1
|
Lu H, Xiao L, Liao W, Yan X, Nielsen J. Cell factory design with advanced metabolic modelling empowered by artificial intelligence. Metab Eng 2024; 85:61-72. [PMID: 39038602 DOI: 10.1016/j.ymben.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
Advances in synthetic biology and artificial intelligence (AI) have provided new opportunities for modern biotechnology. High-performance cell factories, the backbone of industrial biotechnology, are ultimately responsible for determining whether a bio-based product succeeds or fails in the fierce competition with petroleum-based products. To date, one of the greatest challenges in synthetic biology is the creation of high-performance cell factories in a consistent and efficient manner. As so-called white-box models, numerous metabolic network models have been developed and used in computational strain design. Moreover, great progress has been made in AI-powered strain engineering in recent years. Both approaches have advantages and disadvantages. Therefore, the deep integration of AI with metabolic models is crucial for the construction of superior cell factories with higher titres, yields and production rates. The detailed applications of the latest advanced metabolic models and AI in computational strain design are summarized in this review. Additionally, approaches for the deep integration of AI and metabolic models are discussed. It is anticipated that advanced mechanistic metabolic models powered by AI will pave the way for the efficient construction of powerful industrial chassis strains in the coming years.
Collapse
Affiliation(s)
- Hongzhong Lu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Luchi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Wenbin Liao
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xuefeng Yan
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jens Nielsen
- BioInnovation Institute, Ole Måløes Vej, DK2200, Copenhagen N, Denmark; Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE412 96, Gothenburg, Sweden.
| |
Collapse
|
2
|
Zhang L, Ye JW, Li G, Park H, Luo H, Lin Y, Li S, Yang W, Guan Y, Wu F, Huang W, Wu Q, Scrutton NS, Nielsen J, Chen GQ. A long-term growth stable Halomonas sp. deleted with multiple transposases guided by its metabolic network model Halo-ecGEM. Metab Eng 2024; 84:95-108. [PMID: 38901556 DOI: 10.1016/j.ymben.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Microbial instability is a common problem during bio-production based on microbial hosts. Halomonas bluephagenesis has been developed as a chassis for next generation industrial biotechnology (NGIB) under open and unsterile conditions. However, the hidden genomic information and peculiar metabolism have significantly hampered its deep exploitation for cell-factory engineering. Based on the freshly completed genome sequence of H. bluephagenesis TD01, which reveals 1889 biological process-associated genes grouped into 84 GO-slim terms. An enzyme constrained genome-scale metabolic model Halo-ecGEM was constructed, which showed strong ability to simulate fed-batch fermentations. A visible salt-stress responsive landscape was achieved by combining GO-slim term enrichment and CVT-based omics profiling, demonstrating that cells deploy most of the protein resources by force to support the essential activity of translation and protein metabolism when exposed to salt stress. Under the guidance of Halo-ecGEM, eight transposases were deleted, leading to a significantly enhanced stability for its growth and bioproduction of various polyhydroxyalkanoates (PHA) including 3-hydroxybutyrate (3HB) homopolymer PHB, 3HB and 3-hydroxyvalerate (3HV) copolymer PHBV, as well as 3HB and 4-hydroxyvalerate (4HB) copolymer P34HB. This study sheds new light on the metabolic characteristics and stress-response landscape of H. bluephagenesis, achieving for the first time to construct a long-term growth stable chassis for industrial applications. For the first time, it was demonstrated that genome encoded transposons are the reason for microbial instability during growth in flasks and fermentors.
Collapse
Affiliation(s)
- Lizhan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gang Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Helen Park
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hao Luo
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Yina Lin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shaowei Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weinan Yang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuying Guan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fuqing Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wuzhe Huang
- PhaBuilder Biotechnol Co. Ltd., PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing, 101309, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Nigel S Scrutton
- Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen N, Denmark.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; MOE Key Laboratory for Industrial Biocatalysts, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Chen Y, Gustafsson J, Tafur Rangel A, Anton M, Domenzain I, Kittikunapong C, Li F, Yuan L, Nielsen J, Kerkhoven EJ. Reconstruction, simulation and analysis of enzyme-constrained metabolic models using GECKO Toolbox 3.0. Nat Protoc 2024; 19:629-667. [PMID: 38238583 DOI: 10.1038/s41596-023-00931-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 10/13/2023] [Indexed: 03/10/2024]
Abstract
Genome-scale metabolic models (GEMs) are computational representations that enable mathematical exploration of metabolic behaviors within cellular and environmental constraints. Despite their wide usage in biotechnology, biomedicine and fundamental studies, there are many phenotypes that GEMs are unable to correctly predict. GECKO is a method to improve the predictive power of a GEM by incorporating enzymatic constraints using kinetic and omics data. GECKO has enabled reconstruction of enzyme-constrained metabolic models (ecModels) for diverse organisms, which show better predictive performance than conventional GEMs. In this protocol, we describe how to use the latest version GECKO 3.0; the procedure has five stages: (1) expansion from a starting metabolic model to an ecModel structure, (2) integration of enzyme turnover numbers into the ecModel structure, (3) model tuning, (4) integration of proteomics data into the ecModel and (5) simulation and analysis of ecModels. GECKO 3.0 incorporates deep learning-predicted enzyme kinetics, paving the way for improved metabolic models for virtually any organism and cell line in the absence of experimental data. The time of running the whole protocol is organism dependent, e.g., ~5 h for yeast.
Collapse
Affiliation(s)
- Yu Chen
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Johan Gustafsson
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Albert Tafur Rangel
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technology University of Denmark, Lyngby, Denmark
| | - Mihail Anton
- Department of Life Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Iván Domenzain
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Feiran Li
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Le Yuan
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- BioInnovation Institute, Copenhagen, Denmark
| | - Eduard J Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technology University of Denmark, Lyngby, Denmark.
- SciLifeLab, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
4
|
Sjöberg G, Reķēna A, Fornstad M, Lahtvee PJ, van Maris AJA. Evaluation of enzyme-constrained genome-scale model through metabolic engineering of anaerobic co-production of 2,3-butanediol and glycerol by Saccharomyces cerevisiae. Metab Eng 2024; 82:49-59. [PMID: 38309619 DOI: 10.1016/j.ymben.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Enzyme-constrained genome-scale models (ecGEMs) have potential to predict phenotypes in a variety of conditions, such as growth rates or carbon sources. This study investigated if ecGEMs can guide metabolic engineering efforts to swap anaerobic redox-neutral ATP-providing pathways in yeast from alcoholic fermentation to equimolar co-production of 2,3-butanediol and glycerol. With proven pathways and low product toxicity, the ecGEM solution space aligned well with observed phenotypes. Since this catabolic pathway provides only one-third of the ATP of alcoholic fermentation (2/3 versus 2 ATP per glucose), the ecGEM predicted a growth decrease from 0.36 h-1 in the reference to 0.175 h-1 in the engineered strain. However, this <3-fold decrease would require the specific glucose consumption rate to increase. Surprisingly, after the pathway swap the engineered strain immediately grew at 0.15 h-1 with a glucose consumption rate of 29 mmol (g CDW)-1 h-1, which was indeed higher than reference (23 mmol (g CDW)-1 h-1) and one of the highest reported for S. cerevisiae. The accompanying 2,3-butanediol- (15.8 mmol (g CDW)-1 h-1) and glycerol (19.6 mmol (g CDW)-1 h-1) production rates were close to predicted values. Proteomics confirmed that this increased consumption rate was facilitated by enzyme reallocation from especially ribosomes (from 25.5 to 18.5 %) towards glycolysis (from 28.7 to 43.5 %). Subsequently, 200 generations of sequential transfer did not improve growth of the engineered strain, showing the use of ecGEMs in predicting opportunity space for laboratory evolution. The observations in this study illustrate both the current potential, as well as future improvements, of ecGEMs as a tool for both metabolic engineering and laboratory evolution.
Collapse
Affiliation(s)
- Gustav Sjöberg
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Alīna Reķēna
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Matilda Fornstad
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Petri-Jaan Lahtvee
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
5
|
Hashemi S, Razaghi-Moghadam Z, Nikoloski Z. Maximizing multi-reaction dependencies provides more accurate and precise predictions of intracellular fluxes than the principle of parsimony. PLoS Comput Biol 2023; 19:e1011489. [PMID: 37721963 PMCID: PMC10538754 DOI: 10.1371/journal.pcbi.1011489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/28/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
Intracellular fluxes represent a joint outcome of cellular transcription and translation and reflect the availability and usage of nutrients from the environment. While approaches from the constraint-based metabolic framework can accurately predict cellular phenotypes, such as growth and exchange rates with the environment, accurate prediction of intracellular fluxes remains a pressing problem. Parsimonious flux balance analysis (pFBA) has become an approach of choice to predict intracellular fluxes by employing the principle of efficient usage of protein resources. Nevertheless, comparative analyses of intracellular flux predictions from pFBA against fluxes estimated from labeling experiments remain scarce. Here, we posited that steady-state flux distributions derived from the principle of maximizing multi-reaction dependencies are of improved accuracy and precision than those resulting from pFBA. To this end, we designed a constraint-based approach, termed complex-balanced FBA (cbFBA), to predict steady-state flux distributions that support the given specific growth rate and exchange fluxes. We showed that the steady-state flux distributions resulting from cbFBA in comparison to pFBA show better agreement with experimentally measured fluxes from 17 Escherichia coli strains and are more precise, due to the smaller space of alternative solutions. We also showed that the same principle holds in eukaryotes by comparing the predictions of pFBA and cbFBA against experimentally derived steady-state flux distributions from 26 knock-out mutants of Saccharomyces cerevisiae. Furthermore, our results showed that intracellular fluxes predicted by cbFBA provide better support for the principle of minimizing metabolic adjustment between mutants and wild types. Together, our findings point that other principles that consider the dynamics and coordination of steady states may govern the distribution of intracellular fluxes.
Collapse
Affiliation(s)
- Seirana Hashemi
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Zahra Razaghi-Moghadam
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
6
|
Cheng Y, Bi X, Xu Y, Liu Y, Li J, Du G, Lv X, Liu L. Machine learning for metabolic pathway optimization: A review. Comput Struct Biotechnol J 2023; 21:2381-2393. [PMID: 38213889 PMCID: PMC10781721 DOI: 10.1016/j.csbj.2023.03.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Optimizing the metabolic pathways of microbial cell factories is essential for establishing viable biotechnological production processes. However, due to the limited understanding of the complex setup of cellular machinery, building efficient microbial cell factories remains tedious and time-consuming. Machine learning (ML), a powerful tool capable of identifying patterns within large datasets, has been used to analyze biological datasets generated using various high-throughput technologies to build data-driven models for complex bioprocesses. In addition, ML can also be integrated with Design-Build-Test-Learn to accelerate development. This review focuses on recent ML applications in genome-scale metabolic model construction, multistep pathway optimization, rate-limiting enzyme engineering, and gene regulatory element designing. In addition, we have discussed some limitations of these methods as well as potential solutions.
Collapse
Affiliation(s)
- Yang Cheng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xinyu Bi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yameng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
The choice of the objective function in flux balance analysis is crucial for predicting replicative lifespans in yeast. PLoS One 2022; 17:e0276112. [PMID: 36227951 PMCID: PMC9560524 DOI: 10.1371/journal.pone.0276112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
Flux balance analysis (FBA) is a powerful tool to study genome-scale models of the cellular metabolism, based on finding the optimal flux distributions over the network. While the objective function is crucial for the outcome, its choice, even though motivated by evolutionary arguments, has not been directly connected to related measures. Here, we used an available multi-scale mathematical model of yeast replicative ageing, integrating cellular metabolism, nutrient sensing and damage accumulation, to systematically test the effect of commonly used objective functions on features of replicative ageing in budding yeast, such as the number of cell divisions and the corresponding time between divisions. The simulations confirmed that assuming maximal growth is essential for reaching realistic lifespans. The usage of the parsimonious solution or the additional maximisation of a growth-independent energy cost can improve lifespan predictions, explained by either increased respiratory activity using resources otherwise allocated to cellular growth or by enhancing antioxidative activity, specifically in early life. Our work provides a new perspective on choosing the objective function in FBA by connecting it to replicative ageing.
Collapse
|
8
|
Schnitzer B, Österberg L, Skopa I, Cvijovic M. Multi-scale model suggests the trade-off between protein and ATP demand as a driver of metabolic changes during yeast replicative ageing. PLoS Comput Biol 2022; 18:e1010261. [PMID: 35797415 PMCID: PMC9295998 DOI: 10.1371/journal.pcbi.1010261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/19/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
The accumulation of protein damage is one of the major drivers of replicative ageing, describing a cell's reduced ability to reproduce over time even under optimal conditions. Reactive oxygen and nitrogen species are precursors of protein damage and therefore tightly linked to ageing. At the same time, they are an inevitable by-product of the cell's metabolism. Cells are able to sense high levels of reactive oxygen and nitrogen species and can subsequently adapt their metabolism through gene regulation to slow down damage accumulation. However, the older or damaged a cell is the less flexibility it has to allocate enzymes across the metabolic network, forcing further adaptions in the metabolism. To investigate changes in the metabolism during replicative ageing, we developed an multi-scale mathematical model using budding yeast as a model organism. The model consists of three interconnected modules: a Boolean model of the signalling network, an enzyme-constrained flux balance model of the central carbon metabolism and a dynamic model of growth and protein damage accumulation with discrete cell divisions. The model can explain known features of replicative ageing, like average lifespan and increase in generation time during successive division, in yeast wildtype cells by a decreasing pool of functional enzymes and an increasing energy demand for maintenance. We further used the model to identify three consecutive metabolic phases, that a cell can undergo during its life, and their influence on the replicative potential, and proposed an intervention span for lifespan control.
Collapse
Affiliation(s)
- Barbara Schnitzer
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Linnea Österberg
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Iro Skopa
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Domenzain I, Sánchez B, Anton M, Kerkhoven EJ, Millán-Oropeza A, Henry C, Siewers V, Morrissey JP, Sonnenschein N, Nielsen J. Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0. Nat Commun 2022; 13:3766. [PMID: 35773252 PMCID: PMC9246944 DOI: 10.1038/s41467-022-31421-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/16/2022] [Indexed: 01/08/2023] Open
Abstract
Genome-scale metabolic models (GEMs) have been widely used for quantitative exploration of the relation between genotype and phenotype. Streamlined integration of enzyme constraints and proteomics data into such models was first enabled by the GECKO toolbox, allowing the study of phenotypes constrained by protein limitations. Here, we upgrade the toolbox in order to enhance models with enzyme and proteomics constraints for any organism with a compatible GEM reconstruction. With this, enzyme-constrained models for the budding yeasts Saccharomyces cerevisiae, Yarrowia lipolytica and Kluyveromyces marxianus are generated to study their long-term adaptation to several stress factors by incorporation of proteomics data. Predictions reveal that upregulation and high saturation of enzymes in amino acid metabolism are common across organisms and conditions, suggesting the relevance of metabolic robustness in contrast to optimal protein utilization as a cellular objective for microbial growth under stress and nutrient-limited conditions. The functionality of GECKO is expanded with an automated framework for continuous and version-controlled update of enzyme-constrained GEMs, also producing such models for Escherichia coli and Homo sapiens. In this work, we facilitate the utilization of enzyme-constrained GEMs in basic science, metabolic engineering and synthetic biology purposes.
Collapse
Affiliation(s)
- Iván Domenzain
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Benjamín Sánchez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Mihail Anton
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Kemivägen 10, SE-412 58, Gothenburg, Sweden
| | - Eduard J Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Aarón Millán-Oropeza
- Plateforme d'analyse protéomique Paris Sud-Ouest (PAPPSO), INRAE, MICALIS Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Céline Henry
- Plateforme d'analyse protéomique Paris Sud-Ouest (PAPPSO), INRAE, MICALIS Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute and APC Microbiome Ireland, University College Cork, T12 K8AF, Cork, Ireland
| | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
- BioInnovation Institute, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark.
| |
Collapse
|
10
|
Kerkhoven EJ. Advances in constraint-based models: methods for improved predictive power based on resource allocation constraints. Curr Opin Microbiol 2022; 68:102168. [PMID: 35691074 DOI: 10.1016/j.mib.2022.102168] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
The concept of metabolic models with resource allocation constraints has been around for over a decade and has clear advantages even when implementation is relatively rudimentary. Nonetheless, the number of organisms for which such a model is reconstructed is low. Various approaches exist, from coarse-grained consideration of enzyme usage to fine-grained description of protein translation. These approaches are reviewed here, with a particular focus on user-friendly solutions that can introduce resource allocation constraints to metabolic models of any organism. The availability of kcat data is a major hurdle, where recent advances might help to fill in the numerous gaps that exist for this data, especially for nonmodel organisms.
Collapse
Affiliation(s)
- Eduard J Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
11
|
Persson S, Shashkova S, Österberg L, Cvijovic M. Modelling of glucose repression signalling in yeast Saccharomyces cerevisiae. FEMS Yeast Res 2022; 22:foac012. [PMID: 35238938 PMCID: PMC8916112 DOI: 10.1093/femsyr/foac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae has a sophisticated signalling system that plays a crucial role in cellular adaptation to changing environments. The SNF1 pathway regulates energy homeostasis upon glucose derepression; hence, it plays an important role in various processes, such as metabolism, cell cycle and autophagy. To unravel its behaviour, SNF1 signalling has been extensively studied. However, the pathway components are strongly interconnected and inconstant; therefore, elucidating its dynamic behaviour based on experimental data only is challenging. To tackle this complexity, systems biology approaches have been successfully employed. This review summarizes the progress, advantages and disadvantages of the available mathematical modelling frameworks covering Boolean, dynamic kinetic, single-cell models, which have been used to study processes and phenomena ranging from crosstalks to sources of cell-to-cell variability in the context of SNF1 signalling. Based on the lessons from existing models, we further discuss how to develop a consensus dynamic mechanistic model of the entire SNF1 pathway that can provide novel insights into the dynamics of nutrient signalling.
Collapse
Affiliation(s)
- Sebastian Persson
- Department of Mathematical Sciences, Chalmers University of Technology, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
| | - Sviatlana Shashkova
- Department of Mathematical Sciences, Chalmers University of Technology, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
| | - Linnea Österberg
- Department of Mathematical Sciences, Chalmers University of Technology, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
| |
Collapse
|
12
|
Ankrah NYD, Bernstein DB, Biggs M, Carey M, Engevik M, García-Jiménez B, Lakshmanan M, Pacheco AR, Sulheim S, Medlock GL. Enhancing Microbiome Research through Genome-Scale Metabolic Modeling. mSystems 2021; 6:e0059921. [PMID: 34904863 PMCID: PMC8670372 DOI: 10.1128/msystems.00599-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Construction and analysis of genome-scale metabolic models (GEMs) is a well-established systems biology approach that can be used to predict metabolic and growth phenotypes. The ability of GEMs to produce mechanistic insight into microbial ecological processes makes them appealing tools that can open a range of exciting opportunities in microbiome research. Here, we briefly outline these opportunities, present current rate-limiting challenges for the trustworthy application of GEMs to microbiome research, and suggest approaches for moving the field forward.
Collapse
Affiliation(s)
- Nana Y. D. Ankrah
- State University of New York at Plattsburgh, Plattsburgh, New York, USA
| | | | | | - Maureen Carey
- University of Virginia, Charlottesville, Virginia, USA
| | - Melinda Engevik
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | | | | | | |
Collapse
|
13
|
Brink DP, Borgström C, Persson VC, Ofuji Osiro K, Gorwa-Grauslund MF. D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers. Int J Mol Sci 2021; 22:12410. [PMID: 34830296 PMCID: PMC8625115 DOI: 10.3390/ijms222212410] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Extension of the substrate range is among one of the metabolic engineering goals for microorganisms used in biotechnological processes because it enables the use of a wide range of raw materials as substrates. One of the most prominent examples is the engineering of baker's yeast Saccharomyces cerevisiae for the utilization of d-xylose, a five-carbon sugar found in high abundance in lignocellulosic biomass and a key substrate to achieve good process economy in chemical production from renewable and non-edible plant feedstocks. Despite many excellent engineering strategies that have allowed recombinant S. cerevisiae to ferment d-xylose to ethanol at high yields, the consumption rate of d-xylose is still significantly lower than that of its preferred sugar d-glucose. In mixed d-glucose/d-xylose cultivations, d-xylose is only utilized after d-glucose depletion, which leads to prolonged process times and added costs. Due to this limitation, the response on d-xylose in the native sugar signaling pathways has emerged as a promising next-level engineering target. Here we review the current status of the knowledge of the response of S. cerevisiae signaling pathways to d-xylose. To do this, we first summarize the response of the native sensing and signaling pathways in S. cerevisiae to d-glucose (the preferred sugar of the yeast). Using the d-glucose case as a point of reference, we then proceed to discuss the known signaling response to d-xylose in S. cerevisiae and current attempts of improving the response by signaling engineering using native targets and synthetic (non-native) regulatory circuits.
Collapse
Affiliation(s)
- Daniel P. Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada
| | - Viktor C. Persson
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Karen Ofuji Osiro
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil
| | - Marie F. Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| |
Collapse
|
14
|
Personalized Medicine to Improve Treatment of Dopa-Responsive Dystonia-A Focus on Tyrosine Hydroxylase Deficiency. J Pers Med 2021; 11:jpm11111186. [PMID: 34834538 PMCID: PMC8625014 DOI: 10.3390/jpm11111186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Dopa-responsive dystonia (DRD) is a rare movement disorder associated with defective dopamine synthesis. This impairment may be due to the fact of a deficiency in GTP cyclohydrolase I (GTPCHI, GCH1 gene), sepiapterin reductase (SR), tyrosine hydroxylase (TH), or 6-pyruvoyl tetrahydrobiopterin synthase (PTPS) enzyme functions. Mutations in GCH1 are most frequent, whereas fewer cases have been reported for individual SR-, PTP synthase-, and TH deficiencies. Although termed DRD, a subset of patients responds poorly to L-DOPA. As this is regularly observed in severe cases of TH deficiency (THD), there is an urgent demand for more adequate or personalized treatment options. TH is a key enzyme that catalyzes the rate-limiting step in catecholamine biosynthesis, and THD patients often present with complex and variable phenotypes, which results in frequent misdiagnosis and lack of appropriate treatment. In this expert opinion review, we focus on THD pathophysiology and ongoing efforts to develop novel therapeutics for this rare disorder. We also describe how different modeling approaches can be used to improve genotype to phenotype predictions and to develop in silico testing of treatment strategies. We further discuss the current status of mathematical modeling of catecholamine synthesis and how such models can be used together with biochemical data to improve treatment of DRD patients.
Collapse
|
15
|
Lu H, Li F, Yuan L, Domenzain I, Yu R, Wang H, Li G, Chen Y, Ji B, Kerkhoven EJ, Nielsen J. Yeast metabolic innovations emerged via expanded metabolic network and gene positive selection. Mol Syst Biol 2021; 17:e10427. [PMID: 34676984 PMCID: PMC8532513 DOI: 10.15252/msb.202110427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Yeasts are known to have versatile metabolic traits, while how these metabolic traits have evolved has not been elucidated systematically. We performed integrative evolution analysis to investigate how genomic evolution determines trait generation by reconstructing genome-scale metabolic models (GEMs) for 332 yeasts. These GEMs could comprehensively characterize trait diversity and predict enzyme functionality, thereby signifying that sequence-level evolution has shaped reaction networks towards new metabolic functions. Strikingly, using GEMs, we can mechanistically map different evolutionary events, e.g. horizontal gene transfer and gene duplication, onto relevant subpathways to explain metabolic plasticity. This demonstrates that gene family expansion and enzyme promiscuity are prominent mechanisms for metabolic trait gains, while GEM simulations reveal that additional factors, such as gene loss from distant pathways, contribute to trait losses. Furthermore, our analysis could pinpoint to specific genes and pathways that have been under positive selection and relevant for the formulation of complex metabolic traits, i.e. thermotolerance and the Crabtree effect. Our findings illustrate how multidimensional evolution in both metabolic network structure and individual enzymes drives phenotypic variations.
Collapse
Affiliation(s)
- Hongzhong Lu
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Feiran Li
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Le Yuan
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Iván Domenzain
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Rosemary Yu
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Hao Wang
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
- National Bioinformatics Infrastructure SwedenScience for Life LaboratoryChalmers University of TechnologyGothenburgSweden
| | - Gang Li
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Yu Chen
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Boyang Ji
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Eduard J Kerkhoven
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Jens Nielsen
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
- BioInnovation InstituteCopenhagen NDenmark
| |
Collapse
|
16
|
Multiscale models quantifying yeast physiology: towards a whole-cell model. Trends Biotechnol 2021; 40:291-305. [PMID: 34303549 DOI: 10.1016/j.tibtech.2021.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022]
Abstract
The yeast Saccharomyces cerevisiae is widely used as a cell factory and as an important eukaryal model organism for studying cellular physiology related to human health and disease. Yeast was also the first eukaryal organism for which a genome-scale metabolic model (GEM) was developed. In recent years there has been interest in expanding the modeling framework for yeast by incorporating enzymatic parameters and other heterogeneous cellular networks to obtain a more comprehensive description of cellular physiology. We review the latest developments in multiscale models of yeast, and illustrate how a new generation of multiscale models could significantly enhance the predictive performance and expand the applications of classical GEMs in cell factory design and basic studies of yeast physiology.
Collapse
|