1
|
Miniere HJM, Lima EABF, Lorenzo G, Hormuth II DA, Ty S, Brock A, Yankeelov TE. A mathematical model for predicting the spatiotemporal response of breast cancer cells treated with doxorubicin. Cancer Biol Ther 2024; 25:2321769. [PMID: 38411436 PMCID: PMC11057790 DOI: 10.1080/15384047.2024.2321769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024] Open
Abstract
Tumor heterogeneity contributes significantly to chemoresistance, a leading cause of treatment failure. To better personalize therapies, it is essential to develop tools capable of identifying and predicting intra- and inter-tumor heterogeneities. Biology-inspired mathematical models are capable of attacking this problem, but tumor heterogeneity is often overlooked in in-vivo modeling studies, while phenotypic considerations capturing spatial dynamics are not typically included in in-vitro modeling studies. We present a data assimilation-prediction pipeline with a two-phenotype model that includes a spatiotemporal component to characterize and predict the evolution of in-vitro breast cancer cells and their heterogeneous response to chemotherapy. Our model assumes that the cells can be divided into two subpopulations: surviving cells unaffected by the treatment, and irreversibly damaged cells undergoing treatment-induced death. MCF7 breast cancer cells were previously cultivated in wells for up to 1000 hours, treated with various concentrations of doxorubicin and imaged with time-resolved microscopy to record spatiotemporally-resolved cell count data. Images were used to generate cell density maps. Treatment response predictions were initialized by a training set and updated by weekly measurements. Our mathematical model successfully calibrated the spatiotemporal cell growth dynamics, achieving median [range] concordance correlation coefficients of > .99 [.88, >.99] and .73 [.58, .85] across the whole well and individual pixels, respectively. Our proposed data assimilation-prediction approach achieved values of .97 [.44, >.99] and .69 [.35, .79] for the whole well and individual pixels, respectively. Thus, our model can capture and predict the spatiotemporal dynamics of MCF7 cells treated with doxorubicin in an in-vitro setting.
Collapse
Affiliation(s)
- Hugo J. M. Miniere
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
| | - Ernesto A. B. F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
| | - Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
- Department of Civil Engineering and Architecture, University of Pavia, Lombardy, Italy
| | - David A. Hormuth II
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, USA
| | - Sophia Ty
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, USA
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, USA
- Department of Oncology, The University of Texas at Austin, Austin, USA
- Division of Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, USA
| |
Collapse
|
2
|
El Meouche I, Jain P, Jolly MK, Capp JP. Drug tolerance and persistence in bacteria, fungi and cancer cells: Role of non-genetic heterogeneity. Transl Oncol 2024; 49:102069. [PMID: 39121829 PMCID: PMC11364053 DOI: 10.1016/j.tranon.2024.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
A common feature of bacterial, fungal and cancer cell populations upon treatment is the presence of tolerant and persistent cells able to survive, and sometimes grow, even in the presence of usually inhibitory or lethal drug concentrations, driven by non-genetic differences among individual cells in a population. Here we review and compare data obtained on drug survival in bacteria, fungi and cancer cells to unravel common characteristics and cellular pathways, and to point their singularities. This comparative work also allows to cross-fertilize ideas across fields. We particularly focus on the role of gene expression variability in the emergence of cell-cell non-genetic heterogeneity because it represents a possible common basic molecular process at the origin of most persistence phenomena and could be monitored and tuned to help improve therapeutic interventions.
Collapse
Affiliation(s)
- Imane El Meouche
- Université Paris Cité, Université Sorbonne Paris Nord, INSERM, IAME, F-75018 Paris, France.
| | - Paras Jain
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, INSA/University of Toulouse, CNRS, INRAE, Toulouse, France.
| |
Collapse
|
3
|
Gardner AL, Jost TA, Morgan D, Brock A. Computational identification of surface markers for isolating distinct subpopulations from heterogeneous cancer cell populations. NPJ Syst Biol Appl 2024; 10:120. [PMID: 39420005 PMCID: PMC11487074 DOI: 10.1038/s41540-024-00441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Intratumor heterogeneity reduces treatment efficacy and complicates our understanding of tumor progression and there is a pressing need to understand the functions of heterogeneous tumor cell subpopulations within a tumor, yet systems to study these processes in vitro are limited. Single-cell RNA sequencing (scRNA-seq) has revealed that some cancer cell lines include distinct subpopulations. Here, we present clusterCleaver, a computational package that uses metrics of statistical distance to identify candidate surface markers maximally unique to transcriptomic subpopulations in scRNA-seq which may be used for FACS isolation. With clusterCleaver, ESAM and BST2/tetherin were experimentally validated as surface markers which identify and separate major transcriptomic subpopulations within MDA-MB-231 and MDA-MB-436 cells, respectively. clusterCleaver is a computationally efficient and experimentally validated workflow for identification of surface markers for tracking and isolating transcriptomically distinct subpopulations within cell lines. This tool paves the way for studies on coexisting cancer cell subpopulations in well-defined in vitro systems.
Collapse
Affiliation(s)
- Andrea L Gardner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Tyler A Jost
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Daylin Morgan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Jain P, Kizhuttil R, Nair MB, Bhatia S, Thompson EW, George JT, Jolly MK. Cell-state transitions and density-dependent interactions together explain the dynamics of spontaneous epithelial-mesenchymal heterogeneity. iScience 2024; 27:110310. [PMID: 39055927 PMCID: PMC11269952 DOI: 10.1016/j.isci.2024.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/21/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer cell populations comprise phenotypes distributed among the epithelial-mesenchymal (E-M) spectrum. However, it remains unclear which population-level processes give rise to the observed experimental distribution and dynamical changes in E-M heterogeneity, including (1) differential growth, (2) cell-state switching, and (3) population density-dependent growth or state-transition rates. Here, we analyze the necessity of these three processes in explaining the dynamics of E-M population distributions as observed in PMC42-LA and HCC38 breast cancer cells. We find that, while cell-state transition is necessary to reproduce experimental observations of dynamical changes in E-M fractions, including density-dependent growth interactions (cooperation or suppression) better explains the data. Further, our models predict that treatment of HCC38 cells with transforming growth factor β (TGF-β) signaling and Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/3) inhibitors enhances the rate of mesenchymal-epithelial transition (MET) instead of lowering that of E-M transition (EMT). Overall, our study identifies the population-level processes shaping the dynamics of spontaneous E-M heterogeneity in breast cancer cells.
Collapse
Affiliation(s)
- Paras Jain
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Madhav B. Nair
- Indian Institute of Science Education and Research, Kolkata, India
| | - Sugandha Bhatia
- School of Biomedical Science, Queensland University of Technology (QUT) at Translational Research Institute, Woolloongabba QLD 4102, Australia
| | - Erik W. Thompson
- Diamantina Institute, The University of Queensland, Brisbane QLD, Australia
| | - Jason T. George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
5
|
Gardner AL, Jost TA, Brock A. Computational identification of surface markers for isolating distinct subpopulations from heterogeneous cancer cell populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596337. [PMID: 38854060 PMCID: PMC11160629 DOI: 10.1101/2024.05.28.596337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Intratumor heterogeneity reduces treatment efficacy and complicates our understanding of tumor progression. There is a pressing need to understand the functions of heterogeneous tumor cell subpopulations within a tumor, yet biological systems to study these processes in vitro are limited. With the advent of single-cell RNA sequencing (scRNA-seq), it has become clear that some cancer cell line models include distinct subpopulations. Heterogeneous cell lines offer a unique opportunity to study the dynamics and evolution of genetically similar cancer cell subpopulations in controlled experimental settings. Here, we present clusterCleaver, a computational package that uses metrics of statistical distance to identify candidate surface markers maximally unique to transcriptomic subpopulations in scRNA-seq which may be used for FACS isolation. clusterCleaver was experimentally validated using the MDA-MB-231 and MDA-MB-436 breast cancer cell lines. ESAM and BST2/tetherin were experimentally confirmed as surface markers which identify and separate major transcriptomic subpopulations within MDA-MB-231 and MDA-MB-436 cells, respectively. clusterCleaver is a computationally efficient and experimentally validated workflow for identification and enrichment of distinct subpopulations within cell lines which paves the way for studies on the coexistence of cancer cell subpopulations in well-defined in vitro systems.
Collapse
Affiliation(s)
- Andrea L. Gardner
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Tyler A. Jost
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin
| |
Collapse
|
6
|
Dimitriou NM, Flores-Torres S, Kyriakidou M, Kinsella JM, Mitsis GD. Cancer cell sedimentation in 3D cultures reveals active migration regulated by self-generated gradients and adhesion sites. PLoS Comput Biol 2024; 20:e1012112. [PMID: 38861575 PMCID: PMC11195982 DOI: 10.1371/journal.pcbi.1012112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/24/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
Cell sedimentation in 3D hydrogel cultures refers to the vertical migration of cells towards the bottom of the space. Understanding this poorly examined phenomenon may allow us to design better protocols to prevent it, as well as provide insights into the mechanobiology of cancer development. We conducted a multiscale experimental and mathematical examination of 3D cancer growth in triple negative breast cancer cells. Migration was examined in the presence and absence of Paclitaxel, in high and low adhesion environments and in the presence of fibroblasts. The observed behaviour was modeled by hypothesizing active migration due to self-generated chemotactic gradients. Our results did not reject this hypothesis, whereby migration was likely to be regulated by the MAPK and TGF-β pathways. The mathematical model enabled us to describe the experimental data in absence (normalized error<40%) and presence of Paclitaxel (normalized error<10%), suggesting inhibition of random motion and advection in the latter case. Inhibition of sedimentation in low adhesion and co-culture experiments further supported the conclusion that cells actively migrated downwards due to the presence of signals produced by cells already attached to the adhesive glass surface.
Collapse
Affiliation(s)
| | | | - Maria Kyriakidou
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
7
|
Oraiopoulou ME, Tzamali E, Psycharakis SE, Tzedakis G, Makatounakis T, Manolitsi K, Drakos E, Vakis AF, Zacharakis G, Papamatheakis J, Sakkalis V. The Temozolomide-Doxorubicin paradox in Glioblastoma in vitro-in silico preclinical drug-screening. Sci Rep 2024; 14:3759. [PMID: 38355655 PMCID: PMC10866941 DOI: 10.1038/s41598-024-53684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
Adjuvant Temozolomide is considered the front-line Glioblastoma chemotherapeutic treatment; yet not all patients respond. Latest trends in clinical trials usually refer to Doxorubicin; yet it can lead to severe side-effects if administered in high doses. While Glioblastoma prognosis remains poor, little is known about the combination of the two chemotherapeutics. Patient-derived spheroids were generated and treated with a range of Temozolomide/Doxorubicin concentrations either as monotherapy or in combination. Optical microscopy was used to monitor the growth pattern and cell death. Based on the monotherapy experiments, we developed a probabilistic mathematical framework in order to describe the drug-induced effect at the single-cell level and simulate drug doses in combination assuming probabilistic independence. Doxorubicin was found to be effective in doses even four orders of magnitude less than Temozolomide in monotherapy. The combination therapy doses tested in vitro were able to lead to irreversible growth inhibition at doses where monotherapy resulted in relapse. In our simulations, we assumed both drugs are anti-mitotic; Temozolomide has a growth-arrest effect, while Doxorubicin is able to cumulatively cause necrosis. Interestingly, under no mechanistic synergy assumption, the in silico predictions underestimate the in vitro results. In silico models allow the exploration of a variety of potential underlying hypotheses. The simulated-biological discrepancy at certain doses indicates a supra-additive response when both drugs are combined. Our results suggest a Temozolomide-Doxorubicin dual chemotherapeutic scheme to both disable proliferation and increase cytotoxicity against Glioblastoma.
Collapse
Affiliation(s)
- Mariam-Eleni Oraiopoulou
- Institute of Computer Science (ICS), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
- Cancer Research UK - Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eleftheria Tzamali
- Institute of Computer Science (ICS), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
| | - Stylianos E Psycharakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
- School of Medicine, University of Crete, Heraklion, Greece
| | - Georgios Tzedakis
- Institute of Computer Science (ICS), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
| | - Takis Makatounakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Katina Manolitsi
- University General Hospital of Heraklion (PAGNI), Heraklion, Greece
| | - Elias Drakos
- School of Medicine, University of Crete, Heraklion, Greece
- University General Hospital of Heraklion (PAGNI), Heraklion, Greece
| | - Antonis F Vakis
- School of Medicine, University of Crete, Heraklion, Greece
- University General Hospital of Heraklion (PAGNI), Heraklion, Greece
| | - Giannis Zacharakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Joseph Papamatheakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Vangelis Sakkalis
- Institute of Computer Science (ICS), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece.
| |
Collapse
|
8
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H, Li N. Predictive, preventive, and personalized medicine in breast cancer: targeting the PI3K pathway. J Transl Med 2024; 22:15. [PMID: 38172946 PMCID: PMC10765967 DOI: 10.1186/s12967-023-04841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer (BC) is a multifaceted disease characterized by distinct molecular subtypes and varying responses to treatment. In BC, the phosphatidylinositol 3-kinase (PI3K) pathway has emerged as a crucial contributor to the development, advancement, and resistance to treatment. This review article explores the implications of the PI3K pathway in predictive, preventive, and personalized medicine for BC. It emphasizes the identification of predictive biomarkers, such as PIK3CA mutations, and the utility of molecular profiling in guiding treatment decisions. The review also discusses the potential of targeting the PI3K pathway for preventive strategies and the customization of therapy based on tumor stage, molecular subtypes, and genetic alterations. Overcoming resistance to PI3K inhibitors and exploring combination therapies are addressed as important considerations. While this field holds promise in improving patient outcomes, further research and clinical trials are needed to validate these approaches and translate them into clinical practice.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Grob A, Enrico Bena C, Di Blasi R, Pessina D, Sood M, Yunyue Z, Bosia C, Isalan M, Ceroni F. Mammalian cell growth characterisation by a non-invasive plate reader assay. Nat Commun 2024; 15:57. [PMID: 38167870 PMCID: PMC10761699 DOI: 10.1038/s41467-023-44396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Automated and non-invasive mammalian cell analysis is currently lagging behind due to a lack of methods suitable for a variety of cell lines and applications. Here, we report the development of a high throughput non-invasive method for tracking mammalian cell growth and performance based on plate reader measurements. We show the method to be suitable for both suspension and adhesion cell lines, and we demonstrate it can be adopted when cells are grown under different environmental conditions. We establish that the method is suitable to inform on effective drug treatments to be used depending on the cell line considered, and that it can support characterisation of engineered mammalian cells over time. This work provides the scientific community with an innovative approach to mammalian cell screening, also contributing to the current efforts towards high throughput and automated mammalian cell engineering.
Collapse
Affiliation(s)
- Alice Grob
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Chiara Enrico Bena
- Italian Institute for Genomic Medicine, Torino, Italy
- Université Paris-Saclay (INRAE), AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Daniele Pessina
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Matthew Sood
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Zhou Yunyue
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Carla Bosia
- Italian Institute for Genomic Medicine, Torino, Italy.
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy.
| | - Mark Isalan
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
10
|
Howland KK, Brock A. Cellular barcoding tracks heterogeneous clones through selective pressures and phenotypic transitions. Trends Cancer 2023; 9:591-601. [PMID: 37105856 PMCID: PMC10339273 DOI: 10.1016/j.trecan.2023.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023]
Abstract
Genomic DNA barcoding has emerged as a sensitive and flexible tool to measure the fates of clonal subpopulations within a heterogeneous cancer cell population. Coupling cellular barcoding with single-cell transcriptomics permits the longitudinal analysis of molecular mechanisms with detailed clone-level resolution. Numerous recent studies have employed these tools to track clonal cell states in cancer progression and treatment response. With these new technologies comes the opportunity to examine longstanding questions about the origins and contributions of tumor cell heterogeneity and the roles of selection and phenotypic plasticity in disease progression and treatment.
Collapse
Affiliation(s)
- Kennedy K Howland
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78734, USA
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78734, USA.
| |
Collapse
|
11
|
Cotner M, Meng S, Jost T, Gardner A, De Santiago C, Brock A. Integration of quantitative methods and mathematical approaches for the modeling of cancer cell proliferation dynamics. Am J Physiol Cell Physiol 2023; 324:C247-C262. [PMID: 36503241 PMCID: PMC9886359 DOI: 10.1152/ajpcell.00185.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Physiological processes rely on the control of cell proliferation, and the dysregulation of these processes underlies various pathological conditions, including cancer. Mathematical modeling can provide new insights into the complex regulation of cell proliferation dynamics. In this review, we first examine quantitative experimental approaches for measuring cell proliferation dynamics in vitro and compare the various types of data that can be obtained in these settings. We then explore the toolbox of common mathematical modeling frameworks that can describe cell behavior, dynamics, and interactions of proliferation. We discuss how these wet-laboratory studies may be integrated with different mathematical modeling approaches to aid the interpretation of the results and to enable the prediction of cell behaviors, specifically in the context of cancer.
Collapse
Affiliation(s)
- Michael Cotner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Sarah Meng
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Tyler Jost
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Andrea Gardner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Carolina De Santiago
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
12
|
Lima EA, Wyde RA, Sorace AG, Yankeelov TE. Optimizing combination therapy in a murine model of HER2+ breast cancer. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2022; 402:115484. [PMID: 37800167 PMCID: PMC10552906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Human epidermal growth factor receptor 2 positive (HER2+) breast cancer is frequently treated with drugs that target the HER2 receptor, such as trastuzumab, in combination with chemotherapy, such as doxorubicin. However, an open problem in treatment design is to determine the therapeutic regimen that optimally combines these two treatments to yield optimal tumor control. Working with data quantifying temporal changes in tumor volume due to different trastuzumab and doxorubicin treatment protocols in a murine model of human HER2+ breast cancer, we propose a complete framework for model development, calibration, selection, and treatment optimization to find the optimal treatment protocol. Through different assumptions for the drug-tumor interactions, we propose ten different models to characterize the dynamic relationship between tumor volume and drug availability, as well as the drug-drug interaction. Using a Bayesian framework, each of these models are calibrated to the dataset and the model with the highest Bayesian information criterion weight is selected to represent the biological system. The selected model captures the inhibition of trastuzumab due to pre-treatment with doxorubicin, as well as the increase in doxorubicin efficacy due to pre-treatment with trastuzumab. We then apply optimal control theory (OCT) to this model to identify two optimal treatment protocols. In the first optimized protocol, we fix the maximum dosage for doxorubicin and trastuzumab to be the same as the maximum dose delivered experimentally, while trying to minimize tumor burden. Within this constraint, optimal control theory indicates the optimal regimen is to first deliver two doses of trastuzumab on days 35 and 36, followed by two doses of doxorubicin on days 37 and 38. This protocol predicts an additional 45% reduction in tumor burden compared to that achieved with the experimentally delivered regimen. In the second optimized protocol we fix the tumor control to be the same as that obtained experimentally, and attempt to reduce the doxorubicin dose. Within this constraint, the optimal regimen is the same as the first optimized protocol but uses only 43% of the doxorubicin dose used experimentally. This protocol predicts tumor control equivalent to that achieved experimentally. These results strongly suggest the utility of mathematical modeling and optimal control theory for identifying therapeutic regimens maximizing efficacy and minimizing toxicity.
Collapse
Affiliation(s)
- Ernesto A.B.F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, United States of America
- Texas Advanced Computing Center, The University of Texas at Austin, United States of America
| | - Reid A.F. Wyde
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, United States of America
| | - Anna G. Sorace
- Department of Radiology, The University of Alabama at Birmingham, United States of America
- Department of Biomedical Engineering, The University of Alabama at Birmingham, United States of America
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, United States of America
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, United States of America
- Department of Biomedical Engineering, The University of Texas at Austin, United States of America
- Department of Diagnostic Medicine, The University of Texas at Austin, United States of America
- Department of Oncology, The University of Texas at Austin, United States of America
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, United States of America
| |
Collapse
|
13
|
Kiseleva OI, Kurbatov IY, Arzumanian VA, Ilgisonis EV, Vakhrushev IV, Lupatov AY, Ponomarenko EA, Poverennaya EV. Exploring Dynamic Metabolome of the HepG2 Cell Line: Rise and Fall. Cells 2022; 11:cells11223548. [PMID: 36428976 PMCID: PMC9688728 DOI: 10.3390/cells11223548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Both biological and technical variations can discredit the reliability of obtained data in omics studies. In this technical note, we investigated the effect of prolonged cultivation of the HepG2 hepatoma cell line on its metabolomic profile. Using the GC × GC-MS approach, we determined the degree of metabolic variability across HepG2 cells cultured in uniform conditions for 0, 5, 10, 15, and 20 days. Post-processing of obtained data revealed substantial changes in relative abundances of 110 metabolites among HepG2 samples under investigation. Our findings have implications for interpreting metabolomic results obtained from immortal cells, especially in longitudinal studies. There are still plenty of unanswered questions regarding metabolomics variability and many potential areas for future targeted and panoramic research. However, we suggest that the metabolome of cell lines is unstable and may undergo significant transformation over time, even if the culture conditions remain the same. Considering metabolomics variability on a relatively long-term basis, careful experimentation with particular attention to control samples is required to ensure reproducibility and relevance of the research results when testing both fundamentally and practically significant hypotheses.
Collapse
|
14
|
Yang EY, Howard GR, Brock A, Yankeelov TE, Lorenzo G. Mathematical characterization of population dynamics in breast cancer cells treated with doxorubicin. Front Mol Biosci 2022; 9:972146. [PMID: 36172049 PMCID: PMC9510895 DOI: 10.3389/fmolb.2022.972146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
The development of chemoresistance remains a significant cause of treatment failure in breast cancer. We posit that a mathematical understanding of chemoresistance could assist in developing successful treatment strategies. Towards that end, we have developed a model that describes the cytotoxic effects of the standard chemotherapeutic drug doxorubicin on the MCF-7 breast cancer cell line. We assume that treatment with doxorubicin induces a compartmentalization of the breast cancer cell population into surviving cells, which continue proliferating after treatment, and irreversibly damaged cells, which gradually transition from proliferating to treatment-induced death. The model is fit to experimental data including variations in drug concentration, inter-treatment interval, and number of doses. Our model recapitulates tumor cell dynamics in all these scenarios (as quantified by the concordance correlation coefficient, CCC > 0.95). In particular, superior tumor control is observed with higher doxorubicin concentrations, shorter inter-treatment intervals, and a higher number of doses (p < 0.05). Longer inter-treatment intervals require adapting the model parameterization after each doxorubicin dose, suggesting the promotion of chemoresistance. Additionally, we propose promising empirical formulas to describe the variation of model parameters as functions of doxorubicin concentration (CCC > 0.78). Thus, we conclude that our mathematical model could deepen our understanding of the cytotoxic effects of doxorubicin and could be used to explore practical drug regimens achieving optimal tumor control.
Collapse
Affiliation(s)
- Emily Y. Yang
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Grant R. Howard
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Interdisciplinary Life Sciences Program, The University of Texas at Austin, Austin, TX, United States
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, The University of Texas at Austin, Austin, TX, United States
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
- *Correspondence: Guillermo Lorenzo, ,
| |
Collapse
|