1
|
Goss K, Horwitz EM. Single-cell multiomics to advance cell therapy. Cytotherapy 2025; 27:137-145. [PMID: 39530970 DOI: 10.1016/j.jcyt.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Single-cell RNA-sequencing (scRNAseq) was first introduced in 2009 and has evolved with many technological advancements over the last decade. Not only are there several scRNAseq platforms differing in many aspects, but there are also a large number of computational pipelines available for downstream analyses which are being developed at an exponential rate. Such computational data appear in many scientific publications in virtually every field of study; thus, investigators should be able to understand and interpret data in this rapidly evolving field. Here, we discuss key differences in scRNAseq platforms, crucial steps in scRNAseq experiments, standard downstream analyses and introduce newly developed multimodal approaches. We then discuss how single-cell omics has been applied to advance the field of cell therapy.
Collapse
Affiliation(s)
- Kyndal Goss
- Marcus Center for Advanced Cellular Therapy, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Graduate Division of Biology and Biomedical Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - Edwin M Horwitz
- Marcus Center for Advanced Cellular Therapy, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Division of Biology and Biomedical Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA.
| |
Collapse
|
2
|
Zhang L, Yang Y, Tan J. Applications and emerging challenges of single-cell RNA sequencing technology in tumor drug discovery. Drug Discov Today 2025; 30:104290. [PMID: 39828052 DOI: 10.1016/j.drudis.2025.104290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Current therapeutic drugs are inadequate for curing tumors, highlighting the need for novel tumor drugs. The advancement of single-cell RNA sequencing (scRNA-seq) technology offers new opportunities for tumor drug discovery. This technology allows us to explore tumor heterogeneity and developmental mechanisms at the single-cell level. In this review, we outline the application of scRNA-seq in tumor drug discovery stages, including elucidating tumor mechanisms, identifying targets, screening drugs, and understanding drug action and resistance. We also discuss the challenges and future prospects of using scRNA-seq in drug development, providing a scientific foundation for advancing tumor therapies.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yueying Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Jianjun Tan
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China.
| |
Collapse
|
3
|
Sujana STA, Shahjaman M, Singha AC. Application of bioinformatic tools in cell type classification for single-cell RNA-seq data. Comput Biol Chem 2025; 115:108332. [PMID: 39793515 DOI: 10.1016/j.compbiolchem.2024.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
The advancements in single-cell RNA sequencing (scRNAseq) technology have significantly transformed genomics research, enabling the handling of thousands of cells in each experiment. As of now, 32,068 research studies have been cataloged in the Pubmed database. The primary aim of scRNAseq investigations is to identify cell types, understand the antitumor immune response, and identify new and uncommon cell types. Traditional techniques for identifying cell types include microscopy, histology, and pathological characteristics. However, the complexity of instruments and the need for precise experimental design make it difficult to fully capture the overall heterogeneity. Unsupervised clustering and supervised classification methods have been used to solve this task. Supervised cell type classification methods have gained popularity as large-scale, high-quality, well-annotated and more robust results compared to clustering methods. A recent study showed that support vector machine (SVM) gives a high-quality classification performance in different scenarios. In this article, we compare and evaluate the performance of four different kernels (sigmoid, linear, radial, polynomial) of SVM. The results of the experiments on three standard scRNA-seq datasets indicate that SVM with linear and SVM with sigmoid kernel classify the cells more accurately (approx. 99 %) where SVM linear kernel method has remarkably fast computation time and we also evaluate the results using some single cell specific evaluation matrices F-1 score, MCC, AUC value. Additionally, it sheds light on the potential use of kernels of SVM to give underlying information of single-cell RNA-Seq data more effectively.
Collapse
Affiliation(s)
- Shah Tania Akter Sujana
- Bioinformatics Lab, Department of Statistics, Begum Rokeya University, Rangpur 5404, Bangladesh.
| | - Md Shahjaman
- Bioinformatics Lab, Department of Statistics, Begum Rokeya University, Rangpur 5404, Bangladesh.
| | - Atul Chandra Singha
- Bioinformatics Lab, Department of Statistics, Begum Rokeya University, Rangpur 5404, Bangladesh.
| |
Collapse
|
4
|
Keller MS, Gold I, McCallum C, Manz T, Kharchenko PV, Gehlenborg N. Vitessce: integrative visualization of multimodal and spatially resolved single-cell data. Nat Methods 2025; 22:63-67. [PMID: 39333268 PMCID: PMC11725496 DOI: 10.1038/s41592-024-02436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/16/2024] [Indexed: 09/29/2024]
Abstract
Multiomics technologies with single-cell and spatial resolution make it possible to measure thousands of features across millions of cells. However, visual analysis of high-dimensional transcriptomic, proteomic, genome-mapped and imaging data types simultaneously remains a challenge. Here we describe Vitessce, an interactive web-based visualization framework for exploration of multimodal and spatially resolved single-cell data. We demonstrate integrative visualization of millions of data points, including cell-type annotations, gene expression quantities, spatially resolved transcripts and cell segmentations, across multiple coordinated views. The open-source software is available at http://vitessce.io .
Collapse
Affiliation(s)
- Mark S Keller
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Ilan Gold
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Chuck McCallum
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Trevor Manz
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Altos Labs, San Diego, CA, USA
| | - Nils Gehlenborg
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
An J, Lu Y, Chen Y, Chen Y, Zhou Z, Chen J, Peng C, Huang R, Peng F. Spatial transcriptomics in breast cancer: providing insight into tumor heterogeneity and promoting individualized therapy. Front Immunol 2024; 15:1499301. [PMID: 39749323 PMCID: PMC11693744 DOI: 10.3389/fimmu.2024.1499301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
A comprehensive understanding of tumor heterogeneity, tumor microenvironment and the mechanisms of drug resistance is fundamental to advancing breast cancer research. While single-cell RNA sequencing has resolved the issue of "temporal dynamic expression" of genes at the single-cell level, the lack of spatial information still prevents us from gaining a comprehensive understanding of breast cancer. The introduction and application of spatial transcriptomics addresses this limitation. As the annual technical method of 2020, spatial transcriptomics preserves the spatial location of tissues and resolves RNA-seq data to help localize and differentiate the active expression of functional genes within a specific tissue region, enabling the study of spatial location attributes of gene locations and cellular tissue environments. In the context of breast cancer, spatial transcriptomics can assist in the identification of novel breast cancer subtypes and spatially discriminative features that show promise for individualized precise treatment. This article summarized the key technical approaches, recent advances in spatial transcriptomics and its applications in breast cancer, and discusses the limitations of current spatial transcriptomics methods and the prospects for future development, with a view to advancing the application of this technology in clinical practice.
Collapse
Affiliation(s)
- Junsha An
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Cardiovascular Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yajie Lu
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yuxi Chen
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yuling Chen
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhaokai Zhou
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruizhen Huang
- Cardiovascular Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Zhou L, Liu H, Chen Y, Hua L, Wu X, Gao X, Mao L. Unveiling Leydig cell heterogeneity and its role in male infertility: A single-cell transcriptomic study of human testicular tissue. Reprod Biol 2024; 25:100972. [PMID: 39566254 DOI: 10.1016/j.repbio.2024.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Male infertility and impaired spermatogenesis are significant concerns in reproductive health, often linked to disruptions in the cellular and molecular processes within the testis. The cellular composition and transcriptional dynamics of human testicular tissue are crucial for understanding these issues. Previous studies have largely relied on bulk tissue analysis, which obscures the distinct roles and interactions of specific cell types. Here, through a comprehensive single-cell transcriptomic analysis of human testes across various developmental stages and pathological conditions, we reveal the intricate cellular heterogeneity and the molecular mechanisms underlying testicular function. Our study identifies significant disruptions in the differentiation trajectories of Germ cells in conditions such as Klinefelter syndrome (KS), AZFa deletion, and Sertoli-cell-only syndrome (SCOS). We further uncover key transcription factors and regulatory networks governing Leydig cell function, particularly those related to steroidogenesis and hormonal regulation. These findings highlight the organized yet complex cellular and molecular landscape of the testis and uncover critical pathways altered in male infertility. Collectively, our data suggest that targeted therapeutic strategies could be developed to address specific disruptions in testicular cell populations and their associated regulatory networks.
Collapse
Affiliation(s)
- Liwei Zhou
- Department of Urology, Xinghua People's Hospital Affiliated to Yangzhou University, Taizhou 225700, Jiangsu, China
| | - Hanchao Liu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Yuming Chen
- Department of Urology, Xinghua People's Hospital Affiliated to Yangzhou University, Taizhou 225700, Jiangsu, China
| | - Lin Hua
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Xintao Gao
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
| | - Le Mao
- Department of Vascular Surgery, Shanghai Geriatric Medical Center, Shanghai, China; Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Vascular Surgery, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
7
|
Hong WF, Zhang F, Wang N, Bi JM, Zhang DW, Wei LS, Song ZT, Mills GB, Chen MM, Li XX, Du SS, Yu M. Dynamic immunoediting by macrophages in homologous recombination deficiency-stratified pancreatic ductal adenocarcinoma. Drug Resist Updat 2024; 76:101115. [PMID: 39002266 DOI: 10.1016/j.drup.2024.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, notably resistant to existing therapies. Current research indicates that PDAC patients deficient in homologous recombination (HR) benefit from platinum-based treatments and poly-ADP-ribose polymerase inhibitors (PARPi). However, the effectiveness of PARPi in HR-deficient (HRD) PDAC is suboptimal, and significant challenges remain in fully understanding the distinct characteristics and implications of HRD-associated PDAC. We analyzed 16 PDAC patient-derived tissues, categorized by their homologous recombination deficiency (HRD) scores, and performed high-plex immunofluorescence analysis to define 20 cell phenotypes, thereby generating an in-situ PDAC tumor-immune landscape. Spatial phenotypic-transcriptomic profiling guided by regions-of-interest (ROIs) identified a crucial regulatory mechanism through localized tumor-adjacent macrophages, potentially in an HRD-dependent manner. Cellular neighborhood (CN) analysis further demonstrated the existence of macrophage-associated high-ordered cellular functional units in spatial contexts. Using our multi-omics spatial profiling strategy, we uncovered a dynamic macrophage-mediated regulatory axis linking HRD status with SIGLEC10 and CD52. These findings demonstrate the potential of targeting CD52 in combination with PARPi as a therapeutic intervention for PDAC.
Collapse
Affiliation(s)
- Wei-Feng Hong
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310005, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310005, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310005, China
| | - Feng Zhang
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Wang
- Cosmos Wisdom Biotech, co. ltd, Building 10, No. 617 Jiner Road, Hangzhou, Zhejiang, China
| | - Jun-Ming Bi
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ding-Wen Zhang
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Lu-Sheng Wei
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhen-Tao Song
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd. Jinan, Shandong, China
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Min-Min Chen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xue-Xin Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna 17165, Sweden.
| | - Shi-Suo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Min Yu
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Xiang L, Rao J, Yuan J, Xie T, Yan H. Single-Cell RNA-Sequencing: Opening New Horizons for Breast Cancer Research. Int J Mol Sci 2024; 25:9482. [PMID: 39273429 PMCID: PMC11395021 DOI: 10.3390/ijms25179482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer is the most prevalent malignant tumor among women with high heterogeneity. Traditional techniques frequently struggle to comprehensively capture the intricacy and variety of cellular states and interactions within breast cancer. As global precision medicine rapidly advances, single-cell RNA sequencing (scRNA-seq) has become a highly effective technique, revolutionizing breast cancer research by offering unprecedented insights into the cellular heterogeneity and complexity of breast cancer. This cutting-edge technology facilitates the analysis of gene expression profiles at the single-cell level, uncovering diverse cell types and states within the tumor microenvironment. By dissecting the cellular composition and transcriptional signatures of breast cancer cells, scRNA-seq provides new perspectives for understanding the mechanisms behind tumor therapy, drug resistance and metastasis in breast cancer. In this review, we summarized the working principle and workflow of scRNA-seq and emphasized the major applications and discoveries of scRNA-seq in breast cancer research, highlighting its impact on our comprehension of breast cancer biology and its potential for guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Lingyan Xiang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jie Rao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Xie
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
9
|
Yang S, Deng C, Pu C, Bai X, Tian C, Chang M, Feng M. Single-Cell RNA Sequencing and Its Applications in Pituitary Research. Neuroendocrinology 2024; 114:875-893. [PMID: 39053437 PMCID: PMC11460981 DOI: 10.1159/000540352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Mounting evidence underscores the significance of cellular diversity within the endocrine system and the intricate interplay between different cell types and tissues, essential for preserving physiological balance and influencing disease trajectories. The pituitary gland, a central player in the endocrine orchestra, exemplifies this complexity with its assortment of hormone-secreting and nonsecreting cells. SUMMARY The pituitary gland houses several types of cells responsible for hormone production, alongside nonsecretory cells like fibroblasts and endothelial cells, each playing a crucial role in the gland's function and regulatory mechanisms. Despite the acknowledged importance of these cellular interactions, the detailed mechanisms by which they contribute to pituitary gland physiology and pathology remain largely uncharted. The last decade has seen the emergence of groundbreaking technologies such as single-cell RNA sequencing, offering unprecedented insights into cellular heterogeneity and interactions. However, the application of this advanced tool in exploring the pituitary gland's complexities has been scant. This review provides an overview of this methodology, highlighting its strengths and limitations, and discusses future possibilities for employing it to deepen our understanding of the pituitary gland and its dysfunction in disease states. KEY MESSAGE Single-cell RNA sequencing technology offers an unprecedented means to study the heterogeneity and interactions of pituitary cells, though its application has been limited thus far. Further utilization of this tool will help uncover the complex physiological and pathological mechanisms of the pituitary, advancing research and treatment of pituitary diseases.
Collapse
Affiliation(s)
- Shuangjian Yang
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Congcong Deng
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Changqin Pu
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xuexue Bai
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chenxin Tian
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mengqi Chang
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Feng
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
McDermott JG, Goodlett BL, Creed HA, Navaneethabalakrishnan S, Rutkowski JM, Mitchell BM. Inflammatory Alterations to Renal Lymphatic Endothelial Cell Gene Expression in Mouse Models of Hypertension. Kidney Blood Press Res 2024; 49:588-604. [PMID: 38972305 PMCID: PMC11345939 DOI: 10.1159/000539721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/02/2024] [Indexed: 07/09/2024] Open
Abstract
INTRODUCTION Hypertension (HTN) is a major cardiovascular disease that can cause and be worsened by renal damage and inflammation. We previously reported that renal lymphatic endothelial cells (LECs) increase in response to HTN and that augmenting lymphangiogenesis in the kidneys reduces blood pressure and renal pro-inflammatory immune cells in mice with various forms of HTN. Our aim was to evaluate the specific changes that renal LECs undergo in HTN. METHODS We performed single-cell RNA sequencing. Using the angiotensin II-induced and salt-sensitive mouse models of HTN, we isolated renal CD31+ and podoplanin+ cells. RESULTS Sequencing of these cells revealed three distinct cell types with unique expression profiles, including LECs. The number and transcriptional diversity of LECs increased in samples from mice with HTN, as demonstrated by 597 differentially expressed genes (p < 0.01), 274 significantly enriched pathways (p < 0.01), and 331 regulons with specific enrichment in HTN LECs. These changes demonstrate a profound inflammatory response in renal LECs in HTN, leading to an increase in genes and pathways associated with inflammation-driven growth and immune checkpoint activity in LECs. CONCLUSION These results reinforce and help to further explain the benefits of renal LECs and lymphangiogenesis in HTN.
Collapse
Affiliation(s)
- Justin G. McDermott
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Bethany L. Goodlett
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Heidi A. Creed
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | | | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| |
Collapse
|
11
|
Xu Y, Wang Y, Ma S. SingleCellGGM enables gene expression program identification from single-cell transcriptomes and facilitates universal cell label transfer. CELL REPORTS METHODS 2024; 4:100813. [PMID: 38971150 PMCID: PMC11294836 DOI: 10.1016/j.crmeth.2024.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Gene co-expression analysis of single-cell transcriptomes, aiming to define functional relationships between genes, is challenging due to excessive dropout values. Here, we developed a single-cell graphical Gaussian model (SingleCellGGM) algorithm to conduct single-cell gene co-expression network analysis. When applied to mouse single-cell datasets, SingleCellGGM constructed networks from which gene co-expression modules with highly significant functional enrichment were identified. We considered the modules as gene expression programs (GEPs). These GEPs enable direct cell-type annotation of individual cells without cell clustering, and they are enriched with genes required for the functions of the corresponding cells, sometimes at levels greater than 10-fold. The GEPs are conserved across datasets and enable universal cell-type label transfer across different studies. We also proposed a dimension-reduction method through averaging by GEPs for single-cell analysis, enhancing the interpretability of results. Thus, SingleCellGGM offers a unique GEP-based perspective to analyze single-cell transcriptomes and reveals biological insights shared by different single-cell datasets.
Collapse
Affiliation(s)
- Yupu Xu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yuzhou Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shisong Ma
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China; School of Data Science, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
12
|
Gondal MN, Shah SUR, Chinnaiyan AM, Cieslik M. A systematic overview of single-cell transcriptomics databases, their use cases, and limitations. FRONTIERS IN BIOINFORMATICS 2024; 4:1417428. [PMID: 39040140 PMCID: PMC11260681 DOI: 10.3389/fbinf.2024.1417428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
Rapid advancements in high-throughput single-cell RNA-seq (scRNA-seq) technologies and experimental protocols have led to the generation of vast amounts of transcriptomic data that populates several online databases and repositories. Here, we systematically examined large-scale scRNA-seq databases, categorizing them based on their scope and purpose such as general, tissue-specific databases, disease-specific databases, cancer-focused databases, and cell type-focused databases. Next, we discuss the technical and methodological challenges associated with curating large-scale scRNA-seq databases, along with current computational solutions. We argue that understanding scRNA-seq databases, including their limitations and assumptions, is crucial for effectively utilizing this data to make robust discoveries and identify novel biological insights. Such platforms can help bridge the gap between computational and wet lab scientists through user-friendly web-based interfaces needed for democratizing access to single-cell data. These platforms would facilitate interdisciplinary research, enabling researchers from various disciplines to collaborate effectively. This review underscores the importance of leveraging computational approaches to unravel the complexities of single-cell data and offers a promising direction for future research in the field.
Collapse
Affiliation(s)
- Mahnoor N. Gondal
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Saad Ur Rehman Shah
- Gies College of Business, University of Illinois Business College, Champaign, MI, United States
| | - Arul M. Chinnaiyan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Department of Urology, University of Michigan, Ann Arbor, MI, United States
- Howard Hughes Medical Institute, Ann Arbor, MI, United States
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, United States
| | - Marcin Cieslik
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Duo H, Li Y, Lan Y, Tao J, Yang Q, Xiao Y, Sun J, Li L, Nie X, Zhang X, Liang G, Liu M, Hao Y, Li B. Systematic evaluation with practical guidelines for single-cell and spatially resolved transcriptomics data simulation under multiple scenarios. Genome Biol 2024; 25:145. [PMID: 38831386 PMCID: PMC11149245 DOI: 10.1186/s13059-024-03290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) have led to groundbreaking advancements in life sciences. To develop bioinformatics tools for scRNA-seq and SRT data and perform unbiased benchmarks, data simulation has been widely adopted by providing explicit ground truth and generating customized datasets. However, the performance of simulation methods under multiple scenarios has not been comprehensively assessed, making it challenging to choose suitable methods without practical guidelines. RESULTS We systematically evaluated 49 simulation methods developed for scRNA-seq and/or SRT data in terms of accuracy, functionality, scalability, and usability using 152 reference datasets derived from 24 platforms. SRTsim, scDesign3, ZINB-WaVE, and scDesign2 have the best accuracy performance across various platforms. Unexpectedly, some methods tailored to scRNA-seq data have potential compatibility for simulating SRT data. Lun, SPARSim, and scDesign3-tree outperform other methods under corresponding simulation scenarios. Phenopath, Lun, Simple, and MFA yield high scalability scores but they cannot generate realistic simulated data. Users should consider the trade-offs between method accuracy and scalability (or functionality) when making decisions. Additionally, execution errors are mainly caused by failed parameter estimations and appearance of missing or infinite values in calculations. We provide practical guidelines for method selection, a standard pipeline Simpipe ( https://github.com/duohongrui/simpipe ; https://doi.org/10.5281/zenodo.11178409 ), and an online tool Simsite ( https://www.ciblab.net/software/simshiny/ ) for data simulation. CONCLUSIONS No method performs best on all criteria, thus a good-yet-not-the-best method is recommended if it solves problems effectively and reasonably. Our comprehensive work provides crucial insights for developers on modeling gene expression data and fosters the simulation process for users.
Collapse
Affiliation(s)
- Hongrui Duo
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Yinghong Li
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Yang Lan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jingxin Tao
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Qingxia Yang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, People's Republic of China
| | - Yingxue Xiao
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Jing Sun
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Lei Li
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Xiner Nie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Xiaoxi Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Mingwei Liu
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
14
|
Gross PS, Laforet VD, Manavi Z, Zia S, Lee SH, Shults N, Selva S, Alvarez E, Plemel JR, Schafer DP, Huang JK. Senescent-like microglia limit remyelination through the senescence associated secretory phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595605. [PMID: 38826296 PMCID: PMC11142216 DOI: 10.1101/2024.05.23.595605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The capacity to regenerate myelin in the central nervous system (CNS) diminishes with age. This decline is particularly evident in multiple sclerosis (MS), which has been suggested to exhibit features of accelerated biological aging. Whether cellular senescence, a hallmark of aging, contributes to remyelination impairment remains unknown. Here, we show that senescent cells (SCs) accumulate within demyelinated lesions after injury, and their elimination enhances remyelination in young mice but not in aged mice. In young mice, we observed the upregulation of senescence-associated transcripts primarily in microglia after demyelination, followed by their reduction during remyelination. However, in aged mice, senescence-associated factors persisted within lesions, correlating with inefficient remyelination. We found that SC elimination enhanced remyelination in young mice but was ineffective in aged mice. Proteomic analysis of senescence-associated secretory phenotype (SASP) revealed elevated levels of CCL11/Eotaxin-1 in lesions, which was found to inhibit efficient oligodendrocyte maturation. These results suggest therapeutic targeting of SASP components, such as CCL11, may improve remyelination in aging and MS.
Collapse
|
15
|
Rafelski SM, Theriot JA. Establishing a conceptual framework for holistic cell states and state transitions. Cell 2024; 187:2633-2651. [PMID: 38788687 DOI: 10.1016/j.cell.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Cell states were traditionally defined by how they looked, where they were located, and what functions they performed. In this post-genomic era, the field is largely focused on a molecular view of cell state. Moving forward, we anticipate that the observables used to define cell states will evolve again as single-cell imaging and analytics are advancing at a breakneck pace via the collection of large-scale, systematic cell image datasets and the application of quantitative image-based data science methods. This is, therefore, a key moment in the arc of cell biological research to develop approaches that integrate the spatiotemporal observables of the physical structure and organization of the cell with molecular observables toward the concept of a holistic cell state. In this perspective, we propose a conceptual framework for holistic cell states and state transitions that is data-driven, practical, and useful to enable integrative analyses and modeling across many data types.
Collapse
Affiliation(s)
- Susanne M Rafelski
- Allen Institute for Cell Science, 615 Westlake Avenue N, Seattle, WA 98125, USA.
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Cuevas-Diaz Duran R, Wei H, Wu J. Data normalization for addressing the challenges in the analysis of single-cell transcriptomic datasets. BMC Genomics 2024; 25:444. [PMID: 38711017 PMCID: PMC11073985 DOI: 10.1186/s12864-024-10364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Normalization is a critical step in the analysis of single-cell RNA-sequencing (scRNA-seq) datasets. Its main goal is to make gene counts comparable within and between cells. To do so, normalization methods must account for technical and biological variability. Numerous normalization methods have been developed addressing different sources of dispersion and making specific assumptions about the count data. MAIN BODY The selection of a normalization method has a direct impact on downstream analysis, for example differential gene expression and cluster identification. Thus, the objective of this review is to guide the reader in making an informed decision on the most appropriate normalization method to use. To this aim, we first give an overview of the different single cell sequencing platforms and methods commonly used including isolation and library preparation protocols. Next, we discuss the inherent sources of variability of scRNA-seq datasets. We describe the categories of normalization methods and include examples of each. We also delineate imputation and batch-effect correction methods. Furthermore, we describe data-driven metrics commonly used to evaluate the performance of normalization methods. We also discuss common scRNA-seq methods and toolkits used for integrated data analysis. CONCLUSIONS According to the correction performed, normalization methods can be broadly classified as within and between-sample algorithms. Moreover, with respect to the mathematical model used, normalization methods can further be classified into: global scaling methods, generalized linear models, mixed methods, and machine learning-based methods. Each of these methods depict pros and cons and make different statistical assumptions. However, there is no better performing normalization method. Instead, metrics such as silhouette width, K-nearest neighbor batch-effect test, or Highly Variable Genes are recommended to assess the performance of normalization methods.
Collapse
Affiliation(s)
- Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, 64710, Mexico.
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA
| | - Jiaqian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Krix S, Wilczynski E, Falgàs N, Sánchez-Valle R, Yoles E, Nevo U, Baruch K, Fröhlich H. Towards early diagnosis of Alzheimer's disease: advances in immune-related blood biomarkers and computational approaches. Front Immunol 2024; 15:1343900. [PMID: 38720902 PMCID: PMC11078023 DOI: 10.3389/fimmu.2024.1343900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease has an increasing prevalence in the population world-wide, yet current diagnostic methods based on recommended biomarkers are only available in specialized clinics. Due to these circumstances, Alzheimer's disease is usually diagnosed late, which contrasts with the currently available treatment options that are only effective for patients at an early stage. Blood-based biomarkers could fill in the gap of easily accessible and low-cost methods for early diagnosis of the disease. In particular, immune-based blood-biomarkers might be a promising option, given the recently discovered cross-talk of immune cells of the central nervous system with those in the peripheral immune system. Here, we give a background on recent advances in research on brain-immune system cross-talk in Alzheimer's disease and review machine learning approaches, which can combine multiple biomarkers with further information (e.g. age, sex, APOE genotype) into predictive models supporting an earlier diagnosis. In addition, mechanistic modeling approaches, such as agent-based modeling open the possibility to model and analyze cell dynamics over time. This review aims to provide an overview of the current state of immune-system related blood-based biomarkers and their potential for the early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Sophia Krix
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (b-it), University of Bonn, Bonn, Germany
| | - Ella Wilczynski
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Neus Falgàs
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Eti Yoles
- ImmunoBrain Checkpoint Ltd., Rechovot, Israel
| | - Uri Nevo
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Kuti Baruch
- ImmunoBrain Checkpoint Ltd., Rechovot, Israel
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (b-it), University of Bonn, Bonn, Germany
| |
Collapse
|
18
|
Bhuva DD, Tan CW, Salim A, Marceaux C, Pickering MA, Chen J, Kharbanda M, Jin X, Liu N, Feher K, Putri G, Tilley WD, Hickey TE, Asselin-Labat ML, Phipson B, Davis MJ. Library size confounds biology in spatial transcriptomics data. Genome Biol 2024; 25:99. [PMID: 38637899 PMCID: PMC11025268 DOI: 10.1186/s13059-024-03241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Spatial molecular data has transformed the study of disease microenvironments, though, larger datasets pose an analytics challenge prompting the direct adoption of single-cell RNA-sequencing tools including normalization methods. Here, we demonstrate that library size is associated with tissue structure and that normalizing these effects out using commonly applied scRNA-seq normalization methods will negatively affect spatial domain identification. Spatial data should not be specifically corrected for library size prior to analysis, and algorithms designed for scRNA-seq data should be adopted with caution.
Collapse
Affiliation(s)
- Dharmesh D Bhuva
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Chin Wee Tan
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- The University of Queensland Fraser Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Agus Salim
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Melbourne School of Population and Global Health, School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Claire Marceaux
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Marie A Pickering
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Jinjin Chen
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Malvika Kharbanda
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Xinyi Jin
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ning Liu
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kristen Feher
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Givanna Putri
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Marie-Liesse Asselin-Labat
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Belinda Phipson
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Melissa J Davis
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- The University of Queensland Fraser Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
19
|
Gondal MN, Shah SUR, Chinnaiyan AM, Cieslik M. A Systematic Overview of Single-Cell Transcriptomics Databases, their Use cases, and Limitations. ARXIV 2024:arXiv:2404.10545v1. [PMID: 38699169 PMCID: PMC11065044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Rapid advancements in high-throughput single-cell RNA-seq (scRNA-seq) technologies and experimental protocols have led to the generation of vast amounts of genomic data that populates several online databases and repositories. Here, we systematically examined large-scale scRNA-seq databases, categorizing them based on their scope and purpose such as general, tissue-specific databases, disease-specific databases, cancer-focused databases, and cell type-focused databases. Next, we discuss the technical and methodological challenges associated with curating large-scale scRNA-seq databases, along with current computational solutions. We argue that understanding scRNA-seq databases, including their limitations and assumptions, is crucial for effectively utilizing this data to make robust discoveries and identify novel biological insights. Furthermore, we propose that bridging the gap between computational and wet lab scientists through user-friendly web-based platforms is needed for democratizing access to single-cell data. These platforms would facilitate interdisciplinary research, enabling researchers from various disciplines to collaborate effectively. This review underscores the importance of leveraging computational approaches to unravel the complexities of single-cell data and offers a promising direction for future research in the field.
Collapse
Affiliation(s)
- Mahnoor N. Gondal
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI USA
| | - Saad Ur Rehman Shah
- Gies College of Business, University of Illinois Business College, Champaign, IL USA
| | - Arul M. Chinnaiyan
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI USA
- Department of Pathology, University of Michigan, Ann Arbor, MI USA
- Department of Urology, University of Michigan, Ann Arbor, MI USA
- Howard Hughes Medical Institute, Ann Arbor, MI USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI USA
| | - Marcin Cieslik
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI USA
- Department of Pathology, University of Michigan, Ann Arbor, MI USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI USA
| |
Collapse
|
20
|
Putri GH, Howitt G, Marsh-Wakefield F, Ashhurst TM, Phipson B. SuperCellCyto: enabling efficient analysis of large scale cytometry datasets. Genome Biol 2024; 25:89. [PMID: 38589921 PMCID: PMC11003185 DOI: 10.1186/s13059-024-03229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Advancements in cytometry technologies have enabled quantification of up to 50 proteins across millions of cells at single cell resolution. Analysis of cytometry data routinely involves tasks such as data integration, clustering, and dimensionality reduction. While numerous tools exist, many require extensive run times when processing large cytometry data containing millions of cells. Existing solutions, such as random subsampling, are inadequate as they risk excluding rare cell subsets. To address this, we propose SuperCellCyto, an R package that builds on the SuperCell tool which groups highly similar cells into supercells. SuperCellCyto is available on GitHub ( https://github.com/phipsonlab/SuperCellCyto ) and Zenodo ( https://doi.org/10.5281/zenodo.10521294 ).
Collapse
Affiliation(s)
- Givanna H Putri
- The Walter and Eliza Hall Institute of Medical Research and The Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - George Howitt
- Peter MacCallum Cancer Centre and The Sir Peter MacCallum, Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Felix Marsh-Wakefield
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research Facility and School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Belinda Phipson
- The Walter and Eliza Hall Institute of Medical Research and The Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
21
|
Luecken MD, Gigante S, Burkhardt DB, Cannoodt R, Strobl DC, Markov NS, Zappia L, Palla G, Lewis W, Dimitrov D, Vinyard ME, Magruder DS, Andersson A, Dann E, Qin Q, Otto DJ, Klein M, Botvinnik OB, Deconinck L, Waldrant K, Bloom JM, Pisco AO, Saez-Rodriguez J, Wulsin D, Pinello L, Saeys Y, Theis FJ, Krishnaswamy S. Defining and benchmarking open problems in single-cell analysis. RESEARCH SQUARE 2024:rs.3.rs-4181617. [PMID: 38645152 PMCID: PMC11030530 DOI: 10.21203/rs.3.rs-4181617/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
With the growing number of single-cell analysis tools, benchmarks are increasingly important to guide analysis and method development. However, a lack of standardisation and extensibility in current benchmarks limits their usability, longevity, and relevance to the community. We present Open Problems, a living, extensible, community-guided benchmarking platform including 10 current single-cell tasks that we envision will raise standards for the selection, evaluation, and development of methods in single-cell analysis.
Collapse
Affiliation(s)
- Malte D Luecken
- Institute of computational Biology, Helmholtz Munich, Neuherberg, Germany
- Institute of Lung Health & Immunity, Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany
| | | | | | - Robrecht Cannoodt
- Data Intuitive, Lebbeke, Belgium
- Data Mining and Modelling for Biomedicine group, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science, and Statistics, Ghent University, Ghent, Belgium
| | - Daniel C Strobl
- Institute of computational Biology, Helmholtz Munich, Neuherberg, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Germany
| | - Nikolay S Markov
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University
| | - Luke Zappia
- Institute of computational Biology, Helmholtz Munich, Neuherberg, Germany
- Department of Mathematics, School of Computing, Information and Technology, Technical University of Munich, Munich, Germany
| | - Giovanni Palla
- Institute of computational Biology, Helmholtz Munich, Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Germany
| | - Wesley Lewis
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - Daniel Dimitrov
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Michael E Vinyard
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - D S Magruder
- Department of Computer Science, Yale University, New Haven CT, USA
| | - Alma Andersson
- Genentech Inc
- Royal Institute of Technology (KTH), Gene Technology
- Science for Life Laboratory (SciLifeLab)
| | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Qian Qin
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Dominik J Otto
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle WA
- Computational Biology Program, Public Health Sciences Division, Seattle WA
- Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle WA
| | | | - Olga Borisovna Botvinnik
- Data Sciences Platform, Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158
- Bridge Bio Pharma, 3160 Porter Drive, Suite 250, Palo Alto, CA, 94304
| | - Louise Deconinck
- Data Mining and Modelling for Biomedicine group, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science, and Statistics, Ghent University, Ghent, Belgium
| | | | | | - Angela Oliveira Pisco
- Data Sciences Platform, Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158
- Insitro, South San Francisco
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | | | - Luca Pinello
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine group, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science, and Statistics, Ghent University, Ghent, Belgium
- VIB Center for AI & Computational Biology (VIB.AI), Gent, Belgium
| | - Fabian J Theis
- Institute of computational Biology, Helmholtz Munich, Neuherberg, Germany
- Department of Mathematics, School of Computing, Information and Technology, Technical University of Munich, Munich, Germany
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, UK (associated faculty)
| | - Smita Krishnaswamy
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
- Department of Computer Science, Yale University, New Haven CT, USA
- Department of Genetics, Yale University, New Haven CT, USA
| |
Collapse
|
22
|
Gao Z, Chen X, Li Z, Cui X, Jiang Q, Li K, Chen S, Jiang R. scEpiTools: a database to comprehensively interrogate analytic tools for single-cell epigenomic data. J Genet Genomics 2024; 51:462-465. [PMID: 37769837 DOI: 10.1016/j.jgg.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Zijing Gao
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiaoyang Chen
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Zhen Li
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xuejian Cui
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Qun Jiang
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Keyi Li
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Shengquan Chen
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China.
| | - Rui Jiang
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Yuan CU, Quah FX, Hemberg M. Single-cell and spatial transcriptomics: Bridging current technologies with long-read sequencing. Mol Aspects Med 2024; 96:101255. [PMID: 38368637 DOI: 10.1016/j.mam.2024.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Single-cell technologies have transformed biomedical research over the last decade, opening up new possibilities for understanding cellular heterogeneity, both at the genomic and transcriptomic level. In addition, more recent developments of spatial transcriptomics technologies have made it possible to profile cells in their tissue context. In parallel, there have been substantial advances in sequencing technologies, and the third generation of methods are able to produce reads that are tens of kilobases long, with error rates matching the second generation short reads. Long reads technologies make it possible to better map large genome rearrangements and quantify isoform specific abundances. This further improves our ability to characterize functionally relevant heterogeneity. Here, we show how researchers have begun to combine single-cell, spatial transcriptomics, and long-read technologies, and how this is resulting in powerful new approaches to profiling both the genome and the transcriptome. We discuss the achievements so far, and we highlight remaining challenges and opportunities.
Collapse
Affiliation(s)
- Chengwei Ulrika Yuan
- Department of Biochemistry, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Fu Xiang Quah
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Martin Hemberg
- Gene Lay Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Booeshaghi AS, Chen X, Pachter L. A machine-readable specification for genomics assays. Bioinformatics 2024; 40:btae168. [PMID: 38579259 PMCID: PMC11009023 DOI: 10.1093/bioinformatics/btae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 04/04/2024] [Indexed: 04/07/2024] Open
Abstract
MOTIVATION Understanding the structure of sequenced fragments from genomics libraries is essential for accurate read preprocessing. Currently, different assays and sequencing technologies require custom scripts and programs that do not leverage the common structure of sequence elements present in genomics libraries. RESULTS We present seqspec, a machine-readable specification for libraries produced by genomics assays that facilitates standardization of preprocessing and enables tracking and comparison of genomics assays. AVAILABILITY AND IMPLEMENTATION The specification and associated seqspec command line tool is available at https://www.doi.org/10.5281/zenodo.10213865.
Collapse
Affiliation(s)
- Ali Sina Booeshaghi
- Department of Bioengineering, University of California, Berkeley, CA, 94720, United States
| | - Xi Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, 91125, United States
| |
Collapse
|
25
|
Guo X, Ning J, Chen Y, Liu G, Zhao L, Fan Y, Sun S. Recent advances in differential expression analysis for single-cell RNA-seq and spatially resolved transcriptomic studies. Brief Funct Genomics 2024; 23:95-109. [PMID: 37022699 DOI: 10.1093/bfgp/elad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/09/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Differential expression (DE) analysis is a necessary step in the analysis of single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) data. Unlike traditional bulk RNA-seq, DE analysis for scRNA-seq or SRT data has unique characteristics that may contribute to the difficulty of detecting DE genes. However, the plethora of DE tools that work with various assumptions makes it difficult to choose an appropriate one. Furthermore, a comprehensive review on detecting DE genes for scRNA-seq data or SRT data from multi-condition, multi-sample experimental designs is lacking. To bridge such a gap, here, we first focus on the challenges of DE detection, then highlight potential opportunities that facilitate further progress in scRNA-seq or SRT analysis, and finally provide insights and guidance in selecting appropriate DE tools or developing new computational DE methods.
Collapse
Affiliation(s)
- Xiya Guo
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Ning
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuanze Chen
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guoliang Liu
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liyan Zhao
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yue Fan
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shiquan Sun
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
26
|
Pullin JM, McCarthy DJ. A comparison of marker gene selection methods for single-cell RNA sequencing data. Genome Biol 2024; 25:56. [PMID: 38409056 PMCID: PMC10895860 DOI: 10.1186/s13059-024-03183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The development of single-cell RNA sequencing (scRNA-seq) has enabled scientists to catalog and probe the transcriptional heterogeneity of individual cells in unprecedented detail. A common step in the analysis of scRNA-seq data is the selection of so-called marker genes, most commonly to enable annotation of the biological cell types present in the sample. In this paper, we benchmark 59 computational methods for selecting marker genes in scRNA-seq data. RESULTS We compare the performance of the methods using 14 real scRNA-seq datasets and over 170 additional simulated datasets. Methods are compared on their ability to recover simulated and expert-annotated marker genes, the predictive performance and characteristics of the gene sets they select, their memory usage and speed, and their implementation quality. In addition, various case studies are used to scrutinize the most commonly used methods, highlighting issues and inconsistencies. CONCLUSIONS Overall, we present a comprehensive evaluation of methods for selecting marker genes in scRNA-seq data. Our results highlight the efficacy of simple methods, especially the Wilcoxon rank-sum test, Student's t-test, and logistic regression.
Collapse
Affiliation(s)
- Jeffrey M Pullin
- Bioinformatics and Cellular Genomics, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, VIC, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, 3010, VIC, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, 3010, VIC, Australia
| | - Davis J McCarthy
- Bioinformatics and Cellular Genomics, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, VIC, Australia.
- School of Mathematics and Statistics, University of Melbourne, Parkville, 3010, VIC, Australia.
- Melbourne Integrative Genomics, University of Melbourne, Parkville, 3010, VIC, Australia.
| |
Collapse
|
27
|
Geuenich MJ, Gong DW, Campbell KR. The impacts of active and self-supervised learning on efficient annotation of single-cell expression data. Nat Commun 2024; 15:1014. [PMID: 38307875 PMCID: PMC10837127 DOI: 10.1038/s41467-024-45198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
A crucial step in the analysis of single-cell data is annotating cells to cell types and states. While a myriad of approaches has been proposed, manual labeling of cells to create training datasets remains tedious and time-consuming. In the field of machine learning, active and self-supervised learning methods have been proposed to improve the performance of a classifier while reducing both annotation time and label budget. However, the benefits of such strategies for single-cell annotation have yet to be evaluated in realistic settings. Here, we perform a comprehensive benchmarking of active and self-supervised labeling strategies across a range of single-cell technologies and cell type annotation algorithms. We quantify the benefits of active learning and self-supervised strategies in the presence of cell type imbalance and variable similarity. We introduce adaptive reweighting, a heuristic procedure tailored to single-cell data-including a marker-aware version-that shows competitive performance with existing approaches. In addition, we demonstrate that having prior knowledge of cell type markers improves annotation accuracy. Finally, we summarize our findings into a set of recommendations for those implementing cell type annotation procedures or platforms. An R package implementing the heuristic approaches introduced in this work may be found at https://github.com/camlab-bioml/leader .
Collapse
Affiliation(s)
- Michael J Geuenich
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1×5, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Dae-Won Gong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1×5, Canada
| | - Kieran R Campbell
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1×5, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Statistical Sciences, University of Toronto, Toronto, ON, M5S 3G3, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada.
- Ontario Institute of Cancer Research, Toronto, ON, M5G 1M1, Canada.
- Vector Institute, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
28
|
Hong W, Zhang Y, Wang S, Zheng D, Hsu S, Zhou J, Fan J, Zeng Z, Wang N, Ding Z, Yu M, Gao Q, Du S. Deciphering the immune modulation through deep transcriptomic profiling and therapeutic implications of DNA damage repair pattern in hepatocellular carcinoma. Cancer Lett 2024; 582:216594. [PMID: 38135208 DOI: 10.1016/j.canlet.2023.216594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
AIMS DNA damage repair (DDR) plays a pivotal role in hepatocellular carcinoma (HCC), driving oncogenesis, progression, and therapeutic response. However, the mechanisms of DDR mediated immune cells and immuno-modulatory pathways in HCC are yet ill-defined. METHODS Our study introduces an innovative deep machine learning framework for precise DDR assessment, utilizing single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data. Single-cell RNA sequencing data were obtained and in total 85,628 cells of primary or post-immunotherapy cases were analyzed. Large-scale HCC datasets, including 1027 patients in house together with public datasets, were used for 101 machine-learning models and a novel DDR feature was derived at single-cell resolution (DDRscore). Druggable targets were predicted using the reverse phase protein array (RPPA) proteomic profiling of 169 HCC patients and RNA-seq data from 22 liver cancer cell lines. RESULTS Our investigation reveals a dynamic interplay of DDR with natural killer cells and B cells in the primary HCC microenvironment, shaping a tumor-promoting immune milieu through metabolic programming. Analysis of HCC post-immunotherapy demonstrates elevated DDR levels that induces epithelial-mesenchymal transition and fibroblast-like transformation, reshaping the fibrotic tumor microenvironment. Conversely, attenuated DDR promotes antigen cross-presentation by dendritic cells and CD8+ T cells, modulating the inflammatory tumor microenvironment. Regulatory network analysis identifies the CXCL10-CXCR3 axis as a key determinant of immunotherapeutic response in low DDR HCC, potentially regulated by transcription factors GATA3, REL, and TBX21. Using machine learning techniques by combining bulk RNA-seq data in house together with public datasets, we introduce DDRscore, a robust consensus DDR scoring system to predict overall survival and resistance to PD-1 therapy in HCC patients. Finally, we identify BRAF as a potential therapeutic target for high DDRscore patients. CONCLUSION Our comprehensive findings advance our understanding of DDR and the tumor microenvironment in HCC, providing insights into immune regulatory mechanisms mediated via DDR pathways.
Collapse
Affiliation(s)
- Weifeng Hong
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Yang Zhang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Siwei Wang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Danxue Zheng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Shujung Hsu
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Nan Wang
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, Shandong, 250000, China
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, Shandong, 250000, China
| | - Min Yu
- Department of Pancreas Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510000, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Shisuo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
29
|
Kim H, Choi H, Lee D, Kim J. A review on gene regulatory network reconstruction algorithms based on single cell RNA sequencing. Genes Genomics 2024; 46:1-11. [PMID: 38032470 DOI: 10.1007/s13258-023-01473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Understanding gene regulatory networks (GRNs) is essential for unraveling the molecular mechanisms governing cellular behavior. With the advent of high-throughput transcriptome measurement technology, researchers have aimed to reverse engineer the biological systems, extracting gene regulatory rules from their outputs, which represented by gene expression data. Bulk RNA sequencing, a widely used method for measuring gene expression, has been employed for GRN reconstruction. However, it falls short in capturing dynamic changes in gene expression at the level of individual cells since it averages gene expression across mixed cell populations. OBJECTIVE In this review, we provide an overview of 15 GRN reconstruction tools and discuss their respective strengths and limitations, particularly in the context of single cell RNA sequencing (scRNA-seq). METHODS Recent advancements in scRNA-seq break new ground of GRN reconstruction. They offer snapshots of the individual cell transcriptomes and capturing dynamic changes. We emphasize how these technological breakthroughs have enhanced GRN reconstruction. CONCLUSION GRN reconstructors can be classified based on their requirement for cellular trajectory, which represents a dynamical cellular process including differentiation, aging, or disease progression. Benchmarking studies support the superiority of GRN reconstructors that do not require trajectory analysis in identifying regulator-target relationships. However, methods equipped with trajectory analysis demonstrate better performance in identifying key regulatory factors. In conclusion, researchers should select a suitable GRN reconstructor based on their specific research objectives.
Collapse
Affiliation(s)
- Hyeonkyu Kim
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea
| | - Hwisoo Choi
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea
| | - Daewon Lee
- School of Art and Technology, Chung-Ang University, 4726 Seodong-Daero, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Junil Kim
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea.
| |
Collapse
|
30
|
Bobrovskikh AV, Zubairova US, Doroshkov AV. Fishing Innate Immune System Properties through the Transcriptomic Single-Cell Data of Teleostei. BIOLOGY 2023; 12:1516. [PMID: 38132342 PMCID: PMC10740722 DOI: 10.3390/biology12121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The innate immune system is the first line of defense in multicellular organisms. Danio rerio is widely considered a promising model for IIS-related research, with the most amount of scRNAseq data available among Teleostei. We summarized the scRNAseq and spatial transcriptomics experiments related to the IIS for zebrafish and other Teleostei from the GEO NCBI and the Single-Cell Expression Atlas. We found a considerable number of scRNAseq experiments at different stages of zebrafish development in organs such as the kidney, liver, stomach, heart, and brain. These datasets could be further used to conduct large-scale meta-analyses and to compare the IIS of zebrafish with the mammalian one. However, only a small number of scRNAseq datasets are available for other fish (turbot, salmon, cavefish, and dark sleeper). Since fish biology is very diverse, it would be a major mistake to use zebrafish alone in fish immunology studies. In particular, there is a special need for new scRNAseq experiments involving nonmodel Teleostei, e.g., long-lived species, cancer-resistant fish, and various fish ecotypes.
Collapse
Affiliation(s)
- Aleksandr V. Bobrovskikh
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
| | - Ulyana S. Zubairova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
- Department of Information Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexey V. Doroshkov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
| |
Collapse
|
31
|
Wang K, Zhang X, Cheng H, Ma W, Bao G, Dong L, Gou Y, Yang J, Cai H. SingleScan: a comprehensive resource for single-cell sequencing data processing and mining. BMC Bioinformatics 2023; 24:463. [PMID: 38062357 PMCID: PMC10704760 DOI: 10.1186/s12859-023-05590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Single-cell sequencing has shed light on previously inaccessible biological questions from different fields of research, including organism development, immune function, and disease progression. The number of single-cell-based studies increased dramatically over the past decade. Several new methods and tools have been continuously developed, making it extremely tricky to navigate this research landscape and develop an up-to-date workflow to analyze single-cell sequencing data, particularly for researchers seeking to enter this field without computational experience. Moreover, choosing appropriate tools and optimal parameters to meet the demands of researchers represents a major challenge in processing single-cell sequencing data. However, a specific resource for easy access to detailed information on single-cell sequencing methods and data processing pipelines is still lacking. In the present study, an online resource called SingleScan was developed to curate all up-to-date single-cell transcriptome/genome analyzing tools and pipelines. All the available tools were categorized according to their main tasks, and several typical workflows for single-cell data analysis were summarized. In addition, spatial transcriptomics, which is a breakthrough molecular analysis method that enables researchers to measure all gene activity in tissue samples and map the site of activity, was included along with a portion of single-cell and spatial analysis solutions. For each processing step, the available tools and specific parameters used in published articles are provided and how these parameters affect the results is shown in the resource. All information used in the resource was manually extracted from related literature. An interactive website was designed for data retrieval, visualization, and download. By analyzing the included tools and literature, users can gain insights into the trends of single-cell studies and easily grasp the specific usage of a specific tool. SingleScan will facilitate the analysis of single-cell sequencing data and promote the development of new tools to meet the growing and diverse needs of the research community. The SingleScan database is publicly accessible via the website at http://cailab.labshare.cn/SingleScan .
Collapse
Affiliation(s)
- Kun Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiao Zhang
- Department of Breast Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Hansen Cheng
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Wenhao Ma
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Guangchao Bao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Liting Dong
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yixiong Gou
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jian Yang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Haoyang Cai
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
32
|
Liu J, Li Y, Zhang Y, Cheng Q, Liu H, He L, Chen L, Zhao T, Liang P, Luo W. Single-Cell RNA-Seq Analysis Identifies Angiotensinogen and Galanin as Unique Molecular Markers of Acinar Cells in Murine Salivary Glands. Stem Cells Dev 2023; 32:758-767. [PMID: 37823745 DOI: 10.1089/scd.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
The submandibular gland (SMG) and sublingual gland (SLG) are two of three major salivary glands in mammals and comprise serous and mucous acinar cells. The two glands share some functional properties, which are largely dependent on the types of acinar cells. In recent years, while ScRNA-seq (single-cell sequencing) with a 10 × platform has been used to explore molecular markers in salivary glands, few studies have examined the acinar heterogeneity and unique molecular markers between SMG and SLG. This study aimed to identify the molecular markers of acinar cells in the SLG and SMG. We performed ScRNA-seq analyses in 4-week-old mice and verified the screened molecular markers using reverse transcription-quantitative real-time PCR, immunohistochemistry, and immunofluorescence. Our results showed prominently heterogeneous acinar cells, although there was great similarity in the cluster composition between the two glands at 4 weeks. Furthermore, we demonstrated that Agt is a specific marker of SMG serous acinar cells, whereas Gal is a specific marker of SLG mucous acinar cells. Trajectory inference revealed that Agt and Gal represent two types of differential acinar cell clusters during late development in adults. Thus, we reveal previously unknown specific markers for salivary acinar cell diversity, which has extensive implications for their further functional research.
Collapse
Affiliation(s)
- Jingming Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yanan Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxin Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qianyu Cheng
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Huikai Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Liwen He
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liang Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyu Zhao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Panpan Liang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wenping Luo
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Laboratory Animal Ceter, Southwest University, Chongqing, China
| |
Collapse
|
33
|
Chen J, Zhao X, Huang C, Lin J. Novel insights into molecular signatures and pathogenic cell populations shared by systemic lupus erythematosus and vascular dementia. Funct Integr Genomics 2023; 23:337. [PMID: 37971684 DOI: 10.1007/s10142-023-01270-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Although vascular dementia (VD) and systemic lupus erythematosus (SLE) may share immune-mediated pathophysiologic processes, the underlying mechanisms are unclear. This study investigated shared gene signatures in SLE versus VD, as well as their potential molecular mechanisms. Bulk RNA sequencing (RNAseq) and single-cell or single-nucleus RNAseq (sc/snRNAseq) datasets from SLE blood samples and VD brain samples were obtained from Gene Expression Omnibus. The identification of genes associated with both SLE and VD was performed using the weighted gene co-expression network analysis (WGCNA) and machine learning algorithms. For the sc/snRNAseq data, an unbiased clustering pipeline based on Seurat and CellChat was used to determine the cellular landscape profile and examine intracellular communication, respectively. The results were subsequently validated using a mice model of SLE with cognitive dysfunction (female MRL/lpr mice). WGCNA and machine learning identified C1QA, LY96, CD163, and MS4A4A as key genes for SLE and VD. sc/snRNAseq analyses revealed that CD163 and MS4A4A were upregulated in mononuclear phagocytes (MPs) from SLE and VD samples and were associated with monocyte-macrophage differentiation. Intriguingly, LGALS9-associated molecular pathway, as the only signaling pathway common between SLE and VD via CellChat analysis, exhibited significant upregulation in cortical microglia of MRL/lpr mice. Our analyses identified C1QA, LY96, CD163, and MS4A4A as potential biomarkers for SLE and VD. Moreover, the upregulation of CD163/MS4A4A and activation of LGALS9 signaling in MPs may contribute to the pathogenesis of VD with SLE. These findings offer novel insight into the mechanisms underlying VD in SLE patients.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510630, China
- Department of Rheumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiao'feng Zhao
- Department of Rheumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Cheng Huang
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jia'xing Lin
- Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510630, China.
| |
Collapse
|
34
|
Ahsanuddin S, Wu AY. Single-cell transcriptomics of the ocular anterior segment: a comprehensive review. Eye (Lond) 2023; 37:3334-3350. [PMID: 37138096 PMCID: PMC10156079 DOI: 10.1038/s41433-023-02539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/07/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Elucidating the cellular and genetic composition of ocular tissues is essential for uncovering the pathophysiology of ocular diseases. Since the introduction of single-cell RNA sequencing (scRNA-seq) in 2009, vision researchers have performed extensive single-cell analyses to better understand transcriptome complexity and heterogeneity of ocular structures. This technology has revolutionized our ability to identify rare cell populations and to make cross-species comparisons of gene expression in both steady state and disease conditions. Importantly, single-cell transcriptomic analyses have enabled the identification of cell-type specific gene markers and signalling pathways between ocular cell populations. While most scRNA-seq studies have been conducted on retinal tissues, large-scale transcriptomic atlases pertaining to the ocular anterior segment have also been constructed in the past three years. This timely review provides vision researchers with an overview of scRNA-seq experimental design, technical limitations, and clinical applications in a variety of anterior segment-related ocular pathologies. We review open-access anterior segment-related scRNA-seq datasets and illustrate how scRNA-seq can be an indispensable tool for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Sofia Ahsanuddin
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York City, NY, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Albert Y Wu
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
35
|
Tzaferis C, Karatzas E, Baltoumas FA, Pavlopoulos GA, Kollias G, Konstantopoulos D. SCALA: A complete solution for multimodal analysis of single-cell Next Generation Sequencing data. Comput Struct Biotechnol J 2023; 21:5382-5393. [PMID: 38022693 PMCID: PMC10651449 DOI: 10.1016/j.csbj.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Analysis and interpretation of high-throughput transcriptional and chromatin accessibility data at single-cell (sc) resolution are still open challenges in the biomedical field. The existence of countless bioinformatics tools, for the different analytical steps, increases the complexity of data interpretation and the difficulty to derive biological insights. In this article, we present SCALA, a bioinformatics tool for analysis and visualization of single-cell RNA sequencing (scRNA-seq) and Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq) datasets, enabling either independent or integrative analysis of the two modalities. SCALA combines standard types of analysis by integrating multiple software packages varying from quality control to the identification of distinct cell populations and cell states. Additional analysis options enable functional enrichment, cellular trajectory inference, ligand-receptor analysis, and regulatory network reconstruction. SCALA is fully parameterizable, presenting data in tabular format and producing publication-ready visualizations. The different available analysis modules can aid biomedical researchers in exploring, analyzing, and visualizing their data without any prior experience in coding. We demonstrate the functionality of SCALA through two use-cases related to TNF-driven arthritic mice, handling both scRNA-seq and scATAC-seq datasets. SCALA is developed in R, Shiny and JavaScript and is mainly available as a standalone version, while an online service of more limited capacity can be found at http://scala.pavlopouloslab.info or https://scala.fleming.gr.
Collapse
Affiliation(s)
- Christos Tzaferis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Evangelos Karatzas
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Fotis A. Baltoumas
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Georgios A. Pavlopoulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Research Institute of New Biotechnologies and Precision Medicine, National and Kapodistrian University of Athens, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Research Institute of New Biotechnologies and Precision Medicine, National and Kapodistrian University of Athens, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Dimitris Konstantopoulos
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| |
Collapse
|
36
|
Shi Q, Chen X, Zhang Z. Decoding Human Biology and Disease Using Single-cell Omics Technologies. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:926-949. [PMID: 37739168 PMCID: PMC10928380 DOI: 10.1016/j.gpb.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 09/24/2023]
Abstract
Over the past decade, advances in single-cell omics (SCO) technologies have enabled the investigation of cellular heterogeneity at an unprecedented resolution and scale, opening a new avenue for understanding human biology and disease. In this review, we summarize the developments of sequencing-based SCO technologies and computational methods, and focus on considerable insights acquired from SCO sequencing studies to understand normal and diseased properties, with a particular emphasis on cancer research. We also discuss the technological improvements of SCO and its possible contribution to fundamental research of the human, as well as its great potential in clinical diagnoses and personalized therapies of human disease.
Collapse
Affiliation(s)
- Qiang Shi
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueyan Chen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
37
|
Madadi Y, Monavarfeshani A, Chen H, Stamer WD, Williams RW, Yousefi S. Artificial Intelligence Models for Cell Type and Subtype Identification Based on Single-Cell RNA Sequencing Data in Vision Science. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2837-2852. [PMID: 37294649 PMCID: PMC10631573 DOI: 10.1109/tcbb.2023.3284795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) provides a high throughput, quantitative and unbiased framework for scientists in many research fields to identify and characterize cell types within heterogeneous cell populations from various tissues. However, scRNA-seq based identification of discrete cell-types is still labor intensive and depends on prior molecular knowledge. Artificial intelligence has provided faster, more accurate, and user-friendly approaches for cell-type identification. In this review, we discuss recent advances in cell-type identification methods using artificial intelligence techniques based on single-cell and single-nucleus RNA sequencing data in vision science. The main purpose of this review paper is to assist vision scientists not only to select suitable datasets for their problems, but also to be aware of the appropriate computational tools to perform their analysis. Developing novel methods for scRNA-seq data analysis remains to be addressed in future studies.
Collapse
|
38
|
Zilbauer M, James KR, Kaur M, Pott S, Li Z, Burger A, Thiagarajah JR, Burclaff J, Jahnsen FL, Perrone F, Ross AD, Matteoli G, Stakenborg N, Sujino T, Moor A, Bartolome-Casado R, Bækkevold ES, Zhou R, Xie B, Lau KS, Din S, Magness ST, Yao Q, Beyaz S, Arends M, Denadai-Souza A, Coburn LA, Gaublomme JT, Baldock R, Papatheodorou I, Ordovas-Montanes J, Boeckxstaens G, Hupalowska A, Teichmann SA, Regev A, Xavier RJ, Simmons A, Snyder MP, Wilson KT. A Roadmap for the Human Gut Cell Atlas. Nat Rev Gastroenterol Hepatol 2023; 20:597-614. [PMID: 37258747 PMCID: PMC10527367 DOI: 10.1038/s41575-023-00784-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 06/02/2023]
Abstract
The number of studies investigating the human gastrointestinal tract using various single-cell profiling methods has increased substantially in the past few years. Although this increase provides a unique opportunity for the generation of the first comprehensive Human Gut Cell Atlas (HGCA), there remains a range of major challenges ahead. Above all, the ultimate success will largely depend on a structured and coordinated approach that aligns global efforts undertaken by a large number of research groups. In this Roadmap, we discuss a comprehensive forward-thinking direction for the generation of the HGCA on behalf of the Gut Biological Network of the Human Cell Atlas. Based on the consensus opinion of experts from across the globe, we outline the main requirements for the first complete HGCA by summarizing existing data sets and highlighting anatomical regions and/or tissues with limited coverage. We provide recommendations for future studies and discuss key methodologies and the importance of integrating the healthy gut atlas with related diseases and gut organoids. Importantly, we critically overview the computational tools available and provide recommendations to overcome key challenges.
Collapse
Affiliation(s)
- Matthias Zilbauer
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- University Department of Paediatrics, University of Cambridge, Cambridge, UK.
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Cambridge, UK.
| | - Kylie R James
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sebastian Pott
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Zhixin Li
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Albert Burger
- Department of Computer Science, Heriot-watt University, Edinburgh, UK
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University', Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Frode L Jahnsen
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Francesca Perrone
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- University Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Alexander D Ross
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- University Department of Paediatrics, University of Cambridge, Cambridge, UK
- University Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Tomohisa Sujino
- Center for the Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | - Andreas Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Raquel Bartolome-Casado
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Wellcome Sanger Institute, Hinxton, UK
| | - Espen S Bækkevold
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ran Zhou
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Bingqing Xie
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shahida Din
- Edinburgh IBD Unit, Western General Hospital, NHS Lothian, Edinburgh, UK
| | - Scott T Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University', Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qiuming Yao
- Department of Computer Science and Engineering, University of Nebraska Lincoln, Lincoln, NE, USA
| | - Semir Beyaz
- Cold Spring Harbour Laboratory, Cold Spring Harbour, New York, NY, USA
| | - Mark Arends
- Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Cancer and Genetics, University of Edinburgh, Edinburgh, UK
| | - Alexandre Denadai-Souza
- Laboratory of Mucosal Biology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Lori A Coburn
- Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | | | | | - Irene Papatheodorou
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Guy Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | | | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, UK
| | - Aviv Regev
- Genentech, San Francisco, CA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ramnik J Xavier
- Broad Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alison Simmons
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Keith T Wilson
- Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
39
|
Abstract
Since the first publication a decade ago describing the use of single-cell RNA sequencing (scRNA-seq) in the context of cancer, over 200 datasets and thousands of scRNA-seq studies have been published in cancer biology. scRNA-seq technologies have been applied across dozens of cancer types and a diverse array of study designs to improve our understanding of tumor biology, the tumor microenvironment, and therapeutic responses, and scRNA-seq is on the verge of being used to improve decision-making in the clinic. Computational methodologies and analytical pipelines are key in facilitating scRNA-seq research. Numerous computational methods utilizing the most advanced tools in data science have been developed to extract meaningful insights. Here, we review the advancements in cancer biology gained by scRNA-seq and discuss the computational challenges of the technology that are specific to cancer research.
Collapse
Affiliation(s)
- Dvir Aran
- Faculty of Biology, The Taub Faculty of Computer Science, and Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel;
| |
Collapse
|
40
|
Xi NM, Li JJ. Exploring the optimization of autoencoder design for imputing single-cell RNA sequencing data. Comput Struct Biotechnol J 2023; 21:4079-4095. [PMID: 37671239 PMCID: PMC10475479 DOI: 10.1016/j.csbj.2023.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Autoencoders are the backbones of many imputation methods that aim to relieve the sparsity issue in single-cell RNA sequencing (scRNA-seq) data. The imputation performance of an autoencoder relies on both the neural network architecture and the hyperparameter choice. So far, literature in the single-cell field lacks a formal discussion on how to design the neural network and choose the hyperparameters. Here, we conducted an empirical study to answer this question. Our study used many real and simulated scRNA-seq datasets to examine the impacts of the neural network architecture, the activation function, and the regularization strategy on imputation accuracy and downstream analyses. Our results show that (i) deeper and narrower autoencoders generally lead to better imputation performance; (ii) the sigmoid and tanh activation functions consistently outperform other commonly used functions including ReLU; (iii) regularization improves the accuracy of imputation and downstream cell clustering and DE gene analyses. Notably, our results differ from common practices in the computer vision field regarding the activation function and the regularization strategy. Overall, our study offers practical guidance on how to optimize the autoencoder design for scRNA-seq data imputation.
Collapse
Affiliation(s)
- Nan Miles Xi
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60660, USA
| | - Jingyi Jessica Li
- Department of Statistics and Data Science, University of California, Los Angeles, CA 90095-1554, USA
- Department of Human Genetics, University of California, Los Angeles, CA 90095-7088, USA
- Department of Computational Medicine, University of California, Los Angeles, CA 90095-1766, USA
- Department of Biostatistics, University of California, Los Angeles, CA 90095-1772, USA
| |
Collapse
|
41
|
Booeshaghi AS, Chen X, Pachter L. A machine-readable specification for genomics assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533215. [PMID: 36993635 PMCID: PMC10055303 DOI: 10.1101/2023.03.17.533215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Understanding the structure of sequenced fragments from genomics libraries is essential for accurate read preprocessing. Currently, different assays and sequencing technologies require custom scripts and programs that do not leverage the common structure of sequence elements present in genomics libraries. We present seqspec, a machine-readable specification for libraries produced by genomics assays that facilitates standardization of preprocessing and enables tracking and comparison of genomics assays. The specification and associated seqspec command line tool is available at https://github.com/IGVF/seqspec.
Collapse
Affiliation(s)
- A Sina Booeshaghi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Xi Chen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California
| |
Collapse
|
42
|
Dudchenko O, Ordovas-Montanes J, Bingle CD. Respiratory epithelial cell types, states and fates in the era of single-cell RNA-sequencing. Biochem J 2023; 480:921-939. [PMID: 37410389 PMCID: PMC10422933 DOI: 10.1042/bcj20220572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Standalone and consortia-led single-cell atlases of healthy and diseased human airways generated with single-cell RNA-sequencing (scRNA-seq) have ushered in a new era in respiratory research. Numerous discoveries, including the pulmonary ionocyte, potentially novel cell fates, and a diversity of cell states among common and rare epithelial cell types have highlighted the extent of cellular heterogeneity and plasticity in the respiratory tract. scRNA-seq has also played a pivotal role in our understanding of host-virus interactions in coronavirus disease 2019 (COVID-19). However, as our ability to generate large quantities of scRNA-seq data increases, along with a growing number of scRNA-seq protocols and data analysis methods, new challenges related to the contextualisation and downstream applications of insights are arising. Here, we review the fundamental concept of cellular identity from the perspective of single-cell transcriptomics in the respiratory context, drawing attention to the need to generate reference annotations and to standardise the terminology used in literature. Findings about airway epithelial cell types, states and fates obtained from scRNA-seq experiments are compared and contrasted with information accumulated through the use of conventional methods. This review attempts to discuss major opportunities and to outline some of the key limitations of the modern-day scRNA-seq that need to be addressed to enable efficient and meaningful integration of scRNA-seq data from different platforms and studies, with each other as well as with data from other high-throughput sequencing-based genomic, transcriptomic and epigenetic analyses.
Collapse
Affiliation(s)
- Oleksandr Dudchenko
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, South Yorkshire, U.K
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, U.S.A
- Programme in Immunology, Harvard Medical School, Boston, MA, U.S.A
| | - Colin D. Bingle
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, South Yorkshire, U.K
| |
Collapse
|
43
|
Ahmad A, Imran M, Ahsan H. Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases. Pharmaceutics 2023; 15:1630. [PMID: 37376078 DOI: 10.3390/pharmaceutics15061630] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
A biomarker is any measurable biological moiety that can be assessed and measured as a potential index of either normal or abnormal pathophysiology or pharmacological responses to some treatment regimen. Every tissue in the body has a distinct biomolecular make-up, which is known as its biomarkers, which possess particular features, viz., the levels or activities (the ability of a gene or protein to carry out a particular body function) of a gene, protein, or other biomolecules. A biomarker refers to some feature that can be objectively quantified by various biochemical samples and evaluates the exposure of an organism to normal or pathological procedures or their response to some drug interventions. An in-depth and comprehensive realization of the significance of these biomarkers becomes quite important for the efficient diagnosis of diseases and for providing the appropriate directions in case of multiple drug choices being presently available, which can benefit any patient. Presently, advancements in omics technologies have opened up new possibilities to obtain novel biomarkers of different types, employing genomic strategies, epigenetics, metabolomics, transcriptomics, lipid-based analysis, protein studies, etc. Particular biomarkers for specific diseases, their prognostic capabilities, and responses to therapeutic paradigms have been applied for screening of various normal healthy, as well as diseased, tissue or serum samples, and act as appreciable tools in pharmacology and therapeutics, etc. In this review, we have summarized various biomarker types, their classification, and monitoring and detection methods and strategies. Various analytical techniques and approaches of biomarkers have also been described along with various clinically applicable biomarker sensing techniques which have been developed in the recent past. A section has also been dedicated to the latest trends in the formulation and designing of nanotechnology-based biomarker sensing and detection developments in this field.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane 4102, Australia
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
44
|
Sonrel A, Luetge A, Soneson C, Mallona I, Germain PL, Knyazev S, Gilis J, Gerber R, Seurinck R, Paul D, Sonder E, Crowell HL, Fanaswala I, Al-Ajami A, Heidari E, Schmeing S, Milosavljevic S, Saeys Y, Mangul S, Robinson MD. Meta-analysis of (single-cell method) benchmarks reveals the need for extensibility and interoperability. Genome Biol 2023; 24:119. [PMID: 37198712 PMCID: PMC10189979 DOI: 10.1186/s13059-023-02962-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/06/2023] [Indexed: 05/19/2023] Open
Abstract
Computational methods represent the lifeblood of modern molecular biology. Benchmarking is important for all methods, but with a focus here on computational methods, benchmarking is critical to dissect important steps of analysis pipelines, formally assess performance across common situations as well as edge cases, and ultimately guide users on what tools to use. Benchmarking can also be important for community building and advancing methods in a principled way. We conducted a meta-analysis of recent single-cell benchmarks to summarize the scope, extensibility, and neutrality, as well as technical features and whether best practices in open data and reproducible research were followed. The results highlight that while benchmarks often make code available and are in principle reproducible, they remain difficult to extend, for example, as new methods and new ways to assess methods emerge. In addition, embracing containerization and workflow systems would enhance reusability of intermediate benchmarking results, thus also driving wider adoption.
Collapse
Affiliation(s)
- Anthony Sonrel
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Almut Luetge
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Charlotte Soneson
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Izaskun Mallona
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Pierre-Luc Germain
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
- D-HEST Institute for Neuroscience, ETH Zürich, Zurich, Switzerland
| | - Sergey Knyazev
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Jeroen Gilis
- Department of Applied Mathematics, Computer Science & Statistics, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Reto Gerber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Ruth Seurinck
- Department of Applied Mathematics, Computer Science & Statistics, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
| | - Dominique Paul
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Emanuel Sonder
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
- D-HEST Institute for Neuroscience, ETH Zürich, Zurich, Switzerland
| | - Helena L Crowell
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Imran Fanaswala
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Ahmad Al-Ajami
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Elyas Heidari
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Stephan Schmeing
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Stefan Milosavljevic
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Yvan Saeys
- Department of Applied Mathematics, Computer Science & Statistics, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
| | - Serghei Mangul
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland.
| |
Collapse
|
45
|
Montagne JM, Jaffee EM, Fertig EJ. Multiomics Empowers Predictive Pancreatic Cancer Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:859-868. [PMID: 36947820 PMCID: PMC10236355 DOI: 10.4049/jimmunol.2200660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/23/2022] [Indexed: 03/24/2023]
Abstract
Advances in cancer immunotherapy, particularly immune checkpoint inhibitors, have dramatically improved the prognosis for patients with metastatic melanoma and other previously incurable cancers. However, patients with pancreatic ductal adenocarcinoma (PDAC) generally do not respond to these therapies. PDAC is exceptionally difficult to treat because of its often late stage at diagnosis, modest mutation burden, and notoriously complex and immunosuppressive tumor microenvironment. Simultaneously interrogating features of cancer, immune, and other cellular components of the PDAC tumor microenvironment is therefore crucial for identifying biomarkers of immunotherapeutic resistance and response. Notably, single-cell and multiomics technologies, along with the analytical tools for interpreting corresponding data, are facilitating discoveries of the systems-level cellular and molecular interactions contributing to the overall resistance of PDAC to immunotherapy. Thus, in this review, we will explore how multiomics and single-cell analyses provide the unprecedented opportunity to identify biomarkers of resistance and response to successfully sensitize PDAC to immunotherapy.
Collapse
Affiliation(s)
- Janelle M Montagne
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
46
|
Crowell HL, Morillo Leonardo SX, Soneson C, Robinson MD. The shaky foundations of simulating single-cell RNA sequencing data. Genome Biol 2023; 24:62. [PMID: 36991470 PMCID: PMC10061781 DOI: 10.1186/s13059-023-02904-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND With the emergence of hundreds of single-cell RNA-sequencing (scRNA-seq) datasets, the number of computational tools to analyze aspects of the generated data has grown rapidly. As a result, there is a recurring need to demonstrate whether newly developed methods are truly performant-on their own as well as in comparison to existing tools. Benchmark studies aim to consolidate the space of available methods for a given task and often use simulated data that provide a ground truth for evaluations, thus demanding a high quality standard results credible and transferable to real data. RESULTS Here, we evaluated methods for synthetic scRNA-seq data generation in their ability to mimic experimental data. Besides comparing gene- and cell-level quality control summaries in both one- and two-dimensional settings, we further quantified these at the batch- and cluster-level. Secondly, we investigate the effect of simulators on clustering and batch correction method comparisons, and, thirdly, which and to what extent quality control summaries can capture reference-simulation similarity. CONCLUSIONS Our results suggest that most simulators are unable to accommodate complex designs without introducing artificial effects, they yield over-optimistic performance of integration and potentially unreliable ranking of clustering methods, and it is generally unknown which summaries are important to ensure effective simulation-based method comparisons.
Collapse
Affiliation(s)
- Helena L Crowell
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | | | - Charlotte Soneson
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
- Current address: Friedrich Miescher Institute for Biomedical Research and SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
47
|
Xu X, Hua X, Mo H, Hu S, Song J. Single-cell RNA sequencing to identify cellular heterogeneity and targets in cardiovascular diseases: from bench to bedside. Basic Res Cardiol 2023; 118:7. [PMID: 36750503 DOI: 10.1007/s00395-022-00972-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 02/09/2023]
Abstract
The mechanisms of cardiovascular diseases (CVDs) remain incompletely elucidated. Single-cell RNA sequencing (scRNA-seq) has enabled the profiling of single-cell transcriptomes at unprecedented resolution and throughput, which is critical for deciphering cardiovascular cellular heterogeneity and underlying disease mechanisms, thereby facilitating the development of therapeutic strategies. In this review, we summarize cellular heterogeneity in cardiovascular homeostasis and diseases as well as the discovery of potential disease targets based on scRNA-seq, and yield new insights into the promise of scRNA-seq technology in precision medicine and clinical application.
Collapse
Affiliation(s)
- Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xiumeng Hua
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Han Mo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
48
|
Iqbal W, Zhou W. Computational Methods for Single-cell DNA Methylome Analysis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:48-66. [PMID: 35718270 PMCID: PMC10372927 DOI: 10.1016/j.gpb.2022.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
Abstract
Dissecting intercellular epigenetic differences is key to understanding tissue heterogeneity. Recent advances in single-cell DNA methylome profiling have presented opportunities to resolve this heterogeneity at the maximum resolution. While these advances enable us to explore frontiers of chromatin biology and better understand cell lineage relationships, they pose new challenges in data processing and interpretation. This review surveys the current state of computational tools developed for single-cell DNA methylome data analysis. We discuss critical components of single-cell DNA methylome data analysis, including data preprocessing, quality control, imputation, dimensionality reduction, cell clustering, supervised cell annotation, cell lineage reconstruction, gene activity scoring, and integration with transcriptome data. We also highlight unique aspects of single-cell DNA methylome data analysis and discuss how techniques common to other single-cell omics data analyses can be adapted to analyze DNA methylomes. Finally, we discuss existing challenges and opportunities for future development.
Collapse
Affiliation(s)
- Waleed Iqbal
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Deng W, Li B, Wang J, Jiang W, Yan X, Li N, Vukmirovic M, Kaminski N, Wang J, Zhao H. A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy. Brief Bioinform 2023; 24:bbac616. [PMID: 36631398 PMCID: PMC9851324 DOI: 10.1093/bib/bbac616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Computational cell type deconvolution on bulk transcriptomics data can reveal cell type proportion heterogeneity across samples. One critical factor for accurate deconvolution is the reference signature matrix for different cell types. Compared with inferring reference signature matrices from cell lines, rapidly accumulating single-cell RNA-sequencing (scRNA-seq) data provide a richer and less biased resource. However, deriving cell type signature from scRNA-seq data is challenging due to high biological and technical noises. In this article, we introduce a novel Bayesian framework, tranSig, to improve signature matrix inference from scRNA-seq by leveraging shared cell type-specific expression patterns across different tissues and studies. Our simulations show that tranSig is robust to the number of signature genes and tissues specified in the model. Applications of tranSig to bulk RNA sequencing data from peripheral blood, bronchoalveolar lavage and aorta demonstrate its accuracy and power to characterize biological heterogeneity across groups. In summary, tranSig offers an accurate and robust approach to defining gene expression signatures of different cell types, facilitating improved in silico cell type deconvolutions.
Collapse
Affiliation(s)
- Wenxuan Deng
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| | - Bolun Li
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Jiawei Wang
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| | - Wei Jiang
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| | - Xiting Yan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ningshan Li
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Milica Vukmirovic
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., ON, Canada
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| |
Collapse
|
50
|
Wang J, Zhang N, Yuan S, Shang J, Dai L, Li F, Liu J. Non-negative low-rank representation based on dictionary learning for single-cell RNA-sequencing data analysis. BMC Genomics 2022; 23:851. [PMID: 36564711 PMCID: PMC9789616 DOI: 10.1186/s12864-022-09027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
In the analysis of single-cell RNA-sequencing (scRNA-seq) data, how to effectively and accurately identify cell clusters from a large number of cell mixtures is still a challenge. Low-rank representation (LRR) method has achieved excellent results in subspace clustering. But in previous studies, most LRR-based methods usually choose the original data matrix as the dictionary. In addition, the methods based on LRR usually use spectral clustering algorithm to complete cell clustering. Therefore, there is a matching problem between the spectral clustering method and the affinity matrix, which is difficult to ensure the optimal effect of clustering. Considering the above two points, we propose the DLNLRR method to better identify the cell type. First, DLNLRR can update the dictionary during the optimization process instead of using the predefined fixed dictionary, so it can realize dictionary learning and LRR learning at the same time. Second, DLNLRR can realize subspace clustering without relying on spectral clustering algorithm, that is, we can perform clustering directly based on the low-rank matrix. Finally, we carry out a large number of experiments on real single-cell datasets and experimental results show that DLNLRR is superior to other scRNA-seq data analysis algorithms in cell type identification.
Collapse
Affiliation(s)
- Juan Wang
- grid.412638.a0000 0001 0227 8151School of Computer Science, Qufu Normal University, Rizhao, China
| | - Nana Zhang
- grid.412638.a0000 0001 0227 8151School of Computer Science, Qufu Normal University, Rizhao, China
| | - Shasha Yuan
- grid.412638.a0000 0001 0227 8151School of Computer Science, Qufu Normal University, Rizhao, China
| | - Junliang Shang
- grid.412638.a0000 0001 0227 8151School of Computer Science, Qufu Normal University, Rizhao, China
| | - Lingyun Dai
- grid.412638.a0000 0001 0227 8151School of Computer Science, Qufu Normal University, Rizhao, China
| | - Feng Li
- grid.412638.a0000 0001 0227 8151School of Computer Science, Qufu Normal University, Rizhao, China
| | - Jinxing Liu
- grid.412638.a0000 0001 0227 8151School of Computer Science, Qufu Normal University, Rizhao, China
| |
Collapse
|