1
|
Rafiei N, Ronceret A. The plant early recombinosome: a high security complex to break DNA during meiosis. PLANT REPRODUCTION 2024; 37:421-440. [PMID: 39331138 PMCID: PMC11511760 DOI: 10.1007/s00497-024-00509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
KEY MESSAGE The formacion of numerous unpredictable DNA Double Strand Breaks (DSBs) on chromosomes iniciates meiotic recombination. In this perspective, we propose a 'multi-key lock' model to secure the risky but necesary breaks as well as a 'one per pair of cromatids' model for the topoisomerase-like early recombinosome. During meiosis, homologous chromosomes recombine at few sites of crossing-overs (COs) to ensure correct segregation. The initiation of meiotic recombination involves the formation of DNA double strand breaks (DSBs) during prophase I. Too many DSBs are dangerous for genome integrity: if these DSBs are not properly repaired, it could potentially lead to chromosomal fragmentation. Too few DSBs are also problematic: if the obligate CO cannot form between bivalents, catastrophic unequal segregation of univalents lead to the formation of sterile aneuploid spores. Research on the regulation of the formation of these necessary but risky DSBs has recently advanced in yeast, mammals and plants. DNA DSBs are created by the enzymatic activity of the early recombinosome, a topoisomerase-like complex containing SPO11. This opinion paper reviews recent insights on the regulation of the SPO11 cofactors necessary for the introduction of temporally and spatially controlled DSBs. We propose that a 'multi-key-lock' model for each subunit of the early recombinosome complex is required to secure the formation of DSBs. We also discuss the hypothetical implications that the established topoisomerase-like nature of the SPO11 core-complex can have in creating DSB in only one of the two replicated chromatids of early prophase I meiotic chromosomes. This hypothetical 'one per pair of chromatids' DSB formation model could optimize the faithful repair of the self-inflicted DSBs. Each DSB could use three potential intact homologous DNA sequences as repair template: one from the sister chromatid and the two others from the homologous chromosomes.
Collapse
Affiliation(s)
- Nahid Rafiei
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Arnaud Ronceret
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México.
| |
Collapse
|
2
|
Arter M, Keeney S. Divergence and conservation of the meiotic recombination machinery. Nat Rev Genet 2024; 25:309-325. [PMID: 38036793 DOI: 10.1038/s41576-023-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
Sexually reproducing eukaryotes use recombination between homologous chromosomes to promote chromosome segregation during meiosis. Meiotic recombination is almost universally conserved in its broad strokes, but specific molecular details often differ considerably between taxa, and the proteins that constitute the recombination machinery show substantial sequence variability. The extent of this variation is becoming increasingly clear because of recent increases in genomic resources and advances in protein structure prediction. We discuss the tension between functional conservation and rapid evolutionary change with a focus on the proteins that are required for the formation and repair of meiotic DNA double-strand breaks. We highlight phylogenetic relationships on different time scales and propose that this remarkable evolutionary plasticity is a fundamental property of meiotic recombination that shapes our understanding of molecular mechanisms in reproductive biology.
Collapse
Affiliation(s)
- Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Zhong S, Zhao P, Peng X, Li HJ, Duan Q, Cheung AY. From gametes to zygote: Mechanistic advances and emerging possibilities in plant reproduction. PLANT PHYSIOLOGY 2024; 195:4-35. [PMID: 38431529 PMCID: PMC11060694 DOI: 10.1093/plphys/kiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Usai G, Fambrini M, Pugliesi C, Simoni S. Exploring the patterns of evolution: Core thoughts and focus on the saltational model. Biosystems 2024; 238:105181. [PMID: 38479653 DOI: 10.1016/j.biosystems.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
The Modern Synthesis, a pillar in biological thought, united Darwin's species origin concepts with Mendel's laws of character heredity, providing a comprehensive understanding of evolution within species. Highlighting phenotypic variation and natural selection, it elucidated the environment's role as a selective force, shaping populations over time. This framework integrated additional mechanisms, including genetic drift, random mutations, and gene flow, predicting their cumulative effects on microevolution and the emergence of new species. Beyond the Modern Synthesis, the Extended Evolutionary Synthesis expands perspectives by recognizing the role of developmental plasticity, non-genetic inheritance, and epigenetics. We suggest that these aspects coexist in the plant evolutionary process; in this context, we focus on the saltational model, emphasizing how saltation events, such as dichotomous saltation, chromosomal mutations, epigenetic phenomena, and polyploidy, contribute to rapid evolutionary changes. The saltational model proposes that certain evolutionary changes, such as the rise of new species, may result suddenly from single macromutations rather than from gradual changes in DNA sequences and allele frequencies within a species over time. These events, observed in domesticated and wild higher plants, provide well-defined mechanistic bases, revealing their profound impact on plant diversity and rapid evolutionary events. Notably, next-generation sequencing exposes the likely crucial role of allopolyploidy and autopolyploidy (saltational events) in generating new plant species, each characterized by distinct chromosomal complements. In conclusion, through this review, we offer a thorough exploration of the ongoing dissertation on the saltational model, elucidating its implications for our understanding of plant evolutionary processes and paving the way for continued research in this intriguing field.
Collapse
Affiliation(s)
- Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Samuel Simoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
5
|
Zou M, Shabala S, Zhao C, Zhou M. Molecular mechanisms and regulation of recombination frequency and distribution in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:86. [PMID: 38512498 PMCID: PMC10957645 DOI: 10.1007/s00122-024-04590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
KEY MESSAGE Recent developments in understanding the distribution and distinctive features of recombination hotspots are reviewed and approaches are proposed to increase recombination frequency in coldspot regions. Recombination events during meiosis provide the foundation and premise for creating new varieties of crops. The frequency of recombination in different genomic regions differs across eukaryote species, with recombination generally occurring more frequently at the ends of chromosomes. In most crop species, recombination is rare in centromeric regions. If a desired gene variant is linked in repulsion with an undesired variant of a second gene in a region with a low recombination rate, obtaining a recombinant plant combining two favorable alleles will be challenging. Traditional crop breeding involves combining desirable genes from parental plants into offspring. Therefore, understanding the mechanisms of recombination and factors affecting the occurrence of meiotic recombination is important for crop breeding. Here, we review chromosome recombination types, recombination mechanisms, genes and proteins involved in the meiotic recombination process, recombination hotspots and their regulation systems and discuss how to increase recombination frequency in recombination coldspot regions.
Collapse
Affiliation(s)
- Meilin Zou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia.
| |
Collapse
|
6
|
Zhou KD, Zhang CX, Niu FR, Bai HC, Wu DD, Deng JC, Qian HY, Jiang YL, Ma W. Exploring Plant Meiosis: Insights from the Kinetochore Perspective. Curr Issues Mol Biol 2023; 45:7974-7995. [PMID: 37886947 PMCID: PMC10605258 DOI: 10.3390/cimb45100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
The central player for chromosome segregation in both mitosis and meiosis is the macromolecular kinetochore structure, which is assembled by >100 structural and regulatory proteins on centromere DNA. Kinetochores play a crucial role in cell division by connecting chromosomal DNA and microtubule polymers. This connection helps in the proper segregation and alignment of chromosomes. Additionally, kinetochores can act as a signaling hub, regulating the start of anaphase through the spindle assembly checkpoint, and controlling the movement of chromosomes during anaphase. However, the role of various kinetochore proteins in plant meiosis has only been recently elucidated, and these proteins differ in their functionality from those found in animals. In this review, our current knowledge of the functioning of plant kinetochore proteins in meiosis will be summarized. In addition, the functional similarities and differences of core kinetochore proteins in meiosis between plants and other species are discussed, and the potential applications of manipulating certain kinetochore genes in meiosis for breeding purposes are explored.
Collapse
Affiliation(s)
- Kang-Di Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Cai-Xia Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
| | - Fu-Rong Niu
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China;
| | - Hao-Chen Bai
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Dan-Dan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
| | - Jia-Cheng Deng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Hong-Yuan Qian
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Yun-Lei Jiang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Wei Ma
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
| |
Collapse
|
7
|
Wang Y, Chen C, Copenhaver GP, Wang CJR. Editorial: Meiosis in plants: sexual reproduction, genetic variation and crop improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1294591. [PMID: 37841610 PMCID: PMC10569297 DOI: 10.3389/fpls.2023.1294591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023]
Affiliation(s)
- Yingxiang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Changbin Chen
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | | |
Collapse
|
8
|
Daccache D, De Jonge E, Liloku P, Mechleb K, Haddad M, Corthaut S, Sterckx YGJ, Volkov AN, Claeys Bouuaert C. Evolutionary conservation of the structure and function of meiotic Rec114-Mei4 and Mer2 complexes. Genes Dev 2023; 37:535-553. [PMID: 37442581 PMCID: PMC10393190 DOI: 10.1101/gad.350462.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Meiosis-specific Rec114-Mei4 and Mer2 complexes are thought to enable Spo11-mediated DNA double-strand break (DSB) formation through a mechanism that involves DNA-dependent condensation. However, the structure, molecular properties, and evolutionary conservation of Rec114-Mei4 and Mer2 are unclear. Here, we present AlphaFold models of Rec114-Mei4 and Mer2 complexes supported by nuclear magnetic resonance (NMR) spectroscopy, small-angle X-ray scattering (SAXS), and mutagenesis. We show that dimers composed of the Rec114 C terminus form α-helical chains that cup an N-terminal Mei4 α helix, and that Mer2 forms a parallel homotetrameric coiled coil. Both Rec114-Mei4 and Mer2 bind preferentially to branched DNA substrates, indicative of multivalent protein-DNA interactions. Indeed, the Rec114-Mei4 interaction domain contains two DNA-binding sites that point in opposite directions and drive condensation. The Mer2 coiled-coil domain bridges coaligned DNA duplexes, likely through extensive electrostatic interactions along the length of the coiled coil. Finally, we show that the structures of Rec114-Mei4 and Mer2 are conserved across eukaryotes, while DNA-binding properties vary significantly. This work provides insights into the mechanism whereby Rec114-Mei4 and Mer2 complexes promote the assembly of the meiotic DSB machinery and suggests a model in which Mer2 condensation is the essential driver of assembly, with the DNA-binding activity of Rec114-Mei4 playing a supportive role.
Collapse
Affiliation(s)
- Dima Daccache
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Emma De Jonge
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Pascaline Liloku
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Karen Mechleb
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Marita Haddad
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Sam Corthaut
- Laboratory of Medical Biochemistry (LMB), the Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB), the Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Alexander N Volkov
- Vlaams Instituut voor Biotechnologie (VIB)-Vrije Universiteit Brussel (VUB) Center for Structural Biology, VIB, 1050 Brussels, Belgium;
- Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Corentin Claeys Bouuaert
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium;
| |
Collapse
|
9
|
Rafiei N, Ronceret A. Crossover interference mechanism: New lessons from plants. Front Cell Dev Biol 2023; 11:1156766. [PMID: 37274744 PMCID: PMC10236007 DOI: 10.3389/fcell.2023.1156766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Plants are the source of our understanding of several fundamental biological principles. It is well known that Gregor Mendel discovered the laws of Genetics in peas and that maize was used for the discovery of transposons by Barbara McClintock. Plant models are still useful for the understanding of general key biological concepts. In this article, we will focus on discussing the recent plant studies that have shed new light on the mysterious mechanisms of meiotic crossover (CO) interference, heterochiasmy, obligatory CO, and CO homeostasis. Obligatory CO is necessary for the equilibrated segregation of homologous chromosomes during meiosis. The tight control of the different male and female CO rates (heterochiasmy) enables both the maximization and minimization of genome shuffling. An integrative model can now predict these observed aspects of CO patterning in plants. The mechanism proposed considers the Synaptonemal Complex as a canalizing structure that allows the diffusion of a class I CO limiting factor linearly on synapsed bivalents. The coarsening of this limiting factor along the SC explains the interfering spacing between COs. The model explains the observed coordinated processes between synapsis, CO interference, CO insurance, and CO homeostasis. It also easily explains heterochiasmy just considering the different male and female SC lengths. This mechanism is expected to be conserved in other species.
Collapse
|
10
|
Mahlandt A, Singh DK, Mercier R. Engineering apomixis in crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:131. [PMID: 37199785 DOI: 10.1007/s00122-023-04357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023]
Abstract
Apomixis is an asexual mode of reproduction through seeds where progeny are clones of the mother plants. Naturally apomictic modes of reproduction are found in hundreds of plant genera distributed across more than 30 plant families, but are absent in major crop plants. Apomixis has the potential to be a breakthrough technology by allowing the propagation through seed of any genotype, including F1 hybrids. Here, we have summarized the recent progress toward synthetic apomixis, where combining targeted modifications of both the meiosis and fertilization processes leads to the production of clonal seeds at high frequencies. Despite some remaining challenges, the technology has approached a level of maturity that allows its consideration for application in the field.
Collapse
Affiliation(s)
- Alexander Mahlandt
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Dipesh Kumar Singh
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany.
| |
Collapse
|
11
|
Strelnikova SR, Komakhin RA. Control of meiotic crossing over in plant breeding. Vavilovskii Zhurnal Genet Selektsii 2023; 27:99-110. [PMID: 37063511 PMCID: PMC10090103 DOI: 10.18699/vjgb-23-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 04/18/2023] Open
Abstract
Meiotic crossing over is the main mechanism for constructing a new allelic composition of individual chromosomes and is necessary for the proper distribution of homologous chromosomes between gametes. The parameters of meiotic crossing over that have developed in the course of evolution are determined by natural selection and do not fully suit the tasks of selective breeding research. This review summarizes the results of experimental studies aimed at increasing the frequency of crossovers and redistributing their positions along chromosomes using genetic manipulations at different stages of meiotic recombination. The consequences of inactivation and/or overexpression of the SPO11 genes, the products of which generate meiotic double-strand breaks in DNA, for the redistribution of crossover positions in the genome of various organisms are discussed. The results of studies concerning the effect of inactivation or overexpression of genes encoding RecA-like recombinases on meiotic crossing over, including those in cultivated tomato (Solanum lycopersicum L.) and its interspecific hybrids, are summarized. The consequences of inactivation of key genes of the mismatch repair system are discussed. Their suppression made it possible to significantly increase the frequency of meiotic recombination between homeologues in the interspecific hybrid yeast Saccharomyces cerevisiae × S. paradoxus and between homologues in arabidopsis plants (Arabidopsis thaliana L.). Also discussed are attempts to extrapolate these results to other plant species, in which a decrease in reproductive properties and microsatellite instability in the genome have been noted. The most significant results on the meiotic recombination frequency increase upon inactivation of the FANCM, TOP3α, RECQ4, FIGL1 crossover repressor genes and upon overexpression of the HEI10 crossover enhancer gene are separately described. In some experiments, the increase of meiotic recombination frequency by almost an order of magnitude and partial redistribution of the crossover positions along chromosomes were achieved in arabidopsis while fully preserving fecundity. Similar results have been obtained for some crops.
Collapse
Affiliation(s)
- S R Strelnikova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - R A Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
12
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
13
|
Steckenborn S, Cuacos M, Ayoub MA, Feng C, Schubert V, Hoffie I, Hensel G, Kumlehn J, Heckmann S. The meiotic topoisomerase VI B subunit (MTOPVIB) is essential for meiotic DNA double-strand break formation in barley (Hordeum vulgare L.). PLANT REPRODUCTION 2023; 36:1-15. [PMID: 35767067 PMCID: PMC9957907 DOI: 10.1007/s00497-022-00444-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/31/2022] [Indexed: 06/01/2023]
Abstract
In barley (Hordeum vulgare), MTOPVIB is critical for meiotic DSB and accompanied SC and CO formation while dispensable for meiotic bipolar spindle formation. Homologous recombination during meiosis assures genetic variation in offspring. Programmed meiotic DNA double-strand breaks (DSBs) are repaired as crossover (CO) or non-crossover (NCO) during meiotic recombination. The meiotic topoisomerase VI (TopoVI) B subunit (MTOPVIB) plays an essential role in meiotic DSB formation critical for CO-recombination. More recently MTOPVIB has been also shown to play a role in meiotic bipolar spindle formation in rice and maize. Here, we describe a meiotic DSB-defective mutant in barley (Hordeum vulgare L.). CRISPR-associated 9 (Cas9) endonuclease-generated mtopVIB plants show complete sterility due to the absence of meiotic DSB, synaptonemal complex (SC), and CO formation leading to the occurrence of univalents and their unbalanced segregation into aneuploid gametes. In HvmtopVIB plants, we also frequently found the bi-orientation of sister kinetochores in univalents during metaphase I and the precocious separation of sister chromatids during anaphase I. Moreover, the near absence of polyads after meiosis II, suggests that despite being critical for meiotic DSB formation in barley, MTOPVIB seems not to be strictly required for meiotic bipolar spindle formation.
Collapse
Affiliation(s)
- Stefan Steckenborn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Maria Cuacos
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Mohammad A Ayoub
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Chao Feng
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Iris Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany.
| |
Collapse
|
14
|
Thangavel G, Hofstatter PG, Mercier R, Marques A. Tracing the evolution of the plant meiotic molecular machinery. PLANT REPRODUCTION 2023; 36:73-95. [PMID: 36646915 PMCID: PMC9957857 DOI: 10.1007/s00497-022-00456-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Meiosis is a highly conserved specialised cell division in sexual life cycles of eukaryotes, forming the base of gene reshuffling, biological diversity and evolution. Understanding meiotic machinery across different plant lineages is inevitable to understand the lineage-specific evolution of meiosis. Functional and cytogenetic studies of meiotic proteins from all plant lineage representatives are nearly impossible. So, we took advantage of the genomics revolution to search for core meiotic proteins in accumulating plant genomes by the highly sensitive homology search approaches, PSI-BLAST, HMMER and CLANS. We could find that most of the meiotic proteins are conserved in most of the lineages. Exceptionally, Arabidopsis thaliana ASY4, PHS1, PRD2, PRD3 orthologs were mostly not detected in some distant algal lineages suggesting their minimal conservation. Remarkably, an ancestral duplication of SPO11 to all eukaryotes could be confirmed. Loss of SPO11-1 in Chlorophyta and Charophyta is likely to have occurred, suggesting that SPO11-1 and SPO11-2 heterodimerisation may be a unique feature in land plants of Viridiplantae. The possible origin of the meiotic proteins described only in plants till now, DFO and HEIP1, could be traced and seems to occur in the ancestor of vascular plants and Streptophyta, respectively. Our comprehensive approach is an attempt to provide insights about meiotic core proteins and thus the conservation of meiotic pathways across plant kingdom. We hope that this will serve the meiotic community a basis for further characterisation of interesting candidates in future.
Collapse
Affiliation(s)
- Gokilavani Thangavel
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| | | | - Raphaël Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
15
|
Synthetic apomixis: the beginning of a new era. Curr Opin Biotechnol 2023; 79:102877. [PMID: 36628906 DOI: 10.1016/j.copbio.2022.102877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023]
Abstract
Apomixis is a process of asexual reproduction that enables plants to bypass meiosis and fertilization to generate clonal seeds that are identical to the maternal genotype. Apomixis has tremendous potential for breeding plants with desired characteristics, given its ability to fix any elite genotype. However, little is known about the origin and dynamics of natural apomictic plant systems. The introgression of apomixis-related genes from natural apomicts has achieved limited success. Therefore, synthetic apomixis, engineered to include apomeiosis, autonomous embryo formation, and autonomous endosperm development, has been proposed as a promising platform to effectuate apomixis in any crop. In this study, we have summarized recent advances in the understanding of synthetic apomixis and discussed the limitations of current synthetic apomixis systems and ways to overcome them.
Collapse
|
16
|
Wang C, Qu S, Zhang J, Fu M, Chen X, Liang W. OsPRD2 is essential for double-strand break formation, but not spindle assembly during rice meiosis. FRONTIERS IN PLANT SCIENCE 2023; 13:1122202. [PMID: 36714725 PMCID: PMC9880466 DOI: 10.3389/fpls.2022.1122202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 06/06/2023]
Abstract
Meiotic recombination starts with the programmed formation of double-strand breaks (DSB) in DNA, which are catalyzed by SPO11, a type II topoisomerase that is evolutionarily conserved, and several other accessary proteins. Homologs of MEIOSIS INHIBITOR 4 (MEI4/REC24/PRD2) are proteins that are also essential for the generation of meiotic DSBs in budding yeast, mice and Arabidopsis thaliana. In Arabidopsis, the protein ARABIDOPSIS THALIANA PUTATIVE RECOMBINATION INITIATION DEFECTS 2/MULTIPOLAR SPINDLE 1 (AtPRD2/MPS1) has been shown to have additional roles in spindle assembly, indicating a functional diversification. Here we characterize the role of the rice MEI4/PRD2 homolog in meiosis. The osprd2 mutant was completely male and female sterile. In male meiocytes of osprd2, no γH2AX foci were detected and twenty-four univalents were produced at diakinesis, suggesting that OsPRD2 is essential for DSB generation. OsPRD2 showed a dynamic localization during meiosis. For instance, OsPRD2 foci first appeared as discrete signals across chromosome at leptotene, and then became confined to the centromeres during zygotene, suggesting that they might be involved in assembly of the spindle. However we did not observe any obvious aberrant morphologies in neither the organization of the bipolar spindle nor in the orientation of the kinetochore in the mutant. These findings suggest that in rice PRD2 might not be required for spindle assembly and organization, as it does in Arabidopsis. Taken together our results indicate that plant MEI4/PRD2 homologs do play a conserved role in the formation of meiotic DSBs in DNA, but that their involvement in bipolar spindle assembly is rather species-specific.
Collapse
Affiliation(s)
- Chong Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Development Center of Plant Germplasm Resources, Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shuying Qu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Jin C, Dong L, Wei C, Wani MA, Yang C, Li S, Li F. Creating novel ornamentals via new strategies in the era of genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1142866. [PMID: 37123857 PMCID: PMC10140431 DOI: 10.3389/fpls.2023.1142866] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Ornamental breeding has traditionally focused on improving novelty, yield, quality, and resistance to biotic or abiotic stress. However, achieving these goals has often required laborious crossbreeding, while precise breeding techniques have been underutilized. Fortunately, recent advancements in plant genome sequencing and editing technology have opened up exciting new frontiers for revolutionizing ornamental breeding. In this review, we provide an overview of the current state of ornamental transgenic breeding and propose four promising breeding strategies that have already proven successful in crop breeding and could be adapted for ornamental breeding with the help of genome editing. These strategies include recombination manipulation, haploid inducer creation, clonal seed production, and reverse breeding. We also discuss in detail the research progress, application status, and feasibility of each of these tactics.
Collapse
Affiliation(s)
- Chunlian Jin
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Liqing Dong
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Chang Wei
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Muneeb Ahmad Wani
- Department of Floriculture and Landscape Architecture, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Chunmei Yang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Shenchong Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| | - Fan Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| |
Collapse
|
18
|
Wang Y, Li SY, Wang YZ, He Y. ZmASY1 interacts with ZmPRD3 and is crucial for meiotic double-strand break formation in maize. THE NEW PHYTOLOGIST 2023; 237:454-470. [PMID: 36221195 DOI: 10.1111/nph.18528] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
During meiosis, recombination-mediated pairing and synapsis of homologous chromosomes begin with programmed DNA double-strand breaks (DSBs). In yeast and mice, DSBs form in a tethered loop-axis complex, in which DSB sites are located within chromatin loops and tethered to the proteinaceous axial element (AE) by DSB-forming factors. In plants, the molecular connection between DSB sites and chromosome axes is poorly understood. By integrating genetic analysis, immunostaining technology, and protein-protein interaction studies, the putative factors linking DSB formation to chromosome axis were explored in maize meiosis. Here, we report that the AE protein ZmASY1 directly interacts with the DSB-forming protein ZmPRD3 in maize (Zea mays) and mediates DSB formation, synaptonemal complex assembly, and homologous recombination. ZmPRD3 also interacts with ZmPRD1, which plays a central role in organizing the DSB-forming complex. These results suggest that ZmASY1 and ZmPRD3 may work as a key module linking DSB sites to chromosome axes during DSB formation in maize. This mechanism is similar to that described in yeast and recently Arabidopsis involving the homologs Mer2/ZmPRD3 and HOP1/ZmASY1, thus indicating that the process of tethering DSBs in chromatin loops to the chromosome axes may be evolutionarily conserved in diverse taxa.
Collapse
Affiliation(s)
- Yan Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Shu-Yue Li
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Ya-Zhong Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
19
|
Tao CN, Buswell W, Zhang P, Walker H, Johnson I, Field K, Schwarzenbacher R, Ton J. A single amino acid transporter controls the uptake of priming-inducing beta-amino acids and the associated tradeoff between induced resistance and plant growth. THE PLANT CELL 2022; 34:4840-4856. [PMID: 36040205 PMCID: PMC9709968 DOI: 10.1093/plcell/koac271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Selected β-amino acids, such as β-aminobutyric acid (BABA) and R-β-homoserine (RBH), can prime plants for resistance against a broad spectrum of diseases. Here, we describe a genome-wide screen of fully annotated Arabidopsis thaliana T-DNA insertion lines for impaired in RBH-induced immunity (iri) mutants against the downy mildew pathogen Hyaloperonospora arabidopsidis, yielding 104 lines that were partially affected and four lines that were completely impaired in RBH-induced resistance (IR). We confirmed the iri1-1 mutant phenotype with an independent T-DNA insertion line in the same gene, encoding the high-affinity amino acid transporter LYSINE HISTIDINE TRANSPORTER 1 (LHT1). Uptake experiments with yeast cells expressing LHT1 and mass spectrometry-based quantification of RBH and BABA in leaves of lht1 mutant and LHT1 overexpression lines revealed that LHT1 acts as the main transporter for cellular uptake and systemic distribution of RBH and BABA. Subsequent characterization of lht1 mutant and LHT1 overexpression lines for IR and growth responses revealed that the levels of LHT1-mediated uptake determine the tradeoff between IR and plant growth by RBH and BABA.
Collapse
Affiliation(s)
- Chia-Nan Tao
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Will Buswell
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Peijun Zhang
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Heather Walker
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
- Department of Animal and Plant Sciences, biOMICS Facility, University of Sheffield, Sheffield, S10 2TN, UK
| | - Irene Johnson
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Katie Field
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Roland Schwarzenbacher
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Jurriaan Ton
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
20
|
Genome-wide quantification of contributions to sexual fitness identifies genes required for spore viability and health in fission yeast. PLoS Genet 2022; 18:e1010462. [DOI: 10.1371/journal.pgen.1010462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Numerous genes required for sexual reproduction remain to be identified even in simple model species like Schizosaccharomyces pombe. To address this, we developed an assay in S. pombe that couples transposon mutagenesis with high-throughput sequencing (TN-seq) to quantitatively measure the fitness contribution of nonessential genes across the genome to sexual reproduction. This approach identified 532 genes that contribute to sex, including more than 200 that were not previously annotated to be involved in the process, of which more than 150 have orthologs in vertebrates. Among our verified hits was an uncharacterized gene, ifs1 (important for sex), that is required for spore viability. In two other hits, plb1 and alg9, we observed a novel mutant phenotype of poor spore health wherein viable spores are produced, but the spores exhibit low fitness and are rapidly outcompeted by wild type. Finally, we fortuitously discovered that a gene previously thought to be essential, sdg1 (social distancing gene), is instead required for growth at low cell densities and can be rescued by conditioned medium. Our assay will be valuable in further studies of sexual reproduction in S. pombe and identifies multiple candidate genes that could contribute to sexual reproduction in other eukaryotes, including humans.
Collapse
|
21
|
Jiang J, Xu P, Zhang J, Li Y, Zhou X, Jiang M, Zhu J, Wang W, Yang L. Global transcriptome analysis reveals potential genes associated with genic male sterility of rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1004781. [PMID: 36340380 PMCID: PMC9635397 DOI: 10.3389/fpls.2022.1004781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Rapeseed is the third leading source of edible oil in the world. Genic male sterility (GMS) lines provide crucial material for harnessing heterosis for rapeseed. GMS lines have been widely used successfully for rapeseed hybrid production. The physiological and molecular mechanism of pollen development in GMS lines of rapeseed (Brassica napus L.) need to be determined for the creation of hybrids and cultivation of new varieties. However, limited studies have focused on systematically mining genes that regulate the pollen development of GMS lines in B. napus. In the present study, to determine the stage at which pollen development begins to show abnormality in the GMS lines, we performed semi-thin section analysis of the anthers with five pollen development stages. The results indicated that the abnormal pollen development in DGMS lines might start at the meiotic stage, and abnormal pollen development in RGMS lines probably occurred before the tetrad stage. To investigate the critical genes and pathways involved in pollen development in GMS lines, we constructed and sequenced 24 transcriptome libraries for the flower buds from the fertile and sterile lines of two recessive GMS (RGMS) lines (6251AB and 6284AB) and two dominant GMS (DGMS) lines (4001AB and 4006AB). A total of 23,554 redundant DEGs with over two-fold change between sterile and fertile lines were obtained. A total of 346 DEGs were specifically related to DGMS, while 1,553 DEGs were specifically related to RGMS. A total of 1,545 DEGs were shared between DGMS and RGMS. And 253 transcription factors were found to be differentially expressed between the sterile and fertile lines of GMS. In addition, 6,099 DEGs possibly related to anther, pollen, and microspore development processes were identified. Many of these genes have been reported to be involved in anther and microspore developmental processes. Several DEGs were speculated to be key genes involved in the regulation of fertility. Three differentially expressed genes were randomly selected and their expression levels were verified by quantitative PCR (qRT-PCR). The results of qRT-PCR largely agreed with the transcriptome sequencing results. Our findings provide a global view of genes that are potentially involved in GMS occurrence. The expression profiles and function analysis of these DEGs were provided to expand our understanding of the complex molecular mechanism in pollen and sterility development in B. napus.
Collapse
Affiliation(s)
- Jianxia Jiang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Pengfei Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Junying Zhang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yanli Li
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xirong Zhou
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Meiyan Jiang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jifeng Zhu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Weirong Wang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liyong Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
22
|
Tidy AC, Ferjentsikova I, Vizcay-Barrena G, Liu B, Yin W, Higgins JD, Xu J, Zhang D, Geelen D, Wilson ZA. Sporophytic control of pollen meiotic progression is mediated by tapetum expression of ABORTED MICROSPORES. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5543-5558. [PMID: 35617147 PMCID: PMC9467646 DOI: 10.1093/jxb/erac225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Pollen development is dependent on the tapetum, a sporophytic anther cell layer surrounding the microspores that functions in pollen wall formation but is also essential for meiosis-associated development. There is clear evidence of crosstalk and co-regulation between the tapetum and microspores, but how this is achieved is currently not characterized. ABORTED MICROSPORES (AMS), a tapetum transcription factor, is important for pollen wall formation, but also has an undefined role in early pollen development. We conducted a detailed investigation of chromosome behaviour, cytokinesis, radial microtubule array (RMA) organization, and callose formation in the ams mutant. Early meiosis initiates normally in ams, shows delayed progression after the pachytene stage, and then fails during late meiosis, with disorganized RMA, defective cytokinesis, abnormal callose formation, and microspore degeneration, alongside abnormal tapetum development. Here, we show that selected meiosis-associated genes are directly repressed by AMS, and that AMS is essential for late meiosis progression. Our findings indicate that AMS has a dual function in tapetum-meiocyte crosstalk by playing an important regulatory role during late meiosis, in addition to its previously characterized role in pollen wall formation. AMS is critical for RMA organization, callose deposition, and therefore cytokinesis, and is involved in the crosstalk between the gametophyte and sporophytic tissues, which enables synchronous development of tapetum and microspores.
Collapse
Affiliation(s)
| | | | - Gema Vizcay-Barrena
- Division of Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wenzhe Yin
- Division of Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Jie Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, Australia
| | - Danny Geelen
- Department of Plant Production, Ghent University, geb. A, Gent, Belgium
| | | |
Collapse
|
23
|
DMC1 attenuates RAD51-mediated recombination in Arabidopsis. PLoS Genet 2022; 18:e1010322. [PMID: 36007010 PMCID: PMC9451096 DOI: 10.1371/journal.pgen.1010322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/07/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Ensuring balanced distribution of chromosomes in gametes, meiotic recombination is essential for fertility in most sexually reproducing organisms. The repair of the programmed DNA double strand breaks that initiate meiotic recombination requires two DNA strand-exchange proteins, RAD51 and DMC1, to search for and invade an intact DNA molecule on the homologous chromosome. DMC1 is meiosis-specific, while RAD51 is essential for both mitotic and meiotic homologous recombination. DMC1 is the main catalytically active strand-exchange protein during meiosis, while this activity of RAD51 is downregulated. RAD51 is however an essential cofactor in meiosis, supporting the function of DMC1. This work presents a study of the mechanism(s) involved in this and our results point to DMC1 being, at least, a major actor in the meiotic suppression of the RAD51 strand-exchange activity in plants. Ectopic expression of DMC1 in somatic cells renders plants hypersensitive to DNA damage and specifically impairs RAD51-dependent homologous recombination. DNA damage-induced RAD51 focus formation in somatic cells is not however suppressed by ectopic expression of DMC1. Interestingly, DMC1 also forms damage-induced foci in these cells and we further show that the ability of DMC1 to prevent RAD51-mediated recombination is associated with local assembly of DMC1 at DNA breaks. In support of our hypothesis, expression of a dominant negative DMC1 protein in meiosis impairs RAD51-mediated DSB repair. We propose that DMC1 acts to prevent RAD51-mediated recombination in Arabidopsis and that this down-regulation requires local assembly of DMC1 nucleofilaments. Essential for fertility and responsible for a major part of genetic variation in sexually reproducing species, meiotic recombination establishes the physical linkages between homologous chromosomes which ensure their balanced segregation in the production of gametes. These linkages, or chiasmata, result from DNA strand exchange catalyzed by the RAD51 and DMC1 recombinases and their numbers and distribution are tightly regulated. Essential for maintaining chromosomal integrity in mitotic cells, the strand-exchange activity of RAD51 is downregulated in meiosis, where it plays a supporting role to the activity of DMC1. Notwithstanding considerable attention from the genetics community, precisely why this is done and the mechanisms involved are far from being fully understood. We show here in the plant Arabidopsis that DMC1 can downregulate RAD51 strand-exchange activity and propose that this may be a general mechanism for suppression of RAD51-mediated recombination in meiosis.
Collapse
|
24
|
Unravelling mechanisms that govern meiotic crossover formation in wheat. Biochem Soc Trans 2022; 50:1179-1186. [PMID: 35901450 PMCID: PMC9444065 DOI: 10.1042/bst20220405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Wheat is a major cereal crop that possesses a large allopolyploid genome formed through hybridisation of tetraploid and diploid progenitors. During meiosis, crossovers (COs) are constrained in number to 1–3 per chromosome pair that are predominantly located towards the chromosome ends. This reduces the probability of advantageous traits recombining onto the same chromosome, thus limiting breeding. Therefore, understanding the underlying factors controlling meiotic recombination may provide strategies to unlock the genetic potential in wheat. In this mini-review, we will discuss the factors associated with restricted CO formation in wheat, such as timing of meiotic events, chromatin organisation, pre-meiotic DNA replication and dosage of CO genes, as a means to modulate recombination.
Collapse
|
25
|
Differentiated function and localisation of SPO11-1 and PRD3 on the chromosome axis during meiotic DSB formation in Arabidopsis thaliana. PLoS Genet 2022; 18:e1010298. [PMID: 35857772 PMCID: PMC9342770 DOI: 10.1371/journal.pgen.1010298] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 08/01/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022] Open
Abstract
During meiosis, DNA double-strand breaks (DSBs) occur throughout the genome, a subset of which are repaired to form reciprocal crossovers between chromosomes. Crossovers are essential to ensure balanced chromosome segregation and to create new combinations of genetic variation. Meiotic DSBs are formed by a topoisomerase-VI-like complex, containing catalytic (e.g. SPO11) proteins and auxiliary (e.g. PRD3) proteins. Meiotic DSBs are formed in chromatin loops tethered to a linear chromosome axis, but the interrelationship between DSB-promoting factors and the axis is not fully understood. Here, we study the localisation of SPO11-1 and PRD3 during meiosis, and investigate their respective functions in relation to the chromosome axis. Using immunocytogenetics, we observed that the localisation of SPO11-1 overlaps relatively weakly with the chromosome axis and RAD51, a marker of meiotic DSBs, and that SPO11-1 recruitment to chromatin is genetically independent of the axis. In contrast, PRD3 localisation correlates more strongly with RAD51 and the chromosome axis. This indicates that PRD3 likely forms a functional link between SPO11-1 and the chromosome axis to promote meiotic DSB formation. We also uncovered a new function of SPO11-1 in the nucleation of the synaptonemal complex protein ZYP1. We demonstrate that chromosome co-alignment associated with ZYP1 deposition can occur in the absence of DSBs, and is dependent on SPO11-1, but not PRD3. Lastly, we show that the progression of meiosis is influenced by the presence of aberrant chromosomal connections, but not by the absence of DSBs or synapsis. Altogether, our study provides mechanistic insights into the control of meiotic DSB formation and reveals diverse functional interactions between SPO11-1, PRD3 and the chromosome axis. Most eukaryotes rely on the formation of gametes with half the number of chromosomes for sexual reproduction. Meiosis is a specialised type of cell division essential for the transition between a diploid and a haploid stage during gametogenesis. In early meiosis, programmed-DNA double strand breaks (DSBs) occur across the genome. These DSBs are processed by a set of proteins and the broken ends are repaired using the genetic information from the homologous chromosomes. These reciprocal exchanges of information between two chromosomes are called crossovers. Crossovers physical link chromosomes in pairs which is essential to ensure their correct segregation during the two rounds of meiotic division. Crossovers are also essential for the creation of genetic diversity as they break genetic linkages to form novel allelic blocks. The formation of DSBs is not completely understood in plants. Here we studied the function of SPO11-1 and PRD3, two proteins involved in the formation of DSBs in Arabidopsis. We discovered functional differences in their respective mode of recruitment to the chromosomes, their interactions with proteins forming the chromosome core and their roles in chromosome co-alignment. These indicate that, although SPO11-1 and PRD3 share a role in the formation of DSBs, the two proteins have additional and distinct roles beside DSB formation.
Collapse
|
26
|
Transcriptome Profiling Identifies Candidate Genes Contributing to Male and Female Gamete Development in Synthetic Brassica Allohexaploids. PLANTS 2022; 11:plants11121556. [PMID: 35736707 PMCID: PMC9228180 DOI: 10.3390/plants11121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Polyploidy plays a crucial role in plant evolution and speciation. The development of male and female gametes is essential to the reproductive capacity of polyploids, but their gene expression pattern has not been fully explored in newly established polyploids. The present study aimed to reveal a detailed atlas of gene expression for gamete development in newly synthetic Brassica allohexaploids that are not naturally existing species. Comparative transcriptome profiling between developing anthers (staged from meiosis to mature pollen) and ovules (staged from meiosis to mature embryo sac) was performed using RNA-Seq analysis. A total of 8676, 9775 and 4553 upregulated differentially expressed genes (DEGs) were identified for the development of both gametes, for male-only, and for female-only gamete development, respectively, in the synthetic Brassica allohexaploids. By combining gene ontology (GO) biological process analysis and data from the published literature, we identified 37 candidate genes for DNA double-strand break formation, synapsis and the crossover of homologous recombination during male and female meiosis and 51 candidate genes for tapetum development, sporopollenin biosynthesis and pollen wall development in male gamete development. Furthermore, 23 candidate genes for mitotic progression, nuclear positioning and cell specification and development were enriched in female gamete development. This study lays a good foundation for revealing the molecular regulation of genes related to male and female gamete development in Brassica allohexaploids and provides more resourceful genetic information on the reproductive biology of Brassica polyploid breeding.
Collapse
|
27
|
Wang Y, Wang Y, Zang J, Chen H, He Y. ZmPRD1 is essential for double-strand break formation, but is not required for bipolar spindle assembly during maize meiosis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3386-3400. [PMID: 35201286 DOI: 10.1093/jxb/erac075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Homologs of PUTATIVE RECOMBINATION INITIATION DEFECT 1 (PRD1) are known to be essential for meiotic double-strand break (DSB) formation in mouse (Mus musculus), Arabidopsis, and rice (Oryza sativa). Recent research has shown that rice PRD1 also plays an unanticipated role in meiotic bipolar spindle assembly, revealing that PRD1 has multiple functions in plant meiosis. In this study, we characterize the meiotic function of PRD1 in maize (Zea mays; ZmPRD1). Our results show that Zmprd1 mutant plants display normal vegetative growth but have complete male and female sterility. Meiotic DSB formation is fully abolished in mutant meiocytes, leading to failure in homologous pairing, synapsis, and recombination. ZmPRD1 exhibits a different pattern of chromosome localization compared to its rice homologs. The ZmPRD1 protein interacts with several DSB-forming proteins, but does not directly interact with the kinetochore proteins REC8 and SGO1. Possibly as a result of this, there are no significant abnormalities of bipolar spindle assembly in Zmprd1 meiocytes. Overall, our results demonstrate that ZmPRD1 is essential for DSB formation and homologous recombination in maize meiosis. However, the recently-identified function of PRD1 in bipolar spindle assembly during rice meiosis is not conserved in maize.
Collapse
Affiliation(s)
- Yazhong Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Yan Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Kim H, Choi K. Fast and Precise: How to Measure Meiotic Crossovers in Arabidopsis. Mol Cells 2022; 45:273-283. [PMID: 35444069 PMCID: PMC9095510 DOI: 10.14348/molcells.2022.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 11/27/2022] Open
Abstract
During meiosis, homologous chromosomes (homologs) pair and undergo genetic recombination via assembly and disassembly of the synaptonemal complex. Meiotic recombination is initiated by excess formation of DNA double-strand breaks (DSBs), among which a subset are repaired by reciprocal genetic exchange, called crossovers (COs). COs generate genetic variations across generations, profoundly affecting genetic diversity and breeding. At least one CO between homologs is essential for the first meiotic chromosome segregation, but generally only one and fewer than three inter-homolog COs occur in plants. CO frequency and distribution are biased along chromosomes, suppressed in centromeres, and controlled by pro-CO, anti-CO, and epigenetic factors. Accurate and high-throughput detection of COs is important for our understanding of CO formation and chromosome behavior. Here, we review advanced approaches that enable precise measurement of the location, frequency, and genomic landscapes of COs in plants, with a focus on Arabidopsis thaliana.
Collapse
Affiliation(s)
- Heejin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
29
|
Xia Q, Dang J, Wang P, Liang S, Wei X, Li X, Xiang S, Sun H, Wu D, Jing D, Wang S, Xia Y, He Q, Guo Q, Liang G. Low Female Gametophyte Fertility Contributes to the Low Seed Formation of the Diploid Loquat [ Eriobotrya Japonica (Thunb.) Lindl.] Line H30-6. FRONTIERS IN PLANT SCIENCE 2022; 13:882965. [PMID: 35677248 PMCID: PMC9168767 DOI: 10.3389/fpls.2022.882965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Loquat is a widely grown subtropic fruit because of its unique ripening season, nutrient content, and smooth texture of its fruits. However, loquat is not well-received because the fruits contain many large seeds. Therefore, the development of seedless or few-seed loquat varieties is the main objective of loquat breeding. Polyploidization is an effective approach for few-seed loquat breeding, but the resource is rare. The few-seed loquat line H30-6 was derived from a seedy variety. Additionally, H30-6 was systematically studied for its fruit characteristics, gamete fertility, pollen mother cell (PMC) meiosis, stigma receptivity, in situ pollen germination, fruit set, and karyotype. The results were as follows. (1) H30-6 produced only 1.54 seeds per fruit and the fruit edible rate was 70.77%. The fruit setting rate was 14.44% under open pollination, and the other qualities were equivalent to those of two other seedy varieties. (2) The in vitro pollen germination rate was only 4.04 and 77.46% of the H30-6 embryo sacs were abnormal. Stigma receptivity and self-compatibility in H30-6 were verified by in situ pollen germination and artificial pollination. Furthermore, the seed numbers in the fruits of H30-6 did not significantly differ among any of the pollination treatments (from 1.59 ±0.14 to 2 ± 0.17). (3) The chromosome configuration at meiotic diakinesis of H30-6 was 6.87I + 9.99II + 1.07III +0.69IV +0.24V (H30-6), and a total of 89.55% of H30-6 PMCs presented univalent chromosomes. Furthermore, chromosome lagging was the main abnormal phenomenon. Karyotype analysis showed that chromosomes of H30-6 had no recognizable karyotype abnormalities leading to unusual synapsis on the large scale above. (4) The abnormal embryo sacs of H30-6 could be divided into three main types: those remaining in the tetrad stage (13.38%), those remaining in the binucleate embryo sac stage (1.41%), and those without embryo sacs (52.82%). Therefore, we conclude that the loquat line H30-6 is a potential few-seed loquat resource. The diploid loquat line H30-6 was with low gametophyte fertility, which may be driven by abnormal meiotic synapses. The low female gamete fertility was the main reason for the few seeds. This diploid loquat line provides a new possibility for breeding a few-seed loquat at the diploid level.
Collapse
Affiliation(s)
- Qingqing Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiangbo Dang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Peng Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Senlin Liang
- Economic Crops of Ziyang City, Ziyang City, China
| | - Xu Wei
- America Citrus Research and Education Center, University of Florida, Gainesville, FL, United States
| | - Xiaolin Li
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Suqiong Xiang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Haiyan Sun
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Danlong Jing
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shumin Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qiao He
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
30
|
Underwood CJ, Mercier R. Engineering Apomixis: Clonal Seeds Approaching the Fields. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:201-225. [PMID: 35138881 DOI: 10.1146/annurev-arplant-102720-013958] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Apomixis is a form of reproduction leading to clonal seeds and offspring that are genetically identical to the maternal plant. While apomixis naturally occurs in hundreds of plant species distributed across diverse plant families, it is absent in major crop species. Apomixis has a revolutionary potential in plant breeding, as it could allow the instant fixation and propagation though seeds of any plant genotype, most notably F1 hybrids. Mastering and implementing apomixis would reduce the cost of hybrid seed production, facilitate new types of hybrid breeding, and make it possible to harness hybrid vigor in crops that are not presently cultivated as hybrids. Synthetic apomixis can be engineered by combining modifications of meiosis and fertilization. Here, we review the current knowledge and recent major achievements toward the development of efficient apomictic systems usable in agriculture.
Collapse
Affiliation(s)
- Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany; ,
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany; ,
| |
Collapse
|
31
|
Wang Y, van Rengs WMJ, Zaidan MWAM, Underwood CJ. Meiosis in crops: from genes to genomes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6091-6109. [PMID: 34009331 PMCID: PMC8483783 DOI: 10.1093/jxb/erab217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 05/06/2023]
Abstract
Meiosis is a key feature of sexual reproduction. During meiosis homologous chromosomes replicate, recombine, and randomly segregate, followed by the segregation of sister chromatids to produce haploid cells. The unique genotypes of recombinant gametes are an essential substrate for the selection of superior genotypes in natural populations and in plant breeding. In this review we summarize current knowledge on meiosis in diverse monocot and dicot crop species and provide a comprehensive resource of cloned meiotic mutants in six crop species (rice, maize, wheat, barley, tomato, and Brassica species). Generally, the functional roles of meiotic proteins are conserved between plant species, but we highlight notable differences in mutant phenotypes. The physical lengths of plant chromosomes vary greatly; for instance, wheat chromosomes are roughly one order of magnitude longer than those of rice. We explore how chromosomal distribution for crossover recombination can vary between species. We conclude that research on meiosis in crops will continue to complement that in Arabidopsis, and alongside possible applications in plant breeding will facilitate a better understanding of how the different stages of meiosis are controlled in plant species.
Collapse
Affiliation(s)
- Yazhong Wang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Willem M J van Rengs
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Mohd Waznul Adly Mohd Zaidan
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| |
Collapse
|
32
|
Vrielynck N, Schneider K, Rodriguez M, Sims J, Chambon A, Hurel A, De Muyt A, Ronceret A, Krsicka O, Mézard C, Schlögelhofer P, Grelon M. Conservation and divergence of meiotic DNA double strand break forming mechanisms in Arabidopsis thaliana. Nucleic Acids Res 2021; 49:9821-9835. [PMID: 34458909 PMCID: PMC8464057 DOI: 10.1093/nar/gkab715] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
In the current meiotic recombination initiation model, the SPO11 catalytic subunits associate with MTOPVIB to form a Topoisomerase VI-like complex that generates DNA double strand breaks (DSBs). Four additional proteins, PRD1/AtMEI1, PRD2/AtMEI4, PRD3/AtMER2 and the plant specific DFO are required for meiotic DSB formation. Here we show that (i) MTOPVIB and PRD1 provide the link between the catalytic sub-complex and the other DSB proteins, (ii) PRD3/AtMER2, while localized to the axis, does not assemble a canonical pre-DSB complex but establishes a direct link between the DSB-forming and resection machineries, (iii) DFO controls MTOPVIB foci formation and is part of a divergent RMM-like complex including PHS1/AtREC114 and PRD2/AtMEI4 but not PRD3/AtMER2, (iv) PHS1/AtREC114 is absolutely unnecessary for DSB formation despite having a conserved position within the DSB protein network and (v) MTOPVIB and PRD2/AtMEI4 interact directly with chromosome axis proteins to anchor the meiotic DSB machinery to the axis.
Collapse
Affiliation(s)
- Nathalie Vrielynck
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Katja Schneider
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Marion Rodriguez
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Jason Sims
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Aurélie Chambon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Aurélie Hurel
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Arnaud De Muyt
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Arnaud Ronceret
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Ondrej Krsicka
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Christine Mézard
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
33
|
Gutiérrez Pinzón Y, González Kise JK, Rueda P, Ronceret A. The Formation of Bivalents and the Control of Plant Meiotic Recombination. FRONTIERS IN PLANT SCIENCE 2021; 12:717423. [PMID: 34557215 PMCID: PMC8453087 DOI: 10.3389/fpls.2021.717423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 06/06/2023]
Abstract
During the first meiotic division, the segregation of homologous chromosomes depends on the physical association of the recombined homologous DNA molecules. The physical tension due to the sites of crossing-overs (COs) is essential for the meiotic spindle to segregate the connected homologous chromosomes to the opposite poles of the cell. This equilibrated partition of homologous chromosomes allows the first meiotic reductional division. Thus, the segregation of homologous chromosomes is dependent on their recombination. In this review, we will detail the recent advances in the knowledge of the mechanisms of recombination and bivalent formation in plants. In plants, the absence of meiotic checkpoints allows observation of subsequent meiotic events in absence of meiotic recombination or defective meiotic chromosomal axis formation such as univalent formation instead of bivalents. Recent discoveries, mainly made in Arabidopsis, rice, and maize, have highlighted the link between the machinery of double-strand break (DSB) formation and elements of the chromosomal axis. We will also discuss the implications of what we know about the mechanisms regulating the number and spacing of COs (obligate CO, CO homeostasis, and interference) in model and crop plants.
Collapse
|
34
|
Hinman AW, Yeh HY, Roelens B, Yamaya K, Woglar A, Bourbon HMG, Chi P, Villeneuve AM. Caenorhabditis elegans DSB-3 reveals conservation and divergence among protein complexes promoting meiotic double-strand breaks. Proc Natl Acad Sci U S A 2021; 118:e2109306118. [PMID: 34389685 PMCID: PMC8379965 DOI: 10.1073/pnas.2109306118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination plays dual roles in the evolution and stable inheritance of genomes: Recombination promotes genetic diversity by reassorting variants, and it establishes temporary connections between pairs of homologous chromosomes that ensure their future segregation. Meiotic recombination is initiated by generation of double-strand DNA breaks (DSBs) by the conserved topoisomerase-like protein Spo11. Despite strong conservation of Spo11 across eukaryotic kingdoms, auxiliary complexes that interact with Spo11 complexes to promote DSB formation are poorly conserved. Here, we identify DSB-3 as a DSB-promoting protein in the nematode Caenorhabditis elegans Mutants lacking DSB-3 are proficient for homolog pairing and synapsis but fail to form crossovers. Lack of crossovers in dsb-3 mutants reflects a requirement for DSB-3 in meiotic DSB formation. DSB-3 concentrates in meiotic nuclei with timing similar to DSB-1 and DSB-2 (predicted homologs of yeast/mammalian Rec114/REC114), and DSB-1, DSB-2, and DSB-3 are interdependent for this localization. Bioinformatics analysis and interactions among the DSB proteins support the identity of DSB-3 as a homolog of MEI4 in conserved DSB-promoting complexes. This identification is reinforced by colocalization of pairwise combinations of DSB-1, DSB-2, and DSB-3 foci in structured illumination microscopy images of spread nuclei. However, unlike yeast Rec114, DSB-1 can interact directly with SPO-11, and in contrast to mouse REC114 and MEI4, DSB-1, DSB-2, and DSB-3 are not concentrated predominantly at meiotic chromosome axes. We speculate that variations in the meiotic program that have coevolved with distinct reproductive strategies in diverse organisms may contribute to and/or enable diversification of essential components of the meiotic machinery.
Collapse
Affiliation(s)
- Albert W Hinman
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Hsin-Yi Yeh
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Baptiste Roelens
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Kei Yamaya
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alexander Woglar
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Henri-Marc G Bourbon
- Centre de Biologie Intégrative, Molecular, Cellular & Developmental Biology Unit, Université Fédérale de Toulouse, 31000 Toulouse, France
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Anne M Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
35
|
Strelnikova SR, Krinitsina AA, Komakhin RA. Effective RNAi-Mediated Silencing of the Mismatch Repair MSH2 Gene Induces Sterility of Tomato Plants but Not an Increase in Meiotic Recombination. Genes (Basel) 2021; 12:1167. [PMID: 34440341 PMCID: PMC8394773 DOI: 10.3390/genes12081167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
In plant breeding, the ability to manipulate meiotic recombination aids in the efficient construction of new allelic compositions of chromosomes and facilitates gene transfer from wild relatives of crop plants. The DNA mismatch repair system antagonizes meiotic recombination. In this research, a trial was conducted to evaluate transgenic tomato plants carrying an RNA interference (RNAi) construct designed to inhibit the expression of the mismatch repair MSH2 gene. To drive the RNAi construct, we used either a pro-SmAMP2 promoter from Stellaria media ANTIMICROBIAL PEPTIDE2 or a Cauliflower mosaic virus 35S promoter (CaMV35S). The results of real-time PCR showed that, with a 16 h light/8 h dark photoperiod, MSH2-RNAi tomato transgenic plants exhibited MSH2 gene transcript contents ranging from 0% to 3% in the leaves, relative to untransformed controls. However, with this lighting mode, the MSH2-RNAi transgenic plants grew slowly, flowered poorly, and did not form seed sets. During cultivation with a 12 h light/12 h dark photoperiod, MSH2-RNAi transgenic plants exhibited MSH2 gene transcript contents ranging from 3% to 42%, relative to untransformed controls. Under these conditions, F1 hybrid seed sets formed for most of the MSH2-RNAi transgenic plants with the RNAi construct driven by the CaMV35S promoter, and for one transformant with the RNAi construct driven by the pro-SmAMP2 promoter. Under conditions of a 12 h light/12 h dark photoperiod, most of the F1 transgenic hybrids showed MSH2 gene transcript contents ranging from 3% to 34% and formed F2 offspring sets, which made it possible to assess the meiotic recombination frequency. We showed that the effective inhibition of MSH2 in MSH2-RNAi tomato transgenic plants is not associated with an increase in meiotic recombination compared to the control, but it stimulates the sterility of plants. It was established that the expression of the MSH2 gene in tomato plants is about 50 times higher with a 12 h light/12 h dark than with a 16 h light/8 h dark photoperiod. It is discussed that, in Solanum lycopersicum tomato plants, which are not sensitive to the day length for flowering, changing the lighting time may be a means of controlling the meiotic recombination frequency within certain limits.
Collapse
Affiliation(s)
- Svetlana R. Strelnikova
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia; (A.A.K.); (R.A.K.)
| | - Anastasiya A. Krinitsina
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia; (A.A.K.); (R.A.K.)
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Roman A. Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia; (A.A.K.); (R.A.K.)
| |
Collapse
|
36
|
Kuo P, Da Ines O, Lambing C. Rewiring Meiosis for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:708948. [PMID: 34349775 PMCID: PMC8328115 DOI: 10.3389/fpls.2021.708948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 05/10/2023]
Abstract
Meiosis is a specialized cell division that contributes to halve the genome content and reshuffle allelic combinations between generations in sexually reproducing eukaryotes. During meiosis, a large number of programmed DNA double-strand breaks (DSBs) are formed throughout the genome. Repair of meiotic DSBs facilitates the pairing of homologs and forms crossovers which are the reciprocal exchange of genetic information between chromosomes. Meiotic recombination also influences centromere organization and is essential for proper chromosome segregation. Accordingly, meiotic recombination drives genome evolution and is a powerful tool for breeders to create new varieties important to food security. Modifying meiotic recombination has the potential to accelerate plant breeding but it can also have detrimental effects on plant performance by breaking beneficial genetic linkages. Therefore, it is essential to gain a better understanding of these processes in order to develop novel strategies to facilitate plant breeding. Recent progress in targeted recombination technologies, chromosome engineering, and an increasing knowledge in the control of meiotic chromosome segregation has significantly increased our ability to manipulate meiosis. In this review, we summarize the latest findings and technologies on meiosis in plants. We also highlight recent attempts and future directions to manipulate crossover events and control the meiotic division process in a breeding perspective.
Collapse
Affiliation(s)
- Pallas Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
37
|
Hernandez Sanchez-Rebato M, Bouatta AM, Gallego ME, White CI, Da Ines O. RAD54 is essential for RAD51-mediated repair of meiotic DSB in Arabidopsis. PLoS Genet 2021; 17:e1008919. [PMID: 34003859 PMCID: PMC8162660 DOI: 10.1371/journal.pgen.1008919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 05/28/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022] Open
Abstract
An essential component of the homologous recombination machinery in eukaryotes, the RAD54 protein is a member of the SWI2/SNF2 family of helicases with dsDNA-dependent ATPase, DNA translocase, DNA supercoiling and chromatin remodelling activities. It is a motor protein that translocates along dsDNA and performs multiple functions in homologous recombination. In particular, RAD54 is an essential cofactor for regulating RAD51 activity. It stabilizes the RAD51 nucleofilament, remodels nucleosomes, and stimulates the homology search and strand invasion activities of RAD51. Accordingly, deletion of RAD54 has dramatic consequences on DNA damage repair in mitotic cells. In contrast, its role in meiotic recombination is less clear. RAD54 is essential for meiotic recombination in Drosophila and C. elegans, but plays minor roles in yeast and mammals. We present here characterization of the roles of RAD54 in meiotic recombination in the model plant Arabidopsis thaliana. Absence of RAD54 has no detectable effect on meiotic recombination in otherwise wild-type plants but RAD54 becomes essential for meiotic DSB repair in absence of DMC1. In Arabidopsis, dmc1 mutants have an achiasmate meiosis, in which RAD51 repairs meiotic DSBs. Lack of RAD54 leads to meiotic chromosomal fragmentation in absence of DMC1. The action of RAD54 in meiotic RAD51 activity is thus mainly downstream of the role of RAD51 in supporting the activity of DMC1. Equivalent analyses show no effect on meiosis of combining dmc1 with the mutants of the RAD51-mediators RAD51B, RAD51D and XRCC2. RAD54 is thus required for repair of meiotic DSBs by RAD51 and the absence of meiotic phenotype in rad54 plants is a consequence of RAD51 playing a RAD54-independent supporting role to DMC1 in meiotic recombination. Homologous recombination is a universal pathway which repairs broken DNA molecules through the use of homologous DNA templates. It is both essential for maintenance of genome stability and for the generation of genetic diversity through sexual reproduction. A central step of the homologous recombination process is the search for and invasion of a homologous, intact DNA sequence that will be used as template. This key step is catalysed by the RAD51 recombinase in somatic cells and RAD51 and DMC1 in meiotic cells, assisted by a number of associated factors. Among these, the chromatin-remodelling protein RAD54 is a required cofactor for RAD51 in mitotic cells. Understanding of its role during meiotic recombination however remains elusive. We show here that RAD54 is required for repair of meiotic double strand breaks by RAD51 in the plant Arabidopsis thaliana, and this function is downstream of the meiotic role of RAD51 in supporting the activity of DMC1. These results provide new insights into the regulation of the central step of homologous recombination in plants and very probably also other multicellular eukaryotes.
Collapse
Affiliation(s)
- Miguel Hernandez Sanchez-Rebato
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Alida M Bouatta
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Maria E Gallego
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Charles I White
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| |
Collapse
|
38
|
Ning Y, Liu Q, Wang C, Qin E, Wu Z, Wang M, Yang K, Elesawi IE, Chen C, Liu H, Qin R, Liu B. Heat stress interferes with formation of double-strand breaks and homolog synapsis. PLANT PHYSIOLOGY 2021; 185:1783-1797. [PMID: 33793950 PMCID: PMC8133540 DOI: 10.1093/plphys/kiab012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/24/2020] [Indexed: 05/20/2023]
Abstract
Meiotic recombination (MR) drives novel combinations of alleles and contributes to genomic diversity in eukaryotes. In this study, we showed that heat stress (36°C-38°C) over the fertile threshold fully abolished crossover formation in Arabidopsis (Arabidopsis thaliana). Cytological and genetic studies in wild-type plants and syn1 and rad51 mutants suggested that heat stress reduces generation of SPO11-dependent double-strand breaks (DSBs). In support, the abundance of recombinase DMC1, which is required for MR-specific DSB repair, was significantly reduced under heat stress. In addition, high temperatures induced disassembly and/or instability of the ASY4- but not the SYN1-mediated chromosome axis. At the same time, the ASY1-associated lateral element of the synaptonemal complex (SC) was partially affected, while the ZYP1-dependent central element of SC was disrupted, indicating that heat stress impairs SC formation. Moreover, expression of genes involved in DSB formation; e.g. SPO11-1, PRD1, 2, and 3 was not impacted; however, recombinase RAD51 and chromosome axis factors ASY3 and ASY4 were significantly downregulated under heat stress. Taken together, these findings revealed that heat stress inhibits MR via compromised DSB formation and homolog synapsis, which are possible downstream effects of the impacted chromosome axis. Our study thus provides evidence shedding light on how increasing environmental temperature influences MR in Arabidopsis.
Collapse
Affiliation(s)
- Yingjie Ning
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Qingpei Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chong Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Erdai Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Zhihua Wu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Minghui Wang
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ke Yang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ibrahim Eid Elesawi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- Author for communication:
| |
Collapse
|
39
|
Shi W, Ji J, Xue Z, Zhang F, Miao Y, Yang H, Tang D, Du G, Li Y, Shen Y, Cheng Z. PRD1, a homologous recombination initiation factor, is involved in spindle assembly in rice meiosis. THE NEW PHYTOLOGIST 2021; 230:585-600. [PMID: 33421144 DOI: 10.1111/nph.17178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/23/2020] [Indexed: 05/25/2023]
Abstract
The bipolar spindle structure in meiosis is essential for faithful chromosome segregation. PUTATIVE RECOMBINATION INITIATION DEFECT 1 (PRD1) previously has been shown to participate in the formation of DNA double strand breaks (DSBs). However, the role of PRD1 in meiotic spindle assembly has not been elucidated. Here, we reveal by both genetic analysis and immunostaining technology that PRD1 is involved in spindle assembly in rice (Oryza sativa) meiosis. We show that DSB formation and bipolar spindle assembly are disturbed in prd1 meiocytes. PRD1 signals display a dynamic pattern of localization from covering entire chromosomes at leptotene to congregating at the centromere region after leptotene. Centromeric localization of PRD1 signals depends on the organization of leptotene chromosomes, but not on DSB formation and axis establishment. PRD1 exhibits interaction and co-localization with several kinetochore components. We also find that bi-orientation of sister kinetochores within a univalent induced by mutation of REC8 can restore bipolarity in prd1. Furthermore, PRD1 directly interacts with REC8 and SGO1, suggesting that PRD1 may play a role in regulating the orientation of sister kinetochores. Taken together, we speculate that PRD1 promotes bipolar spindle assembly, presumably by modulating the orientation of sister kinetochores in rice meiosis.
Collapse
Affiliation(s)
- Wenqing Shi
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianhui Ji
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Zhihui Xue
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fanfan Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongjie Miao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Han Yang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guijie Du
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhukuan Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
40
|
Sarens M, Copenhaver GP, De Storme N. The Role of Chromatid Interference in Determining Meiotic Crossover Patterns. FRONTIERS IN PLANT SCIENCE 2021; 12:656691. [PMID: 33767725 PMCID: PMC7985435 DOI: 10.3389/fpls.2021.656691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/15/2021] [Indexed: 06/06/2023]
Abstract
Plants, like all sexually reproducing organisms, create genetic variability by reshuffling parental alleles during meiosis. Patterns of genetic variation in the resulting gametes are determined by the independent assortment of chromosomes in meiosis I and by the number and positioning of crossover (CO) events during meiotic recombination. On the chromosome level, spatial distribution of CO events is biased by multiple regulatory mechanisms, such as CO assurance, interference and homeostasis. However, little is known about how multiple COs are distributed among the four chromatids of a bivalent. Chromatid interference (CI) has been proposed as a regulatory mechanism that biases distribution of multiple COs toward specific chromatid partners, however, its existence has not been well-studied and its putative mechanistic basis remains undescribed. Here, we introduce a novel method to quantitatively express CI, and take advantage of available tetrad-based genotyping data from Arabidopsis and maize male meiosis to quantify CI effects on a genome-wide and chromosomal scale. Overall, our analyses reveal random involvement of sister chromatids in double CO events across paired chromosomes, indicating an absence of CI. However, on a genome-wide level, CI was found to vary with physical distance between COs, albeit with different effects in Arabidopsis and maize. While effects of CI are minor in Arabidopsis and maize, the novel methodology introduced here enables quantitative interpretation of CI both on a local and genome-wide scale, and thus provides a key tool to study CI with relevance for both plant genetics and crop breeding.
Collapse
Affiliation(s)
- Marie Sarens
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Saleme MDLS, Andrade IR, Eloy NB. The Role of Anaphase-Promoting Complex/Cyclosome (APC/C) in Plant Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:642934. [PMID: 33719322 PMCID: PMC7943633 DOI: 10.3389/fpls.2021.642934] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/03/2021] [Indexed: 05/06/2023]
Abstract
Most eukaryotic species propagate through sexual reproduction that requires male and female gametes. In flowering plants, it starts through a single round of DNA replication (S phase) and two consecutive chromosome segregation (meiosis I and II). Subsequently, haploid mitotic divisions occur, which results in a male gametophyte (pollen grain) and a female gametophyte (embryo sac) formation. In order to obtain viable gametophytes, accurate chromosome segregation is crucial to ensure ploidy stability. A precise gametogenesis progression is tightly regulated in plants and is controlled by multiple mechanisms to guarantee a correct evolution through meiotic cell division and sexual differentiation. In the past years, research in the field has shown an important role of the conserved E3-ubiquitin ligase complex, Anaphase-Promoting Complex/Cyclosome (APC/C), in this process. The APC/C is a multi-subunit complex that targets proteins for degradation via proteasome 26S. The functional characterization of APC/C subunits in Arabidopsis, which is one of the main E3 ubiquitin ligase that controls cell cycle, has revealed that all subunits investigated so far are essential for gametophytic development and/or embryogenesis.
Collapse
|
42
|
Barra L, Termolino P, Aiese Cigliano R, Cremona G, Paparo R, Lanzillo C, Consiglio MF, Conicella C. Meiocyte Isolation by INTACT and Meiotic Transcriptome Analysis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:638051. [PMID: 33747019 PMCID: PMC7969724 DOI: 10.3389/fpls.2021.638051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/01/2021] [Indexed: 05/06/2023]
Abstract
Isolation of nuclei tagged in specific cell types (INTACT) is a method developed to isolate cell-type-specific nuclei that are tagged through in vivo biotin labeling of a nuclear targeting fusion (NTF) protein. In our work, INTACT was used to capture nuclei of meiocytes and to generate a meiotic transcriptome in Arabidopsis. Using the promoter of AtDMC1 recombinase to label meiotic nuclei, we generated transgenic plants carrying AtDMC1:NTF along with biotin ligase enzyme (BirA) under the constitutive ACTIN2 (ACT2) promoter. AtDMC1-driven expression of biotin-labeled NTF allowed us to collect nuclei of meiocytes by streptavidin-coated magnetic beads. The nuclear meiotic transcriptome was obtained by RNA-seq using low-quantity input RNA. Transcripts grouped into different categories according to their expression levels were investigated by gene ontology enrichment analysis (GOEA). The most enriched GO term "DNA demethylation" in mid/high-expression classes suggests that this biological process is particularly relevant to meiosis onset. The majority of genes with established roles in meiosis were distributed in the classes of mid/high and high expression. Meiotic transcriptome was compared with public available transcriptomes from other tissues in Arabidopsis. Bioinformatics analysis by expression network identified a core of more than 1,500 genes related to meiosis landmarks.
Collapse
Affiliation(s)
- Lucia Barra
- Institute of Biosciences and Bioresources, National Research Council of Italy, Portici, Italy
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources, National Research Council of Italy, Portici, Italy
| | | | - Gaetana Cremona
- Institute of Biosciences and Bioresources, National Research Council of Italy, Portici, Italy
| | - Rosa Paparo
- Institute of Biosciences and Bioresources, National Research Council of Italy, Portici, Italy
| | - Carmine Lanzillo
- Institute of Biosciences and Bioresources, National Research Council of Italy, Portici, Italy
| | | | - Clara Conicella
- Institute of Biosciences and Bioresources, National Research Council of Italy, Portici, Italy
- *Correspondence: Clara Conicella,
| |
Collapse
|
43
|
Balboni M, Yang C, Komaki S, Brun J, Schnittger A. COMET Functions as a PCH2 Cofactor in Regulating the HORMA Domain Protein ASY1. Curr Biol 2020; 30:4113-4127.e6. [DOI: 10.1016/j.cub.2020.07.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
|
44
|
Aoun N, Desaint H, Boyrie L, Bonhomme M, Deslandes L, Berthomé R, Roux F. A complex network of additive and epistatic quantitative trait loci underlies natural variation of Arabidopsis thaliana quantitative disease resistance to Ralstonia solanacearum under heat stress. MOLECULAR PLANT PATHOLOGY 2020; 21:1405-1420. [PMID: 32914940 PMCID: PMC7548995 DOI: 10.1111/mpp.12964] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 05/04/2023]
Abstract
Plant immunity is often negatively impacted by heat stress. However, the underlying molecular mechanisms remain poorly characterized. Based on a genome-wide association mapping approach, this study aims to identify in Arabidopsis thaliana the genetic bases of robust resistance mechanisms to the devastating pathogen Ralstonia solanacearum under heat stress. A local mapping population was phenotyped against the R. solanacearum GMI1000 strain at 27 and 30 °C. To obtain a precise description of the genetic architecture underlying natural variation of quantitative disease resistance (QDR), we applied a genome-wide local score analysis. Alongside an extensive genetic variation found in this local population at both temperatures, we observed a playful dynamics of quantitative trait loci along the infection stages. In addition, a complex genetic network of interacting loci could be detected at 30 °C. As a first step to investigate the underlying molecular mechanisms, the atypical meiotic cyclin SOLO DANCERS gene was validated by a reverse genetic approach as involved in QDR to R. solanacearum at 30 °C. In the context of climate change, the complex genetic architecture underlying QDR under heat stress in a local mapping population revealed candidate genes with diverse molecular functions.
Collapse
Affiliation(s)
- Nathalie Aoun
- LIPMUniversité de ToulouseINRAECNRSCastanet‐TolosanFrance
| | - Henri Desaint
- LIPMUniversité de ToulouseINRAECNRSCastanet‐TolosanFrance
- SYNGENTA seedsSarriansFrance
| | - Léa Boyrie
- LRSVUniversité de ToulouseCNRSUniversité Paul SabatierCastanet‐TolosanFrance
| | - Maxime Bonhomme
- LRSVUniversité de ToulouseCNRSUniversité Paul SabatierCastanet‐TolosanFrance
| | | | | | - Fabrice Roux
- LIPMUniversité de ToulouseINRAECNRSCastanet‐TolosanFrance
| |
Collapse
|
45
|
Seear PJ, France MG, Gregory CL, Heavens D, Schmickl R, Yant L, Higgins JD. A novel allele of ASY3 is associated with greater meiotic stability in autotetraploid Arabidopsis lyrata. PLoS Genet 2020; 16:e1008900. [PMID: 32667955 PMCID: PMC7392332 DOI: 10.1371/journal.pgen.1008900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 07/30/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023] Open
Abstract
In this study we performed a genotype-phenotype association analysis of meiotic stability in 10 autotetraploid Arabidopsis lyrata and A. lyrata/A. arenosa hybrid populations collected from the Wachau region and East Austrian Forealps. The aim was to determine the effect of eight meiosis genes under extreme selection upon adaptation to whole genome duplication. Individual plants were genotyped by high-throughput sequencing of the eight meiosis genes (ASY1, ASY3, PDS5b, PRD3, REC8, SMC3, ZYP1a/b) implicated in synaptonemal complex formation and phenotyped by assessing meiotic metaphase I chromosome configurations. Our results reveal that meiotic stability varied greatly (20-100%) between individual tetraploid plants and associated with segregation of a novel ASYNAPSIS3 (ASY3) allele derived from A. lyrata. The ASY3 allele that associates with meiotic stability possesses a putative in-frame tandem duplication (TD) of a serine-rich region upstream of the coiled-coil domain that appears to have arisen at sites of DNA microhomology. The frequency of multivalents observed in plants homozygous for the ASY3 TD haplotype was significantly lower than in plants heterozygous for ASY3 TD/ND (non-duplicated) haplotypes. The chiasma distribution was significantly altered in the stable plants compared to the unstable plants with a shift from proximal and interstitial to predominantly distal locations. The number of HEI10 foci at pachytene that mark class I crossovers was significantly reduced in a plant homozygous for ASY3 TD compared to a plant heterozygous for ASY3 ND/TD. Fifty-eight alleles of the 8 meiosis genes were identified from the 10 populations analysed, demonstrating dynamic population variability at these loci. Widespread chimerism between alleles originating from A. lyrata/A. arenosa and diploid/tetraploids indicates that this group of rapidly evolving genes may provide precise adaptive control over meiotic recombination in the tetraploids, the very process that gave rise to them.
Collapse
Affiliation(s)
- Paul J. Seear
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martin G. France
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Catherine L. Gregory
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Darren Heavens
- Earlham Institute, Norwich Research Park Innovation Centre, Norwich, United Kingdom
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Levi Yant
- Future Food Beacon of Excellence and the School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail: (LY); (JDH)
| | - James D. Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- * E-mail: (LY); (JDH)
| |
Collapse
|
46
|
ASY1 acts as a dosage-dependent antagonist of telomere-led recombination and mediates crossover interference in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:13647-13658. [PMID: 32499315 PMCID: PMC7306779 DOI: 10.1073/pnas.1921055117] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During meiosis, interhomolog recombination produces crossovers and noncrossovers to create genetic diversity. Meiotic recombination frequency varies at multiple scales, with high subtelomeric recombination and suppressed centromeric recombination typical in many eukaryotes. During recombination, sister chromatids are tethered as loops to a polymerized chromosome axis, which, in plants, includes the ASY1 HORMA domain protein and REC8-cohesin complexes. Using chromatin immunoprecipitation, we show an ascending telomere-to-centromere gradient of ASY1 enrichment, which correlates strongly with REC8-cohesin ChIP-seq data. We mapped crossovers genome-wide in the absence of ASY1 and observe that telomere-led recombination becomes dominant. Surprisingly, asy1/+ heterozygotes also remodel crossovers toward subtelomeric regions at the expense of the pericentromeres. Telomeric recombination increases in asy1/+ occur in distal regions where ASY1 and REC8 ChIP enrichment are lowest in wild type. In wild type, the majority of crossovers show interference, meaning that they are more widely spaced along the chromosomes than expected by chance. To measure interference, we analyzed double crossover distances, MLH1 foci, and fluorescent pollen tetrads. Interestingly, while crossover interference is normal in asy1/+, it is undetectable in asy1 mutants, indicating that ASY1 is required to mediate crossover interference. Together, this is consistent with ASY1 antagonizing telomere-led recombination and promoting spaced crossover formation along the chromosomes via interference. These findings provide insight into the role of the meiotic axis in patterning recombination frequency within plant genomes.
Collapse
|
47
|
Yang C, Sofroni K, Wijnker E, Hamamura Y, Carstens L, Harashima H, Stolze SC, Vezon D, Chelysheva L, Orban‐Nemeth Z, Pochon G, Nakagami H, Schlögelhofer P, Grelon M, Schnittger A. The Arabidopsis Cdk1/Cdk2 homolog CDKA;1 controls chromosome axis assembly during plant meiosis. EMBO J 2020; 39:e101625. [PMID: 31556459 PMCID: PMC6996576 DOI: 10.15252/embj.2019101625] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Meiosis is key to sexual reproduction and genetic diversity. Here, we show that the Arabidopsis cyclin-dependent kinase Cdk1/Cdk2 homolog CDKA;1 is an important regulator of meiosis needed for several aspects of meiosis such as chromosome synapsis. We identify the chromosome axis protein ASYNAPTIC 1 (ASY1), the Arabidopsis homolog of Hop1 (homolog pairing 1), essential for synaptonemal complex formation, as a target of CDKA;1. The phosphorylation of ASY1 is required for its recruitment to the chromosome axis via ASYNAPTIC 3 (ASY3), the Arabidopsis reductional division 1 (Red1) homolog, counteracting the disassembly activity of the AAA+ ATPase PACHYTENE CHECKPOINT 2 (PCH2). Furthermore, we have identified the closure motif in ASY1, typical for HORMA domain proteins, and provide evidence that the phosphorylation of ASY1 regulates the putative self-polymerization of ASY1 along the chromosome axis. Hence, the phosphorylation of ASY1 by CDKA;1 appears to be a two-pronged mechanism to initiate chromosome axis formation in meiosis.
Collapse
Affiliation(s)
- Chao Yang
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Kostika Sofroni
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Erik Wijnker
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
- Present address:
Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
| | - Yuki Hamamura
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Lena Carstens
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
- Present address:
Plant Developmental Biology & Plant PhysiologyKiel UniversityKielGermany
| | - Hirofumi Harashima
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Present address:
Solution Research LaboratoryAS ONE CorporationKawasakiku, KawasakiJapan
| | | | - Daniel Vezon
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Liudmila Chelysheva
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Zsuzsanna Orban‐Nemeth
- Department of Chromosome BiologyMax F. Perutz LaboratoriesVienna BiocenterUniversity of ViennaViennaAustria
- Present address:
Institute of Molecular PathologyVienna BiocenterViennaAustria
| | - Gaëtan Pochon
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | | | - Peter Schlögelhofer
- Department of Chromosome BiologyMax F. Perutz LaboratoriesVienna BiocenterUniversity of ViennaViennaAustria
| | - Mathilde Grelon
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Arp Schnittger
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| |
Collapse
|
48
|
Huang J, Wang C, Li X, Fang X, Huang N, Wang Y, Ma H, Wang Y, Copenhaver GP. Conservation and Divergence in the Meiocyte sRNAomes of Arabidopsis, Soybean, and Cucumber. PLANT PHYSIOLOGY 2020; 182:301-317. [PMID: 31719152 PMCID: PMC6945826 DOI: 10.1104/pp.19.00807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/22/2019] [Indexed: 05/15/2023]
Abstract
Meiosis is a critical process for sexual reproduction. During meiosis, genetic information on homologous chromosomes is shuffled through meiotic recombination to produce gametes with novel allelic combinations. Meiosis and recombination are orchestrated by several mechanisms including regulation by small RNAs (sRNAs). Our previous work in Arabidopsis (Arabidopsis thaliana) meiocytes showed that meiocyte-specific sRNAs (ms-sRNAs) have distinct characteristics, including positive association with the coding region of genes that are transcriptionally upregulated during meiosis. Here, we characterized the ms-sRNAs in two important crops, soybean (Glycine max) and cucumber (Cucumis sativus). Ms-sRNAs in soybean have the same features as those in Arabidopsis, suggesting that they may play a conserved role in eudicots. We also investigated the profiles of microRNAs (miRNAs) and phased secondary small interfering RNAs in the meiocytes of all three species. Two conserved miRNAs, miR390 and miR167, are highly abundant in the meiocytes of all three species. In addition, we identified three novel cucumber miRNAs. Intriguingly, our data show that the previously identified phased secondary small interfering RNA pathway involving soybean-specific miR4392 is more abundant in meiocytes. These results showcase the conservation and divergence of ms-sRNAs in flowering plants, and broaden our understanding of sRNA function in crop species.
Collapse
Affiliation(s)
- Jiyue Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
- University of North Carolina at Chapel Hill Department of Biology and the Integrative Program for Biological and Genome Sciences, Genome Science Building, Chapel Hill, North Carolina 27599-3280
| | - Cong Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xiang Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xiaolong Fang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ning Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Gregory P Copenhaver
- University of North Carolina at Chapel Hill Department of Biology and the Integrative Program for Biological and Genome Sciences, Genome Science Building, Chapel Hill, North Carolina 27599-3280
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| |
Collapse
|
49
|
Chang Z, Xu C, Huang X, Yan W, Qiu S, Yuan S, Ni H, Chen S, Xie G, Chen Z, Wu J, Tang X. The plant-specific ABERRANT GAMETOGENESIS 1 gene is essential for meiosis in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:204-218. [PMID: 31587067 DOI: 10.1093/jxb/erz441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Meiotic recombination plays a central role in maintaining genome stability and increasing genetic diversity. Although meiotic progression and core components are widely conserved across kingdoms, significant differences remain among species. Here we identify a rice gene ABERRANT GAMETOGENESIS 1 (AGG1) that controls both male and female gametogenesis. Cytological and immunostaining analysis showed that in the osagg1 mutant the early recombination processes and synapsis occurred normally, but the chiasma number was dramatically reduced. Moreover, OsAGG1 was found to interact with ZMM proteins OsHEI10, OsZIP4, and OsMSH5. These results suggested that OsAGG1 plays an important role in crossover formation. Phylogenetic analysis showed that OsAGG1 is a plant-specific protein with a highly conserved N-terminal region. Further genetic and protein interaction analyses revealed that the conserved N-terminus was essential for the function of the OsAGG1 protein. Overall, our work demonstrates that OsAGG1 is a novel and critical component in rice meiotic crossover formation, expanding our understanding of meiotic progression. This study identified a plant-specific gene ABERRANT GAMETOGENESIS 1 that is required for meiotic crossover formation in rice. The conserved N-terminus of the AGG1 protein was found to be essential for its function.
Collapse
Affiliation(s)
- Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Xiaoyan Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Shijun Qiu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shuting Yuan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Haoling Ni
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shujing Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Gang Xie
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| |
Collapse
|
50
|
Fayos I, Mieulet D, Petit J, Meunier AC, Périn C, Nicolas A, Guiderdoni E. Engineering meiotic recombination pathways in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2062-2077. [PMID: 31199561 PMCID: PMC6790369 DOI: 10.1111/pbi.13189] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 05/02/2023]
Abstract
In the last 15 years, outstanding progress has been made in understanding the function of meiotic genes in the model dicot and monocot plants Arabidopsis and rice (Oryza sativa L.), respectively. This knowledge allowed to modulate meiotic recombination in Arabidopsis and, more recently, in rice. For instance, the overall frequency of crossovers (COs) has been stimulated 2.3- and 3.2-fold through the inactivation of the rice FANCM and RECQ4 DNA helicases, respectively, two genes involved in the repair of DNA double-strand breaks (DSBs) as noncrossovers (NCOs) of the Class II crossover pathway. Differently, the programmed induction of DSBs and COs at desired sites is currently explored by guiding the SPO11-1 topoisomerase-like transesterase, initiating meiotic recombination in all eukaryotes, to specific target regions of the rice genome. Furthermore, the inactivation of 3 meiosis-specific genes, namely PAIR1, OsREC8 and OsOSD1, in the Mitosis instead of Meiosis (MiMe) mutant turned rice meiosis into mitosis, thereby abolishing recombination and achieving the first component of apomixis, apomeiosis. The successful translation of Arabidopsis results into a crop further allowed the implementation of two breakthrough strategies that triggered parthenogenesis from the MiMe unreduced clonal egg cell and completed the second component of diplosporous apomixis. Here, we review the most recent advances in and future prospects of the manipulation of meiotic recombination in rice and potentially other major crops, all essential for global food security.
Collapse
Affiliation(s)
- Ian Fayos
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| | - Delphine Mieulet
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| | - Julie Petit
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| | - Anne Cécile Meunier
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| | - Christophe Périn
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| | - Alain Nicolas
- Institut Curie, CNRS UMR 3244University PSLParisFrance
- MeiogenixParisFrance
| | - Emmanuel Guiderdoni
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| |
Collapse
|