1
|
Saiki-Ishikawa A, Agrios M, Savya S, Forrest A, Sroussi H, Hsu S, Basrai D, Xu F, Miri A. Hierarchy between forelimb premotor and primary motor cortices and its manifestation in their firing patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.23.559136. [PMID: 38798685 PMCID: PMC11118350 DOI: 10.1101/2023.09.23.559136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Though hierarchy is commonly invoked in descriptions of motor cortical function, its presence and manifestation in firing patterns remain poorly resolved. Here we use optogenetic inactivation to demonstrate that short-latency influence between forelimb premotor and primary motor cortices is asymmetric during reaching in mice, demonstrating a partial hierarchy between the endogenous activity in each region. Multi-region recordings revealed that some activity is captured by similar but delayed patterns where either region's activity leads, with premotor activity leading more. Yet firing in each region is dominated by patterns shared between regions and is equally predictive of firing in the other region at the single-neuron level. In dual-region network models fit to data, regions differed in their dependence on across-region input, rather than the amount of such input they received. Our results indicate that motor cortical hierarchy, while present, may not be exposed when inferring interactions between populations from firing patterns alone.
Collapse
|
2
|
Shah NP, Avansino D, Kamdar F, Nicolas C, Kapitonava A, Vargas-Irwin C, Hochberg L, Pandarinath C, Shenoy K, Willett FR, Henderson J. Pseudo-linear Summation explains Neural Geometry of Multi-finger Movements in Human Premotor Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561982. [PMID: 37873182 PMCID: PMC10592742 DOI: 10.1101/2023.10.11.561982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
How does the motor cortex combine simple movements (such as single finger flexion/extension) into complex movements (such hand gestures or playing piano)? Motor cortical activity was recorded using intracortical multi-electrode arrays in two people with tetraplegia as they attempted single, pairwise and higher order finger movements. Neural activity for simultaneous movements was largely aligned with linear summation of corresponding single finger movement activities, with two violations. First, the neural activity was normalized, preventing a large magnitude with an increasing number of moving fingers. Second, the neural tuning direction of weakly represented fingers (e.g. middle) changed significantly as a result of the movement of other fingers. These deviations from linearity resulted in non-linear methods outperforming linear methods for neural decoding. Overall, simultaneous finger movements are thus represented by the combination of individual finger movements by pseudo-linear summation.
Collapse
Affiliation(s)
| | - Donald Avansino
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | | | - Claire Nicolas
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anastasia Kapitonava
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos Vargas-Irwin
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Leigh Hochberg
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- School of Engineering, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chethan Pandarinath
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Krishna Shenoy
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Francis R Willett
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | - Jaimie Henderson
- Department of Neurosurgery, Stanford University
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Dixon TC, Merrick CM, Wallis JD, Ivry RB, Carmena JM. Hybrid dedicated and distributed coding in PMd/M1 provides separation and interaction of bilateral arm signals. PLoS Comput Biol 2021; 17:e1009615. [PMID: 34807905 PMCID: PMC8648118 DOI: 10.1371/journal.pcbi.1009615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/06/2021] [Accepted: 11/04/2021] [Indexed: 01/23/2023] Open
Abstract
Pronounced activity is observed in both hemispheres of the motor cortex during preparation and execution of unimanual movements. The organizational principles of bi-hemispheric signals and the functions they serve throughout motor planning remain unclear. Using an instructed-delay reaching task in monkeys, we identified two components in population responses spanning PMd and M1. A “dedicated” component, which segregated activity at the level of individual units, emerged in PMd during preparation. It was most prominent following movement when M1 became strongly engaged, and principally involved the contralateral hemisphere. In contrast to recent reports, these dedicated signals solely accounted for divergence of arm-specific neural subspaces. The other “distributed” component mixed signals for each arm within units, and the subspace containing it did not discriminate between arms at any stage. The statistics of the population response suggest two functional aspects of the cortical network: one that spans both hemispheres for supporting preparatory and ongoing processes, and another that is predominantly housed in the contralateral hemisphere and specifies unilateral output. The motor cortex of the brain primarily controls the opposite side of the body, yet neural activity in this area is often observed during movements of either arm. To understand the functional significance of these signals we must first characterize how they are organized across the neural network. Are there patterns of activity that are unique to a single arm? Are there other patterns that reflect shared functions? Importantly, these features may change across time as motor plans are developed and executed. In this study, we analyzed the responses of individual neurons in the motor cortex and modeled their patterns of co-activity across the population to characterize the changes that distinguish left and right arm use. Across preparation and execution phases of the task, we found that signals became gradually more segregated. Despite many neurons modulating in association with either arm, those that were more dedicated to a single (typically contralateral) limb accounted for a disproportionately large amount of the variance. However, there were also weaker patterns of activity that did not distinguish between the two arms at any stage. These results reveal a heterogeneity in the motor cortex that highlights both independent and interactive components of reaching signals.
Collapse
Affiliation(s)
- Tanner C. Dixon
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Christina M. Merrick
- Department of Psychology, University of California-Berkeley, Berkeley, California, United States of America
| | - Joni D. Wallis
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- Department of Psychology, University of California-Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, United States of America
| | - Richard B. Ivry
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- Department of Psychology, University of California-Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, United States of America
| | - Jose M. Carmena
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, United States of America
- Department of Electrical Engineering and Computer Sciences, University of California-Berkeley, Berkeley, California, United States of America
| |
Collapse
|