1
|
Zhou P, Cheng L, Tao H, Hintze M, Wang Y, Pu Q, Qi X, Cai D, Kuerten S, Wang J, Huang R. Fibroblast growth factor 8 promotes in vitro neurite outgrowth of placode-derived petrosal and nodose ganglia to varying degrees. Ann Anat 2024; 256:152323. [PMID: 39209048 DOI: 10.1016/j.aanat.2024.152323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Fibroblast growth factors (FGFs) are required for the specification and formation of the epibranchial placodes, which give rise to the distal part of the cranial sensory ganglia. However, it remains unclear whether FGFs play a role in regulating the neurite outgrowth of the epibranchial placode-derived ganglia during further development. Previous studies have shown that Fibroblast growth factor 8 (FGF8) promotes neurite outgrowth from the statoacoustic ganglion in vitro. However, these studies did not distinguish between the neural crest- and placode-derived components of the sensory ganglia. In this study, we focused on the petrosal and nodose ganglia as representatives of the epibranchial ganglia and investigated their axonal outgrowth under the influence of FGF8 signaling protein in vitro. To precisely isolate the placode-derived ganglion part, we labeled the placode and its derivatives with enhanced green fluorescent protein (EGFP) through electroporation. The isolated ganglia were then collected for qRT-PCR assay and cultured in a collagen gel with and without FGF8 protein. Our findings revealed that both placode-derived petrosal and nodose ganglia expressed FGFR1 and FGFR2. In culture, FGF8 exerted a neural trophic effect on the axon outgrowth of both ganglia. While the expression levels of FGFR1/2 were similar between the two ganglia, the petrosal ganglion exhibited greater sensitivity to FGF8 compared to the nodose ganglion. This indicates that the placode-derived ganglia have differential responsiveness to FGF8 signaling during axonal extension. Thus, FGF8 is not only required for the early development of the epibranchial placode, as shown in previous studies, but also promotes neurite outgrowth of placode-derived ganglia.
Collapse
Affiliation(s)
- Peng Zhou
- Institute of Zoology, School of Life Sciences, Lanzhou University, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, China; Grassland Agriculture Engineering Center, Ministry of Education, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, China; Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany
| | - Longfei Cheng
- Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany
| | - Hengxun Tao
- Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany
| | - Maik Hintze
- Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany
| | - Yajun Wang
- Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany
| | - Qin Pu
- Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Stefanie Kuerten
- Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany
| | - Jianlin Wang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, China
| | - Ruijin Huang
- Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Painter KJ, Giunta V, Potts JR, Bernardi S. Variations in non-local interaction range lead to emergent chase-and-run in heterogeneous populations. J R Soc Interface 2024; 21:20240409. [PMID: 39474790 PMCID: PMC11522976 DOI: 10.1098/rsif.2024.0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024] Open
Abstract
In a chase-and-run dynamic, the interaction between two individuals is such that one moves towards the other (the chaser), while the other moves away (the runner). Examples can be found in both interacting cells and animals. Here, we investigate the behaviours that can emerge at a population level, for a heterogeneous group that contains subpopulations of chasers and runners. We show that a wide variety of patterns can form, from stationary patterns to oscillatory and population-level chase-and-run, where the latter describes a synchronized collective movement of the two populations. We investigate the conditions under which different behaviours arise, specifically focusing on the interaction ranges: the distances over which cells or organisms can sense one another's presence. We find that when the interaction range of the chaser is sufficiently larger than that of the runner-or when the interaction range of the chase is sufficiently larger than that of the run-population-level chase-and-run emerges in a robust manner. We discuss the results in the context of phenomena observed in cellular and ecological systems, with particular attention to the dynamics observed experimentally within populations of neural crest and placode cells.
Collapse
Affiliation(s)
- Kevin J. Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio (DIST), Politecnico di Torino, Viale Pier Andrea Mattioli 39, Turin10125, Italy
| | - Valeria Giunta
- Department of Mathematics, Swansea University, Computational Foundry, Bay Campus, SwanseaSA1 8EN, UK
| | - Jonathan R. Potts
- School of Mathematical and Physical Sciences, University of Sheffield, Hounsfield Road, SheffieldS3 7RH, UK
| | - Sara Bernardi
- Department of Mathematical Sciences ‘G. L. Lagrange’, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino10129, Italy
| |
Collapse
|
3
|
Martínez-Calvo A, Trenado-Yuste C, Lee H, Gore J, Wingreen NS, Datta SS. Interfacial morphodynamics of proliferating microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563665. [PMID: 37961366 PMCID: PMC10634769 DOI: 10.1101/2023.10.23.563665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In microbial communities, various cell types often coexist by occupying distinct spatial domains. What determines the shape of the interface between such domains-which in turn influences the interactions between cells and overall community function? Here, we address this question by developing a continuum model of a 2D spatially-structured microbial community with two distinct cell types. We find that, depending on the balance of the different cell proliferation rates and substrate friction coefficients, the interface between domains is either stable and smooth, or unstable and develops finger-like protrusions. We establish quantitative principles describing when these different interfacial behaviors arise, and find good agreement both with the results of previous experimental reports as well as new experiments performed here. Our work thus helps to provide a biophysical basis for understanding the interfacial morphodynamics of proliferating microbial communities, as well as a broader range of proliferating active systems.
Collapse
|
4
|
Wróblewska A, Polańska A, Mojs E, Żaba R, Adamski Z, Dańczak-Pazdrowska A. Disturbances of the stomatognathic system and possibilities of its correction in patients with craniofacial morphea. Postepy Dermatol Alergol 2023; 40:592-598. [PMID: 38028421 PMCID: PMC10646717 DOI: 10.5114/ada.2023.131865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/27/2023] [Indexed: 12/01/2023] Open
Abstract
Morphea en coup de sabre and progressive hemifacial atrophy are extremely rare connective tissue disorders causing facial deformity. In extreme cases, morphological disorders are accompanied by symptoms of a clear impairment of the stomatognathic system. The aetiology of the above-mentioned diseases is still unknown. Properly planned therapy in the field of maxillofacial orthopaedics makes it possible to correct the asymmetric pattern of hard tissue growth and thus enable rehabilitation. The task of augmentation techniques is the volumetric supplementation of tissue defects resulting from atrophic processes. The degree of destruction and the extent of changes determine the method of correction. Mild and moderate defects are treated mainly with biomaterials and autologous adipose tissue. The severe course of hemifacial atrophy and morphea en coup de sabre and the associated significant tissue atrophy necessitate the search for more complex methods of treatment. In this paper, we summarize the disturbances of the stomatognathic system in patients with craniofacial morphea, together with an analysis of current treatment options.
Collapse
Affiliation(s)
- Agnieszka Wróblewska
- Student of Postgraduate Studies Facial Aesthetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Adriana Polańska
- Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewa Mojs
- Department of Clinical Psychology, Poznan University of Medical Sciences, Poznan, Poland
| | - Ryszard Żaba
- Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Zygmunt Adamski
- Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
5
|
Gouignard N, Bibonne A, Mata JF, Bajanca F, Berki B, Barriga EH, Saint-Jeannet JP, Theveneau E. Paracrine regulation of neural crest EMT by placodal MMP28. PLoS Biol 2023; 21:e3002261. [PMID: 37590318 PMCID: PMC10479893 DOI: 10.1371/journal.pbio.3002261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/05/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an early event in cell dissemination from epithelial tissues. EMT endows cells with migratory, and sometimes invasive, capabilities and is thus a key process in embryo morphogenesis and cancer progression. So far, matrix metalloproteinases (MMPs) have not been considered as key players in EMT but rather studied for their role in matrix remodelling in later events such as cell migration per se. Here, we used Xenopus neural crest cells to assess the role of MMP28 in EMT and migration in vivo. We show that a catalytically active MMP28, expressed by neighbouring placodal cells, is required for neural crest EMT and cell migration. We provide strong evidence indicating that MMP28 is imported in the nucleus of neural crest cells where it is required for normal Twist expression. Our data demonstrate that MMP28 can act as an upstream regulator of EMT in vivo raising the possibility that other MMPs might have similar early roles in various EMT-related contexts such as cancer, fibrosis, and wound healing.
Collapse
Affiliation(s)
- Nadège Gouignard
- Molecular Cellular and Developmental Biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- New York University, College of Dentistry, Department of Molecular Pathobiology, New York, New York, United States of America
| | - Anne Bibonne
- Molecular Cellular and Developmental Biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - João F. Mata
- Instituto Gulbenkian de Ciência, Mechanisms of Morphogenesis Lab, Oeiras, Portugal
| | - Fernanda Bajanca
- Molecular Cellular and Developmental Biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Bianka Berki
- Molecular Cellular and Developmental Biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elias H. Barriga
- Instituto Gulbenkian de Ciência, Mechanisms of Morphogenesis Lab, Oeiras, Portugal
| | - Jean-Pierre Saint-Jeannet
- New York University, College of Dentistry, Department of Molecular Pathobiology, New York, New York, United States of America
| | - Eric Theveneau
- Molecular Cellular and Developmental Biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
6
|
McLennan R, Giniunaite R, Hildebrand K, Teddy JM, Kasemeier-Kulesa JC, Bolanos L, Baker RE, Maini PK, Kulesa PM. Colec12 and Trail signaling confine cranial neural crest cell trajectories and promote collective cell migration. Dev Dyn 2023; 252:629-646. [PMID: 36692868 DOI: 10.1002/dvdy.569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Collective and discrete neural crest cell (NCC) migratory streams are crucial to vertebrate head patterning. However, the factors that confine NCC trajectories and promote collective cell migration remain unclear. RESULTS Computational simulations predicted that confinement is required only along the initial one-third of the cranial NCC migratory pathway. This guided our study of Colec12 (Collectin-12, a transmembrane scavenger receptor C-type lectin) and Trail (tumor necrosis factor-related apoptosis-inducing ligand, CD253) which we show expressed in chick cranial NCC-free zones. NCC trajectories are confined by Colec12 or Trail protein stripes in vitro and show significant and distinct changes in cell morphology and dynamic migratory characteristics when cocultured with either protein. Gain- or loss-of-function of either factor or in combination enhanced NCC confinement or diverted cell trajectories as observed in vivo with three-dimensional confocal microscopy, respectively, resulting in disrupted collective migration. CONCLUSIONS These data provide evidence for Colec12 and Trail as novel NCC microenvironmental factors playing a role to confine cranial NCC trajectories and promote collective cell migration.
Collapse
Affiliation(s)
- Rebecca McLennan
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
- Childrens Mercy Kansas City, Kansas City, Missouri, USA
| | - Rasa Giniunaite
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, UK
- Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania
- Faculty of Mathematics and Natural sciences, Kaunas University of Technology, Kaunas, Lithuania
| | - Katie Hildebrand
- University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Jessica M Teddy
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | - Lizbeth Bolanos
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Ruth E Baker
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, UK
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, UK
| | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
- University of Kansas School of Medicine, Kansas City, Kansas, USA
| |
Collapse
|
7
|
Ziermann JM. Overview of Head Muscles with Special Emphasis on Extraocular Muscle Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:57-80. [PMID: 37955771 DOI: 10.1007/978-3-031-38215-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The head is often considered the most complex part of the vertebrate body as many different cell types contribute to a huge variation of structures in a very limited space. Most of these cell types also interact with each other to ensure the proper development of skull, brain, muscles, nerves, connective tissue, and blood vessels. While there are general mechanisms that are true for muscle development all over the body, the head and postcranial muscle development differ from each other. In the head, specific gene regulatory networks underlie the differentiation in subgroups, which include extraocular muscles, muscles of mastication, muscles of facial expression, laryngeal and pharyngeal muscles, as well as cranial nerve innervated neck muscles. Here, I provide an overview of the difference between head and trunk muscle development. This is followed by a short excursion to the cardiopharyngeal field which gives rise to heart and head musculature and a summary of pharyngeal arch muscle development, including interactions between neural crest cells, mesodermal cells, and endodermal signals. Lastly, a more detailed description of the eye development, tissue interactions, and involved genes is provided.
Collapse
|
8
|
Candido-Ferreira IL, Lukoseviciute M, Sauka-Spengler T. Multi-layered transcriptional control of cranial neural crest development. Semin Cell Dev Biol 2022; 138:1-14. [PMID: 35941042 DOI: 10.1016/j.semcdb.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 11/28/2022]
Abstract
The neural crest (NC) is an emblematic population of embryonic stem-like cells with remarkable migratory ability. These distinctive attributes have inspired the curiosity of developmental biologists for over 150 years, however only recently the regulatory mechanisms controlling the complex features of the NC have started to become elucidated at genomic scales. Regulatory control of NC development is achieved through combinatorial transcription factor binding and recruitment of associated transcriptional complexes to distal cis-regulatory elements. Together, they regulate when, where and to what extent transcriptional programmes are actively deployed, ultimately shaping ontogenetic processes. Here, we discuss how transcriptional networks control NC ontogeny, with a special emphasis on the molecular mechanisms underlying specification of the cephalic NC. We also cover emerging properties of transcriptional regulation revealed in diverse developmental systems, such as the role of three-dimensional conformation of chromatin, and how they are involved in the regulation of NC ontogeny. Finally, we highlight how advances in deciphering the NC transcriptional network have afforded new insights into the molecular basis of human diseases.
Collapse
Affiliation(s)
- Ivan L Candido-Ferreira
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Martyna Lukoseviciute
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK.
| |
Collapse
|
9
|
Omelchenko T. Cellular protrusions in 3D: Orchestrating early mouse embryogenesis. Semin Cell Dev Biol 2022; 129:63-74. [PMID: 35577698 DOI: 10.1016/j.semcdb.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
Abstract
Cellular protrusions generated by the actin cytoskeleton are central to the process of building the body of the embryo. Problems with cellular protrusions underlie human diseases and syndromes, including implantation defects and pregnancy loss, congenital birth defects, and cancer. Cells use protrusive activity together with actin-myosin contractility to create an ordered body shape of the embryo. Here, I review how actin-rich protrusions are used by two major morphological cell types, epithelial and mesenchymal cells, during collective cell migration to sculpt the mouse embryo body. Pre-gastrulation epithelial collective migration of the anterior visceral endoderm is essential for establishing the anterior-posterior body axis. Gastrulation mesenchymal collective migration of the mesoderm wings is crucial for body elongation, and somite and heart formation. Analysis of mouse mutants with disrupted cellular protrusions revealed the key role of protrusions in embryonic morphogenesis and embryo survival. Recent technical approaches have allowed examination of the mechanisms that control cell and tissue movements in vivo in the complex 3D microenvironment of living mouse embryos. Advancing our understanding of protrusion-driven morphogenesis should provide novel insights into human developmental disorders and cancer metastasis.
Collapse
Affiliation(s)
- Tatiana Omelchenko
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, New York 10065, USA.
| |
Collapse
|
10
|
Hiraiwa T. Dynamic self-organization of migrating cells under constraints by spatial confinement and epithelial integrity. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:16. [PMID: 35212814 PMCID: PMC8881282 DOI: 10.1140/epje/s10189-022-00161-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Understanding how migrating cells can establish both dynamic structures and coherent dynamics may provide mechanistic insights to study how living systems acquire complex structures and functions. Recent studies revealed that intercellular contact communication plays a crucial role for establishing cellular dynamic self-organization (DSO) and provided a theoretical model of DSO for migrating solitary cells in a free space. However, to apply those understanding to situations in living organisms, we need to know the role of cell-cell communication for tissue dynamics under spatial confinements and epithelial integrity. Here, we expand the previous numerical studies on DSO to migrating cells subjected spatial confinement and/or epithelial integrity. An epithelial monolayer is simulated by combining the model of cellular DSO and the cellular vertex model in two dimensions for apical integrity. Under confinement to a small space, theoretical models of both solitary and epithelial cells exhibit characteristic coherent dynamics, including apparent swirling. We also find that such coherent dynamics can allow the cells to overcome the strong constraint due to spatial confinement and epithelial integrity. Furthermore, we demonstrate how epithelial cell clusters behave without spatial confinement and find various cluster dynamics, including spinning, migration and elongation.
Collapse
Affiliation(s)
- Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore, 117411.
- Universal Biology Institute, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
| |
Collapse
|
11
|
Busby L, Steventon B. Tissue tectonics and the multi-scale regulation of developmental timing. Interface Focus 2021; 11:20200057. [PMID: 34055304 PMCID: PMC8086930 DOI: 10.1098/rsfs.2020.0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Development encompasses processes that occur at multiple length scales, including gene-regulatory interactions, cell movements and reorganization, cell signalling and growth. It is essential that the timing of events in all of these different processes is coordinated to generate well-patterned tissues and organs. However, how the timing of intrinsic cell state changes is coordinated with events occurring at the multi-tissue and whole-organism level is unknown. Here, we argue that an important mechanism that accounts for the integration of timing across levels of organization is provided by tissue tectonics, i.e. how morphogenetic events driving tissue shape changes result in the relative displacement of signalling and responding tissues and coordinate developmental timing across scales. In doing so, tissue tectonics provides a mechanism by which the cell specification events intrinsic to cells can be modulated by the temporal exposure to extracellular signals. This exposure is in turn regulated by higher-order properties of the embryo, such as their physical properties, rates of growth and the combination of dynamic cell behaviours, impacting tissue morphogenesis. Tissue tectonics creates a downward flow of information from higher to lower levels of biological organization, providing an instance of downward causation in development.
Collapse
Affiliation(s)
- Lara Busby
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
12
|
Lamprey lecticans link new vertebrate genes to the origin and elaboration of vertebrate tissues. Dev Biol 2021; 476:282-293. [PMID: 33887266 DOI: 10.1016/j.ydbio.2021.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022]
Abstract
The evolution of vertebrates from an invertebrate chordate ancestor involved the evolution of new organs, tissues, and cell types. It was also marked by the origin and duplication of new gene families. If, and how, these morphological and genetic innovations are related is an unresolved question in vertebrate evolution. Hyaluronan is an extracellular matrix (ECM) polysaccharide important for water homeostasis and tissue structure. Vertebrates possess a novel family of hyaluronan binding proteins called Lecticans, and studies in jawed vertebrates (gnathostomes) have shown they function in many of the cells and tissues that are unique to vertebrates. This raises the possibility that the origin and/or expansion of this gene family helped drive the evolution of these vertebrate novelties. In order to better understand the evolution of the lectican gene family, and its role in the evolution of vertebrate morphological novelties, we investigated the phylogeny, genomic arrangement, and expression patterns of all lecticans in the sea lamprey (Petromyzon marinus), a jawless vertebrate. Though both P. marinus and gnathostomes each have four lecticans, our phylogenetic and syntenic analyses are most consistent with the independent duplication of one of more lecticans in the lamprey lineage. Despite the likely independent expansion of the lamprey and gnathostome lectican families, we find highly conserved expression of lecticans in vertebrate-specific and mesenchyme-derived tissues. We also find that, unlike gnathostomes, lamprey expresses its lectican paralogs in distinct subpopulations of head skeleton precursors, potentially reflecting an ancestral diversity of skeletal tissue types. Together, these observations suggest that the ancestral pre-duplication lectican had a complex expression pattern, functioned to support mesenchymal histology, and likely played a role in the evolution of vertebrate-specific cell and tissue types.
Collapse
|
13
|
Mehta AS, Ha P, Zhu K, Li S, Ting K, Soo C, Zhang X, Zhao M. Physiological electric fields induce directional migration of mammalian cranial neural crest cells. Dev Biol 2021; 471:97-105. [PMID: 33340512 PMCID: PMC7856271 DOI: 10.1016/j.ydbio.2020.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
During neurulation, cranial neural crest cells (CNCCs) migrate long distances from the neural tube to their terminal site of differentiation. The pathway traveled by the CNCCs defines the blueprint for craniofacial construction, abnormalities of which contribute to three-quarters of human birth defects. Biophysical cues like naturally occurring electric fields (EFs) have been proposed to be one of the guiding mechanisms for CNCC migration from the neural tube to identified position in the branchial arches. Such endogenous EFs can be mimicked by applied EFs of physiological strength that has been reported to guide the migration of amphibian and avian neural crest cells (NCCs), namely galvanotaxis or electrotaxis. However, the behavior of mammalian NCCs in external EFs has not been reported. We show here that mammalian CNCCs migrate towards the anode in direct current (dc) EFs. Reversal of the field polarity reverses the directedness. The response threshold was below 30 mV/mm and the migration directedness and displacement speed increased with increase in field strength. Both CNCC line (O9-1) and primary mouse CNCCs show similar galvanotaxis behavior. Our results demonstrate for the first time that the mammalian CNCCs respond to physiological EFs by robust directional migration towards the anode in a voltage-dependent manner.
Collapse
Affiliation(s)
- Abijeet Singh Mehta
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, Center for Neuroscience, University of California at Davis, School of Medicine, Suite 1630, Room 1617, 2921 Stockton Blvd., Sacramento, CA, 95817, USA; Department of Dermatology, University of California, Davis, CA, USA
| | - Pin Ha
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Kan Zhu
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, Center for Neuroscience, University of California at Davis, School of Medicine, Suite 1630, Room 1617, 2921 Stockton Blvd., Sacramento, CA, 95817, USA; Department of Dermatology, University of California, Davis, CA, USA
| | - ShiYu Li
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, Center for Neuroscience, University of California at Davis, School of Medicine, Suite 1630, Room 1617, 2921 Stockton Blvd., Sacramento, CA, 95817, USA; Department of Dermatology, University of California, Davis, CA, USA
| | - Kang Ting
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, 90095, USA
| | - Xinli Zhang
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, CA, USA.
| | - Min Zhao
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, Center for Neuroscience, University of California at Davis, School of Medicine, Suite 1630, Room 1617, 2921 Stockton Blvd., Sacramento, CA, 95817, USA; Department of Dermatology, University of California, Davis, CA, USA.
| |
Collapse
|
14
|
Kulesa PM, Kasemeier-Kulesa JC, Morrison JA, McLennan R, McKinney MC, Bailey C. Modelling Cell Invasion: A Review of What JD Murray and the Embryo Can Teach Us. Bull Math Biol 2021; 83:26. [PMID: 33594536 DOI: 10.1007/s11538-021-00859-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
Cell invasion and cell plasticity are critical to human development but are also striking features of cancer metastasis. By distributing a multipotent cell type from a place of birth to distal locations, the vertebrate embryo builds organs. In comparison, metastatic tumor cells often acquire a de-differentiated phenotype and migrate away from a primary site to inhabit new microenvironments, disrupting normal organ function. Countless observations of both embryonic cell migration and tumor metastasis have demonstrated complex cell signaling and interactive behaviors that have long confounded scientist and clinician alike. James D. Murray realized the important role of mathematics in biology and developed a unique strategy to address complex biological questions such as these. His work offers a practical template for constructing clear, logical, direct and verifiable models that help to explain complex cell behaviors and direct new experiments. His pioneering work at the interface of development and cancer made significant contributions to glioblastoma cancer and embryonic pattern formation using often simple models with tremendous predictive potential. Here, we provide a brief overview of advances in cell invasion and cell plasticity using the embryonic neural crest and its ancestral relationship to aggressive cancers that put into current context the timeless aspects of his work.
Collapse
Affiliation(s)
- Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA. .,Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA.
| | | | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Rebecca McLennan
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | | | - Caleb Bailey
- Department of Biology, Brigham Young University-Idaho, Rexburg, ID, 83460, USA
| |
Collapse
|
15
|
Murillo-Rincón AP, Kaucka M. Insights Into the Complexity of Craniofacial Development From a Cellular Perspective. Front Cell Dev Biol 2020; 8:620735. [PMID: 33392208 PMCID: PMC7775397 DOI: 10.3389/fcell.2020.620735] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
The head represents the most complex part of the body and a distinctive feature of the vertebrate body plan. This intricate structure is assembled during embryonic development in the four-dimensional process of morphogenesis. The head integrates components of the central and peripheral nervous system, sensory organs, muscles, joints, glands, and other specialized tissues in the framework of a complexly shaped skull. The anterior part of the head is referred to as the face, and a broad spectrum of facial shapes across vertebrate species enables different feeding strategies, communication styles, and diverse specialized functions. The face formation starts early during embryonic development and is an enormously complex, multi-step process regulated on a genomic, molecular, and cellular level. In this review, we will discuss recent discoveries that revealed new aspects of facial morphogenesis from the time of the neural crest cell emergence till the formation of the chondrocranium, the primary design of the individual facial shape. We will focus on molecular mechanisms of cell fate specification, the role of individual and collective cell migration, the importance of dynamic and continuous cellular interactions, responses of cells and tissues to generated physical forces, and their morphogenetic outcomes. In the end, we will examine the spatiotemporal activity of signaling centers tightly regulating the release of signals inducing the formation of craniofacial skeletal elements. The existence of these centers and their regulation by enhancers represent one of the core morphogenetic mechanisms and might lay the foundations for intra- and inter-species facial variability.
Collapse
Affiliation(s)
| | - Marketa Kaucka
- Max Planck Research Group Craniofacial Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
16
|
Barriga EH, Theveneau E. In vivo Neural Crest Cell Migration Is Controlled by "Mixotaxis". Front Physiol 2020; 11:586432. [PMID: 33324240 PMCID: PMC7723832 DOI: 10.3389/fphys.2020.586432] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Directed cell migration is essential all along an individual's life, from embryogenesis to tissue repair and cancer metastasis. Thus, due to its biomedical relevance, directed cell migration is currently under intense research. Directed cell migration has been shown to be driven by an assortment of external biasing cues, ranging from gradients of soluble (chemotaxis) to bound (haptotaxis) molecules. In addition to molecular gradients, gradients of mechanical properties (duro/mechanotaxis), electric fields (electro/galvanotaxis) as well as iterative biases in the environment topology (ratchetaxis) have been shown to be able to direct cell migration. Since cells migrating in vivo are exposed to a challenging environment composed of a convolution of biochemical, biophysical, and topological cues, it is highly unlikely that cell migration would be guided by an individual type of "taxis." This is especially true since numerous molecular players involved in the cellular response to these biasing cues are often recycled, serving as sensor or transducer of both biochemical and biophysical signals. In this review, we confront literature on Xenopus cephalic neural crest cells with that of other cell types to discuss the relevance of the current categorization of cell guidance strategies. Furthermore, we emphasize that while studying individual biasing signals is informative, the hard truth is that cells migrate by performing a sort of "mixotaxis," where they integrate and coordinate multiple inputs through shared molecular effectors to ensure robustness of directed cell motion.
Collapse
Affiliation(s)
- Elias H. Barriga
- Mechanisms of Morphogenesis Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Eric Theveneau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
17
|
Gouignard N, Theveneau E, Saint-Jeannet JP. Dynamic expression of MMP28 during cranial morphogenesis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190559. [PMID: 32829678 DOI: 10.1098/rstb.2019.0559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a large family of proteases comprising 24 members in vertebrates. They are well known for their extracellular matrix remodelling activity. MMP28 is the latest member of the family to be discovered. It is a secreted MMP involved in wound healing, immune system maturation, cell survival and migration. MMP28 is also expressed during embryogenesis in human and mouse. Here, we describe the detailed expression profile of MMP28 in Xenopus laevis embryos. We show that MMP28 is expressed maternally and accumulates at neurula and tail bud stages specifically in the cranial placode territories adjacent to migrating neural crest cells. As a secreted MMP, MMP28 may be required in neural crest-placode interactions. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Nadege Gouignard
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.,Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Eric Theveneau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
18
|
York JR, Yuan T, McCauley DW. Evolutionary and Developmental Associations of Neural Crest and Placodes in the Vertebrate Head: Insights From Jawless Vertebrates. Front Physiol 2020; 11:986. [PMID: 32903576 PMCID: PMC7438564 DOI: 10.3389/fphys.2020.00986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Neural crest and placodes are key innovations of the vertebrate clade. These cells arise within the dorsal ectoderm of all vertebrate embryos and have the developmental potential to form many of the morphological novelties within the vertebrate head. Each cell population has its own distinct developmental features and generates unique cell types. However, it is essential that neural crest and placodes associate together throughout embryonic development to coordinate the emergence of several features in the head, including almost all of the cranial peripheral sensory nervous system and organs of special sense. Despite the significance of this developmental feat, its evolutionary origins have remained unclear, owing largely to the fact that there has been little comparative (evolutionary) work done on this topic between the jawed vertebrates and cyclostomes—the jawless lampreys and hagfishes. In this review, we briefly summarize the developmental mechanisms and genetics of neural crest and placodes in both jawed and jawless vertebrates. We then discuss recent studies on the role of neural crest and placodes—and their developmental association—in the head of lamprey embryos, and how comparisons with jawed vertebrates can provide insights into the causes and consequences of this event in early vertebrate evolution.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Tian Yuan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David W McCauley
- Department of Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
19
|
Shellard A, Mayor R. Rules of collective migration: from the wildebeest to the neural crest. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190387. [PMID: 32713298 PMCID: PMC7423382 DOI: 10.1098/rstb.2019.0387] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Collective migration, the movement of groups in which individuals affect the behaviour of one another, occurs at practically every scale, from bacteria up to whole species' populations. Universal principles of collective movement can be applied at all levels. In this review, we will describe the rules governing collective motility, with a specific focus on the neural crest, an embryonic stem cell population that undergoes extensive collective migration during development. We will discuss how the underlying principles of individual cell behaviour, and those that emerge from a supracellular scale, can explain collective migration. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
20
|
Lugassy C, Kleinman HK, Vermeulen PB, Barnhill RL. Angiotropism, pericytic mimicry and extravascular migratory metastasis: an embryogenesis-derived program of tumor spread. Angiogenesis 2019; 23:27-41. [PMID: 31720876 DOI: 10.1007/s10456-019-09695-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
Intravascular dissemination of tumor cells is the accepted mechanism of cancer metastasis. However, the phenomenon of angiotropism, pericyte mimicry (PM), and extravascular migratory metastasis (EVMM) has questioned the concept that tumor cells metastasize exclusively via circulation within vascular channels. This new paradigm of cancer spread and metastasis suggests that metastatic cells employ embryonic mechanisms for attachment to the abluminal surfaces of blood vessels (angiotropism) and spread via continuous migration, competing with and replacing pericytes, i.e., pericyte mimicry (PM). This is an entirely extravascular phenomenon (i.e., extravascular migratory metastasis or EVMM) without entry (intravasation) into vascular channels. PM and EVMM have mainly been studied in melanoma but also occur in other cancer types. PM and EVMM appear to be a reversion to an embryogenesis-derived program. There are many analogies between embryogenesis and cancer progression, including the important role of laminins, epithelial-mesenchymal transition, and the re-activation of embryonic signals by cancer cells. Furthermore, there is no circulation of blood during the first trimester of embryogenesis, despite the fact that there is extensive migration of cells to distant sites and formation of organs and tissues during this period. Embryonic migration therefore is a continuous extravascular migration as are PM and EVMM, supporting the concept that these embryonic migratory events appear to recur abnormally during the metastatic process. Finally, the perivascular location of tumor cells intrinsically links PM to vascular co-option. Taken together, these two new paradigms may greatly influence the development of new effective therapeutics for metastasis. In particular, targeting embryonic factors linked to migration that are detected during cancer metastasis may be particularly relevant to PM/EVMM.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Translational Research, Institut Curie, Paris, France.
| | - Hynda K Kleinman
- Department of Molecular Medicine and Biochemistry, The George Washington School of Medicine, Washington, DC, USA
| | - Peter B Vermeulen
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus, Antwerp, Belgium.,Center for Oncological Research (CORE, Faculty of Medicine and Health Sciences), University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Raymond L Barnhill
- Department of Translational Research, Institut Curie, Paris, France.,University of Paris, Réné Descartes Faculty of Medicine, Paris, France
| |
Collapse
|
21
|
Macabenta F, Stathopoulos A. Sticking to a plan: adhesion and signaling control spatial organization of cells within migrating collectives. Curr Opin Genet Dev 2019; 57:39-46. [PMID: 31404788 DOI: 10.1016/j.gde.2019.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 01/23/2023]
Abstract
Collective cell migration is required in a vast array of biological phenomena, including organogenesis and embryonic development. The mechanisms that underlie collective cell migration not only involve the morphogenetic changes associated with single cell migration, but also require the maintenance of cell-cell junctions during movement. Additionally, cell shape changes and polarity must be coordinated in a multicellular manner in order to preserve directional movement in the migrating cohort, and often relates to multiple functions of common signaling pathways. In this review, we summarize the current understanding of the mechanisms underlying higher order tissue organization during migration, with particular focus on the interplay between cell adhesion and signaling that we propose can be tuned to support different types of collective movements.
Collapse
Affiliation(s)
- Frank Macabenta
- California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, United States.
| | - Angelike Stathopoulos
- California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, United States.
| |
Collapse
|
22
|
Schumacher L. Collective Cell Migration in Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1146:105-116. [PMID: 31612456 DOI: 10.1007/978-3-030-17593-1_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Collective cell migration is a key process in developmental biology, facilitating the bulk movement of cells in the morphogenesis of animal tissues. Predictive understanding in this field remains challenging due to the complexity of many interacting cells, their signalling, and microenvironmental factors - all of which can give rise to non-intuitive emergent behaviours. In this chapter we discuss biological examples of collective cell migration from a range of model systems, developmental stages, and spatial scales: border cell migration and haemocyte dispersal in Drosophila, gastrulation, neural crest migration, lateral line formation in zebrafish, and branching morphogenesis; as well as examples of developmental defects and similarities to metastatic invasion in cancer. These examples will be used to illustrate principles that we propose to be important: heterogeneity of cell states, substrate-free migration, contact-inhibition of locomotion, confinement and repulsive cues, cell-induced (or self-generated) gradients, stochastic group decisions, tissue mechanics, and reprogramming of cell behaviours. Understanding how such principles play a common, overarching role across multiple biological systems may lead towards a more integrative understanding of the causes and function of collective cell migration in developmental biology, and to potential strategies for the repair of developmental defects, the prevention and control of cancer, and advances in tissue engineering.
Collapse
Affiliation(s)
- Linus Schumacher
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|