamental challenges with regard to mechanistically guided differential diagnosis, as well as prediction of clinical trajectories and treatment response of individual patients. This has motivated the genesis of two closely intertwined fields: (i) Translational Neuromodeling (TN), which develops "computational assays" for inferring patient-specific disease processes from neuroimaging, electrophysiological, and behavioral data; and (ii) Computational Psychiatry (CP), with the goal of incorporating computational assays into clinical decision making in everyday practice. In order to serve as objective and reliable tools for clinical routine, computational assays require end-to-end pipelines from raw data (input) to clinically useful information (output). While these are yet to be established in clinical practice, individual components of this general end-to-end pipeline are being developed and made openly available for community use. In this paper, we present the Translational Algorithms for Psychiatry-Advancing Science (TAPAS) software package, an open-source collection of building blocks for computational assays in psychiatry. Collectively, the tools in TAPAS presently cover several important aspects of the desired end-to-end pipeline, including: (i) tailored experimental designs and optimization of measurement strategy prior to data acquisition, (ii) quality control during data acquisition, and (iii) artifact correction, statistical inference, and clinical application after data acquisition. Here, we review the different tools within TAPAS and illustrate how these may help provide a deeper understanding of neural and cognitive mechanisms of disease, with the ultimate goal of establishing automatized pipelines for predictions about individual patients. We hope that the openly available tools in TAPAS will contribute to the further development of TN/CP and facilitate the translation of advances in computational neuroscience into clinically relevant computational assays.
Collapse
Affiliation(s)
- Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Eduardo A. Aponte
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Saskia Bollmann
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Charlestown, MA, United States
| | - Kay H. Brodersen
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Cao T. Do
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Olivia K. Harrison
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Samuel J. Harrison
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jakob Heinzle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sandra Iglesias
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Lars Kasper
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Techna Institute, University Health Network, Toronto, ON, Canada
| | - Ekaterina I. Lomakina
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Christoph Mathys
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Interacting Minds Center, Aarhus University, Aarhus, Denmark
| | - Matthias Müller-Schrader
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Inês Pereira
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Frederike H. Petzschner
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sudhir Raman
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Dario Schöbi
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Birte Toussaint
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Lilian A. Weber
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Yu Yao
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Klaas E. Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Keidel K, Rramani Q, Weber B, Murawski C, Ettinger U. Individual Differences in Intertemporal Choice. Front Psychol 2021; 12:643670. [PMID: 33935897 PMCID: PMC8085593 DOI: 10.3389/fpsyg.2021.643670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 11/23/2022] Open
Abstract
Intertemporal choice involves deciding between smaller, sooner and larger, later rewards. People tend to prefer smaller rewards that are available earlier to larger rewards available later, a phenomenon referred to as temporal or delay discounting. Despite its ubiquity in human and non-human animals, temporal discounting is subject to considerable individual differences. Here, we provide a critical narrative review of this literature and make suggestions for future work. We conclude that temporal discounting is associated with key socio-economic and health-related variables. Regarding personality, large-scale studies have found steeper temporal discounting to be associated with higher levels of self-reported impulsivity and extraversion; however, effect sizes are small. Temporal discounting correlates negatively with future-oriented cognitive styles and inhibitory control, again with small effect sizes. There are consistent associations between steeper temporal discounting and lower intelligence, with effect sizes exceeding those of personality or cognitive variables, although socio-demographic moderator variables may play a role. Neuroimaging evidence of brain structural and functional correlates is not yet consistent, neither with regard to areas nor directions of effects. Finally, following early candidate gene studies, recent Genome Wide Association Study (GWAS) approaches have revealed the molecular genetic architecture of temporal discounting to be more complex than initially thought. Overall, the study of individual differences in temporal discounting is a maturing field that has produced some replicable findings. Effect sizes are small-to-medium, necessitating future hypothesis-driven work that prioritizes large samples with adequate power calculations. More research is also needed regarding the neural origins of individual differences in temporal discounting as well as the mediating neural mechanisms of associations of temporal discounting with personality and cognitive variables.
Collapse
Affiliation(s)
- Kristof Keidel
- Department of Psychology, University of Bonn, Bonn, Germany
- Department of Finance, The University of Melbourne, Melbourne, VIC, Australia
| | - Qëndresa Rramani
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Bernd Weber
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Carsten Murawski
- Department of Finance, The University of Melbourne, Melbourne, VIC, Australia
| | | |
Collapse
|
6
|
Aging Effects and Test-Retest Reliability of Inhibitory Control for Saccadic Eye Movements. eNeuro 2020; 7:ENEURO.0459-19.2020. [PMID: 32907833 PMCID: PMC7540934 DOI: 10.1523/eneuro.0459-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
Neuropsychological studies indicate that healthy aging is associated with a decline of inhibitory control of attentional and behavioral systems. A widely accepted measure of inhibitory control is the antisaccade task that requires both the inhibition of a reflexive saccadic response toward a visual target and the initiation of a voluntary eye movement in the opposite direction. To better understand the nature of age-related differences in inhibitory control, we evaluated antisaccade task performance in 78 younger (20-35 years) and 78 older (60-80 years) participants. In order to provide reliable estimates of inhibitory control for individual subjects, we investigated test-retest reliability of the reaction time, error rate, saccadic gain, and peak saccadic velocity and further estimated latent, not directly observable processed contributing to changes in the antisaccade task execution. The intraclass correlation coefficients (ICCs) for an older group of participants emerged as good to excellent for most of our antisaccade task measures. Furthermore, using Bayesian multivariate models, we inspected age-related differences in the performances of healthy younger and older participants. The older group demonstrated higher error rates, longer reaction times, significantly more inhibition failures, and late prosaccades as compared with young adults. The consequently lower ability of older adults to voluntarily inhibit saccadic responses has been interpreted as an indicator of age-related inhibitory control decline. Additionally, we performed a Bayesian model comparison of used computational models and concluded that the Stochastic Early Reaction, Inhibition and Late Action (SERIA) model explains our data better than PRO-Stop-Antisaccade (PROSA) that does not incorporate a late decision process.
Collapse
|
7
|
Bakhtiari S, Altinkaya A, Pack CC, Sadikot AF. The Role of the Subthalamic Nucleus in Inhibitory Control of Oculomotor Behavior in Parkinson's Disease. Sci Rep 2020; 10:5429. [PMID: 32214128 PMCID: PMC7096507 DOI: 10.1038/s41598-020-61572-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/21/2020] [Indexed: 11/25/2022] Open
Abstract
Inhibiting inappropriate actions in a context is an important part of the human cognitive repertoire, and deficiencies in this ability are common in neurological and psychiatric disorders. An anti-saccade is a simple oculomotor task that tests this ability by requiring inhibition of saccades to peripheral targets (pro-saccade) and producing voluntary eye movements toward the mirror position (anti-saccades). Previous studies provide evidence for a possible contribution from the basal ganglia in anti-saccade behavior, but the precise role of different components is still unclear. Parkinson's disease patients with implanted deep brain stimulators (DBS) in subthalamic nucleus (STN) provide a unique opportunity to investigate the role of the STN in anti-saccade behavior. Previous attempts to show the effect of STN DBS on anti-saccades have produced conflicting observations. For example, the effect of STN DBS on anti-saccade error rate is not yet clear. Part of this inconsistency may be related to differences in dopaminergic states in different studies. Here, we tested Parkinson's disease patients on anti- and pro-saccade tasks ON and OFF STN DBS, in ON and OFF dopaminergic medication states. First, STN DBS increases anti-saccade error rate while patients are OFF dopamine replacement therapy. Second, dopamine replacement therapy and STN DBS interact: L-dopa reduces the effect of STN DBS on anti-saccade error rate. Third, STN DBS induces different effects on pro- and anti-saccades in different patients. These observations provide evidence for an important role for the STN in the circuitry underlying context-dependent modulation of visuomotor action selection.
Collapse
Affiliation(s)
- Shahab Bakhtiari
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Ayca Altinkaya
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Christopher C Pack
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Abbas F Sadikot
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada.
| |
Collapse
|
8
|
Guidetti G, Guidetti R, Manfredi M, Manfredi M, Lucchetta A, Livio S. Saccades and driving. ACTA ACUST UNITED AC 2019; 39:186-196. [PMID: 31131838 PMCID: PMC6536025 DOI: 10.14639/0392-100x-2176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/14/2018] [Indexed: 11/29/2022]
Abstract
Driving is not only a physical task, but is also a mental task. Visual inputs are indispensable in scanning the road, communicating with other road users and monitoring in-vehicle devices. The probability to detect an object while driving (conspicuity) is very important for assessment of driving effectiveness, and correct choice of information relevant to the safety of driving determines the efficiency of a driver. Accordingly, eye fixation and eye movements are essential for attention and choice in decision making. Saccades are the most used and effective means of maintaining a correct fixation while driving. In order to identify the features of the most predisposed subjects at high driving performances and those of the high-level sportsmen, we used a special tool called Visual Exploration Training System. We evaluated by saccade and attentional tests various groups of ordinary drivers, past professional racing drivers, professional truck drivers and professional athletes. Males have faster reaction time compared to females and an age below 30 seems to guarantee better precision of performance and accuracy in achieving all visual targets. The effect on physical activity and sports is confirmed. The performances of the Ferrari Driver Academy (FDA) selected students who were significantly better than those of a group of aspiring students and amateur racing drivers probably thanks to individual predisposition, training and so-called ‘neural efficiency’.
Collapse
Affiliation(s)
- G Guidetti
- Vertigo Center, Poliambulatorio Chirurgico Modenese, Modena, Italy
| | - R Guidetti
- Vertigo Center, Poliambulatorio Chirurgico Modenese, Modena, Italy
| | | | - Marco Manfredi
- Vertigo Center, Poliambulatorio Chirurgico Modenese, Modena, Italy
| | | | - S Livio
- Professional Motor Coach, Modena, Italy
| |
Collapse
|
9
|
Aponte EA, Schöbi D, Stephan KE, Heinzle J. Computational Dissociation of Dopaminergic and Cholinergic Effects on Action Selection and Inhibitory Control. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:364-372. [PMID: 31952937 DOI: 10.1016/j.bpsc.2019.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/06/2019] [Accepted: 10/28/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Patients with schizophrenia make more errors than healthy subjects in the antisaccade task. In this paradigm, participants are required to inhibit a reflexive saccade to a target and to select the correct action (a saccade in the opposite direction). While the precise origin of this deficit is not clear, it has been connected to aberrant dopaminergic and cholinergic neuromodulation. METHODS To study the impact of dopamine and acetylcholine on inhibitory control and action selection, we administered two selective drugs (levodopa 200 mg/galantamine 8 mg) to healthy volunteers (N = 100) performing the antisaccade task. The computational model SERIA (stochastic early reaction, inhibition, and late action) was employed to separate the contribution of inhibitory control and action selection to empirical reaction times and error rates. RESULTS Modeling suggested that levodopa improved action selection (at the cost of increased reaction times) but did not have a significant effect on inhibitory control. By contrast, according to our model, galantamine affected inhibitory control in a dose-dependent fashion, reducing inhibition failures at low doses and increasing them at higher levels. These effects were sufficiently specific that the computational analysis allowed for identifying the drug administered to an individual with 70% accuracy. CONCLUSIONS Our results do not support the hypothesis that elevated tonic dopamine strongly impairs inhibitory control. Rather, levodopa improved the ability to select correct actions. However, inhibitory control was modulated by cholinergic drugs. This approach may provide a starting point for future computational assays that differentiate neuromodulatory abnormalities in heterogeneous diseases like schizophrenia.
Collapse
Affiliation(s)
- Eduardo A Aponte
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Dario Schöbi
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Klaas E Stephan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland; Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jakob Heinzle
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Salinas E, Steinberg BR, Sussman LA, Fry SM, Hauser CK, Anderson DD, Stanford TR. Voluntary and involuntary contributions to perceptually guided saccadic choices resolved with millisecond precision. eLife 2019; 8:46359. [PMID: 31225794 PMCID: PMC6645714 DOI: 10.7554/elife.46359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
In the antisaccade task, which is considered a sensitive assay of cognitive function, a salient visual cue appears and the participant must look away from it. This requires sensory, motor-planning, and cognitive neural mechanisms, but what are their unique contributions to performance, and when exactly are they engaged? Here, by manipulating task urgency, we generate a psychophysical curve that tracks the evolution of the saccadic choice process with millisecond precision, and resolve the distinct contributions of reflexive (exogenous) and voluntary (endogenous) perceptual mechanisms to antisaccade performance over time. Both progress extremely rapidly, the former driving the eyes toward the cue early on (∼100 ms after cue onset) and the latter directing them away from the cue ∼40 ms later. The behavioral and modeling results provide a detailed, dynamical characterization of attentional and oculomotor capture that is not only qualitatively consistent across participants, but also indicative of their individual perceptual capacities.
Collapse
Affiliation(s)
- Emilio Salinas
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Benjamin R Steinberg
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Lauren A Sussman
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Sophia M Fry
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Christopher K Hauser
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Denise D Anderson
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| |
Collapse
|
11
|
Aponte EA, Stephan KE, Heinzle J. Switch costs in inhibitory control and voluntary behaviour: A computational study of the antisaccade task. Eur J Neurosci 2019; 50:3205-3220. [PMID: 31081574 DOI: 10.1111/ejn.14435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/25/2019] [Accepted: 05/06/2019] [Indexed: 11/28/2022]
Abstract
An integral aspect of human cognition is the ability to inhibit stimulus-driven, habitual responses, in favour of complex, voluntary actions. In addition, humans can also alternate between different tasks. This comes at the cost of degraded performance when compared to repeating the same task, a phenomenon called the "task-switch cost." While task switching and inhibitory control have been studied extensively, the interaction between them has received relatively little attention. Here, we used the SERIA model, a computational model of antisaccade behaviour, to draw a bridge between them. We investigated task switching in two versions of the mixed antisaccade task, in which participants are cued to saccade either in the same or in the opposite direction to a peripheral stimulus. SERIA revealed that stopping a habitual action leads to increased inhibitory control that persists onto the next trial, independently of the upcoming trial type. Moreover, switching between tasks induces slower and less accurate voluntary responses compared to repeat trials. However, this only occurs when participants lack the time to prepare the correct response. Altogether, SERIA demonstrates that there is a reconfiguration cost associated with switching between voluntary actions. In addition, the enhanced inhibition that follows antisaccade but not prosaccade trials explains asymmetric switch costs. In conclusion, SERIA offers a novel model of task switching that unifies previous theoretical accounts by distinguishing between inhibitory control and voluntary action generation and could help explain similar phenomena in paradigms beyond the antisaccade task.
Collapse
Affiliation(s)
- Eduardo A Aponte
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Klaas E Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.,Wellcome Centre for Human Neuroimaging, University College London, London, UK.,Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jakob Heinzle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Coe BC, Trappenberg T, Munoz DP. Modeling Saccadic Action Selection: Cortical and Basal Ganglia Signals Coalesce in the Superior Colliculus. Front Syst Neurosci 2019; 13:3. [PMID: 30814938 PMCID: PMC6381059 DOI: 10.3389/fnsys.2019.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/10/2019] [Indexed: 11/13/2022] Open
Abstract
The distributed nature of information processing in the brain creates a complex variety of decision making behavior. Likewise, computational models of saccadic decision making behavior are numerous and diverse. Here we present a generative model of saccadic action selection in the context of competitive decision making in the superior colliculus (SC) in order to investigate how independent neural signals may converge to interact and guide saccade selection, and to test if systematic variations can better replicate the variability in responses that are part of normal human behavior. The model was tasked with performing pro- and anti-saccades in order to replicate specific attributes of healthy human saccade behavior. Participants (ages 18-39) were instructed to either look toward (pro-saccade, well-practiced automated response) or away from (anti-saccade, combination of inhibitory and voluntary responses) a peripheral visual stimulus. They generated express and regular latency saccades in the pro-saccade task. In the anti-saccade task, correct reaction times were longer and participants occasionally looked at the stimulus (direction error) at either express or regular latencies. To gain a better understanding of the underlying neural processes that lead to saccadic action selection and response inhibition, we implemented 8 inputs inspired by systems neuroscience. These inputs reflected known sensory, automated, voluntary, and inhibitory components of cortical and basal ganglia activity that coalesces in the intermediate layers of the SC (SCi). The model produced bimodal reaction time distributions, where express and regular latency saccades had distinct modes, for both correct pro-saccades and direction errors in the anti-saccade task. Importantly, express and regular latency direction errors resulted from interactions of different inputs in the model. Express latency direction errors were due to a lack of pre-emptive fixation and inhibitory activity, which aloud sensory and automated inputs to initiate a stimulus-driven saccade. Regular latency errors occurred when the automated motor signals were stronger than the voluntary motor signals. While previous models have emulated fewer aspects of these behavioral findings, the focus of the simulations here is on the interaction of a wide variety of physiologically-based information integration producing a richer set of natural behavioral variability.
Collapse
Affiliation(s)
- Brian C. Coe
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | | | - Douglas P. Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
13
|
Aponte EA, Tschan DG, Stephan KE, Heinzle J. Inhibition failures and late errors in the antisaccade task: influence of cue delay. J Neurophysiol 2018; 120:3001-3016. [PMID: 30110237 DOI: 10.1152/jn.00240.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the antisaccade task participants are required to saccade in the opposite direction of a peripheral visual cue (PVC). This paradigm is often used to investigate inhibition of reflexive responses as well as voluntary response generation. However, it is not clear to what extent different versions of this task probe the same underlying processes. Here, we explored with the Stochastic Early Reaction, Inhibition, and late Action (SERIA) model how the delay between task cue and PVC affects reaction time (RT) and error rate (ER) when pro- and antisaccade trials are randomly interleaved. Specifically, we contrasted a condition in which the task cue was presented before the PVC with a condition in which the PVC served also as task cue. Summary statistics indicate that ERs and RTs are reduced and contextual effects largely removed when the task is signaled before the PVC appears. The SERIA model accounts for RT and ER in both conditions and better so than other candidate models. Modeling demonstrates that voluntary pro- and antisaccades are frequent in both conditions. Moreover, early task cue presentation results in better control of reflexive saccades, leading to fewer fast antisaccade errors and more rapid correct prosaccades. Finally, high-latency errors are shown to be prevalent in both conditions. In summary, SERIA provides an explanation for the differences in the delayed and nondelayed antisaccade task. NEW & NOTEWORTHY In this article, we use a computational model to study the mixed antisaccade task. We contrast two conditions in which the task cue is presented either before or concurrently with the saccadic target. Modeling provides a highly accurate account of participants' behavior and demonstrates that a significant number of prosaccades are voluntary actions. Moreover, we provide a detailed quantitative analysis of the types of error that occur in pro- and antisaccade trials.
Collapse
Affiliation(s)
- Eduardo A Aponte
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich . Zurich , Switzerland
| | - Dominic G Tschan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich . Zurich , Switzerland
| | - Klaas E Stephan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich . Zurich , Switzerland.,Wellcome Centre for Human Neuroimaging, University College London . London , United Kingdom.,Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jakob Heinzle
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich . Zurich , Switzerland
| |
Collapse
|