1
|
Ruffini G, Castaldo F, Lopez-Sola E, Sanchez-Todo R, Vohryzek J. The Algorithmic Agent Perspective and Computational Neuropsychiatry: From Etiology to Advanced Therapy in Major Depressive Disorder. ENTROPY (BASEL, SWITZERLAND) 2024; 26:953. [PMID: 39593898 PMCID: PMC11592617 DOI: 10.3390/e26110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Major Depressive Disorder (MDD) is a complex, heterogeneous condition affecting millions worldwide. Computational neuropsychiatry offers potential breakthroughs through the mechanistic modeling of this disorder. Using the Kolmogorov theory (KT) of consciousness, we developed a foundational model where algorithmic agents interact with the world to maximize an Objective Function evaluating affective valence. Depression, defined in this context by a state of persistently low valence, may arise from various factors-including inaccurate world models (cognitive biases), a dysfunctional Objective Function (anhedonia, anxiety), deficient planning (executive deficits), or unfavorable environments. Integrating algorithmic, dynamical systems, and neurobiological concepts, we map the agent model to brain circuits and functional networks, framing potential etiological routes and linking with depression biotypes. Finally, we explore how brain stimulation, psychotherapy, and plasticity-enhancing compounds such as psychedelics can synergistically repair neural circuits and optimize therapies using personalized computational models.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Francesca Castaldo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Edmundo Lopez-Sola
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
| | - Roser Sanchez-Todo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
| | - Jakub Vohryzek
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK
| |
Collapse
|
2
|
Pepperell R. Consciousness and Energy Processing in Neural Systems. Brain Sci 2024; 14:1112. [PMID: 39595875 PMCID: PMC11591782 DOI: 10.3390/brainsci14111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Our understanding of the relationship between neural activity and psychological states has advanced greatly in recent decades. But we are still unable to explain conscious experience in terms of physical processes occurring in our brains. METHODS This paper introduces a conceptual framework that may contribute to an explanation. All physical processes entail the transfer, transduction, and transformation of energy between portions of matter as work is performed in material systems. If the production of consciousness in nervous systems is a physical process, then it must entail the same. Here the nervous system, and the brain in particular, is considered as a material system that transfers, transduces, and transforms energy as it performs biophysical work. CONCLUSIONS Evidence from neuroscience suggests that conscious experience is produced in the organic matter of nervous systems when they perform biophysical work at classical and quantum scales with a certain level of dynamic complexity or organization. An empirically grounded, falsifiable, and testable hypothesis is offered to explain how energy processing in nervous systems may produce conscious experience at a fundamental physical level.
Collapse
|
3
|
Eliason M, Kalbande PP, Saleem GT. Is non-invasive neuromodulation a viable technique to improve neuroplasticity in individuals with acquired brain injury? A review. Front Hum Neurosci 2024; 18:1341707. [PMID: 39296918 PMCID: PMC11408216 DOI: 10.3389/fnhum.2024.1341707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/22/2024] [Indexed: 09/21/2024] Open
Abstract
Objective This study aimed to explore and evaluate the efficacy of non-invasive brain stimulation (NIBS) as a standalone or coupled intervention and understand its mechanisms to produce positive alterations in neuroplasticity and behavioral outcomes after acquired brain injury (ABI). Data sources Cochrane Library, Web of Science, PubMed, and Google Scholar databases were searched from January 2013 to January 2024. Study selection Using the PICO framework, transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) randomized controlled trials (RCTs), retrospective, pilot, open-label, and observational large group and single-participant case studies were included. Two authors reviewed articles according to pre-established inclusion criteria. Data extraction Data related to participant and intervention characteristics, mechanisms of change, methods, and outcomes were extracted by two authors. The two authors performed quality assessments using SORT. Results Twenty-two studies involving 657 participants diagnosed with ABIs were included. Two studies reported that NIBS was ineffective in producing positive alterations or behavioral outcomes. Twenty studies reported at least one, or a combination of, positively altered neuroplasticity and improved neuropsychological, neuropsychiatric, motor, or somatic symptoms. Twenty-eight current articles between 2020 and 2024 have been studied to elucidate potential mechanisms of change related to NIBS and other mediating or confounding variables. Discussion tDCS and TMS may be efficacious as standalone interventions or coupled with neurorehabilitation therapies to positively alter maladaptive brain physiology and improve behavioral symptomology resulting from ABI. Based on postintervention and follow-up results, evidence suggests NIBS may offer a direct or mediatory contribution to improving behavioral outcomes post-ABI. Conclusion More research is needed to better understand the extent of rTMS and tDCS application in affecting changes in symptoms after ABI.
Collapse
Affiliation(s)
- Michelle Eliason
- Rehabilitation Science Department, University at Buffalo, Buffalo, NY, United States
| | | | - Ghazala T Saleem
- Rehabilitation Science Department, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
4
|
de Sousa MPB, Cunha GM, Corso G, Dos Santos Lima GZ. Thermal effects and ephaptic entrainment in Hodgkin-Huxley model. Sci Rep 2024; 14:20075. [PMID: 39209942 PMCID: PMC11362309 DOI: 10.1038/s41598-024-70655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The brain is understood as an intricate biological system composed of numerous elements. It is susceptible to various physical and chemical influences, including temperature. The literature extensively explores the conditions that influence synapses in the context of cellular communication. However, the understanding of how the brain's global physical conditions can modulate ephaptic communication remains limited due to the poorly understood nature of ephapticity. This study proposes an adaptation of the Hodgkin and Huxley (HH) model to investigate the effects of ephaptic entrainment in response to thermal changes (HH-E). The analysis focuses on two distinct neuronal regimes: subthreshold and suprathreshold. In the subthreshold regime, circular statistics are used to demonstrate the dependence of phase differences with temperature. In the suprathreshold regime, the Inter-Spike Interval are employed to estimate phase preferences and changes in the spiking pattern. Temperature influences the model's ephaptic interactions and can modify its preferences for spiking frequency, with the direction of this change depending on specific model conditions and the temperature range under consideration. Furthermore, temperature enhance the anti-phase differences relationship between spikes and the external ephaptic signal. In the suprathreshold regime, ephaptic entrainment is also influenced by temperature, especially at low frequencies. This study reveals the susceptibility of ephaptic entrainment to temperature variations in both subthreshold and suprathreshold regimes and discusses the importance of ephaptic communication in the contexts where temperature may plays a significant role in neural physiology, such as inflammatory processes, fever, and epileptic seizures.
Collapse
Affiliation(s)
- Matheus Phellipe Brasil de Sousa
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil
- Laboratório de Simulação e Modelagem Neurodinâmica, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| | - Gabriel Moreno Cunha
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil
- Laboratório de Simulação e Modelagem Neurodinâmica, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| | - Gilberto Corso
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| | - Gustavo Zampier Dos Santos Lima
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil.
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil.
- Laboratório de Simulação e Modelagem Neurodinâmica, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil.
- Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil.
| |
Collapse
|
5
|
Contini D, Holstein GR, Art JJ. Simultaneous recordings from vestibular Type I hair cells and their calyceal afferents in mice. Front Neurol 2024; 15:1434026. [PMID: 39263277 PMCID: PMC11387672 DOI: 10.3389/fneur.2024.1434026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024] Open
Abstract
The vestibular hair cell receptors of anamniotes, designated Type II, are presynaptic to bouton endings of vestibular nerve distal neurites. An additional flask-shaped hair cell receptor, Type I, is present in amniotes, and communicates with a chalice-shaped afferent neuritic ending that surrounds the entire hair cell except its apical neck. Since the full repertoire of afferent fiber dynamics and sensitivities observed throughout the vertebrate phyla can be accomplished through Type II hair cell-bouton synapses, the functional contribution(s) of Type I hair cells and their calyces to vestibular performance remains a topic of great interest. The goal of the present study was to investigate electrical coupling between the Type I hair cell and its enveloping calyx in the mouse semicircular canal crista ampullaris. Since there are no gap junctions between these two cells, evidence for electrical communication would necessarily involve other mechanisms. Simultaneous recordings from the two cells of the synaptic pair were used initially to verify the presence of orthodromic quantal synaptic transmission from the hair cell to the calyx, and then to demonstrate bi-directional communication due to the slow accumulation of potassium ions in the synaptic cleft. As a result of this potassium ion accretion, the equilibrium potentials of hair cell conductances facing the synaptic cleft become depolarized to an extent that is adequate for calcium influx into the hair cell, and the calyx inner face becomes depolarized to a level that is near the threshold for spike initiation. Following this, paired recordings were again employed to characterize fast bi-directional electrical coupling between the two cells. In this form of signaling, cleft-facing conductances in both the hair cell and calyx increase, which strengthens their coupling. Because this mechanism relies on the cleft resistance, we refer to it as resistive coupling. We conclude that the same three forms of hair cell-calyceal transmission previously demonstrated in the turtle are present in the mammalian periphery, providing a biophysical basis for the exceptional temporal fidelity of the vestibular system.
Collapse
Affiliation(s)
- Donatella Contini
- Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jonathan J Art
- Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Kuhn RL. A landscape of consciousness: Toward a taxonomy of explanations and implications. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 190:28-169. [PMID: 38281544 DOI: 10.1016/j.pbiomolbio.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/12/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
Diverse explanations or theories of consciousness are arrayed on a roughly physicalist-to-nonphysicalist landscape of essences and mechanisms. Categories: Materialism Theories (philosophical, neurobiological, electromagnetic field, computational and informational, homeostatic and affective, embodied and enactive, relational, representational, language, phylogenetic evolution); Non-Reductive Physicalism; Quantum Theories; Integrated Information Theory; Panpsychisms; Monisms; Dualisms; Idealisms; Anomalous and Altered States Theories; Challenge Theories. There are many subcategories, especially for Materialism Theories. Each explanation is self-described by its adherents, critique is minimal and only for clarification, and there is no attempt to adjudicate among theories. The implications of consciousness explanations or theories are assessed with respect to four questions: meaning/purpose/value (if any); AI consciousness; virtual immortality; and survival beyond death. A Landscape of Consciousness, I suggest, offers perspective.
Collapse
|
7
|
Zhao Z, Shirinpour S, Tran H, Wischnewski M, Opitz A. intensity- and frequency-specific effects of transcranial alternating current stimulation are explained by network dynamics. J Neural Eng 2024; 21:026024. [PMID: 38530297 DOI: 10.1088/1741-2552/ad37d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Objective. Transcranial alternating current stimulation (tACS) can be used to non-invasively entrain neural activity and thereby cause changes in local neural oscillatory power. Despite its increased use in cognitive and clinical neuroscience, the fundamental mechanisms of tACS are still not fully understood.Approach. We developed a computational neuronal network model of two-compartment pyramidal neurons (PY) and inhibitory interneurons, which mimic the local cortical circuits. We modeled tACS with electric field strengths that are achievable in human applications. We then simulated intrinsic network activity and measured neural entrainment to investigate how tACS modulates ongoing endogenous oscillations.Main results. The intensity-specific effects of tACS are non-linear. At low intensities (<0.3 mV mm-1), tACS desynchronizes neural firing relative to the endogenous oscillations. At higher intensities (>0.3 mV mm-1), neurons are entrained to the exogenous electric field. We then further explore the stimulation parameter space and find that the entrainment of ongoing cortical oscillations also depends on stimulation frequency by following an Arnold tongue. Moreover, neuronal networks can amplify the tACS-induced entrainment via synaptic coupling and network effects. Our model shows that PY are directly entrained by the exogenous electric field and drive the inhibitory neurons.Significance. The results presented in this study provide a mechanistic framework for understanding the intensity- and frequency-specific effects of oscillating electric fields on neuronal networks. This is crucial for rational parameter selection for tACS in cognitive studies and clinical applications.
Collapse
Affiliation(s)
- Zhihe Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Harry Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
8
|
Ruffini G, Lopez-Sola E, Vohryzek J, Sanchez-Todo R. Neural Geometrodynamics, Complexity, and Plasticity: A Psychedelics Perspective. ENTROPY (BASEL, SWITZERLAND) 2024; 26:90. [PMID: 38275498 PMCID: PMC11154528 DOI: 10.3390/e26010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
We explore the intersection of neural dynamics and the effects of psychedelics in light of distinct timescales in a framework integrating concepts from dynamics, complexity, and plasticity. We call this framework neural geometrodynamics for its parallels with general relativity's description of the interplay of spacetime and matter. The geometry of trajectories within the dynamical landscape of "fast time" dynamics are shaped by the structure of a differential equation and its connectivity parameters, which themselves evolve over "slow time" driven by state-dependent and state-independent plasticity mechanisms. Finally, the adjustment of plasticity processes (metaplasticity) takes place in an "ultraslow" time scale. Psychedelics flatten the neural landscape, leading to heightened entropy and complexity of neural dynamics, as observed in neuroimaging and modeling studies linking increases in complexity with a disruption of functional integration. We highlight the relationship between criticality, the complexity of fast neural dynamics, and synaptic plasticity. Pathological, rigid, or "canalized" neural dynamics result in an ultrastable confined repertoire, allowing slower plastic changes to consolidate them further. However, under the influence of psychedelics, the destabilizing emergence of complex dynamics leads to a more fluid and adaptable neural state in a process that is amplified by the plasticity-enhancing effects of psychedelics. This shift manifests as an acute systemic increase of disorder and a possibly longer-lasting increase in complexity affecting both short-term dynamics and long-term plastic processes. Our framework offers a holistic perspective on the acute effects of these substances and their potential long-term impacts on neural structure and function.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Edmundo Lopez-Sola
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
| | - Jakub Vohryzek
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK
| | - Roser Sanchez-Todo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
| |
Collapse
|
9
|
Sanfey J. Simultaneity of consciousness with physical reality: the key that unlocks the mind-matter problem. Front Psychol 2023; 14:1173653. [PMID: 37842692 PMCID: PMC10568466 DOI: 10.3389/fpsyg.2023.1173653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
The problem of explaining the relationship between subjective experience and physical reality remains difficult and unresolved. In most explanations, consciousness is epiphenomenal, without causal power. The most notable exception is Integrated Information Theory (IIT), which provides a causal explanation for consciousness. However, IIT relies on an identity between subjectivity and a particular type of physical structure, namely with an information structure that has intrinsic causal power greater than the sum of its parts. Any theory that relies on a psycho-phyiscal identity must eventually appeal to panpsychism, which undermines that theory's claim to be fundamental. IIT has recently pivoted towards a strong version of causal emergence, but macroscopic structures cannot be stronger causally than their microphysical parts without some new physical law or governing principle. The approach taken here is designed to uncover such a principle. The decisive argument is entirely deductive from initial premises that are phenomenologically certain. If correct, the arguments prove that conscious experience is sufficient to create additional degrees of causal freedom independently of the content of experience, and in a manner that is unpredictable and unobservable by any temporally sequential means. This provides a fundamental principle about consciousness, and a conceptual bridge between it and the physics describing what is experienced. The principle makes testable predictions about brain function, with notable differences from IIT, some of which are also empirically testable.
Collapse
|
10
|
Pinotsis DA, Miller EK. In vivo ephaptic coupling allows memory network formation. Cereb Cortex 2023; 33:9877-9895. [PMID: 37420330 PMCID: PMC10472500 DOI: 10.1093/cercor/bhad251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
It is increasingly clear that memories are distributed across multiple brain areas. Such "engram complexes" are important features of memory formation and consolidation. Here, we test the hypothesis that engram complexes are formed in part by bioelectric fields that sculpt and guide the neural activity and tie together the areas that participate in engram complexes. Like the conductor of an orchestra, the fields influence each musician or neuron and orchestrate the output, the symphony. Our results use the theory of synergetics, machine learning, and data from a spatial delayed saccade task and provide evidence for in vivo ephaptic coupling in memory representations.
Collapse
Affiliation(s)
- Dimitris A Pinotsis
- Department of Psychology, Centre for Mathematical Neuroscience and Psychology, University of London, London EC1V 0HB, United Kingdom
- The Picower Institute for Learning & Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Earl K Miller
- The Picower Institute for Learning & Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
11
|
Boosting psychological change: Combining non-invasive brain stimulation with psychotherapy. Neurosci Biobehav Rev 2022; 142:104867. [PMID: 36122739 DOI: 10.1016/j.neubiorev.2022.104867] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
Mental health disorders and substance use disorders are a leading cause of morbidity and mortality worldwide, and one of the most important challenges for public health systems. While evidence-based psychotherapy is generally pursued to address mental health challenges, psychological change is often hampered by non-adherence to treatments, relapses, and practical barriers (e.g., time, cost). In recent decades, Non-invasive brain stimulation (NIBS) techniques have emerged as promising tools to directly target dysfunctional neural circuitry and promote long-lasting plastic changes. While the therapeutic efficacy of NIBS protocols for mental illnesses has been established, neuromodulatory interventions might also be employed to support the processes activated by psychotherapy. Indeed, combining psychotherapy with NIBS might help tailor the treatment to the patient's unique characteristics and therapeutic goal, and would allow more direct control of the neuronal changes induced by therapy. Herein, we overview emerging evidence on the use of NIBS to enhance the psychotherapeutic effect, while highlighting the next steps in advancing clinical and research methods toward personalized intervention approaches.
Collapse
|
12
|
Rouleau N, Cimino N. A Transmissive Theory of Brain Function: Implications for Health, Disease, and Consciousness. NEUROSCI 2022; 3:440-456. [PMID: 39483436 PMCID: PMC11523760 DOI: 10.3390/neurosci3030032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 11/03/2024] Open
Abstract
Identifying a complete, accurate model of brain function would allow neuroscientists and clinicians to make powerful neuropsychological predictions and diagnoses as well as develop more effective treatments to mitigate or reverse neuropathology. The productive model of brain function, which has been dominant in the field for centuries, cannot easily accommodate some higher-order neural processes associated with consciousness and other neuropsychological phenomena. However, in recent years, it has become increasingly evident that the brain is highly receptive to and readily emits electromagnetic (EM) fields and light. Indeed, brain tissues can generate endogenous, complex EM fields and ultraweak photon emissions (UPEs) within the visible and near-visible EM spectra. EM-based neural mechanisms, such as ephaptic coupling and non-visual optical brain signaling, expand canonical neural signaling modalities and are beginning to disrupt conventional models of brain function. Here, we present an evidence-based argument for the existence of brain processes that are caused by the transmission of extracerebral, EM signals and recommend experimental strategies with which to test the hypothesis. We argue for a synthesis of productive and transmissive models of brain function and discuss implications for the study of consciousness, brain health, and disease.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Psychology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Nicholas Cimino
- Department of Psychology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
| |
Collapse
|
13
|
Simula S, Daoud M, Ruffini G, Biagi MC, Bénar CG, Benquet P, Wendling F, Bartolomei F. Transcranial current stimulation in epilepsy: A systematic review of the fundamental and clinical aspects. Front Neurosci 2022; 16:909421. [PMID: 36090277 PMCID: PMC9453675 DOI: 10.3389/fnins.2022.909421] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Transcranial electrical current stimulation (tES or tCS, as it is sometimes referred to) has been proposed as non-invasive therapy for pharmacoresistant epilepsy. This technique, which includes direct current (tDCS) and alternating current (tACS) stimulation involves the application of weak currents across the cortex to change cortical excitability. Although clinical trials have demonstrated the therapeutic efficacy of tES, its specific effects on epileptic brain activity are poorly understood. We sought to summarize the clinical and fundamental effects underlying the application of tES in epilepsy. Methods A systematic review was performed in accordance with the PRISMA guidelines. A database search was performed in PUBMED, MEDLINE, Web of Science and Cochrane CENTRAL for articles corresponding to the keywords “epilepsy AND (transcranial current stimulation OR transcranial electrical stimulation)”. Results A total of 56 studies were included in this review. Through these records, we show that tDCS and tACS epileptic patients are safe and clinically relevant techniques for epilepsy. Recent articles reported changes of functional connectivity in epileptic patients after tDCS. We argue that tDCS may act by affecting brain networks, rather than simply modifying local activity in the targeted area. To explain the mechanisms of tES, various cellular effects have been identified. Among them, reduced cell loss, mossy fiber sprouting, and hippocampal BDNF protein levels. Brain modeling and human studies highlight the influence of individual brain anatomy and physiology on the electric field distribution. Computational models may optimize the stimulation parameters and bring new therapeutic perspectives. Conclusion Both tDCS and tACS are promising techniques for epilepsy patients. Although the clinical effects of tDCS have been repeatedly assessed, only one clinical trial has involved a consistent number of epileptic patients and little knowledge is present about the clinical outcome of tACS. To fill this gap, multicenter studies on tES in epileptic patients are needed involving novel methods such as personalized stimulation protocols based on computational modeling. Furthermore, there is a need for more in vivo studies replicating the tES parameters applied in patients. Finally, there is a lack of clinical studies investigating changes in intracranial epileptiform discharges during tES application, which could clarify the nature of tES-related local and network dynamics in epilepsy.
Collapse
Affiliation(s)
- Sara Simula
- Aix Marseille Univ, INSERM, INS, Int Neurosci Syst, Marseille, France
| | - Maëva Daoud
- Aix Marseille Univ, INSERM, INS, Int Neurosci Syst, Marseille, France
| | | | | | | | | | | | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Int Neurosci Syst, Marseille, France
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- *Correspondence: Fabrice Bartolomei
| |
Collapse
|
14
|
Lopez-Sola E, Sanchez-Todo R, Lleal È, Köksal Ersöz E, Yochum M, Makhalova J, Mercadal B, Guasch M, Salvador R, Lozano-Soldevilla D, Modolo J, Bartolomei F, Wendling F, Benquet P, Ruffini G. A personalizable autonomous neural mass model of epileptic seizures. J Neural Eng 2022; 19. [PMID: 35995031 DOI: 10.1088/1741-2552/ac8ba8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/22/2022] [Indexed: 11/11/2022]
Abstract
Work in the last two decades has shown that neural mass models (NMM) can realistically reproduce and explain epileptic seizure transitions as recorded by electrophysiological methods (EEG, SEEG). In previous work, advances were achieved by increasing excitation and heuristically varying network inhibitory coupling parameters in the models. Based on these early studies, we provide a laminar NMM capable of realistically reproducing the electrical activity recorded by SEEG in the epileptogenic zone during interictal to ictal states. With the exception of the external noise input into the pyramidal cell population, the model dynamics are autonomous. By setting the system at a point close to bifurcation, seizure-like transitions are generated, including pre-ictal spikes, low voltage fast activity, and ictal rhythmic activity. A novel element in the model is a physiologically motivated algorithm for chloride dynamics: the gain of GABAergic post-synaptic potentials is modulated by the pathological accumulation of chloride in pyramidal cells due to high inhibitory input and/or dysfunctional chloride transport. In addition, in order to simulate SEEG signals for comparison with real seizure recordings, the NMM is embedded first in a layered model of the neocortex and then in a realistic physical model. We compare modeling results with data from four epilepsy patient cases. By including key pathophysiological mechanisms, the proposed framework captures succinctly the electrophysiological phenomenology observed in ictal states, paving the way for robust personalization methods based on NMMs.
Collapse
Affiliation(s)
- Edmundo Lopez-Sola
- Neuroelectrics Barcelona SL, Avda Tibidabo, 47 bis, Barcelona, Barcelona, 08035, SPAIN
| | - Roser Sanchez-Todo
- Neuroelectrics Barcelona SL, Avda Tibidabo, 47 bis, Barcelona, Catalunya, 08035, SPAIN
| | - Èlia Lleal
- Neuroelectrics Barcelona SL, Avda Tibidabo, 47 bis, Barcelona, Catalunya, 08035, SPAIN
| | - Elif Köksal Ersöz
- LTSI, Universite de Rennes 1, Campus de Beaulieu, Rennes, Bretagne, 35065, FRANCE
| | - Maxime Yochum
- LTSI, Universite de Rennes 1, Campus Beaulieu, Rennes, Bretagne, 35065, FRANCE
| | - Julia Makhalova
- Neurophysiologie clinique, Service d'Epileptologie et de Rythmologie Cerebrale, Assistance Publique Hopitaux de Marseille, Hôpital de la Timone, Marseille, Provence-Alpes-Côte d'Azu, 13354, FRANCE
| | - Borja Mercadal
- Neuroelectrics Barcelona SL, Avda Tibidabo, 47 bis, Barcelona, Catalunya, 08035, SPAIN
| | - Maria Guasch
- Neuroelectrics Barcelona SL, Avda Tibidabo, 47 bis, Barcelona, Barcelona, 08035, SPAIN
| | - Ricardo Salvador
- Neuroelectrics Barcelona SL, Av Tibidabo, 47bis, Barcelona, Barcelona, Catalunya, 08035, SPAIN
| | | | - Julien Modolo
- LTSI, Universite de Rennes 1, Campus de Beaulieu, Rennes, Bretagne, 35065, FRANCE
| | - Fabrice Bartolomei
- Neurophysiologie clinique, Service d'Epileptologie et de Rythmologie Cerebrale, Assistance Publique Hopitaux de Marseille, Hôpital de la Timone, Marseille, Provence-Alpes-Côte d'Azu, 13354, FRANCE
| | - Fabrice Wendling
- LTSI, Universite de Rennes 1, Campus Beaulieu, Rennes, Bretagne, 35065, FRANCE
| | - Pascal Benquet
- LTSI, Universite de Rennes 1, Campus Beaulieu, Rennes, Bretagne, 35065, FRANCE
| | - Giulio Ruffini
- Neuroelectrics Barcelona SL, Avda Tibidabo, 47 bis, Barcelona, Catalunya, 08035, SPAIN
| |
Collapse
|
15
|
Zeltser G, Sukhanov IM, Nevorotin AJ. MMM - The molecular model of memory. J Theor Biol 2022; 549:111219. [PMID: 35810778 DOI: 10.1016/j.jtbi.2022.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
Identifying mechanisms underlying neurons ability to process information including acquisition, storage, and retrieval plays an important role in the understanding of the different types of memory, pathogenesis of many neurological diseases affecting memory and therapeutic target discovery. However, the traditional understanding of the mechanisms of memory associated with the electrical signals having a unique combination of frequency and amplitude does not answer the question how the memories can survive for life-long periods of time, while exposed to synaptic noise. Recent evidence suggests that, apart from neuronal circuits, a diversity of the molecular memory (MM) carriers, are essential for memory performance. The molecular model of memory (MMM) is proposed, according to which each item of incoming information (the elementary memory item - eMI) is encoded by both circuitries, with the unique for a given MI electrical parameters, and also the MM carriers, unique by its molecular composition. While operating as the carriers of incoming information, the MMs, are functioning within the neuron plasma membrane. Inactive (latent) initially, during acquisition each of the eMIs is activated to become a virtual copy of some real fact or events bygone. This activation is accompanied by the considerable remodeling of the MM molecule associated with the resonance effect.
Collapse
Affiliation(s)
| | - Ilya M Sukhanov
- Lab. Behavioral Pharmacology, Dept. Psychopharmacology, Valdman Institute of Pharmacology, I.P. Pavlov Medical University, Leo Tolstoi Street 6/8, St. Petersburg 197022, The Russian Federation
| | - Alexey J Nevorotin
- Laboratory of Electron Microscopy, I.P. Pavlov Medical University, Leo Tolstoi Street 6/8, St. Petersburg 197022, The Russian Federation
| |
Collapse
|
16
|
Abstract
The conscious electromagnetic information (cemi) field theory proposes that the seat of consciousness is the brain’s electromagnetic (EM) field that integrates information from trillions of firing neurons. What we call free will is its output. The cemi theory also proposes that the brain has two streams. Most actions are initiated by the first non-conscious stream that is composed of neurons that are insulated from EM field influences. These non-conscious involuntary actions are thereby invisible to our EM field-located thoughts. The theory also proposes that voluntary actions are driven by neurons that receive EM field inputs and are thereby visible to our EM field-located thoughts. I review the extensive evidence for EM field/ephaptic coupling between neurons and the increasing evidence that EM fields in the brain are a cause of behaviour. I conclude by arguing that though this EM field-driven will is not free, in the sense of being acausal, it nevertheless corresponds to the very real experience of our conscious mind being in control of our voluntary actions. Will is not an illusion. It is our experience of control by our EM field-located mind. It is an immaterial, yet physical, will.
Collapse
|
17
|
Hesp C. Beyond connectionism: A neuronal dance of ephaptic and synaptic interactions: Commentary on "The growth of cognition: Free energy minimization and the embryogenesis of cortical computation" by Wright and Bourke (2020). Phys Life Rev 2020; 36:40-43. [PMID: 32807647 DOI: 10.1016/j.plrev.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Casper Hesp
- Department of Psychology, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands; Amsterdam Brain and Cognition Centre, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands; Institute for Advanced Study, University of Amsterdam, Oude Turfmarkt 147, 1012 GC Amsterdam, Netherlands; Wellcome Centre for Human Neuroimaging, University College London, WC1N 3BG, London, UK.
| |
Collapse
|