1
|
Seasons GM, Pellow C, Kuipers HF, Pike GB. Ultrasound and neuroinflammation: immune modulation via the heat shock response. Theranostics 2024; 14:3150-3177. [PMID: 38855178 PMCID: PMC11155413 DOI: 10.7150/thno.96270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Current pharmacological therapeutic approaches targeting chronic inflammation exhibit transient efficacy, often with adverse effects, limiting their widespread use - especially in the context of neuroinflammation. Effective interventions require the consideration of homeostatic function, pathway dysregulation, and pleiotropic effects when evaluating therapeutic targets. Signalling molecules have multiple functions dependent on the immune context, and this complexity results in therapeutics targeting a single signalling molecule often failing in clinical translation. Additionally, the administration of non-physiologic levels of neurotrophic or anti-inflammatory factors can alter endogenous signalling, resulting in unanticipated effects. Exacerbating these challenges, the central nervous system (CNS) is isolated by the blood brain barrier (BBB), restricting the infiltration of many pharmaceutical compounds into the brain tissue. Consequently, there has been marked interest in therapeutic techniques capable of modulating the immune response in a pleiotropic manner; ultrasound remains on this frontier. While ultrasound has been used therapeutically in peripheral tissues - accelerating healing in wounds, bone fractures, and reducing inflammation - it is only recently that it has been applied to the CNS. The transcranial application of low intensity pulsed ultrasound (LIPUS) has successfully mitigated neuroinflammation in vivo, in models of neurodegenerative disease across a broad spectrum of ultrasound parameters. To date, the underlying biological effects and signalling pathways modulated by ultrasound are poorly understood, with a diverse array of reported molecules implicated. The distributed nature of the beneficial response to LIPUS implies the involvement of an, as yet, undetermined upstream signalling pathway, homologous to the protective effect of febrile range hyperthermia in chronic inflammation. As such, we review the heat shock response (HSR), a protective signalling pathway activated by thermal and mechanical stress, as the possible upstream regulator of the anti-inflammatory effects of ultrasound.
Collapse
Affiliation(s)
- Graham M. Seasons
- Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| | - Carly Pellow
- Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| | - Hedwich F. Kuipers
- Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, University of Calgary, Alberta, T2N 1N4, Canada
| | - G. Bruce Pike
- Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
2
|
Downton P, Bagnall JS, England H, Spiller DG, Humphreys NE, Jackson DA, Paszek P, White MRH, Adamson AD. Overexpression of IκB⍺ modulates NF-κB activation of inflammatory target gene expression. Front Mol Biosci 2023; 10:1187187. [PMID: 37228587 PMCID: PMC10203502 DOI: 10.3389/fmolb.2023.1187187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Cells respond to inflammatory stimuli such as cytokines by activation of the nuclear factor-κB (NF-κB) signalling pathway, resulting in oscillatory translocation of the transcription factor p65 between nucleus and cytoplasm in some cell types. We investigate the relationship between p65 and inhibitor-κB⍺ (IκBα) protein levels and dynamic properties of the system, and how this interaction impacts on the expression of key inflammatory genes. Using bacterial artificial chromosomes, we developed new cell models of IκB⍺-eGFP protein overexpression in a pseudo-native genomic context. We find that cells with high levels of the negative regulator IκBα remain responsive to inflammatory stimuli and maintain dynamics for both p65 and IκBα. In contrast, canonical target gene expression is dramatically reduced by overexpression of IκBα, but can be partially rescued by overexpression of p65. Treatment with leptomycin B to promote nuclear accumulation of IκB⍺ also suppresses canonical target gene expression, suggesting a mechanism in which nuclear IκB⍺ accumulation prevents productive p65 interaction with promoter binding sites. This causes reduced target promoter binding and gene transcription, which we validate by chromatin immunoprecipitation and in primary cells. Overall, we show how inflammatory gene transcription is modulated by the expression levels of both IκB⍺ and p65. This results in an anti-inflammatory effect on transcription, demonstrating a broad mechanism to modulate the strength of inflammatory response.
Collapse
Affiliation(s)
- Polly Downton
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - James S. Bagnall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Hazel England
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David G. Spiller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Neil E. Humphreys
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Dean A. Jackson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Pawel Paszek
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Michael R. H. White
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Antony D. Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Kardynska M, Kogut D, Pacholczyk M, Smieja J. Mathematical modeling of regulatory networks of intracellular processes - Aims and selected methods. Comput Struct Biotechnol J 2023; 21:1523-1532. [PMID: 36851915 PMCID: PMC9958294 DOI: 10.1016/j.csbj.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Regulatory networks structure and signaling pathways dynamics are uncovered in time- and resource consuming experimental work. However, it is increasingly supported by modeling, analytical and computational techniques as well as discrete mathematics and artificial intelligence applied to to extract knowledge from existing databases. This review is focused on mathematical modeling used to analyze dynamics and robustness of these networks. This paper presents a review of selected modeling methods that facilitate advances in molecular biology.
Collapse
Affiliation(s)
- Malgorzata Kardynska
- Dept. of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Gliwice, Poland
| | - Daria Kogut
- Dept. of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Gliwice, Poland.,Dept. of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Marcin Pacholczyk
- Dept. of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Gliwice, Poland.,Dept. of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Jaroslaw Smieja
- Dept. of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Gliwice, Poland.,Dept. of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
4
|
Kalliara E, Kardynska M, Bagnall J, Spiller DG, Müller W, Ruckerl D, Śmieja J, Biswas SK, Paszek P. Post-transcriptional regulatory feedback encodes JAK-STAT signal memory of interferon stimulation. Front Immunol 2022; 13:947213. [PMID: 36238296 PMCID: PMC9552616 DOI: 10.3389/fimmu.2022.947213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Immune cells fine tune their responses to infection and inflammatory cues. Here, using live-cell confocal microscopy and mathematical modelling, we investigate interferon-induced JAK-STAT signalling in innate immune macrophages. We demonstrate that transient exposure to IFN-γ stimulation induces a long-term desensitisation of STAT1 signalling and gene expression responses, revealing a dose- and time-dependent regulatory feedback that controls JAK-STAT responses upon re-exposure to stimulus. We show that IFN-α/β1 elicit different level of desensitisation from IFN-γ, where cells refractory to IFN-α/β1 are sensitive to IFN-γ, but not vice versa. We experimentally demonstrate that the underlying feedback mechanism involves regulation of STAT1 phosphorylation but is independent of new mRNA synthesis and cognate receptor expression. A new feedback model of the protein tyrosine phosphatase activity recapitulates experimental data and demonstrates JAK-STAT network’s ability to decode relative changes of dose, timing, and type of temporal interferon stimulation. These findings reveal that STAT desensitisation renders cells with signalling memory of type I and II interferon stimulation, which in the future may improve administration of interferon therapy.
Collapse
Affiliation(s)
- Eirini Kalliara
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Malgorzata Kardynska
- Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Zabrze, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - James Bagnall
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David G. Spiller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Werner Müller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Dominik Ruckerl
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jarosław Śmieja
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Subhra K. Biswas
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- *Correspondence: Pawel Paszek,
| |
Collapse
|
5
|
HSF1 Can Prevent Inflammation following Heat Shock by Inhibiting the Excessive Activation of the ATF3 and JUN& FOS Genes. Cells 2022; 11:cells11162510. [PMID: 36010586 PMCID: PMC9406379 DOI: 10.3390/cells11162510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Heat Shock Factor 1 (HSF1), a transcription factor frequently overexpressed in cancer, is activated by proteotoxic agents and participates in the regulation of cellular stress response. To investigate how HSF1 level affects the response to proteotoxic stress, we integrated data from functional genomics analyses performed in MCF7 breast adenocarcinoma cells. Although the general transcriptional response to heat shock was impaired due to HSF1 deficiency (mainly chaperone expression was inhibited), a set of genes was identified, including ATF3 and certain FOS and JUN family members, whose stress-induced activation was stronger and persisted longer than in cells with normal HSF1 levels. These genes were direct HSF1 targets, suggesting a dual (activatory/suppressory) role for HSF1. Moreover, we found that heat shock-induced inflammatory response could be stronger in HSF1-deficient cells. Analyses of The Cancer Genome Atlas data indicated that higher ATF3, FOS, and FOSB expression levels correlated with low HSF1 levels in estrogen receptor-positive breast cancer, reflecting higher heat shock-induced expression of these genes in HSF1-deficient MCF7 cells observed in vitro. However, differences between the analyzed cancer types were noted in the regulation of HSF1-dependent genes, indicating the presence of cell-type-specific mechanisms. Nevertheless, our data indicate the existence of the heat shock-induced network of transcription factors (associated with the activation of TNFα signaling) which includes HSF1. Independent of its chaperone-mediated cytoprotective function, HSF1 may be involved in the regulation of this network but prevents its overactivation in some cells during stress.
Collapse
|
6
|
Kardynska M, Smieja J, Paszek P, Puszynski K. Application of Sensitivity Analysis to Discover Potential Molecular Drug Targets. Int J Mol Sci 2022; 23:6604. [PMID: 35743048 PMCID: PMC9223434 DOI: 10.3390/ijms23126604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Mathematical modeling of signaling pathways and regulatory networks has been supporting experimental research for some time now. Sensitivity analysis, aimed at finding model parameters whose changes yield significantly altered cellular responses, is an important part of modeling work. However, sensitivity methods are often directly transplanted from analysis of technical systems, and thus, they may not serve the purposes of analysis of biological systems. This paper presents a novel sensitivity analysis method that is particularly suited to the task of searching for potential molecular drug targets in signaling pathways. Using two sample models of pathways, p53/Mdm2 regulatory module and IFN-β-induced JAK/STAT signaling pathway, we show that the method leads to biologically relevant conclusions, identifying processes suitable for targeted pharmacological inhibition, represented by the reduction of kinetic parameter values. That, in turn, facilitates subsequent search for active drug components.
Collapse
Affiliation(s)
- Malgorzata Kardynska
- Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, 41-800 Zabrze, Poland;
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Jaroslaw Smieja
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| | - Krzysztof Puszynski
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
7
|
Paszek A, Kardyńska M, Bagnall J, Śmieja J, Spiller DG, Widłak P, Kimmel M, Widlak W, Paszek P. Heat shock response regulates stimulus-specificity and sensitivity of the pro-inflammatory NF-κB signalling. Cell Commun Signal 2020; 18:77. [PMID: 32448393 PMCID: PMC7245923 DOI: 10.1186/s12964-020-00583-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Ability to adapt to temperature changes trough the Heat Shock Response (HSR) pathways is one of the most fundamental and clinically relevant cellular response systems. Heat Shock (HS) affects the signalling and gene expression responses of the Nuclear Factor κB (NF-κB) transcription factor, a critical regulator of proliferation and inflammation, however, our quantitative understanding of how cells sense and adapt to temperature changes is limited. METHODS We used live-cell time-lapse microscopy and mathematical modelling to understand the signalling of the NF-κB system in the human MCF7 breast adenocarcinoma cells in response to pro-inflammatory Interleukin 1β (IL1β) and Tumour Necrosis Factor α (TNFα) cytokines, following exposure to a 37-43 °C range of physiological and clinical temperatures. RESULTS We show that exposure to 43 °C 1 h HS inhibits the immediate NF-κB signalling response to TNFα and IL1β stimulation although uptake of cytokines is not impaired. Within 4 h after HS treatment IL1β-induced NF-κB responses return to normal levels, but the recovery of the TNFα-induced responses is still affected. Using siRNA knock-down of Heat Shock Factor 1 (HSF1) we show that this stimulus-specificity is conferred via the Inhibitory κB kinase (IKK) signalosome where HSF1-dependent feedback regulates TNFα, but not IL1β-mediated IKK recovery post HS. Furthermore, we demonstrate that through the temperature-dependent denaturation and recovery of IKK, TNFα and IL1β-mediated signalling exhibit different temperature sensitivity and adaptation to repeated HS when exposed to a 37-43 °C temperature range. Specifically, IL1β-mediated NF-κB responses are more robust to temperature changes in comparison to those induced by TNFα treatment. CONCLUSIONS We demonstrate that the kinetics of the NF-κB system following temperature stress is cytokine specific and exhibit differential adaptation to temperature changes. We propose that this differential temperature sensitivity is mediated via the IKK signalosome, which acts as a bona fide temperature sensor trough the HSR cross-talk. This novel quantitative understanding of NF-κB and HSR interactions is fundamentally important for the potential optimization of therapeutic hyperthermia protocols. Video Abstract.
Collapse
Affiliation(s)
- Anna Paszek
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
- System Microscopy Centre, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Małgorzata Kardyńska
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - James Bagnall
- System Microscopy Centre, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jarosław Śmieja
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - David G. Spiller
- System Microscopy Centre, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Piotr Widłak
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Marek Kimmel
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
- Departments of Statistics and Bioengineering, Rice University, Houston, TX USA
| | - Wieslawa Widlak
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Pawel Paszek
- System Microscopy Centre, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
8
|
Su T, Li F, Guan J, Liu L, Huang P, Wang Y, Qi X, Liu Z, Lu L, Wang D. Artemisinin and its derivatives prevent Helicobacter pylori-induced gastric carcinogenesis via inhibition of NF-κB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:152968. [PMID: 31280140 DOI: 10.1016/j.phymed.2019.152968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Gastric cancer has a high morbidity and is a leading cause of cancer-related mortality worldwide. Helicobacter pylori (H. pylori) infection is commonly found in the early stage of gastric cancer pathogenesis, which induces chronic gastritis. Artemisinin (ART) and its derivatives (ARTS, artesunate and DHA, dihydroartemisinin), a new class of potent antimalarials, have been reported to exert both preventive and anti-gastric cancer effects. However, the underlying mechanisms of the chemopreventive effects of ART and its derivatives in H. pylori infection induced-gastric cancer are not fully elucidated. PURPOSE We investigated the effects of H. pylori infection in gastric cancer; and the preventive mechanisms of ART, ARTS and DHA. METHODS The H. pylori growth was determined by the broth macro-dilution method, and its adhesion to gastric cancer cells was evaluated by using the urease assay. The protein and mRNA levels, reactive oxygen species (ROS) production, as well as the production of inflammatory cytokines were evaluated by Western blot, real-time PCR, flow cytometry and ELISA, respectively. Moreover, an in vivo MNU (N-methyl-N-nitroso-urea) and H. pylori-induced gastric adenocarcinoma mouse model was established for the investigation of the cancer preventive effects of ART and its derivaties, and the underlying mechanisms of action. RESULTS ART, DHA and ARTS inhibited the growth of H. pylori and gastric cancer cells,suppressed H. pylori adhesion to the gastric cancer cells, and reduced the H. pylori-enhanced ROS production. Moreover, ART, DHA and ARTS significantly reduced tumor incidence, number of tumor nodules and tumor size in the mouse model. Among these three compounds, DHA exerted the most potent chemopreventive effect. Mechanistic studies showed that ART and its derivatives potently inhibited the NF-κB activation. CONCLUSION ART, DHA and ARTS have potent preventive effects in H. pylori-induced gastric carcinogenesis. These effects are, at least in part, attributed to the inhibition of NF-κB signaling pathway. Our findings provide a molecular justification of using ART and its derivatives for the prevention and treatment of gastric cancer.
Collapse
Key Words
- ARTS, artesunate
- Abbreviations: ART, artemisinin
- Artemisinin
- Artesunate
- CFU, colony forming units
- COX-2, cyclooxygenase-2
- DHA, dehydroartemisinin
- DMSO, dimethyl sulfoxide
- Dihydroartemisinin
- ELISA, enzyme-linked immunosorbent assay
- Gastric cancer
- Helicobacter pylori
- IARC, International Agency for Research on Cancer
- IL-8, interleukin-8
- MNU, N-methyl-N-nitroso-urea
- MOI, multiplicity of infection
- NF-κB signaling
- NF-κB, nuclear factor-κB
- PBS, phosphate buffer solution
- ROS, reactive oxygen species
- TNF-α, tumor necrosis factor-α
Collapse
Affiliation(s)
- Tao Su
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fangyuan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiaji Guan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Linxin Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ping Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhongqiu Liu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Shunde, Guangdong, China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Linlin Lu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Shunde, Guangdong, China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Dawei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Shunde, Guangdong, China.
| |
Collapse
|
9
|
Papoutsopoulou S, Burkitt MD, Bergey F, England H, Hough R, Schmidt L, Spiller DG, White MHR, Paszek P, Jackson DA, Martins Dos Santos VAP, Sellge G, Pritchard DM, Campbell BJ, Müller W, Probert CS. Macrophage-Specific NF-κB Activation Dynamics Can Segregate Inflammatory Bowel Disease Patients. Front Immunol 2019; 10:2168. [PMID: 31572379 PMCID: PMC6749845 DOI: 10.3389/fimmu.2019.02168] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/28/2019] [Indexed: 01/14/2023] Open
Abstract
The heterogeneous nature of inflammatory bowel disease (IBD) presents challenges, particularly when choosing therapy. Activation of the NF-κB transcription factor is a highly regulated, dynamic event in IBD pathogenesis. Using a lentivirus approach, NF-κB-regulated luciferase was expressed in patient macrophages, isolated from frozen peripheral blood mononuclear cell samples. Following activation, samples could be segregated into three clusters based on the NF-κB-regulated luciferase response. The ulcerative colitis (UC) samples appeared only in the hypo-responsive Cluster 1, and in Cluster 2. Conversely, Crohn's disease (CD) patients appeared in all Clusters with their percentage being higher in the hyper-responsive Cluster 3. A positive correlation was seen between NF-κB-induced luciferase activity and the concentrations of cytokines released into medium from stimulated macrophages, but not with serum or biopsy cytokine levels. Confocal imaging of lentivirally-expressed p65 activation revealed that a higher proportion of macrophages from CD patients responded to endotoxin lipid A compared to controls. In contrast, cells from UC patients exhibited a shorter duration of NF-κB p65 subunit nuclear localization compared to healthy controls, and CD donors. Analysis of macrophage cytokine responses and patient metadata revealed a strong correlation between CD patients who smoked and hyper-activation of p65. These in vitro dynamic assays of NF-κB activation in blood-derived macrophages have the potential to segregate IBD patients into groups with different phenotypes and may therefore help determine response to therapy.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Michael D Burkitt
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | - Hazel England
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Rachael Hough
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lorraine Schmidt
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - David G Spiller
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Michael H R White
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Pawel Paszek
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Dean A Jackson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Vitor A P Martins Dos Santos
- LifeGlimmer GmbH, Berlin, Germany.,Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
| | | | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barry J Campbell
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Werner Müller
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Chris S Probert
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Controlling Nuclear NF-κB Dynamics by β-TrCP-Insights from a Computational Model. Biomedicines 2019; 7:biomedicines7020040. [PMID: 31137887 PMCID: PMC6631534 DOI: 10.3390/biomedicines7020040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
The canonical nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway regulates central processes in mammalian cells and plays a fundamental role in the regulation of inflammation and immunity. Aberrant regulation of the activation of the transcription factor NF-κB is associated with severe diseases such as inflammatory bowel disease and arthritis. In the canonical pathway, the inhibitor IκB suppresses NF-κB’s transcriptional activity. NF-κB becomes active upon the degradation of IκB, a process that is, in turn, regulated by the β-transducin repeat-containing protein (β-TrCP). β-TrCP has therefore been proposed as a promising pharmacological target in the development of novel therapeutic approaches to control NF-κB’s activity in diseases. This study explores the extent to which β-TrCP affects the dynamics of nuclear NF-κB using a computational model of canonical NF-κB signaling. The analysis predicts that β-TrCP influences the steady-state concentration of nuclear NF-κB, as well as changes characteristic dynamic properties of nuclear NF-κB, such as fold-change and the duration of its response to pathway stimulation. The results suggest that the modulation of β-TrCP has a high potential to regulate the transcriptional activity of NF-κB.
Collapse
|
11
|
Carina V, Costa V, Sartori M, Bellavia D, De Luca A, Raimondi L, Fini M, Giavaresi G. Adjuvant Biophysical Therapies in Osteosarcoma. Cancers (Basel) 2019; 11:cancers11030348. [PMID: 30871044 PMCID: PMC6468347 DOI: 10.3390/cancers11030348] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) is a primary bone sarcoma, manifesting as osteogenesis by malignant cells. Nowadays, patients’ quality of life has been improved, however continuing high rates of limb amputation, pulmonary metastasis and drug toxicity, remain unresolved issues. Thus, effective osteosarcoma therapies are still required. Recently, the potentialities of biophysical treatments in osteosarcoma have been evaluated and seem to offer a promising future, thanks in this field as they are less invasive. Several approaches have been investigated such as hyperthermia (HT), high intensity focused ultrasound (HIFU), low intensity pulsed ultrasound (LIPUS) and sono- and photodynamic therapies (SDT, PDT). This review aims to summarize in vitro and in vivo studies and clinical trials employing biophysical stimuli in osteosarcoma treatment. The findings underscore how the technological development of biophysical therapies might represent an adjuvant role and, in some cases, alternative role to the surgery, radio and chemotherapy treatment of OS. Among them, the most promising are HIFU and HT, which are already employed in OS patient treatment, while LIPUS/SDT and PDT seem to be particularly interesting for their low toxicity.
Collapse
Affiliation(s)
- Valeria Carina
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Viviana Costa
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Maria Sartori
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Daniele Bellavia
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Angela De Luca
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Lavinia Raimondi
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Milena Fini
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Gianluca Giavaresi
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|