1
|
Gu Z, Li S, Liu J, Zhang X, Pang C, Ding L, Cao C. Protection of blood-brain barrier by endothelial DAPK1 deletion after stroke. Biochem Biophys Res Commun 2024; 724:150216. [PMID: 38851140 DOI: 10.1016/j.bbrc.2024.150216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Death-associated protein kinase (DAPK) 1 is a critical mediator for neuronal cell death in cerebral ischemia, but its role in blood-brain barrier (BBB) disruption is incompletely understood. Here, we found that endothelial-specific deletion of Dapk1 using Tie2 Cre protected the brain of Dapk1fl/fl mice against middle cerebral artery occlusion (MCAO), characterized by mitigated Evans blue dye (EBD) extravasation, reduced infarct size and improved behavior. In vitro experiments also indicated that DAPK1 deletion inhibited oxygen-glucose deprivation (OGD)-induced tight junction alteration between cerebral endothelial cells (CECs). Mechanistically, we revealed that DAPK1-DAPK3 interaction activated cytosolic phospholipase A2 (cPLA2) in OGD-stimulated CECs. Our results thus suggest that inhibition of endothelial DAPK1 specifically prevents BBB damage after stroke.
Collapse
Affiliation(s)
- Zhijiang Gu
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Shaoxun Li
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Jiyu Liu
- Huaian Clinical College of Xuzhou Medical University, Huaian, 223300, China
| | - Xiaotian Zhang
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Cong Pang
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Lianshu Ding
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China.
| | - Changchun Cao
- Department of Pharmacy, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China; Huaian Clinical College of Xuzhou Medical University, Huaian, 223300, China.
| |
Collapse
|
2
|
Onishi K, Ishihara S, Takahashi M, Sakai A, Enomoto A, Suzuki K, Haga H. Substrate stiffness induces nuclear localization of myosin regulatory light chain to suppress apoptosis. FEBS Lett 2023; 597:643-656. [PMID: 36723402 DOI: 10.1002/1873-3468.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 02/02/2023]
Abstract
Stiffness of the extracellular matrix regulates various biological responses, but the response mechanisms are poorly understood. Here, we found that the nuclear diphosphorylated myosin regulatory light chain (2P-MRLC) is a critical mechanomediator that suppresses apoptosis in response to substrate stiffness. Stiff substrates promoted the nuclear localization of 2P-MRLC. Zipper-interacting protein kinase [ZIPK; also known as death-associated protein kinase 3 (DAPK3)], a kinase for MRLC, was localized in the nucleus in response to stiff substrates and promoted the nuclear localization of 2P-MRLC. Moreover, actin fiber formation induced by substrate stiffness promoted the nuclear localization of 2P-MRLC via ZIPK. 2P-MRLC in response to substrate stiffness suppressed the expression of MAF bZIP transcription factor B (MafB) and repressed apoptosis. These findings reveal a newly identified role of MRLC in mechanotransduction.
Collapse
Affiliation(s)
- Katsuya Onishi
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Seiichiro Ishihara
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Masayuki Takahashi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Akihiro Sakai
- Department of Pathology, Nagoya University Graduate School of Medicine, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Japan
| | - Hisashi Haga
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Kocher BA, White LS, Piwnica-Worms D. DAPK3 suppresses acini morphogenesis and is required for mouse development. Mol Cancer Res 2014; 13:358-67. [PMID: 25304685 DOI: 10.1158/1541-7786.mcr-14-0333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Death-associated protein kinase (DAPK3) is a serine/threonine kinase involved in various signaling pathways important to tissue homeostasis and mammalian biology. Considered to be a putative tumor suppressor, the molecular mechanism by which DAPK3 exerts its suppressive function is not fully understood and the field lacks an appropriate mouse model. To address these gaps, an in vitro three-dimensional tumorigenesis model was used and a constitutive DAPK3-knockout mouse was generated. In the 3D morphogenesis model, loss of DAPK3 through lentiviral-mediated knockdown enlarged acinar size by accelerated acini proliferation and apoptosis while maintaining acini polarity. Depletion of DAPK3 enhanced growth factor-dependent mTOR activation and, furthermore, enlarged DAPK3 acini structures were uniquely sensitive to low doses of rapamycin. Simultaneous knockdown of RAPTOR, a key mTORC1 component, reversed the augmented acinar size in DAPK3-depleted structures indicating an epistatic interaction. Using a validated gene trap strategy to generate a constitutive DAPK3-knockout mouse, it was demonstrated that DAPK3 is vital for early mouse development. The Dapk3 promoter exhibits spatiotemporal activity in developing mice and is actively expressed in normal breast epithelia of adult mice. Importantly, reduction of DAPK3 expression correlates with the development of ductal carcinoma in situ (DCIS) and more aggressive breast cancer as observed in the Oncomine database of clinical breast cancer specimens. IMPLICATIONS Novel cellular and mouse modeling studies of DAPK3 shed light on its tumor-suppressive mechanisms and provide direct evidence that DAPK3 has relevance in early development.
Collapse
Affiliation(s)
- Brandon A Kocher
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Lynn S White
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - David Piwnica-Worms
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri. Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
4
|
Abstract
DAP-kinase (DAPK) is the founding member of a family of highly related, death associated Ser/Thr kinases that belongs to the calmodulin (CaM)-regulated kinase superfamily. The family includes DRP-1 and ZIP-kinase (ZIPK), both of which share significant homology within the common N-terminal kinase domain, but differ in their extra-catalytic domains. Both DAPK and DRP-1 possess a conserved CaM autoregulatory domain, and are regulated by calcium-activated CaM and by an inhibitory auto-phosphorylation within the domain. ZIPK's activity is independent of CaM but can be activated by DAPK. The three kinases share some common functions and substrates, such as induction of autophagy and phosphorylation of myosin regulatory light chain leading to membrane blebbing. Furthermore, all can function as tumor suppressors. However, they also each possess unique functions and intracellular localizations, which may arise from the divergence in structure in their respective C-termini. In this review we will introduce the DAPK family, and present a structure/function analysis for each individual member, and for the family as a whole. Emphasis will be placed on the various domains, and how they mediate interactions with additional proteins and/or regulation of kinase function.
Collapse
Affiliation(s)
- Ruth Shiloh
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | | | | |
Collapse
|
5
|
Carr BW, Basepayne TL, Chen L, Jayashankar V, Weiser DC. Characterization of the zebrafish homolog of zipper interacting protein kinase. Int J Mol Sci 2014; 15:11597-613. [PMID: 24983477 PMCID: PMC4139802 DOI: 10.3390/ijms150711597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 11/16/2022] Open
Abstract
Zipper-interacting protein kinase (ZIPK) is a conserved vertebrate-specific regulator of actomyosin contractility in smooth muscle and non-muscle cells. Murine ZIPK has undergone an unusual divergence in sequence and regulation compared to other ZIPK orthologs. In humans, subcellular localization is controlled by phosphorylation of threonines 299 and 300. In contrast, ZIPK subcellular localization in mouse and rat is controlled by interaction with PAR-4. We carried out a comparative biochemical characterization of the regulation of the zebrafish ortholog of ZIPK. Like the human orthologs zebrafish ZIPK undergoes nucleocytoplasmic-shuttling and is abundant in the cytoplasm, unlike the primarily nuclear rat ZIPK. Rat ZIPK, but not human or zebrafish ZIPK, interacts with zebrafish PAR-4. Mutation of the conserved residues required for activation of the mammalian orthologs abrogated activity of the zebrafish ZIPK. In contrast to the human ortholog, mutation of threonine 299 and 300 in the zebrafish ZIPK has no effect on the activity or subcellular localization. Thus, we found that zebrafish ZIPK functions in a manner most similar to the human ZIPK and quite distinct from murine orthologs, yet the regulation of subcellular localization is not conserved.
Collapse
Affiliation(s)
- Brandon W Carr
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA.
| | - Tamara L Basepayne
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA.
| | - Lawrence Chen
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA.
| | - Vaishali Jayashankar
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA.
| | - Douglas C Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA.
| |
Collapse
|
6
|
Abstract
INTRODUCTION Apoptosis plays an important role in age-related disease, and prostate apoptosis response-4 (PAR-4) is a novel apoptosis-inducing factor that regulates apoptosis in most cells. Recent studies suggest that PAR-4 plays an important role in the progression of many age-related diseases. This review highlights the significance of PAR-4 and builds a strong case supporting its role as a possible therapeutic target in age-related disease. AREAS COVERED This review covers the advancements over the last 15 years with respect to PAR-4 and its significance in age-related disease. Additionally, it provides knowledge regarding the significance of PAR-4 in age-related disease as well as its role in apoptotic signaling pathways, endoplasmic reticulum (ER) stress, and other mechanisms that may induce age-related disease. EXPERT OPINION PAR-4 may be a potential therapeutic target that can trigger selective apoptosis in cancer cells. It is induced by ER stress and increased ER stress, and it is involved in the activity of the dopamine D2 receptor. Abnormal expression of PAR-4 may be associated with cardiovascular disease and diabetes. PAR-4 agonists and inhibitors must be identified before gene therapy can commence.
Collapse
Affiliation(s)
- Wu Qinan
- The First Affiliated Hospital of the Third Military Medical University, Endocrine Department , Post number: 400038, Chongqing , China
| | | | | |
Collapse
|
7
|
Carlson DA, Franke AS, Weitzel DH, Speer BL, Hughes PF, Hagerty L, Fortner CN, Veal JM, Barta TE, Zieba BJ, Somlyo AV, Sutherland C, Deng JT, Walsh MP, MacDonald JA, Haystead TAJ. Fluorescence linked enzyme chemoproteomic strategy for discovery of a potent and selective DAPK1 and ZIPK inhibitor. ACS Chem Biol 2013; 8:2715-23. [PMID: 24070067 DOI: 10.1021/cb400407c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DAPK1 and ZIPK (also called DAPK3) are closely related serine/threonine protein kinases that regulate programmed cell death and phosphorylation of non-muscle and smooth muscle myosin. We have developed a fluorescence linked enzyme chemoproteomic strategy (FLECS) for the rapid identification of inhibitors for any element of the purinome and identified a selective pyrazolo[3,4-d]pyrimidinone (HS38) that inhibits DAPK1 and ZIPK in an ATP-competitive manner at nanomolar concentrations. In cellular studies, HS38 decreased RLC20 phosphorylation. In ex vivo studies, HS38 decreased contractile force generated in mouse aorta, rabbit ileum, and calyculin A stimulated arterial muscle by decreasing RLC20 and MYPT1 phosphorylation. The inhibitor also promoted relaxation in Ca(2+)-sensitized vessels. A close structural analogue (HS43) with 5-fold lower affinity for ZIPK produced no effect on cells or tissues. These findings are consistent with a mechanism of action wherein HS38 specifically targets ZIPK in smooth muscle. The discovery of HS38 provides a lead scaffold for the development of therapeutic agents for smooth muscle related disorders and a chemical means to probe the function of DAPK1 and ZIPK across species.
Collapse
Affiliation(s)
- David A. Carlson
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Aaron S. Franke
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Douglas H. Weitzel
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Brittany L. Speer
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Philip F. Hughes
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Laura Hagerty
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Christopher N. Fortner
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - James M. Veal
- Quanticel
Pharmaceuticals, San Francisco, California 94158, United States
| | - Thomas E. Barta
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Bartosz J. Zieba
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Avril V. Somlyo
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Cindy Sutherland
- Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta. Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Jing Ti Deng
- Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta. Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Michael P. Walsh
- Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta. Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Justin A. MacDonald
- Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta. Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Timothy A. J. Haystead
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
8
|
Jayashankar V, Nguyen MJ, Carr BW, Zheng DC, Rosales JB, Rosales JB, Weiser DC. Protein phosphatase 1 β paralogs encode the zebrafish myosin phosphatase catalytic subunit. PLoS One 2013; 8:e75766. [PMID: 24040418 PMCID: PMC3770619 DOI: 10.1371/journal.pone.0075766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/19/2013] [Indexed: 12/21/2022] Open
Abstract
Background The myosin phosphatase is a highly conserved regulator of actomyosin contractility. Zebrafish has emerged as an ideal model system to study the invivo role of myosin phosphatase in controlling cell contractility, cell movement and epithelial biology. Most work in zebrafish has focused on the regulatory subunit of the myosin phosphatase called Mypt1. In this work, we examined the critical role of Protein Phosphatase 1, PP1, the catalytic subunit of the myosin phosphatase. Methodology/Principal Findings We observed that in zebrafish two paralogous genes encoding PP1β, called ppp1cba and ppp1cbb, are both broadly expressed during early development. Furthermore, we found that both gene products interact with Mypt1 and assemble an active myosin phosphatase complex. In addition, expression of this complex results in dephosphorylation of the myosin regulatory light chain and large scale rearrangements of the actin cytoskeleton. Morpholino knock-down of ppp1cba and ppp1cbb results in severe defects in morphogenetic cell movements during gastrulation through loss of myosin phosphatase function. Conclusions/Significance Our work demonstrates that zebrafish have two genes encoding PP1β, both of which can interact with Mypt1 and assemble an active myosin phosphatase. In addition, both genes are required for convergence and extension during gastrulation and correct dosage of the protein products is required.
Collapse
Affiliation(s)
- Vaishali Jayashankar
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Michael J. Nguyen
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Brandon W. Carr
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Dale C. Zheng
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Joseph B. Rosales
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Joshua B. Rosales
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Tan XL, Moyer AM, Fridley BL, Schaid DJ, Niu N, Batzler AJ, Jenkins GD, Abo RP, Li L, Cunningham JM, Sun Z, Yang P, Wang L. Genetic variation predicting cisplatin cytotoxicity associated with overall survival in lung cancer patients receiving platinum-based chemotherapy. Clin Cancer Res 2011; 17:5801-11. [PMID: 21775533 DOI: 10.1158/1078-0432.ccr-11-1133] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE Inherited variability in the prognosis of lung cancer patients treated with platinum-based chemotherapy has been widely investigated. However, the overall contribution of genetic variation to platinum response is not well established. To identify novel candidate single nucleotide polymorphisms (SNP)/genes, we carried out a genome-wide association study (GWAS) for cisplatin cytotoxicity by using lymphoblastoid cell lines (LCL), followed by an association study of selected SNPs from the GWAS with overall survival (OS) in lung cancer patients. EXPERIMENTAL DESIGN A GWAS for cisplatin was conducted with 283 ethnically diverse LCLs. A total of 168 top SNPs were genotyped in 222 small cell lung cancer (SCLC) and 961 non-SCLC (NSCLC) patients treated with platinum-based therapy. Association of the SNPs with OS was determined by using the Cox regression model. Selected candidate genes were functionally validated by siRNA knockdown in human lung cancer cells. RESULTS Among 157 successfully genotyped SNPs, 9 and 10 SNPs were top SNPs associated with OS for patients with NSCLC and SCLC, respectively, although they were not significant after adjusting for multiple testing. Fifteen genes, including 7 located within 200 kb up or downstream of the 4 top SNPs and 8 genes for which expression was correlated with 3 SNPs in LCLs were selected for siRNA screening. Knockdown of DAPK3 and METTL6, for which expression levels were correlated with the rs11169748 and rs2440915 SNPs, significantly decreased cisplatin sensitivity in lung cancer cells. CONCLUSIONS This series of clinical and complementary laboratory-based functional studies identified several candidate genes/SNPs that might help predict treatment outcomes for platinum-based therapy of lung cancer.
Collapse
Affiliation(s)
- Xiang-Lin Tan
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Li Y, Massey K, Witkiewicz H, Schnitzer JE. Systems analysis of endothelial cell plasma membrane proteome of rat lung microvasculature. Proteome Sci 2011; 9:15. [PMID: 21447187 PMCID: PMC3080792 DOI: 10.1186/1477-5956-9-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 03/29/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endothelial cells line all blood vessels to form the blood-tissue interface which is critical for maintaining organ homeostasis and facilitates molecular exchange. We recently used tissue subcellular fractionation combined with several multi-dimensional mass spectrometry-based techniques to enhance identification of lipid-embedded proteins for large-scale proteomic mapping of luminal endothelial cell plasma membranes isolated directly from rat lungs in vivo. The biological processes and functions of the proteins expressed at this important blood-tissue interface remain unexplored at a large scale. RESULTS We performed an unbiased systems analysis of the endothelial cell surface proteome containing over 1800 proteins to unravel the major functions and pathways apparent at this interface. As expected, many key functions of plasma membranes in general (i.e., cell surface signaling pathways, cytoskeletal organization, adhesion, membrane trafficking, metabolism, mechanotransduction, membrane fusion, and vesicle-mediated transport) and endothelial cells in particular (i.e., blood vessel development and maturation, angiogenesis, regulation of endothelial cell proliferation, protease activity, and endocytosis) were significantly overrepresented in this proteome. We found that endothelial cells express multiple proteins that mediate processes previously reported to be restricted to neuronal cells, such as neuronal survival and plasticity, axon growth and regeneration, synaptic vesicle trafficking and neurotransmitter metabolic process. Surprisingly, molecular machinery for protein synthesis was also detected as overrepresented, suggesting that endothelial cells, like neurons, can synthesize proteins locally at the cell surface. CONCLUSION Our unbiased systems analysis has led to the potential discovery of unexpected functions in normal endothelium. The discovery of the existence of protein synthesis at the plasma membrane in endothelial cells provides new insight into the blood-tissue interface and endothelial cell surface biology.
Collapse
Affiliation(s)
- Yan Li
- Proteogenomics Research Institute for Systems Medicine, 11107 Roselle Street, San Diego, California 92121, USA.
| | | | | | | |
Collapse
|
11
|
Shoval Y, Berissi H, Kimchi A, Pietrokovski S. New modularity of DAP-kinases: alternative splicing of the DRP-1 gene produces a ZIPk-like isoform. PLoS One 2011; 6:e17344. [PMID: 21408167 PMCID: PMC3050894 DOI: 10.1371/journal.pone.0017344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 01/29/2011] [Indexed: 11/19/2022] Open
Abstract
DRP-1 and ZIPk are two members of the Death Associated Protein Ser/Thr Kinase (DAP-kinase) family, which function in different settings of cell death including autophagy. DAP kinases are very similar in their catalytic domains but differ substantially in their extra-catalytic domains. This difference is crucial for the significantly different modes of regulation and function among DAP kinases. Here we report the identification of a novel alternatively spliced kinase isoform of the DRP-1 gene, termed DRP-1β. The alternative splicing event replaces the whole extra catalytic domain of DRP-1 with a single coding exon that is closely related to the sequence of the extra catalytic domain of ZIPk. As a consequence, DRP-1β lacks the calmodulin regulatory domain of DRP-1, and instead contains a leucine zipper-like motif similar to the protein binding region of ZIPk. Several functional assays proved that this new isoform retained the biochemical and cellular properties that are common to DRP-1 and ZIPk, including myosin light chain phosphorylation, and activation of membrane blebbing and autophagy. In addition, DRP-1β also acquired binding to the ATF4 transcription factor, a feature characteristic of ZIPk but not DRP-1. Thus, a splicing event of the DRP-1 produces a ZIPk like isoform. DRP-1β is highly conserved in evolution, present in all known vertebrate DRP-1 loci. We detected the corresponding mRNA and protein in embryonic mouse brains and in human embryonic stem cells thus confirming the in vivo utilization of this isoform. The discovery of module conservation within the DAPk family members illustrates a parsimonious way to increase the functional complexity within protein families. It also provides crucial data for modeling the expansion and evolution of DAP kinase proteins within vertebrates, suggesting that DRP-1 and ZIPk most likely evolved from their ancient ancestor gene DAPk by two gene duplication events that occurred close to the emergence of vertebrates.
Collapse
Affiliation(s)
- Yishay Shoval
- Department of Molecular Biology, Weizmann Institute of Science, Rehovot,
Israel
| | - Hanna Berissi
- Department of Molecular Biology, Weizmann Institute of Science, Rehovot,
Israel
| | - Adi Kimchi
- Department of Molecular Biology, Weizmann Institute of Science, Rehovot,
Israel
- * E-mail: (AK); (SP)
| | - Shmuel Pietrokovski
- Department of Molecular Biology, Weizmann Institute of Science, Rehovot,
Israel
- * E-mail: (AK); (SP)
| |
Collapse
|
12
|
Weitzel DH, Chambers J, Haystead TAJ. Phosphorylation-dependent control of ZIPK nuclear import is species specific. Cell Signal 2010; 23:297-303. [PMID: 20854903 DOI: 10.1016/j.cellsig.2010.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/27/2010] [Accepted: 09/13/2010] [Indexed: 12/30/2022]
Abstract
ZIPK (zipper-interacting protein kinase) is a Ca(2+)-independent protein kinase that promotes myosin phosphorylation in both smooth muscle and non-muscle cells. A recent report attempted to clarify a debate over the subcellular localization of ZIPK in non-muscle cells (Shoval et. al. (2007) Plos Genetics. 3: 1884-1883). A species-specific loss of a key phosphorylation site (T299) in murine (mouse and rat) ZIPK seems to direct it to the nucleus, while the presence of the T299 site in human ZIPK correlates with cytoplasmic localization. T299 is immediately adjacent to a putative nuclear localization sequence (NLS) and may mask its function when phosphorylated, therefore explaining the species-specific dichotomy of intracellular localization. However, despite the murine ZIPK (mZIPK) lacking the T299 residue that is critical for controlling human ZIPK (hZIPK) subcellular localization, mutational analysis showed that this NLS control locus is nonfunctional in the murine context. A constitutively active Rho promoted the cytoplasmic retention of a human ZIPK mutant that would otherwise localize to the nucleus. Endogenous hZIPK showed sensitivity to the nuclear export inhibitor leptomycin B, suggesting a continuous shuttling between cytoplasm and nucleus that is dependent upon T299 dephosphorylation. Thus, the C-terminal domain of human and murine ZIPK demonstrated quite divergent nuclear import and export functionality. We conclude that in the case of ZIPK, studies between the species may not be directly comparable to each other given the gross differences in intracellular localization and movement.
Collapse
Affiliation(s)
- Douglas H Weitzel
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
13
|
Sun XH, Liu ZY, Chen H, Beardsley AR, Qi Q, Liu J. A conserved sequence in caveolin-1 is both necessary and sufficient for caveolin polarity and cell directional migration. FEBS Lett 2009; 583:3681-9. [DOI: 10.1016/j.febslet.2009.10.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/12/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
|
14
|
Boosen M, Vetterkind S, Kubicek J, Scheidtmann KH, Illenberger S, Preuss U. Par-4 is an essential downstream target of DAP-like kinase (Dlk) in Dlk/Par-4-mediated apoptosis. Mol Biol Cell 2009; 20:4010-20. [PMID: 19625447 DOI: 10.1091/mbc.e09-02-0173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prostate apoptosis response-4 (Par-4) was initially identified as a gene product up-regulated in prostate cancer cells undergoing apoptosis. In rat fibroblasts, coexpression of Par-4 and its interaction partner DAP-like kinase (Dlk, which is also known as zipper-interacting protein kinase [ZIPK]) induces relocation of the kinase from the nucleus to the actin filament system, followed by extensive myosin light chain (MLC) phosphorylation and induction of apoptosis. Our analyses show that the synergistic proapoptotic effect of Dlk/Par-4 complexes is abrogated when either Dlk/Par-4 interaction or Dlk kinase activity is impaired. In vitro phosphorylation assays employing Dlk and Par-4 phosphorylation mutants carrying alanine substitutions for residues S154, T155, S220, or S249, respectively, identified T155 as the major Par-4 phosphorylation site of Dlk. Coexpression experiments in REF52.2 cells revealed that phosphorylation of Par-4 at T155 by Dlk was essential for apoptosis induction in vivo. In the presence of the Par-4 T155A mutant Dlk was partially recruited to actin filaments but resided mainly in the nucleus. Consequently, apoptosis was not induced in Dlk/Par-4 T155A-expressing cells. In vivo phosphorylation of Par-4 at T155 was demonstrated with a phospho-specific Par-4 antibody. Our results demonstrate that Dlk-mediated phosphorylation of Par-4 at T155 is a crucial event in Dlk/Par-4-induced apoptosis.
Collapse
Affiliation(s)
- Meike Boosen
- Institute of Genetics, University of Bonn, D-53117 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Bi J, Lau SH, Hu L, Rao HL, Liu HB, Zhan WH, Chen G, Wen JM, Wang Q, Li B, Guan XY. Downregulation of ZIP kinase is associated with tumor invasion, metastasis and poor prognosis in gastric cancer. Int J Cancer 2009; 124:1587-93. [PMID: 19117059 DOI: 10.1002/ijc.24164] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Deletion of 19p13 is one of the most frequent genetic changes in gastric carcinoma (GC), implying the existence of a tumor suppressor gene (TSG) that plays an important role in GC development. To identify the candidate TSG at 19p, array-comparative genomic hybridization (CGH) was applied to study DNA copy-number changes on chromosomes 3, 5p, 13, 16q and 19. The result showed that gains of 16q21, 19q13.1, 5p15.1 and 3q26.31, and losses of 3p21.32, 3p22.2, 19q13.33 and 19p13.3, were frequently detected by array-CGH. One candidate TSG, ZIP kinase (ZIPK), at 19p13.3 was further characterized by immunohistochemistry using a tissue microarray containing 172 primary GCs. Downregulation of ZIPK was detected in 111/162 informative GCs, which was significantly associated with invasion, metastasis and poorer prognosis of GC. To investigate the association of the downregulation of ZIPK with apoptosis, apoptosis assay (TUNEL) was used to compare the apoptotic index between GCs with normal expression and downregulation of ZIPK. TUNEL assay showed that the apoptotic index in GCs with normal ZIPK expression was significantly higher than that in GCs with downregulation of ZIPK (p < 0.001), indicating that ZIPK plays an important pro-apoptotic role in GC. Taken together, we demonstrated here that ZIPK is a tumor suppresser gene and plays an important role in GC development through its pro-apoptotic function. Downregulation of ZIPK can be used to evaluate tumor invasiveness, metastasis and to predict survival of GC.
Collapse
Affiliation(s)
- Jiong Bi
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vetterkind S, Morgan KG. The pro-apoptotic protein Par-4 facilitates vascular contractility by cytoskeletal targeting of ZIPK. J Cell Mol Med 2008; 13:887-95. [PMID: 18505470 PMCID: PMC2700217 DOI: 10.1111/j.1582-4934.2008.00374.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Par-4 (prostate apoptosis response 4) is a pro-apoptotic protein and tumour suppressor that was originally identified as a gene product up-regulated during apoptosis in prostate cancer cells. Here, we show, for the first time, that Par-4 is expressed and co-localizes with the actin filament bundles in vascular smooth muscle. Furthermore, we demonstrate that targeting of ZIPK to the actin filaments, as observed upon PGF-2α stimulation, is inhibited by the presence of a cell permeant Par-4 decoy peptide. The same decoy peptide also significantly inhibits PGF-2α induced contractions of smooth muscle tissue. Moreover, knockdown of Par-4 using antisense morpholino nucleotides results in significantly reduced contractility, and myosin light chain and myosin phosphatase target subunit phosphorylation. These results indicate that Par-4 facilitates contraction by targeting ZIPK to the vicinity of its substrates, myosin light chain and MYPT, which are located on the actin filaments. These results identify Par-4 as a novel regulator of myosin light chain phosphorylation in differentiated, contractile vascular smooth muscle.
Collapse
|
17
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2007. [DOI: 10.1089/zeb.2007.9977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|