1
|
Wang X, Krieger-Redwood K, Lyu B, Lowndes R, Wu G, Souter NE, Wang X, Kong R, Shafiei G, Bernhardt BC, Cui Z, Smallwood J, Du Y, Jefferies E. The Brain's Topographical Organization Shapes Dynamic Interaction Patterns That Support Flexible Behavior Based on Rules and Long-Term Knowledge. J Neurosci 2024; 44:e2223232024. [PMID: 38527807 PMCID: PMC11140685 DOI: 10.1523/jneurosci.2223-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/27/2024] Open
Abstract
Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior.
Collapse
Affiliation(s)
- Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Katya Krieger-Redwood
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Baihan Lyu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rebecca Lowndes
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Guowei Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nicholas E Souter
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Xiaokang Wang
- Department of Biomedical Engineering, University of California, Davis, California 95616
| | - Ru Kong
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jonathan Smallwood
- Department of Psychology, Queens University, Kingston, Ontario K7L 3N6, Canada
| | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
| | - Elizabeth Jefferies
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
2
|
Eichenbaum A, Pappas I, Lurie D, Cohen JR, D’Esposito M. Differential contributions of static and time-varying functional connectivity to human behavior. Netw Neurosci 2021; 5:145-165. [PMID: 33688610 PMCID: PMC7935045 DOI: 10.1162/netn_a_00172] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Measures of human brain functional connectivity acquired during the resting-state track critical aspects of behavior. Recently, fluctuations in resting-state functional connectivity patterns-typically averaged across in traditional analyses-have been considered for their potential neuroscientific relevance. There exists a lack of research on the differences between traditional "static" measures of functional connectivity and newly considered "time-varying" measures as they relate to human behavior. Using functional magnetic resonance imagining (fMRI) data collected at rest, and a battery of behavioral measures collected outside the scanner, we determined the degree to which each modality captures aspects of personality and cognitive ability. Measures of time-varying functional connectivity were derived by fitting a hidden Markov model. To determine behavioral relationships, static and time-varying connectivity measures were submitted separately to canonical correlation analysis. A single relationship between static functional connectivity and behavior existed, defined by measures of personality and stable behavioral features. However, two relationships were found when using time-varying measures. The first relationship was similar to the static case. The second relationship was unique, defined by measures reflecting trialwise behavioral variability. Our findings suggest that time-varying measures of functional connectivity are capable of capturing unique aspects of behavior to which static measures are insensitive.
Collapse
Affiliation(s)
- Adam Eichenbaum
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Ioannis Pappas
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Daniel Lurie
- Department of Psychology, University of California, Berkeley
| | - Jessica R. Cohen
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley
- Department of Psychology, University of California, Berkeley
| |
Collapse
|
3
|
Zhou T, Kang J, Cong F, Li DX. Early childhood developmental functional connectivity of autistic brains with non-negative matrix factorization. Neuroimage Clin 2020; 26:102251. [PMID: 32403087 PMCID: PMC7218077 DOI: 10.1016/j.nicl.2020.102251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/25/2023]
Abstract
Autism spectrum disorder (ASD) is associated with altered patterns of over- and under-connectivity of neural circuits. Age-related changes in neural connectivities remain unclear for autistic children as compared with normal children. In this study, a parts-based network-decomposition technique, known as non-negative matrix factorization (NMF), was applied to identify a set of possible abnormal connectivity patterns in brains affected by ASD, using resting-state electroencephalographic (EEG) data. Age-related changes in connectivities in both inter- and intra-hemispheric areas were studied in a total of 256 children (3-6 years old), both with and without ASD. The findings included the following: (1) the brains of children affected by ASD were characterized by a general trend toward long-range under-connectivity, particularly in interhemispheric connections, combined with short-range over-connectivity; (2) long-range connections were often associated with slower rhythms (δ and θ), whereas synchronization of short-range networks tended to be associated with faster frequencies (α and β); and (3) the α-band specific patterns of interhemispheric connections in ASD could be the most prominent during early childhood neurodevelopment. Therefore, NMF would be useful for further exploring the early childhood developmental functional connectivity of children aged 3-6 with ASD as well as with typical development. Additionally, long-range interhemispheric alterations in connectivity may represent a potential biomarker for the identification of ASD.
Collapse
Affiliation(s)
- Tianyi Zhou
- Institute of Electrical Engineering, YanShan University, Qinhuangdao, 066000, China
| | - Jiannan Kang
- College of Electronic & Information Engineering, Hebei University, Baoding, China
| | - Fengyu Cong
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116000, China
| | - Dr Xiaoli Li
- Institute of Electrical Engineering, YanShan University, Qinhuangdao, 066000, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Tompson SH, Falk EB, Vettel JM, Bassett DS. Network Approaches to Understand Individual Differences in Brain Connectivity: Opportunities for Personality Neuroscience. PERSONALITY NEUROSCIENCE 2018; 1:e5. [PMID: 30221246 PMCID: PMC6133307 DOI: 10.1017/pen.2018.4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/06/2018] [Indexed: 12/11/2022]
Abstract
Over the past decade, advances in the interdisciplinary field of network science have provided a framework for understanding the intrinsic structure and function of human brain networks. A particularly fruitful area of this work has focused on patterns of functional connectivity derived from non-invasive neuroimaging techniques such as functional magnetic resonance imaging (fMRI). An important subset of these efforts has bridged the computational approaches of network science with the rich empirical data and biological hypotheses of neuroscience, and this research has begun to identify features of brain networks that explain individual differences in social, emotional, and cognitive functioning. The most common approach estimates connections assuming a single configuration of edges that is stable across the experimental session. In the literature, this is referred to as a static network approach, and researchers measure static brain networks while a subject is either at rest or performing a cognitively demanding task. Research on social and emotional functioning has primarily focused on linking static brain networks with individual differences, but recent advances have extended this work to examine temporal fluctuations in dynamic brain networks. Mounting evidence suggests that both the strength and flexibility of time-evolving brain networks influence individual differences in executive function, attention, working memory, and learning. In this review, we first examine the current evidence for brain networks involved in cognitive functioning. Then we review some preliminary evidence linking static network properties to individual differences in social and emotional functioning. We then discuss the applicability of emerging dynamic network methods for examining individual differences in social and emotional functioning. We close with an outline of important frontiers at the intersection between network science and neuroscience that will enhance our understanding of the neurobiological underpinnings of social behavior.
Collapse
Affiliation(s)
- Steven H. Tompson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA
| | - Emily B. Falk
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean M. Vettel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Danielle S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|