1
|
Ceballos Rodriguez-Conde F, Zhu S, Dikicioglu D. Harnessing microbial division of labor for biomanufacturing: a review of laboratory and formal modeling approaches. Crit Rev Biotechnol 2025:1-19. [PMID: 39972973 DOI: 10.1080/07388551.2025.2455607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 02/21/2025]
Abstract
Bioprocess industries aim to meet the increasing demand for product complexity by designing enhanced cellular and metabolic capabilities for the host. Monocultures, standard biomanufacturing workhorses, are often restricted in their capability to meet these demands, and the solution often involves the genetic modification of the host. Synthetic microbial communities are a promising alternative to monocultures because they exhibit division of labor, enabling efficient resource utilization and pathway modularity. This specialization minimizes metabolic burden and enhances robustness to perturbations, providing a competitive advantage. Despite this potential, their utilization in biotechnological or bioprocessing applications remains limited. The recent emergence of new and innovative community design tools and strategies, particularly those harnessing the division of labor, holds promise to change this outlook. Understanding the microbial interactions governing natural microbial communities can be used to identify complementary partners, informing synthetic community design. Therefore, we particularly consider engineering division of labor in synthetic microbial communities as a viable solution to accelerate progress in the field. This review presents the current understanding of how microbial interactions enable division of labor and how this information can be used to design synthetic microbial communities to perform tasks otherwise unfeasible to individual organisms. We then evaluate laboratory and formal modeling approaches specifically developed to: elucidate microbial community physiology, guide experimental design, and improve our understanding of complex community interactions assisting synthetic community design. By synthesizing these insights, we aim to present a comprehensive framework that advances the use of microbial communities in biomanufacturing applications.
Collapse
Affiliation(s)
| | - Sophie Zhu
- Department of Biochemical Engineering, University College London, London, UK
| | - Duygu Dikicioglu
- Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
2
|
Pawlowska TE. Symbioses between fungi and bacteria: from mechanisms to impacts on biodiversity. Curr Opin Microbiol 2024; 80:102496. [PMID: 38875733 PMCID: PMC11323152 DOI: 10.1016/j.mib.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
Symbiotic interactions between fungi and bacteria range from positive to negative. They are ubiquitous in free-living as well as host-associated microbial communities worldwide. Yet, the impact of fungal-bacterial symbioses on the organization and dynamics of microbial communities is uncertain. There are two reasons for this uncertainty: (1) knowledge gaps in the understanding of the genetic mechanisms underpinning fungal-bacterial symbioses and (2) prevailing interpretations of ecological theory that favor antagonistic interactions as drivers stabilizing biological communities despite the existence of models emphasizing contributions of positive interactions. This review synthesizes information on fungal-bacterial symbioses common in the free-living microbial communities of the soil as well as in host-associated polymicrobial biofilms. The interdomain partnerships are considered in the context of the relevant community ecology models, which are discussed critically.
Collapse
Affiliation(s)
- Teresa E Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Schaible MJ, Szeinbaum N, Bozdag GO, Chou L, Grefenstette N, Colón-Santos S, Rodriguez LE, Styczinski MJ, Thweatt JL, Todd ZR, Vázquez-Salazar A, Adams A, Araújo MN, Altair T, Borges S, Burton D, Campillo-Balderas JA, Cangi EM, Caro T, Catalano E, Chen K, Conlin PL, Cooper ZS, Fisher TM, Fos SM, Garcia A, Glaser DM, Harman CE, Hermis NY, Hooks M, Johnson-Finn K, Lehmer O, Hernández-Morales R, Hughson KHG, Jácome R, Jia TZ, Marlow JJ, McKaig J, Mierzejewski V, Muñoz-Velasco I, Nural C, Oliver GC, Penev PI, Raj CG, Roche TP, Sabuda MC, Schaible GA, Sevgen S, Sinhadc P, Steller LH, Stelmach K, Tarnas J, Tavares F, Trubl G, Vidaurri M, Vincent L, Weber JM, Weng MM, Wilpiszeki RL, Young A. Chapter 1: The Astrobiology Primer 3.0. ASTROBIOLOGY 2024; 24:S4-S39. [PMID: 38498816 DOI: 10.1089/ast.2021.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The Astrobiology Primer 3.0 (ABP3.0) is a concise introduction to the field of astrobiology for students and others who are new to the field of astrobiology. It provides an entry into the broader materials in this supplementary issue of Astrobiology and an overview of the investigations and driving hypotheses that make up this interdisciplinary field. The content of this chapter was adapted from the other 10 articles in this supplementary issue and thus represents the contribution of all the authors who worked on these introductory articles. The content of this chapter is not exhaustive and represents the topics that the authors found to be the most important and compelling in a dynamic and changing field.
Collapse
Affiliation(s)
- Micah J Schaible
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nadia Szeinbaum
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Stephanie Colón-Santos
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
- Department of Botany, University of Wisconsin-Madison, Wisconsin, USA
| | - Laura E Rodriguez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - M J Styczinski
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- University of Washington, Seattle, Washington, USA
| | - Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Alberto Vázquez-Salazar
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, California, USA
| | - Alyssa Adams
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA
| | | | - Dana Burton
- Department of Anthropology, George Washington University, Washington DC, USA
| | | | - Eryn M Cangi
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | - Kimberly Chen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Z S Cooper
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Theresa M Fisher
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Santiago Mestre Fos
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Amanda Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin, USA
| | - D M Glaser
- Arizona State University, Tempe, Arizona, USA
| | - Chester E Harman
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada, Spain
| | - M Hooks
- NASA Johnson Space Center, Houston, Texas, USA
| | - K Johnson-Finn
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Owen Lehmer
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Ricardo Hernández-Morales
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kynan H G Hughson
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rodrigo Jácome
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jordan McKaig
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Veronica Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Israel Muñoz-Velasco
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ceren Nural
- Istanbul Technical University, Istanbul, Turkey
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Petar I Penev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chinmayee Govinda Raj
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - George A Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Serhat Sevgen
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
| | - Pritvik Sinhadc
- BEYOND: Center For Fundamental Concepts in Science, Arizona State University, Arizona, USA
- Dubai College, Dubai, United Arab Emirates
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Kamil Stelmach
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - J Tarnas
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Frank Tavares
- Space Enabled Research Group, MIT Media Lab, Cambridge, Massachusetts, USA
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Monica Vidaurri
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Department of Physics and Astronomy, Howard University, Washington DC, USA
| | - Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | | | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
4
|
Grefenstette N, Chou L, Colón-Santos S, Fisher TM, Mierzejewski V, Nural C, Sinhadc P, Vidaurri M, Vincent L, Weng MM. Chapter 9: Life as We Don't Know It. ASTROBIOLOGY 2024; 24:S186-S201. [PMID: 38498819 DOI: 10.1089/ast.2021.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
While Earth contains the only known example of life in the universe, it is possible that life elsewhere is fundamentally different from what we are familiar with. There is an increased recognition in the astrobiology community that the search for life should steer away from terran-specific biosignatures to those that are more inclusive to all life-forms. To start exploring the space of possibilities that life could occupy, we can try to dissociate life from the chemistry that composes it on Earth by envisioning how different life elsewhere could be in composition, lifestyle, medium, and form, and by exploring how the general principles that govern living systems on Earth might be found in different forms and environments across the Solar System. Exotic life-forms could exist on Mars or Venus, or icy moons like Europa and Enceladus, or even as a shadow biosphere on Earth. New perspectives on agnostic biosignature detection have also begun to emerge, allowing for a broader and more inclusive approach to seeking exotic life with unknown chemistry that is distinct from life as we know it on Earth.
Collapse
Affiliation(s)
- Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Georgetown University, Washington, DC, USA
| | | | - Theresa M Fisher
- School of Earth and Space Exploration, Arizona State University, Arizona, USA
| | | | - Ceren Nural
- Istanbul Technical University, Istanbul, Turkey
| | - Pritvik Sinhadc
- BEYOND: Center For Fundamental Concepts in Science, Arizona State University, Arizona, USA
- Dubai College, Dubai, United Arab Emirates
| | - Monica Vidaurri
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Howard University, DC, USA
| | - Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
| | | |
Collapse
|
5
|
Kempes CP. The sparse macroecology of microbiology. Proc Natl Acad Sci U S A 2024; 121:e2318518120. [PMID: 38252826 PMCID: PMC10835028 DOI: 10.1073/pnas.2318518120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
|
6
|
Goyal A, Flamholz AI, Petroff AP, Murugan A. Closed ecosystems extract energy through self-organized nutrient cycles. Proc Natl Acad Sci U S A 2023; 120:e2309387120. [PMID: 38127977 PMCID: PMC10756307 DOI: 10.1073/pnas.2309387120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Our planet is a self-sustaining ecosystem powered by light energy from the sun, but roughly closed to matter. Many ecosystems on Earth are also approximately closed to matter and recycle nutrients by self-organizing stable nutrient cycles, e.g., microbial mats, lakes, open ocean gyres. However, existing ecological models do not exhibit the self-organization and dynamical stability widely observed in such planetary-scale ecosystems. Here, we advance a conceptual model that explains the self-organization, stability, and emergent features of closed microbial ecosystems. Our model incorporates the bioenergetics of metabolism into an ecological framework. By studying this model, we uncover a crucial thermodynamic feedback loop that enables metabolically diverse communities to almost always stabilize nutrient cycles. Surprisingly, highly diverse communities self-organize to extract [Formula: see text]10[Formula: see text] of the maximum extractable energy, or [Formula: see text]100 fold more than randomized communities. Further, with increasing diversity, distinct ecosystems show strongly correlated fluxes through nutrient cycles. However, as the driving force from light increases, the fluxes of nutrient cycles become more variable and species-dependent. Our results highlight that self-organization promotes the efficiency and stability of complex ecosystems at extracting energy from the environment, even in the absence of any centralized coordination.
Collapse
Affiliation(s)
- Akshit Goyal
- Department of Physics, Massachusetts Insitute of Technology, Cambridge, MA02139
| | - Avi I. Flamholz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Resnick Sustainability Institute, California Institute of Technology, Pasadena, CA91125
| | | | - Arvind Murugan
- Department of Physics, University of Chicago, Chicago, IL60637
| |
Collapse
|
7
|
Geller AM, Levy A. "What I cannot create, I do not understand": elucidating microbe-microbe interactions to facilitate plant microbiome engineering. Curr Opin Microbiol 2023; 72:102283. [PMID: 36868050 DOI: 10.1016/j.mib.2023.102283] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 03/05/2023]
Abstract
Plant-microbe interactions are important for both physiological and pathological processes. Despite the significance of plant-microbe interactions, microbe-microbe interactions themselves represent an important, complex, dynamic network that warrants deeper investigation. To understand how microbe-microbe interactions affect plant microbiomes, one approach is to systematically understand all the factors involved in successful engineering of a microbial community. This follows the physicist Richard Feynman's declaration: "what I cannot create, I do not understand". This review highlights recent studies that focus on aspects that we believe are important for building (ergo understanding) microbe-microbe interactions in the plant environment, including pairwise screening, intelligent application of cross-feeding models, spatial distributions of microbes, and understudied interactions between bacteria and fungi, phages, and protists. We offer a framework for systematic collection and centralized integration of data of plant microbiomes that could organize all the factors that can help ecologists understand microbiomes and help synthetic ecologists engineer beneficial microbiomes.
Collapse
Affiliation(s)
- Alexander M Geller
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Asaf Levy
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| |
Collapse
|
8
|
Boza G, Barabás G, Scheuring I, Zachar I. Eco-evolutionary modelling of microbial syntrophy indicates the robustness of cross-feeding over cross-facilitation. Sci Rep 2023; 13:907. [PMID: 36650168 PMCID: PMC9845244 DOI: 10.1038/s41598-023-27421-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Syntrophic cooperation among prokaryotes is ubiquitous and diverse. It relies on unilateral or mutual aid that may be both catalytic and metabolic in nature. Hypotheses of eukaryotic origins claim that mitochondrial endosymbiosis emerged from mutually beneficial syntrophy of archaeal and bacterial partners. However, there are no other examples of prokaryotic syntrophy leading to endosymbiosis. One potential reason is that when externalized products become public goods, they incite social conflict due to selfish mutants that may undermine any mutualistic interactions. To rigorously evaluate these arguments, here we construct a general mathematical framework of the ecology and evolution of different types of syntrophic partnerships. We do so both in a general microbial and in a eukaryogenetic context. Studying the case where partners cross-feed on each other's self-inhibiting waste, we show that cooperative partnerships will eventually dominate over selfish mutants. By contrast, systems where producers actively secrete enzymes that cross-facilitate their partners' resource consumption are not robust against cheaters over evolutionary time. We conclude that cross-facilitation is unlikely to provide an adequate syntrophic origin for endosymbiosis, but that cross-feeding mutualisms may indeed have played that role.
Collapse
Affiliation(s)
- G Boza
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary
- ASA Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- Centre for Social Sciences, Budapest, Hungary
| | - G Barabás
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary
- Division of Ecological and Environmental Modeling, Linköping University, Linköping, Sweden
| | - I Scheuring
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary
| | - I Zachar
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary.
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary.
- Parmenides Foundation, Centre for the Conceptual Foundation of Science, Pullach Im Isartal, Germany.
| |
Collapse
|
9
|
Sridhar S, Ajo-Franklin CM, Masiello CA. A Framework for the Systematic Selection of Biosensor Chassis for Environmental Synthetic Biology. ACS Synth Biol 2022; 11:2909-2916. [PMID: 35961652 PMCID: PMC9486965 DOI: 10.1021/acssynbio.2c00079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 01/24/2023]
Abstract
Microbial biosensors sense and report exposures to stimuli, thereby facilitating our understanding of environmental processes. Successful design and deployment of biosensors hinge on the persistence of the microbial host of the genetic circuit, termed the chassis. However, model chassis organisms may persist poorly in environmental conditions. In contrast, non-model organisms persist better in environmental conditions but are limited by other challenges, such as genetic intractability and part unavailability. Here we identify ecological, metabolic, and genetic constraints for chassis development and propose a conceptual framework for the systematic selection of environmental biosensor chassis. We identify key challenges with using current model chassis and delineate major points of conflict in choosing the most suitable organisms as chassis for environmental biosensing. This framework provides a way forward in the selection of biosensor chassis for environmental synthetic biology.
Collapse
Affiliation(s)
- Swetha Sridhar
- Systems,
Synthetic, and Physical Biology Graduate Program, Rice University, 6100 Main Street, MS-180, Houston, Texas 77005, United
States
| | - Caroline M. Ajo-Franklin
- Department
of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Caroline A. Masiello
- Department
of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
- Department
of Earth, Environmental, and Planetary Sciences, Rice University, 6100 Main St, MS-126, Houston, Texas 77005, United
States
| |
Collapse
|
10
|
Giri S, Yousif G, Shitut S, Oña L, Kost C. Prevalent emergence of reciprocity among cross-feeding bacteria. ISME COMMUNICATIONS 2022; 2:71. [PMID: 37938764 PMCID: PMC9723789 DOI: 10.1038/s43705-022-00155-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 05/25/2023]
Abstract
Explaining the de novo evolution of obligate cooperative cross-feeding interactions among bacteria is a fundamental problem. A critical step during this process is the emergence of reciprocity among two interaction partners, because a mutually beneficial exchange of metabolic byproducts can subsequently favour the evolution of cooperative cross-feeding. However, so far, the propensity with which unidirectional cross-feeding interactions transition into bidirectional interactions remains unknown. To address this issue, we systematically cocultured four amino acid auxotrophic genotypes of two bacterial species with potential amino acid donors belonging to 25 different bacterial species. Surprisingly, the results of this experiment revealed that in around 40% of all cases analysed, both the auxotrophic recipient and the metabolically autonomous donor gained a significant growth advantage in coculture. Subsequent experiments clarified that the auxotrophy-causing mutation did not induce the growth-enhancing effect of recipients, but that it was rather due to a generally high propensity of different species to engage in synergistic metabolic interactions. Together, these findings show that reciprocity commonly emerges spontaneously in unidirectional cross-feeding interactions, thus paving the way for the evolution of even tighter metabolic interactions.
Collapse
Affiliation(s)
- Samir Giri
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, 49076, Osnabrück, Germany.
- Genome Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.
| | - Ghada Yousif
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, 49076, Osnabrück, Germany
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Shraddha Shitut
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, 49076, Osnabrück, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Leonardo Oña
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, 49076, Osnabrück, Germany
| | - Christian Kost
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, 49076, Osnabrück, Germany.
| |
Collapse
|
11
|
Wagner A. Competition for nutrients increases invasion resistance during assembly of microbial communities. Mol Ecol 2022; 31:4188-4203. [PMID: 35713370 PMCID: PMC9542400 DOI: 10.1111/mec.16565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022]
Abstract
The assembly of microbial communities through sequential invasions of microbial species is challenging to study experimentally. Here, I used genome‐scale metabolic models of multiple species to model community assembly. Each such model represents all known biochemical reactions that a species uses to build biomass from nutrients in the environment. Species interactions in such models emerge from first biochemical principles, either through competition for environmental nutrients, or through cross‐feeding on metabolic by‐products excreted by resident species. I used these models to study 250 community assembly sequences. In each such sequence, a community changes through successive species invasions. During the 250 assembly sequences, communities become more species‐rich and invasion‐resistant. Resistance against both constructive and destructive invasions – those that entail species extinction – is associated with high community productivity, high biomass, and low concentrations of unused carbon. Competition for nutrients outweighs the influence of cross‐feeding on the growth rate of individual species. In a community assembly network of all communities that arise during the 250 assembly sequences, some communities occur more often than expected by chance. These include invasion resistant “attractor” communities with high biomass that arise late in community assembly and persist preferentially because of their invasion resistance. Genome‐scale metabolic models can reveal generic properties of microbial communities that are independent of the resident species and the environment.
Collapse
Affiliation(s)
- Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland.,The Santa Fe Institute, Santa Fe, New Mexico, USA.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
12
|
Zachar I, Boza G. The Evolution of Microbial Facilitation: Sociogenesis, Symbiogenesis, and Transition in Individuality. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.798045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolic cooperation is widespread, and it seems to be a ubiquitous and easily evolvable interaction in the microbial domain. Mutual metabolic cooperation, like syntrophy, is thought to have a crucial role in stabilizing interactions and communities, for example biofilms. Furthermore, cooperation is expected to feed back positively to the community under higher-level selection. In certain cases, cooperation can lead to a transition in individuality, when freely reproducing, unrelated entities (genes, microbes, etc.) irreversibly integrate to form a new evolutionary unit. The textbook example is endosymbiosis, prevalent among eukaryotes but virtually lacking among prokaryotes. Concerning the ubiquity of syntrophic microbial communities, it is intriguing why evolution has not lead to more transitions in individuality in the microbial domain. We set out to distinguish syntrophy-specific aspects of major transitions, to investigate why a transition in individuality within a syntrophic pair or community is so rare. We review the field of metabolic communities to identify potential evolutionary trajectories that may lead to a transition. Community properties, like joint metabolic capacity, functional profile, guild composition, assembly and interaction patterns are important concepts that may not only persist stably but according to thought-provoking theories, may provide the heritable information at a higher level of selection. We explore these ideas, relating to concepts of multilevel selection and of informational replication, to assess their relevance in the debate whether microbial communities may inherit community-level information or not.
Collapse
|
13
|
Oña L, Kost C. Cooperation increases robustness to ecological disturbance in microbial cross-feeding networks. Ecol Lett 2022; 25:1410-1420. [PMID: 35384221 DOI: 10.1111/ele.14006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022]
Abstract
Microorganisms mainly exist within complex networks of ecological interactions. Given that the growth and survival of community members frequently depend on an obligate exchange of essential metabolites, it is generally unclear how such communities can persist despite the destabilising force of ecological disturbance. Here we address this issue using a population dynamics model. In contrast to previous work that suggests the potential for obligate interaction networks to emerge is limited, we find the opposite pattern: ecological disturbance favours both specific network topologies and cooperative cross-feeding among community members. These results establish environmental perturbations as a key driver shaping the architecture of microbial interaction networks.
Collapse
Affiliation(s)
- Leonardo Oña
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Christian Kost
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
14
|
Higher-order effects, continuous species interactions, and trait evolution shape microbial spatial dynamics. Proc Natl Acad Sci U S A 2022; 119:2020956119. [PMID: 34969851 PMCID: PMC8740587 DOI: 10.1073/pnas.2020956119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Persistently diverse microbial communities are one of biology’s great puzzles. Using a modeling framework that accommodates high mutation rates and a continuum of species traits, we studied microbial communities in which antagonistic interactions occur via the production of, inhibition of, and vulnerability to toxins (e.g., antibiotics). Mutation size and mobility enhanced microbial diversity and temporal persistence to extraordinarily high levels. These findings—including the discovery that the duration of the transient phase in community assembly provides a guide to equilibrial diversity—highlight the potentially critical role that antagonistic interactions play in promoting the diversity of bacterial systems. Such interactions, together with resource-driven interactions and spatial structure, may drive the enigmatic levels of biodiversity seen in microbial systems. The assembly and maintenance of microbial diversity in natural communities, despite the abundance of toxin-based antagonistic interactions, presents major challenges for biological understanding. A common framework for investigating such antagonistic interactions involves cyclic dominance games with pairwise interactions. The incorporation of higher-order interactions in such models permits increased levels of microbial diversity, especially in communities in which antibiotic-producing, sensitive, and resistant strains coexist. However, most such models involve a small number of discrete species, assume a notion of pure cyclic dominance, and focus on low mutation rate regimes, none of which well represent the highly interlinked, quickly evolving, and continuous nature of microbial phenotypic space. Here, we present an alternative vision of spatial dynamics for microbial communities based on antagonistic interactions—one in which a large number of species interact in continuous phenotypic space, are capable of rapid mutation, and engage in both direct and higher-order interactions mediated by production of and resistance to antibiotics. Focusing on toxin production, vulnerability, and inhibition among species, we observe highly divergent patterns of diversity and spatial community dynamics. We find that species interaction constraints (rather than mobility) best predict spatiotemporal disturbance regimes, whereas community formation time, mobility, and mutation size best explain patterns of diversity. We also report an intriguing relationship among community formation time, spatial disturbance regimes, and diversity dynamics. This relationship, which suggests that both higher-order interactions and rapid evolution are critical for the origin and maintenance of microbial diversity, has broad-ranging links to the maintenance of diversity in other systems.
Collapse
|
15
|
Kehe J, Ortiz A, Kulesa A, Gore J, Blainey PC, Friedman J. Positive interactions are common among culturable bacteria. SCIENCE ADVANCES 2021; 7:eabi7159. [PMID: 34739314 PMCID: PMC8570599 DOI: 10.1126/sciadv.abi7159] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/16/2021] [Indexed: 05/19/2023]
Abstract
Interspecies interactions shape the structure and function of microbial communities. In particular, positive, growth-promoting interactions can substantially affect the diversity and productivity of natural and engineered communities. However, the prevalence of positive interactions and the conditions in which they occur are not well understood. To address this knowledge gap, we used kChip, an ultrahigh-throughput coculture platform, to measure 180,408 interactions among 20 soil bacteria across 40 carbon environments. We find that positive interactions, often described to be rare, occur commonly and primarily as parasitisms between strains that differ in their carbon consumption profiles. Notably, nongrowing strains are almost always promoted by strongly growing strains (85%), suggesting a simple positive interaction–mediated approach for cultivation, microbiome engineering, and microbial consortium design.
Collapse
Affiliation(s)
- Jared Kehe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anthony Ortiz
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony Kulesa
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul C. Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan Friedman
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
16
|
Lofgren LA, Stajich JE. Fungal biodiversity and conservation mycology in light of new technology, big data, and changing attitudes. Curr Biol 2021; 31:R1312-R1325. [PMID: 34637742 PMCID: PMC8516061 DOI: 10.1016/j.cub.2021.06.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fungi have successfully established themselves across seemingly every possible niche, substrate, and biome. They are fundamental to biogeochemical cycling, interspecies interactions, food production, and drug bioprocessing, as well as playing less heroic roles as difficult to treat human infections and devastating plant pathogens. Despite community efforts to estimate and catalog fungal diversity, we have only named and described a minute fraction of the fungal world. The identification, characterization, and conservation of fungal diversity is paramount to preserving fungal bioresources, and to understanding and predicting ecosystem cycling and the evolution and epidemiology of fungal disease. Although species and ecosystem conservation are necessarily the foundation of preserving this diversity, there is value in expanding our definition of conservation to include the protection of biological collections, ecological metadata, genetic and genomic data, and the methods and code used for our analyses. These definitions of conservation are interdependent. For example, we need metadata on host specificity and biogeography to understand rarity and set priorities for conservation. To aid in these efforts, we need to draw expertise from diverse fields to tie traditional taxonomic knowledge to data obtained from modern -omics-based approaches, and support the advancement of diverse research perspectives. We also need new tools, including an updated framework for describing and tracking species known only from DNA, and the continued integration of functional predictions to link genetic diversity to functional and ecological diversity. Here, we review the state of fungal diversity research as shaped by recent technological advancements, and how changing viewpoints in taxonomy, -omics, and systematics can be integrated to advance mycological research and preserve fungal biodiversity.
Collapse
Affiliation(s)
- Lotus A Lofgren
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA.
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
17
|
Abstract
Recent human activity has profoundly transformed Earth biomes on a scale and at rates that are unprecedented. Given the central role of symbioses in ecosystem processes, functions, and services throughout the Earth biosphere, the impacts of human-driven change on symbioses are critical to understand. Symbioses are not merely collections of organisms, but co-evolved partners that arise from the synergistic combination and action of different genetic programs. They function with varying degrees of permanence and selection as emergent units with substantial potential for combinatorial and evolutionary innovation in both structure and function. Following an articulation of operational definitions of symbiosis and related concepts and characteristics of the Anthropocene, we outline a basic typology of anthropogenic change (AC) and a conceptual framework for how AC might mechanistically impact symbioses with select case examples to highlight our perspective. We discuss surprising connections between symbiosis and the Anthropocene, suggesting ways in which new symbioses could arise due to AC, how symbioses could be agents of ecosystem change, and how symbioses, broadly defined, of humans and "farmed" organisms may have launched the Anthropocene. We conclude with reflections on the robustness of symbioses to AC and our perspective on the importance of symbioses as ecosystem keystones and the need to tackle anthropogenic challenges as wise and humble stewards embedded within the system.
Collapse
Affiliation(s)
- Erik F. Y. Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677 USA
| | - Alexandra S. Penn
- Department of Sociology and Centre for Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, Surrey, GU2 7XH UK
| |
Collapse
|
18
|
Kaplan-Shabtai V, Indugu N, Hennessy ML, Vecchiarelli B, Bender JS, Stefanovski D, De Assis Lage CF, Räisänen SE, Melgar A, Nedelkov K, Fetter ME, Fernandez A, Spitzer A, Hristov AN, Pitta DW. Using Structural Equation Modeling to Understand Interactions Between Bacterial and Archaeal Populations and Volatile Fatty Acid Proportions in the Rumen. Front Microbiol 2021; 12:611951. [PMID: 34220728 PMCID: PMC8248675 DOI: 10.3389/fmicb.2021.611951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/12/2021] [Indexed: 01/01/2023] Open
Abstract
Microbial syntrophy (obligate metabolic mutualism) is the hallmark of energy-constrained anaerobic microbial ecosystems. For example, methanogenic archaea and fermenting bacteria coexist by interspecies hydrogen transfer in the complex microbial ecosystem in the foregut of ruminants; however, these synergistic interactions between different microbes in the rumen are seldom investigated. We hypothesized that certain bacteria and archaea interact and form specific microbial cohorts in the rumen. To this end, we examined the total (DNA-based) and potentially metabolically active (cDNA-based) bacterial and archaeal communities in rumen samples of dairy cows collected at different times in a 24 h period. Notably, we found the presence of distinct bacterial and archaeal networks showing potential metabolic interactions that were correlated with molar proportions of specific volatile fatty acids (VFAs). We employed hypothesis-driven structural equation modeling to test the significance of and to quantify the extent of these relationships between bacteria-archaea-VFAs in the rumen. Furthermore, we demonstrated that these distinct microbial networks were host-specific and differed between cows indicating a natural variation in specific microbial networks in the rumen of dairy cows. This study provides new insights on potential microbial metabolic interactions in anoxic environments that have broader applications in methane mitigation, energy conservation, and agricultural production.
Collapse
Affiliation(s)
- Veronica Kaplan-Shabtai
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Nagaraju Indugu
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Meagan Leslie Hennessy
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Bonnie Vecchiarelli
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Joseph Samuel Bender
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Darko Stefanovski
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | | | | | - Audino Melgar
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
| | - Krum Nedelkov
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
| | - Molly Elizabeth Fetter
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
| | - Andrea Fernandez
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Addison Spitzer
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | | | - Dipti Wilhelmina Pitta
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| |
Collapse
|
19
|
Karkaria BD, Treloar NJ, Barnes CP, Fedorec AJH. From Microbial Communities to Distributed Computing Systems. Front Bioeng Biotechnol 2020; 8:834. [PMID: 32793576 PMCID: PMC7387671 DOI: 10.3389/fbioe.2020.00834] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
A distributed biological system can be defined as a system whose components are located in different subpopulations, which communicate and coordinate their actions through interpopulation messages and interactions. We see that distributed systems are pervasive in nature, performing computation across all scales, from microbial communities to a flock of birds. We often observe that information processing within communities exhibits a complexity far greater than any single organism. Synthetic biology is an area of research which aims to design and build synthetic biological machines from biological parts to perform a defined function, in a manner similar to the engineering disciplines. However, the field has reached a bottleneck in the complexity of the genetic networks that we can implement using monocultures, facing constraints from metabolic burden and genetic interference. This makes building distributed biological systems an attractive prospect for synthetic biology that would alleviate these constraints and allow us to expand the applications of our systems into areas including complex biosensing and diagnostic tools, bioprocess control and the monitoring of industrial processes. In this review we will discuss the fundamental limitations we face when engineering functionality with a monoculture, and the key areas where distributed systems can provide an advantage. We cite evidence from natural systems that support arguments in favor of distributed systems to overcome the limitations of monocultures. Following this we conduct a comprehensive overview of the synthetic communities that have been built to date, and the components that have been used. The potential computational capabilities of communities are discussed, along with some of the applications that these will be useful for. We discuss some of the challenges with building co-cultures, including the problem of competitive exclusion and maintenance of desired community composition. Finally, we assess computational frameworks currently available to aide in the design of microbial communities and identify areas where we lack the necessary tools.
Collapse
Affiliation(s)
- Behzad D. Karkaria
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Neythen J. Treloar
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Chris P. Barnes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Alex J. H. Fedorec
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
20
|
Abstract
The genomes of bacteria contain fewer genes and substantially less noncoding DNA than those of eukaryotes, and as a result, they have much less raw material to invent new traits. Yet, bacteria are vastly more taxonomically diverse, numerically abundant, and globally successful in colonizing new habitats compared to eukaryotes. Although bacterial genomes are generally considered to be optimized for efficient growth and rapid adaptation, nonadaptive processes have played a major role in shaping the size, contents, and compact organization of bacterial genomes and have allowed the establishment of deleterious traits that serve as the raw materials for genetic innovation.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| | - Marian L Schmidt
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| |
Collapse
|
21
|
López-García P, Moreira D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat Microbiol 2020; 5:655-667. [DOI: 10.1038/s41564-020-0710-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/13/2020] [Indexed: 11/10/2022]
|
22
|
Phenotypic variation in spatially structured microbial communities: ecological origins and consequences. Curr Opin Biotechnol 2020; 62:220-227. [DOI: 10.1016/j.copbio.2019.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
|
23
|
Hernandez-Valdes JA, van Gestel J, Kuipers OP. A riboswitch gives rise to multi-generational phenotypic heterogeneity in an auxotrophic bacterium. Nat Commun 2020; 11:1203. [PMID: 32139702 PMCID: PMC7058034 DOI: 10.1038/s41467-020-15017-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/13/2020] [Indexed: 12/26/2022] Open
Abstract
Auxotrophy, the inability to produce an organic compound essential for growth, is widespread among bacteria. Auxotrophic bacteria rely on transporters to acquire these compounds from their environment. Here, we study the expression of both low- and high-affinity transporters of the costly amino acid methionine in an auxotrophic lactic acid bacterium, Lactococcus lactis. We show that the high-affinity transporter (Met-transporter) is heterogeneously expressed at low methionine concentrations, resulting in two isogenic subpopulations that sequester methionine in different ways: one subpopulation primarily relies on the high-affinity transporter (high expression of the Met-transporter) and the other subpopulation primarily relies on the low-affinity transporter (low expression of the Met-transporter). The phenotypic heterogeneity is remarkably stable, inherited for tens of generations, and apparent at the colony level. This heterogeneity results from a T-box riboswitch in the promoter region of the met operon encoding the high-affinity Met-transporter. We hypothesize that T-box riboswitches, which are commonly found in the Lactobacillales, may play as-yet unexplored roles in the predominantly auxotrophic lifestyle of these bacteria.
Collapse
Affiliation(s)
- Jhonatan A Hernandez-Valdes
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, Netherlands
| | - Jordi van Gestel
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, Netherlands.
| |
Collapse
|
24
|
Conde-Pueyo N, Vidiella B, Sardanyés J, Berdugo M, Maestre FT, de Lorenzo V, Solé R. Synthetic Biology for Terraformation Lessons from Mars, Earth, and the Microbiome. Life (Basel) 2020; 10:E14. [PMID: 32050455 PMCID: PMC7175242 DOI: 10.3390/life10020014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
What is the potential for synthetic biology as a way of engineering, on a large scale, complex ecosystems? Can it be used to change endangered ecological communities and rescue them to prevent their collapse? What are the best strategies for such ecological engineering paths to succeed? Is it possible to create stable, diverse synthetic ecosystems capable of persisting in closed environments? Can synthetic communities be created to thrive on planets different from ours? These and other questions pervade major future developments within synthetic biology. The goal of engineering ecosystems is plagued with all kinds of technological, scientific and ethic problems. In this paper, we consider the requirements for terraformation, i.e., for changing a given environment to make it hospitable to some given class of life forms. Although the standard use of this term involved strategies for planetary terraformation, it has been recently suggested that this approach could be applied to a very different context: ecological communities within our own planet. As discussed here, this includes multiple scales, from the gut microbiome to the entire biosphere.
Collapse
Affiliation(s)
- Nuria Conde-Pueyo
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
| | - Blai Vidiella
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica, Campus UAB Edifici C, 08193 Bellaterra, Barcelona, Spain;
- Barcelona Graduate School of Mathematics (BGSMath), Campus UAB Edifici C, 08193 Bellaterra, Barcelona, Spain
| | - Miguel Berdugo
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
- Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef”, Universidad de Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Fernando T. Maestre
- Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef”, Universidad de Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Victor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|