1
|
Sardari V, Mohammadian M, Asfia S, Maurer F, Örüm D, Seemann R, John T, Kaestner L, Wagner C, Maleki M, Darras A. Deposit of Red Blood Cells at low concentrations in evaporating droplets is dominated by a central edge growth. J Colloid Interface Sci 2024; 679:939-946. [PMID: 39413590 DOI: 10.1016/j.jcis.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Evaporation of blood droplets and diluted blood samples is a topic of intensive research, as it is considered a potential low-cost diagnostic tool. So far, samples with a volume fraction down to a few percent of red blood cells have been studied, and these were reportedly dominated by a "coffee-ring" deposit. In this study, samples with lower volume fractions were used to investigate the growth of the evaporative deposit from sessile droplets in more detail. We observed that blood samples and salt solutions with less than 1% volume fraction of red blood cells are dominated by a central deposit. We characterized the growth process of this central deposit by evaporating elongated drops and determined that it is consistent with the Kardar-Parisi-Zhang process in the presence of quenched disorder. Our results showed a sensitivity of the deposit size to fibrinogen concentration and the shape of red blood cells, suggesting that this parameter could be developed into a new and cost-effective clinical marker for inflammation and red blood cell deformation.
Collapse
Affiliation(s)
- Vahideh Sardari
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Mahsa Mohammadian
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Shima Asfia
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Felix Maurer
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Diana Örüm
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Ralf Seemann
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Thomas John
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Lars Kaestner
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany; Department of Theoretical Medicine and Biosciences, Saarland University, Homburg, D-66421, Germany
| | - Christian Wagner
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany; Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg, L-4365, Luxembourg
| | - Maniya Maleki
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Alexis Darras
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany.
| |
Collapse
|
2
|
Hernández CA, Peikert K, Qiao M, Darras A, de Wilde JRA, Bos J, Leibowitz M, Galea I, Wagner C, Rab MAE, Walker RH, Hermann A, van Beers EJ, van Wijk R, Kaestner L. Osmotic gradient ektacytometry - a novel diagnostic approach for neuroacanthocytosis syndromes. Front Neurosci 2024; 18:1406969. [PMID: 39091345 PMCID: PMC11292800 DOI: 10.3389/fnins.2024.1406969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/15/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction The unique red blood cell (RBC) properties that characterize the rare neuroacanthocytosis syndromes (NAS) have prompted the exploration of osmotic gradient ektacytometry (Osmoscan) as a diagnostic tool for these disorders. In this exploratory study, we assessed if Osmoscans can discriminate NAS from other neurodegenerative diseases. Methods A comprehensive assessment was conducted using Osmoscan on a diverse group of patients, including healthy controls (n = 9), neuroacanthocytosis syndrome patients (n = 6, 2 VPS13A and 4 XK disease), Parkinson's disease patients (n = 6), Huntington's disease patients (n = 5), and amyotrophic lateral sclerosis patients (n = 4). Concurrently, we collected and analyzed RBC indices and patients' characteristics. Results Statistically significant changes were observed in NAS patients compared to healthy controls and other conditions, specifically in osmolality at minimal elongation index (Omin), maximal elongation index (EImax), the osmolality at half maximal elongation index in the hyperosmotic part of the curve (Ohyper), and the width of the curve close to the osmolality at maximal elongation index (Omax-width). Discussion This study represents an initial exploration of RBC properties from NAS patients using osmotic gradient ektacytometry. While specific parameters exhibited differences, only Ohyper and Omax-width yielded 100% specificity for other neurodegenerative diseases. Moreover, unique correlations between Osmoscan parameters and RBC indices in NAS versus controls were identified, such as osmolality at maximal elongation index (Omax) vs. mean cellular hemoglobin content (MCH) and minimal elongation index (EImin) vs. red blood cell distribution width (RDW). Given the limited sample size, further studies are essential to establish diagnostic guidelines based on these findings.
Collapse
Affiliation(s)
- Carolina A. Hernández
- Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, trecht University, Utrecht, Netherlands
| | - Kevin Peikert
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- United Neuroscience Campus Lund-Rostock (UNC), Rostock, Germany
| | - Min Qiao
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany
- Heoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| | - Alexis Darras
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Jonathan R. A. de Wilde
- Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, trecht University, Utrecht, Netherlands
| | - Jennifer Bos
- Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, trecht University, Utrecht, Netherlands
| | - Maya Leibowitz
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Christian Wagner
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Minke A. E. Rab
- Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, trecht University, Utrecht, Netherlands
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ruth H. Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
- Department of Neurology, Mount Sinai School of Medicine, New York City, NY, United States
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Eduard J. van Beers
- Center for Benign Hematology, Thrombosis and Hemostasis - Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Richard van Wijk
- Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, trecht University, Utrecht, Netherlands
| | - Lars Kaestner
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany
- Heoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
3
|
Bogdanova A, Kaestner L. Advances in Red Blood Cells Research. Cells 2024; 13:359. [PMID: 38391972 PMCID: PMC10887574 DOI: 10.3390/cells13040359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
This Editorial 'Advances in Red Blood Cell Research' is the preface for the special issue with the same title which files 14 contributions listed in Table 1 [...].
Collapse
Affiliation(s)
- Anna Bogdanova
- Red Blood Cell Group, Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Campus of Saarland University Hospital, Saarland University, 66424 Homburg, Germany
- Dynamics of Fluids, Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Bureau L, Coupier G, Salez T. Lift at low Reynolds number. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:111. [PMID: 37957450 DOI: 10.1140/epje/s10189-023-00369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Lift forces are widespread in hydrodynamics. These are typically observed for big and fast objects and are often associated with a combination of fluid inertia (i.e. large Reynolds numbers) and specific symmetry-breaking mechanisms. In contrast, the properties of viscosity-dominated (i.e. low Reynolds numbers) flows make it more difficult for such lift forces to emerge. However, the inclusion of boundary effects qualitatively changes this picture. Indeed, in the context of soft and biological matter, recent studies have revealed the emergence of novel lift forces generated by boundary softness, flow gradients and/or surface charges. The aim of the present review is to gather and analyse this corpus of literature, in order to identify and unify the questioning within the associated communities, and pave the way towards future research.
Collapse
Affiliation(s)
- Lionel Bureau
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France.
| | | | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33400, Talence, France.
| |
Collapse
|
5
|
Mazur M, Krauze W. Volumetric segmentation of biological cells and subcellular structures for optical diffraction tomography images. BIOMEDICAL OPTICS EXPRESS 2023; 14:5022-5035. [PMID: 37854559 PMCID: PMC10581803 DOI: 10.1364/boe.498275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 10/20/2023]
Abstract
Three-dimensional, quantitative imaging of biological cells and their internal structures performed by optical diffraction tomography (ODT) is an important part of biomedical research. However, conducting quantitative analysis of ODT images requires performing 3D segmentation with high accuracy, often unattainable with available segmentation methods. Therefore, in this work, we present a new semi-automatic method, called ODT-SAS, which combines several non-machine-learning techniques to segment cells and 2 types of their organelles: nucleoli and lipid structures (LS). ODT-SAS has been compared with Cellpose and slice-by-slice manual segmentation, respectively, in cell segmentation and organelles segmentation. The comparison shows superiority of ODT-SAS over Cellpose and reveals the potential of our technique in detecting cells, nucleoli and LS.
Collapse
Affiliation(s)
- Martyna Mazur
- Warsaw University of Technology, 8 Boboli Str., Warsaw, 02-525, Poland
| | - Wojciech Krauze
- Warsaw University of Technology, 8 Boboli Str., Warsaw, 02-525, Poland
| |
Collapse
|
6
|
Foy BH, Stefely JA, Bendapudi PK, Hasserjian RP, Al-Samkari H, Louissaint A, Fitzpatrick MJ, Hutchison B, Mow C, Collins J, Patel HR, Patel CH, Patel N, Ho SN, Kaufman RM, Dzik WH, Higgins JM, Makar RS. Computer vision quantitation of erythrocyte shape abnormalities provides diagnostic, prognostic, and mechanistic insight. Blood Adv 2023; 7:4621-4630. [PMID: 37146262 PMCID: PMC10448422 DOI: 10.1182/bloodadvances.2022008967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/07/2023] Open
Abstract
Examination of red blood cell (RBC) morphology in peripheral blood smears can help diagnose hematologic diseases, even in resource-limited settings, but this analysis remains subjective and semiquantitative with low throughput. Prior attempts to develop automated tools have been hampered by their poor reproducibility and limited clinical validation. Here, we present a novel, open-source machine-learning approach (denoted as RBC-diff) to quantify abnormal RBCs in peripheral smear images and generate an RBC morphology differential. RBC-diff cell counts showed high accuracy for single-cell classification (mean AUC, 0.93) and quantitation across smears (mean R2, 0.76 compared with experts, interexperts R2, 0.75). RBC-diff counts were concordant with the clinical morphology grading for 300 000+ images and recovered the expected pathophysiologic signals in diverse clinical cohorts. Criteria using RBC-diff counts distinguished thrombotic thrombocytopenic purpura and hemolytic uremic syndrome from other thrombotic microangiopathies, providing greater specificity than clinical morphology grading (72% vs 41%; P < .001) while maintaining high sensitivity (94% to 100%). Elevated RBC-diff schistocyte counts were associated with increased 6-month all-cause mortality in a cohort of 58 950 inpatients (9.5% mortality for schist. >1%, vs 4.7% for schist; <0.5%; P < .001) after controlling for comorbidities, demographics, clinical morphology grading, and blood count indices. RBC-diff also enabled the estimation of single-cell volume-morphology distributions, providing insight into the influence of morphology on routine blood count measures. Our codebase and expert-annotated images are included here to spur further advancement. These results illustrate that computer vision can enable rapid and accurate quantitation of RBC morphology, which may provide value in both clinical and research contexts.
Collapse
Affiliation(s)
- Brody H. Foy
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Jonathan A. Stefely
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Blood Transfusion Service, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Pavan K. Bendapudi
- Blood Transfusion Service, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Robert P. Hasserjian
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Hanny Al-Samkari
- Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Abner Louissaint
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Megan J. Fitzpatrick
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Bailey Hutchison
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Christopher Mow
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Mass General Brigham Enterprise Research IS, Boston, MA
| | - Julia Collins
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Hasmukh R. Patel
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chhaya H. Patel
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Nikita Patel
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Samantha N. Ho
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Richard M. Kaufman
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Walter H. Dzik
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Blood Transfusion Service, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - John M. Higgins
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Robert S. Makar
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Blood Transfusion Service, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Lopes MG, Recktenwald SM, Simionato G, Eichler H, Wagner C, Quint S, Kaestner L. Big Data in Transfusion Medicine and Artificial Intelligence Analysis for Red Blood Cell Quality Control. Transfus Med Hemother 2023; 50:163-173. [PMID: 37408647 PMCID: PMC10319094 DOI: 10.1159/000530458] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/27/2023] [Indexed: 07/07/2023] Open
Abstract
Background "Artificial intelligence" and "big data" increasingly take the step from just being interesting concepts to being relevant or even part of our lives. This general statement holds also true for transfusion medicine. Besides all advancements in transfusion medicine, there is not yet an established red blood cell quality measure, which is generally applied. Summary We highlight the usefulness of big data in transfusion medicine. Furthermore, we emphasize in the example of quality control of red blood cell units the application of artificial intelligence. Key Messages A variety of concepts making use of big data and artificial intelligence are readily available but still await to be implemented into any clinical routine. For the quality control of red blood cell units, clinical validation is still required.
Collapse
Affiliation(s)
- Marcelle G.M. Lopes
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Cysmic GmbH, Saarbrücken, Germany
| | | | - Greta Simionato
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, Saarbrücken, Germany
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University, Saarbrücken, Germany
| | - Christian Wagner
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg City, Luxembourg
| | | | - Lars Kaestner
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Saarbrücken, Germany
| |
Collapse
|
8
|
Danusso R, Rosati R, Possenti L, Lombardini E, Gigli F, Costantino ML, Ferrazzi E, Casagrande G, Lattuada D. Human umbilical cord blood cells suffer major modification by fixatives and anticoagulants. Front Physiol 2023; 14:1070474. [PMID: 37008002 PMCID: PMC10050555 DOI: 10.3389/fphys.2023.1070474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction: Developing techniques for the tagless isolation of homogeneous cell populations in physiological-like conditions is of great interest in medical research. A particular case is Gravitational Field-Flow Fractionation (GrFFF), which can be run avoiding cell fixation, and that was already used to separate viable cells. Cell dimensions have a key role in this process. However, their dimensions under physiological-like conditions are not easily known since the most diffused measurement techniques are performed on fixed cells, and the fixation used to preserve tissues can alter the cell size. This work aims to obtain and compare cell size data under physiological-like conditions and in the presence of a fixative.Methods: We developed a new protocol that allows the analysis of blood cells in different conditions. Then, we applied it to obtain a dataset of human cord blood cell dimensions from 32 subjects, comparing two tubes with anticoagulants (EDTA and Citrate) and two tubes with different preservatives (CellRescue and CellSave). We analyzed a total of 2071 cells by using confocal microscopy via bio-imaging to assess dimensions (cellular and nuclear) and morphology.Results: Cell diameter measured does not differ when using the different anticoagulants, except for the increase reported for monocyte in the presence of citrate. Instead, cell dimensions differ when comparing anticoagulants and cell preservative tubes, with a few exceptions. Cells characterized by high cytoplasm content show a reduction in their size, while morphology appears always preserved. In a subgroup of cells, 3D reconstruction was performed. Cell and nucleus volumes were estimated using different methods (specific 3D tool or reconstruction from 2D projection).Discussion: We found that some cell types benefit from a complete 3D analysis because they contain non-spherical structures (mainly for cells characterized by poly-lobated nucleus). Overall, we showed the effect of the preservatives mixture on cell dimensions. Such an effect must be considered when dealing with problems highly dependent on cell size, such as GrFFF. Additionally, such information is crucial in computational models increasingly being employed to simulate biological events.
Collapse
Affiliation(s)
- Roberta Danusso
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Riccardo Rosati
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Luca Possenti
- LaBS, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Elena Lombardini
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Francesca Gigli
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Maria Laura Costantino
- LaBS, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Enrico Ferrazzi
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giustina Casagrande
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- LaBS, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Debora Lattuada
- Department of Women-Child-Newborn, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- *Correspondence: Debora Lattuada,
| |
Collapse
|
9
|
Peikert K, Storch A, Hermann A, Landwehrmeyer GB, Walker RH, Simionato G, Kaestner L, Danek A. Commentary: Acanthocytes identified in Huntington's disease. Front Neurosci 2022; 16:1049676. [PMID: 36408380 PMCID: PMC9673475 DOI: 10.3389/fnins.2022.1049676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Kevin Peikert
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany
- *Correspondence: Kevin Peikert
| | - Alexander Storch
- Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany
- DZNE, Deutsches Zentrum für Neurodegenerative Erkrankungen, German Center for Neurodegenerative Diseases, Research Site Rostock/Greifswald, Rostock, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany
- DZNE, Deutsches Zentrum für Neurodegenerative Erkrankungen, German Center for Neurodegenerative Diseases, Research Site Rostock/Greifswald, Rostock, Germany
| | | | - Ruth H. Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States
| | - Greta Simionato
- Experimental Physics, Saarland University, Saarbruecken, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, Campus University Hospital, Homburg, Germany
| | - Lars Kaestner
- Experimental Physics, Saarland University, Saarbruecken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, Munich, Germany
- DZNE, Deutsches Zentrum für Neurodegenerative Erkrankungen, German Center for Neurodegenerative Diseases, Munich, Germany
| |
Collapse
|
10
|
Waibel DJ, Kiermeyer N, Atwell S, Sadafi A, Meier M, Marr C. SHAPR predicts 3D cell shapes from 2D microscopic images. iScience 2022; 25:105298. [PMID: 36304119 PMCID: PMC9593790 DOI: 10.1016/j.isci.2022.105298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/04/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Reconstruction of shapes and sizes of three-dimensional (3D) objects from two- dimensional (2D) information is an intensely studied subject in computer vision. We here consider the level of single cells and nuclei and present a neural network-based SHApe PRediction autoencoder. For proof-of-concept, SHAPR reconstructs 3D shapes of red blood cells from single view 2D confocal microscopy images more accurately than naïve stereological models and significantly increases the feature-based prediction of red blood cell types from F1 = 79% to F1 = 87.4%. Applied to 2D images containing spheroidal aggregates of densely grown human induced pluripotent stem cells, we find that SHAPR learns fundamental shape properties of cell nuclei and allows for prediction-based morphometry. Reducing imaging time and data storage, SHAPR will help to optimize and up-scale image-based high-throughput applications for biomedicine.
Collapse
Affiliation(s)
- Dominik J.E. Waibel
- Institute of AI for Health, Helmholtz Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich, School of Life Sciences, Weihenstephan, Germany
| | - Niklas Kiermeyer
- Institute of AI for Health, Helmholtz Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Scott Atwell
- Helmholtz Pioneer Campus, Helmholtz Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Ario Sadafi
- Institute of AI for Health, Helmholtz Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Corresponding author
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Corresponding author
| |
Collapse
|
11
|
Himbert S, Rheinstädter MC. Structural and mechanical properties of the red blood cell's cytoplasmic membrane seen through the lens of biophysics. Front Physiol 2022; 13:953257. [PMID: 36171967 PMCID: PMC9510598 DOI: 10.3389/fphys.2022.953257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Red blood cells (RBCs) are the most abundant cell type in the human body and critical suppliers of oxygen. The cells are characterized by a simple structure with no internal organelles. Their two-layered outer shell is composed of a cytoplasmic membrane (RBC cm ) tethered to a spectrin cytoskeleton allowing the cell to be both flexible yet resistant against shear stress. These mechanical properties are intrinsically linked to the molecular composition and organization of their shell. The cytoplasmic membrane is expected to dominate the elastic behavior on small, nanometer length scales, which are most relevant for cellular processes that take place between the fibrils of the cytoskeleton. Several pathologies have been linked to structural and compositional changes within the RBC cm and the cell's mechanical properties. We review current findings in terms of RBC lipidomics, lipid organization and elastic properties with a focus on biophysical techniques, such as X-ray and neutron scattering, and Molecular Dynamics simulations, and their biological relevance. In our current understanding, the RBC cm 's structure is patchy, with nanometer sized liquid ordered and disordered lipid, and peptide domains. At the same time, it is surprisingly soft, with bending rigidities κ of 2-4 kBT. This is in strong contrast to the current belief that a high concentration of cholesterol results in stiff membranes. This extreme softness is likely the result of an interaction between polyunsaturated lipids and cholesterol, which may also occur in other biological membranes. There is strong evidence in the literature that there is no length scale dependence of κ of whole RBCs.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Demagny J, Roussel C, Le Guyader M, Guiheneuf E, Harrivel V, Boyer T, Diouf M, Dussiot M, Demont Y, Garçon L. Combining imaging flow cytometry and machine learning for high-throughput schistocyte quantification: A SVM classifier development and external validation cohort. EBioMedicine 2022; 83:104209. [PMID: 35986949 PMCID: PMC9404284 DOI: 10.1016/j.ebiom.2022.104209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Schistocyte counts are a cornerstone of the diagnosis of thrombotic microangiopathy syndrome (TMA). Their manual quantification is complex and alternative automated methods suffer from pitfalls that limit their use. We report a method combining imaging flow cytometry (IFC) and artificial intelligence for the direct label-free and operator-independent quantification of schistocytes in whole blood. Methods We used 135,045 IFC images from blood acquisition among 14 patients to extract 188 features with IDEAS® software and 128 features from a convolutional neural network (CNN) with Keras framework in order to train a support vector machine (SVM) blood elements’ classifier used for schistocytes quantification. Finding Keras features showed better accuracy (94.03%, CI: 93.75-94.31%) than ideas features (91.54%, CI: 91.21-91.87%) in recognising whole-blood elements, and together they showed the best accuracy (95.64%, CI: 95.39-95.88%). We obtained an excellent correlation (0.93, CI: 0.90-0.96) between three haematologists and our method on a cohort of 102 patient samples. All patients with schistocytosis (>1% schistocytes) were detected with excellent specificity (91.3%, CI: 82.0-96.7%) and sensitivity (100%, CI: 89.4-100.0%). We confirmed these results with a similar specificity (91.1%, CI: 78.8-97.5%) and sensitivity (100%, CI: 88.1-100.0%) on a validation cohort (n=74) analysed in an independent healthcare centre. Simultaneous analysis of 16 samples in both study centres showed a very good correlation between the 2 imaging flow cytometers (Y=1.001x). Interpretation We demonstrate that IFC can represent a reliable tool for operator-independent schistocyte quantification with no pre-analytical processing which is of most importance in emergency situations such as TMA. Funding None.
Collapse
|
13
|
Recktenwald SM, Lopes MGM, Peter S, Hof S, Simionato G, Peikert K, Hermann A, Danek A, van Bentum K, Eichler H, Wagner C, Quint S, Kaestner L. Erysense, a Lab-on-a-Chip-Based Point-of-Care Device to Evaluate Red Blood Cell Flow Properties With Multiple Clinical Applications. Front Physiol 2022; 13:884690. [PMID: 35574449 PMCID: PMC9091344 DOI: 10.3389/fphys.2022.884690] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
In many medical disciplines, red blood cells are discovered to be biomarkers since they "experience" various conditions in basically all organs of the body. Classical examples are diabetes and hypercholesterolemia. However, recently the red blood cell distribution width (RDW), is often referred to, as an unspecific parameter/marker (e.g., for cardiac events or in oncological studies). The measurement of RDW requires venous blood samples to perform the complete blood cell count (CBC). Here, we introduce Erysense, a lab-on-a-chip-based point-of-care device, to evaluate red blood cell flow properties. The capillary chip technology in combination with algorithms based on artificial neural networks allows the detection of very subtle changes in the red blood cell morphology. This flow-based method closely resembles in vivo conditions and blood sample volumes in the sub-microliter range are sufficient. We provide clinical examples for potential applications of Erysense as a diagnostic tool [here: neuroacanthocytosis syndromes (NAS)] and as cellular quality control for red blood cells [here: hemodiafiltration (HDF) and erythrocyte concentrate (EC) storage]. Due to the wide range of the applicable flow velocities (0.1-10 mm/s) different mechanical properties of the red blood cells can be addressed with Erysense providing the opportunity for differential diagnosis/judgments. Due to these versatile properties, we anticipate the value of Erysense for further diagnostic, prognostic, and theragnostic applications including but not limited to diabetes, iron deficiency, COVID-19, rheumatism, various red blood cell disorders and anemia, as well as inflammation-based diseases including sepsis.
Collapse
Affiliation(s)
| | - Marcelle G. M. Lopes
- Experimental Physics, Saarland University, Saarbruecken, Germany
- Cysmic GmbH, Saarbruecken, Germany
| | - Stephana Peter
- Experimental Physics, Saarland University, Saarbruecken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Saarbruecken, Germany
| | - Sebastian Hof
- Experimental Physics, Saarland University, Saarbruecken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Saarbruecken, Germany
| | - Greta Simionato
- Experimental Physics, Saarland University, Saarbruecken, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, Campus University Hospital, Homburg, Germany
| | - Kevin Peikert
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- DZNE, Deutsches Zentrum für Neurodegenerative Erkrankungen, Research Site Rostock/Greifswald, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-University, Munich, Germany
| | | | - Hermann Eichler
- Institute for Clinical Hemostaseology and Transfusion Medicine, Saarland University and Saarland University Hospital, Homburg, Germany
| | - Christian Wagner
- Experimental Physics, Saarland University, Saarbruecken, Germany
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - Stephan Quint
- Experimental Physics, Saarland University, Saarbruecken, Germany
- Cysmic GmbH, Saarbruecken, Germany
| | - Lars Kaestner
- Experimental Physics, Saarland University, Saarbruecken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Saarbruecken, Germany
| |
Collapse
|
14
|
Maurer F, John T, Makhro A, Bogdanova A, Minetti G, Wagner C, Kaestner L. Continuous Percoll Gradient Centrifugation of Erythrocytes-Explanation of Cellular Bands and Compromised Age Separation. Cells 2022; 11:cells11081296. [PMID: 35455975 PMCID: PMC9028966 DOI: 10.3390/cells11081296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: When red blood cells are centrifuged in a continuous Percoll-based density gradient, they form discrete bands. While this is a popular approach for red blood cell age separation, the mechanisms involved in banding were unknown. (2) Methods: Percoll centrifugations of red blood cells were performed under various experimental conditions and the resulting distributions analyzed. The age of the red blood cells was measured by determining the protein band 4.1a to 4.1b ratio based on western blots. Red blood cell aggregates, so-called rouleaux, were monitored microscopically. A mathematical model for the centrifugation process was developed. (3) Results: The red blood cell band pattern is reproducible but re-centrifugation of sub-bands reveals a new set of bands. This is caused by red blood cell aggregation. Based on the aggregation, our mathematical model predicts the band formation. Suppression of red blood cell aggregation reduces the band formation. (4) Conclusions: The red blood cell band formation in continuous Percoll density gradients could be explained physically by red blood cell aggregate formation. This aggregate formation distorts the density-based red blood cell age separation. Suppressing aggregation by osmotic swelling has a more severe effect on compromising the RBC age separation to a higher degree.
Collapse
Affiliation(s)
- Felix Maurer
- Dynamics of Fluids, Experimental Physics, Saarland University, 66123 Saarbrücken, Germany; (F.M.); (T.J.); (C.W.)
| | - Thomas John
- Dynamics of Fluids, Experimental Physics, Saarland University, 66123 Saarbrücken, Germany; (F.M.); (T.J.); (C.W.)
| | - Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, CH-8057 Zürich, Switzerland; (A.M.); (A.B.)
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, CH-8057 Zürich, Switzerland; (A.M.); (A.B.)
| | - Giampaolo Minetti
- Laboratories of Biochemistry, Department of Biology and Biotechnology “L Spallanzani”, University of Pavia, I-27100 Pavia, Italy;
| | - Christian Wagner
- Dynamics of Fluids, Experimental Physics, Saarland University, 66123 Saarbrücken, Germany; (F.M.); (T.J.); (C.W.)
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Lars Kaestner
- Dynamics of Fluids, Experimental Physics, Saarland University, 66123 Saarbrücken, Germany; (F.M.); (T.J.); (C.W.)
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Correspondence:
| |
Collapse
|
15
|
Simionato G, Rabe A, Gallego-Murillo JS, van der Zwaan C, Hoogendijk AJ, van den Biggelaar M, Minetti G, Bogdanova A, Mairbäurl H, Wagner C, Kaestner L, van den Akker E. In Vitro Erythropoiesis at Different pO 2 Induces Adaptations That Are Independent of Prior Systemic Exposure to Hypoxia. Cells 2022; 11:cells11071082. [PMID: 35406648 PMCID: PMC8997720 DOI: 10.3390/cells11071082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is associated with increased erythropoietin (EPO) release to drive erythropoiesis. At high altitude, EPO levels first increase and then decrease, although erythropoiesis remains elevated at a stable level. The roles of hypoxia and related EPO adjustments are not fully understood, which has contributed to the formulation of the theory of neocytolysis. We aimed to evaluate the role of oxygen exclusively on erythropoiesis, comparing in vitro erythroid differentiation performed at atmospheric oxygen, a lower oxygen concentration (three percent oxygen) and with cultures of erythroid precursors isolated from peripheral blood after a 19-day sojourn at high altitude (3450 m). Results highlight an accelerated erythroid maturation at low oxygen and more concave morphology of reticulocytes. No differences in deformability were observed in the formed reticulocytes in the tested conditions. Moreover, hematopoietic stem and progenitor cells isolated from blood affected by hypoxia at high altitude did not result in different erythroid development, suggesting no retention of a high-altitude signature but rather an immediate adaptation to oxygen concentration. This adaptation was observed during in vitro erythropoiesis at three percent oxygen by a significantly increased glycolytic metabolic profile. These hypoxia-induced effects on in vitro erythropoiesis fail to provide an intrinsic explanation of the concept of neocytolysis.
Collapse
Affiliation(s)
- Greta Simionato
- Department of Experimental Physics, University Campus, Building E2.6, Saarland University, 66123 Saarbrücken, Germany; (A.R.); (C.W.); (L.K.)
- Department of Experimental Surgery, Campus University Hospital, Building 65, Saarland University, 66421 Homburg, Germany
- Correspondence: (G.S.); (E.v.d.A.)
| | - Antonia Rabe
- Department of Experimental Physics, University Campus, Building E2.6, Saarland University, 66123 Saarbrücken, Germany; (A.R.); (C.W.); (L.K.)
| | - Joan Sebastián Gallego-Murillo
- Sanquin Research, Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Carmen van der Zwaan
- Sanquin Research, Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.v.d.Z.); (A.J.H.); (M.v.d.B.)
| | - Arie Johan Hoogendijk
- Sanquin Research, Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.v.d.Z.); (A.J.H.); (M.v.d.B.)
| | - Maartje van den Biggelaar
- Sanquin Research, Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (C.v.d.Z.); (A.J.H.); (M.v.d.B.)
| | - Giampaolo Minetti
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratories of Biochemistry, University of Pavia, I-27100 Pavia, Italy;
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Heimo Mairbäurl
- University Hospital Heidelberg, Medical Clinic VII, Sports Medicine, 69120 Heidelberg, Germany;
- Translational Lung Research Centre Heidelberg (TLRC), Part of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany
- Translational Pneumology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christian Wagner
- Department of Experimental Physics, University Campus, Building E2.6, Saarland University, 66123 Saarbrücken, Germany; (A.R.); (C.W.); (L.K.)
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Lars Kaestner
- Department of Experimental Physics, University Campus, Building E2.6, Saarland University, 66123 Saarbrücken, Germany; (A.R.); (C.W.); (L.K.)
- Theoretical Medicine and Biosciences, Campus University Hospital, Building 61.4, Saarland University, 66421 Homburg, Germany
| | - Emile van den Akker
- Sanquin Research, Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
- Correspondence: (G.S.); (E.v.d.A.)
| |
Collapse
|
16
|
Marin M, Peltier S, Hadjou Y, Georgeault S, Dussiot M, Roussel C, Hermine O, Roingeard P, Buffet PA, Amireault P. Storage-Induced Micro-Erythrocytes Can Be Quantified and Sorted by Flow Cytometry. Front Physiol 2022; 13:838138. [PMID: 35283784 PMCID: PMC8906515 DOI: 10.3389/fphys.2022.838138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Refrigerated storage of red cell concentrates before transfusion is associated with progressive alterations of red blood cells (RBC). Small RBC (type III echinocytes, sphero-echinocytes, and spherocytes) defined as storage-induced micro-erythrocytes (SME) appear during pretransfusion storage. SME accumulate with variable intensity from donor to donor, are cleared rapidly after transfusion, and their proportion correlates with transfusion recovery. They can be rapidly and objectively quantified using imaging flow cytometry (IFC). Quantifying SME using flow cytometry would further facilitate a physiologically relevant quality control of red cell concentrates. RBC stored in blood bank conditions were stained with a carboxyfluorescein succinimidyl ester (CFSE) dye and incubated at 37°C. CFSE intensity was assessed by flow cytometry and RBC morphology evaluated by IFC. We observed the accumulation of a CFSE high RBC subpopulation by flow cytometry that accounted for 3.3 and 47.2% at day 3 and 42 of storage, respectively. IFC brightfield images showed that this CFSE high subpopulation mostly contains SME while the CFSE low subpopulation mostly contains type I and II echinocytes and discocytes. Similar numbers of SME were quantified by IFC (based on projected surface area) and by flow cytometry (based on CFSE intensity). IFC and scanning electron microscopy showed that ≥95% pure subpopulations of CFSE high and CFSE low RBC were obtained by flow cytometry-based sorting. SME can now be quantified using a common fluorescent dye and a standard flow cytometer. The staining protocol enables specific sorting of SME, a useful tool to further characterize this RBC subpopulation targeted for premature clearance after transfusion.
Collapse
Affiliation(s)
- Mickaël Marin
- INSERM, BIGR, Université de Paris and Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Sandy Peltier
- INSERM, BIGR, Université de Paris and Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Youcef Hadjou
- INSERM, BIGR, Université de Paris and Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Sonia Georgeault
- Plateforme des Microscopies, Infrastructures de Recherche en Biologie Santé et Agronomie, Programme Pluriformation Analyse des Systèmes Biologiques, Tours, France
| | - Michaël Dussiot
- Laboratoire d'Excellence GR-Ex, Paris, France.,U1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Université de Paris, Paris, France
| | - Camille Roussel
- INSERM, BIGR, Université de Paris and Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,AP-HP, Laboratoire d'Hématologie, Hôpital Necker-Enfants Malades, Paris, France
| | - Olivier Hermine
- Laboratoire d'Excellence GR-Ex, Paris, France.,U1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Université de Paris, Paris, France.,Département d'Hématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Roingeard
- Plateforme des Microscopies, Infrastructures de Recherche en Biologie Santé et Agronomie, Programme Pluriformation Analyse des Systèmes Biologiques, Tours, France.,U1259, Centre Hospitalier Régional Universitaire de Tours, Morphogenèse et Antigénicité du VIH et des Virus des Hépatites, INSERM, Université de Tours, Tours, France
| | - Pierre A Buffet
- INSERM, BIGR, Université de Paris and Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,AP-HP, Paris, France
| | - Pascal Amireault
- INSERM, BIGR, Université de Paris and Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,U1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Université de Paris, Paris, France
| |
Collapse
|
17
|
Keklikoglou K, Arvanitidis C, Chatzigeorgiou G, Chatzinikolaou E, Karagiannidis E, Koletsa T, Magoulas A, Makris K, Mavrothalassitis G, Papanagnou ED, Papazoglou AS, Pavloudi C, Trougakos IP, Vasileiadou K, Vogiatzi A. Micro-CT for Biological and Biomedical Studies: A Comparison of Imaging Techniques. J Imaging 2021; 7:jimaging7090172. [PMID: 34564098 PMCID: PMC8470083 DOI: 10.3390/jimaging7090172] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Several imaging techniques are used in biological and biomedical studies. Micro-computed tomography (micro-CT) is a non-destructive imaging technique that allows the rapid digitisation of internal and external structures of a sample in three dimensions and with great resolution. In this review, the strengths and weaknesses of some common imaging techniques applied in biological and biomedical fields, such as optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy, are presented and compared with the micro-CT technique through five use cases. Finally, the ability of micro-CT to create non-destructively 3D anatomical and morphological data in sub-micron resolution and the necessity to develop complementary methods with other imaging techniques, in order to overcome limitations caused by each technique, is emphasised.
Collapse
Affiliation(s)
- Kleoniki Keklikoglou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
- Biology Department, University of Crete, 70013 Heraklion, Crete, Greece
- Correspondence:
| | - Christos Arvanitidis
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
- LifeWatch ERIC, 41071 Seville, Spain
| | - Georgios Chatzigeorgiou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Eva Chatzinikolaou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.S.P.)
| | - Triantafyllia Koletsa
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Antonios Magoulas
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Konstantinos Makris
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece; (K.M.); (G.M.); (A.V.)
| | - George Mavrothalassitis
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece; (K.M.); (G.M.); (A.V.)
- IMBB, FORTH, 70013 Heraklion, Crete, Greece
| | - Eleni-Dimitra Papanagnou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (E.-D.P.); (I.P.T.)
| | - Andreas S. Papazoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.S.P.)
| | - Christina Pavloudi
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (E.-D.P.); (I.P.T.)
| | - Katerina Vasileiadou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Angeliki Vogiatzi
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece; (K.M.); (G.M.); (A.V.)
| |
Collapse
|
18
|
Simionato G, van Wijk R, Quint S, Wagner C, Bianchi P, Kaestner L. Rare Anemias: Are Their Names Just Smoke and Mirrors? Front Physiol 2021; 12:690604. [PMID: 34177628 PMCID: PMC8222994 DOI: 10.3389/fphys.2021.690604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/17/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Greta Simionato
- Institute for Clinical and Experimental Surgery, Campus University Hospital, Saarland University, Homburg, Germany.,Experimental Physics, Dynamics of Fluids Group, Saarland University, Saarbrücken, Germany
| | - Richard van Wijk
- Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Stephan Quint
- Experimental Physics, Dynamics of Fluids Group, Saarland University, Saarbrücken, Germany.,Cysmic GmbH, Saarbrücken, Germany
| | - Christian Wagner
- Experimental Physics, Dynamics of Fluids Group, Saarland University, Saarbrücken, Germany.,Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | - Paola Bianchi
- Fondazione Instituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico Milano, Unità Operativa Complessa Ematologia, Unità Operativa Semplice Fisiopatologia delle Anemie, Milan, Italy
| | - Lars Kaestner
- Experimental Physics, Dynamics of Fluids Group, Saarland University, Saarbrücken, Germany.,Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, Homburg, Germany
| |
Collapse
|
19
|
Rabe A, Kihm A, Darras A, Peikert K, Simionato G, Dasanna AK, Glaß H, Geisel J, Quint S, Danek A, Wagner C, Fedosov DA, Hermann A, Kaestner L. The Erythrocyte Sedimentation Rate and Its Relation to Cell Shape and Rigidity of Red Blood Cells from Chorea-Acanthocytosis Patients in an Off-Label Treatment with Dasatinib. Biomolecules 2021; 11:biom11050727. [PMID: 34066168 PMCID: PMC8151862 DOI: 10.3390/biom11050727] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Chorea-acanthocytosis (ChAc) is a rare hereditary neurodegenerative disease with deformed red blood cells (RBCs), so-called acanthocytes, as a typical marker of the disease. Erythrocyte sedimentation rate (ESR) was recently proposed as a diagnostic biomarker. To date, there is no treatment option for affected patients, but promising therapy candidates, such as dasatinib, a Lyn-kinase inhibitor, have been identified. Methods: RBCs of two ChAc patients during and after dasatinib treatment were characterized by the ESR, clinical hematology parameters and the 3D shape classification in stasis based on an artificial neural network. Furthermore, mathematical modeling was performed to understand the contribution of cell morphology and cell rigidity to the ESR. Microfluidic measurements were used to compare the RBC rigidity between ChAc patients and healthy controls. Results: The mechano-morphological characterization of RBCs from two ChAc patients in an off-label treatment with dasatinib revealed differences in the ESR and the acanthocyte count during and after the treatment period, which could not directly be related to each other. Clinical hematology parameters were in the normal range. Mathematical modeling indicated that RBC rigidity is more important for delayed ESR than cell shape. Microfluidic experiments confirmed a higher rigidity in the normocytes of ChAc patients compared to healthy controls. Conclusions: The results increase our understanding of the role of acanthocytes and their associated properties in the ESR, but the data are too sparse to answer the question of whether the ESR is a suitable biomarker for treatment success, whereas a correlation between hematological and neuronal phenotype is still subject to verification.
Collapse
Affiliation(s)
- Antonia Rabe
- Theoretical Medicine and Biosciences, Saarland University, 66424 Homburg, Germany;
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
| | - Alexander Kihm
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
| | - Alexis Darras
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
| | - Kevin Peikert
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18051 Rostock, Germany; (K.P.); (H.G.); (A.H.)
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Greta Simionato
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany
| | - Anil Kumar Dasanna
- Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany; (A.K.D.); (D.A.F.)
| | - Hannes Glaß
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18051 Rostock, Germany; (K.P.); (H.G.); (A.H.)
| | - Jürgen Geisel
- Central Laboratory, Saarland University Medical Centre, 66424 Homburg, Germany;
| | - Stephan Quint
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
- Cysmic GmbH, 66123 Saarbrücken, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, 81366 Munich, Germany;
| | - Christian Wagner
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
- Physics and Materials Science Research Unit, University of Luxembourg, 1511 Luxembourg, Luxembourg
| | - Dmitry A. Fedosov
- Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany; (A.K.D.); (D.A.F.)
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18051 Rostock, Germany; (K.P.); (H.G.); (A.H.)
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
- DZNE, German Center for Neurodegenerative Diseases, Research Site Rostock/Greifswald, 18051 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18051 Rostock, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, 66424 Homburg, Germany;
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
- Correspondence: ; Tel.: +49-681-302-2417
| |
Collapse
|