1
|
Csordas A, Sipos B, Kurucova T, Volfova A, Zamola F, Tichy B, Hicks DG. Cell Tree Rings: the structure of somatic evolution as a human aging timer. GeroScience 2024; 46:3005-3019. [PMID: 38172489 PMCID: PMC11009167 DOI: 10.1007/s11357-023-01053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Biological age is typically estimated using biomarkers whose states have been observed to correlate with chronological age. A persistent limitation of such aging clocks is that it is difficult to establish how the biomarker states are related to the mechanisms of aging. Somatic mutations could potentially form the basis for a more fundamental aging clock since the mutations are both markers and drivers of aging and have a natural timescale. Cell lineage trees inferred from these mutations reflect the somatic evolutionary process, and thus, it has been conjectured, the aging status of the body. Such a timer has been impractical thus far, however, because detection of somatic variants in single cells presents a significant technological challenge. Here, we show that somatic mutations detected using single-cell RNA sequencing (scRNA-seq) from thousands of cells can be used to construct a cell lineage tree whose structure correlates with chronological age. De novo single-nucleotide variants (SNVs) are detected in human peripheral blood mononuclear cells using a modified protocol. A default model based on penalized multiple regression of chronological age on 31 metrics characterizing the phylogenetic tree gives a Pearson correlation of 0.81 and a median absolute error of ~4 years between predicted and chronological ages. Testing of the model on a public scRNA-seq dataset yields a Pearson correlation of 0.85. In addition, cell tree age predictions are found to be better predictors of certain clinical biomarkers than chronological age alone, for instance glucose, albumin levels, and leukocyte count. The geometry of the cell lineage tree records the structure of somatic evolution in the individual and represents a new modality of aging timer. In addition to providing a numerical estimate of "cell tree age," it unveils a temporal history of the aging process, revealing how clonal structure evolves over life span. Cell Tree Rings complements existing aging clocks and may help reduce the current uncertainty in the assessment of geroprotective trials.
Collapse
Affiliation(s)
- Attila Csordas
- AgeCurve Limited, Cambridge, CB2 1SD, UK.
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, H-6720, Hungary.
| | | | - Terezia Kurucova
- CEITEC - Central European Institute of Technology, Masaryk University, 62500, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czechia
| | - Andrea Volfova
- HealthyLongevity.clinic Inc, 540 University Ave, Palo Alto, CA, 94301, USA
| | - Frantisek Zamola
- HealthyLongevity.clinic Inc, 540 University Ave, Palo Alto, CA, 94301, USA
| | - Boris Tichy
- CEITEC - Central European Institute of Technology, Masaryk University, 62500, Brno, Czechia
| | - Damien G Hicks
- AgeCurve Limited, Cambridge, CB2 1SD, UK
- Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
2
|
Malaguti M, Lebek T, Blin G, Lowell S. Enabling neighbour labelling: using synthetic biology to explore how cells influence their neighbours. Development 2024; 151:dev201955. [PMID: 38165174 PMCID: PMC10820747 DOI: 10.1242/dev.201955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Cell-cell interactions are central to development, but exploring how a change in any given cell relates to changes in the neighbour of that cell can be technically challenging. Here, we review recent developments in synthetic biology and image analysis that are helping overcome this problem. We highlight the opportunities presented by these advances and discuss opportunities and limitations in applying them to developmental model systems.
Collapse
Affiliation(s)
- Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Tamina Lebek
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
3
|
Natesan G, Hamilton T, Deeds EJ, Shah PK. Novel metrics reveal new structure and unappreciated heterogeneity in Caenorhabditis elegans development. PLoS Comput Biol 2023; 19:e1011733. [PMID: 38113280 PMCID: PMC10763962 DOI: 10.1371/journal.pcbi.1011733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/03/2024] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
High throughput experimental approaches are increasingly allowing for the quantitative description of cellular and organismal phenotypes. Distilling these large volumes of complex data into meaningful measures that can drive biological insight remains a central challenge. In the quantitative study of development, for instance, one can resolve phenotypic measures for single cells onto their lineage history, enabling joint consideration of heritable signals and cell fate decisions. Most attempts to analyze this type of data, however, discard much of the information content contained within lineage trees. In this work we introduce a generalized metric, which we term the branch edit distance, that allows us to compare any two embryos based on phenotypic measurements in individual cells. This approach aligns those phenotypic measurements to the underlying lineage tree, providing a flexible and intuitive framework for quantitative comparisons between, for instance, Wild-Type (WT) and mutant developmental programs. We apply this novel metric to data on cell-cycle timing from over 1300 WT and RNAi-treated Caenorhabditis elegans embryos. Our new metric revealed surprising heterogeneity within this data set, including subtle batch effects in WT embryos and dramatic variability in RNAi-induced developmental phenotypes, all of which had been missed in previous analyses. Further investigation of these results suggests a novel, quantitative link between pathways that govern cell fate decisions and pathways that pattern cell cycle timing in the early embryo. Our work demonstrates that the branch edit distance we propose, and similar metrics like it, have the potential to revolutionize our quantitative understanding of organismal phenotype.
Collapse
Affiliation(s)
- Gunalan Natesan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
| | - Timothy Hamilton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
| | - Eric J. Deeds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, United States of America
| | - Pavak K. Shah
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Natesan G, Hamilton T, Deeds EJ, Shah PK. Novel metrics reveal new structure and unappreciated heterogeneity in C. elegans development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540617. [PMID: 37292606 PMCID: PMC10245744 DOI: 10.1101/2023.05.12.540617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High throughput experimental approaches are increasingly allowing for the quantitative description of cellular and organismal phenotypes. Distilling these large volumes of complex data into meaningful measures that can drive biological insight remains a central challenge. In the quantitative study of development, for instance, one can resolve phenotypic measures for single cells onto their lineage history, enabling joint consideration of heritable signals and cell fate decisions. Most attempts to analyze this type of data, however, discard much of the information content contained within lineage trees. In this work we introduce a generalized metric, which we term the branch distance, that allows us to compare any two embryos based on phenotypic measurements in individual cells. This approach aligns those phenotypic measurements to the underlying lineage tree, providing a flexible and intuitive framework for quantitative comparisons between, for instance, Wild-Type (WT) and mutant developmental programs. We apply this novel metric to data on cell-cycle timing from over 1300 WT and RNAi-treated Caenorhabditis elegans embryos. Our new metric revealed surprising heterogeneity within this data set, including subtle batch effects in WT embryos and dramatic variability in RNAi-induced developmental phenotypes, all of which had been missed in previous analyses. Further investigation of these results suggests a novel, quantitative link between pathways that govern cell fate decisions and pathways that pattern cell cycle timing in the early embryo. Our work demonstrates that the branch distance we propose, and similar metrics like it, have the potential to revolutionize our quantitative understanding of organismal phenotype.
Collapse
Affiliation(s)
- Gunalan Natesan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA
| | - Timothy Hamilton
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA
| | - Eric J. Deeds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| | - Pavak K. Shah
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| |
Collapse
|
5
|
Speed TP, Hicks DG. Spectral PCA for MANOVA and data over binary trees. J MULTIVARIATE ANAL 2022. [DOI: 10.1016/j.jmva.2021.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Betjes MA, Zheng X, Kok RNU, van Zon JS, Tans SJ. Cell Tracking for Organoids: Lessons From Developmental Biology. Front Cell Dev Biol 2021; 9:675013. [PMID: 34150770 PMCID: PMC8209328 DOI: 10.3389/fcell.2021.675013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
Organoids have emerged as powerful model systems to study organ development and regeneration at the cellular level. Recently developed microscopy techniques that track individual cells through space and time hold great promise to elucidate the organizational principles of organs and organoids. Applied extensively in the past decade to embryo development and 2D cell cultures, cell tracking can reveal the cellular lineage trees, proliferation rates, and their spatial distributions, while fluorescent markers indicate differentiation events and other cellular processes. Here, we review a number of recent studies that exemplify the power of this approach, and illustrate its potential to organoid research. We will discuss promising future routes, and the key technical challenges that need to be overcome to apply cell tracking techniques to organoid biology.
Collapse
Affiliation(s)
| | | | | | | | - Sander J Tans
- AMOLF, Amsterdam, Netherlands.,Bionanoscience Department, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
7
|
Stadler T, Pybus OG, Stumpf MPH. Phylodynamics for cell biologists. Science 2021; 371:371/6526/eaah6266. [PMID: 33446527 DOI: 10.1126/science.aah6266] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Multicellular organisms are composed of cells connected by ancestry and descent from progenitor cells. The dynamics of cell birth, death, and inheritance within an organism give rise to the fundamental processes of development, differentiation, and cancer. Technical advances in molecular biology now allow us to study cellular composition, ancestry, and evolution at the resolution of individual cells within an organism or tissue. Here, we take a phylogenetic and phylodynamic approach to single-cell biology. We explain how "tree thinking" is important to the interpretation of the growing body of cell-level data and how ecological null models can benefit statistical hypothesis testing. Experimental progress in cell biology should be accompanied by theoretical developments if we are to exploit fully the dynamical information in single-cell data.
Collapse
Affiliation(s)
- T Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - O G Pybus
- Department of Zoology, University of Oxford, Oxford, UK.
| | - M P H Stumpf
- Melbourne Integrative Genomics, School of BioSciences and School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
8
|
Macklin P. Key challenges facing data-driven multicellular systems biology. Gigascience 2019; 8:giz127. [PMID: 31648301 PMCID: PMC6812467 DOI: 10.1093/gigascience/giz127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Increasingly sophisticated experiments, coupled with large-scale computational models, have the potential to systematically test biological hypotheses to drive our understanding of multicellular systems. In this short review, we explore key challenges that must be overcome to achieve robust, repeatable data-driven multicellular systems biology. If these challenges can be solved, we can grow beyond the current state of isolated tools and datasets to a community-driven ecosystem of interoperable data, software utilities, and computational modeling platforms. Progress is within our grasp, but it will take community (and financial) commitment.
Collapse
Affiliation(s)
- Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, 700 N Woodlawn Ave, Bloomington, IN 47408, USA
| |
Collapse
|