1
|
Wright G, Chen X, Koteva K, Chou S, Guitor A, Pallant D, Lee Y, Sychantha D, French S, Hackenberger D, Robbins N, Cook M, Brown E, MacNeil L, Cowen L. A microbial natural product fractionation library screen with HRMS/MS dereplication identifies new lipopeptaibiotics against Candida auris. RESEARCH SQUARE 2025:rs.3.rs-5802877. [PMID: 39877096 PMCID: PMC11774467 DOI: 10.21203/rs.3.rs-5802877/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The rise of drug-resistant fungal pathogens, including Candida auris , highlights the urgent need for novel antifungal therapies. We developed a cost-effective platform combining microbial extract prefractionation with rapid MS/MS-bioinformatics-based dereplication to efficiently prioritize new antifungal scaffolds. Screening C. auris and C. albicans revealed novel lipopeptaibiotics, coniotins, from Coniochaeta hoffmannii WAC11161, which were undetectable in crude extracts. Coniotins exhibited potent activity against critical fungal pathogens on the WHO Fungal Priority Pathogens List, including C. albicans , C. neoformans , multidrug-resistant C. auris , and Aspergillus fumigatus , with high selectivity and low resistance potential. Coniotin A targets β-glucan, compromising fungal cell wall integrity, remodelling, and sensitizing C. auris to caspofungin. Identification of a PKS-NRPS biosynthetic gene cluster further enables the discovery of related clusters encoding potential novel lipopeptaibiotics. This study demonstrates the power of natural product prefractionation in uncovering bioactive scaffolds and introduces coniotins as promising candidates for combating multidrug-resistant fungal pathogens.
Collapse
|
2
|
Coelho MA, David-Palma M, Shea T, Bowers K, McGinley-Smith S, Mohammad AW, Gnirke A, Yurkov AM, Nowrousian M, Sun S, Cuomo CA, Heitman J. Comparative genomics of the closely related fungal genera Cryptococcus and Kwoniella reveals karyotype dynamics and suggests evolutionary mechanisms of pathogenesis. PLoS Biol 2024; 22:e3002682. [PMID: 38843310 PMCID: PMC11185503 DOI: 10.1371/journal.pbio.3002682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/18/2024] [Accepted: 05/17/2024] [Indexed: 06/19/2024] Open
Abstract
In exploring the evolutionary trajectories of both pathogenesis and karyotype dynamics in fungi, we conducted a large-scale comparative genomic analysis spanning the Cryptococcus genus, encompassing both global human fungal pathogens and nonpathogenic species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species, covering virtually all known diversity within these genera. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at preadaptive pathogenic potential, our analysis found evidence of gene gain (via horizontal gene transfer) and gene loss in pathogenic Cryptococcus species, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the 2 genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5, or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes showed reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Overall, our findings advance our understanding of genetic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Terrance Shea
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Katharine Bowers
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sage McGinley-Smith
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Arman W. Mohammad
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Andrey M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
3
|
Luo Z, McTaggart A, Schwessinger B. Genome biology and evolution of mating-type loci in four cereal rust fungi. PLoS Genet 2024; 20:e1011207. [PMID: 38498573 PMCID: PMC10977897 DOI: 10.1371/journal.pgen.1011207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/28/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Permanent heterozygous loci, such as sex- or mating-compatibility regions, often display suppression of recombination and signals of genomic degeneration. In Basidiomycota, two distinct loci confer mating compatibility. These loci encode homeodomain (HD) transcription factors and pheromone receptor (Pra)-ligand allele pairs. To date, an analysis of genome level mating-type (MAT) loci is lacking for obligate biotrophic basidiomycetes in the Pucciniales, an order containing serious agricultural plant pathogens. Here, we focus on four species of Puccinia that infect oat and wheat, including P. coronata f. sp. avenae, P. graminis f. sp. tritici, P. triticina and P. striiformis f. sp. tritici. MAT loci are located on two separate chromosomes supporting previous hypotheses of a tetrapolar mating compatibility system in the Pucciniales. The HD genes are multiallelic in all four species while the PR locus appears biallelic, except for P. graminis f. sp. tritici, which potentially has multiple alleles. HD loci are largely conserved in their macrosynteny, both within and between species, without strong signals of recombination suppression. Regions proximal to the PR locus, however, displayed signs of recombination suppression and genomic degeneration in the three species with a biallelic PR locus. Our observations support a link between recombination suppression, genomic degeneration, and allele diversity of MAT loci that is consistent with recent mathematical modelling and simulations. Finally, we confirm that MAT genes are expressed during the asexual infection cycle, and we propose that this may support regulating nuclear maintenance and pairing during infection and spore formation. Our study provides insights into the evolution of MAT loci of key pathogenic Puccinia species. Understanding mating compatibility can help predict possible combinations of nuclear pairs, generated by sexual reproduction or somatic recombination, and the potential evolution of new virulent isolates of these important plant pathogens.
Collapse
Affiliation(s)
- Zhenyan Luo
- Research Biology School, Australian National University, Canberra, ACT, Australia
| | - Alistair McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | | |
Collapse
|
4
|
Coelho MA, David-Palma M, Shea T, Bowers K, McGinley-Smith S, Mohammad AW, Gnirke A, Yurkov AM, Nowrousian M, Sun S, Cuomo CA, Heitman J. Comparative genomics of Cryptococcus and Kwoniella reveals pathogenesis evolution and contrasting karyotype dynamics via intercentromeric recombination or chromosome fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573464. [PMID: 38234769 PMCID: PMC10793447 DOI: 10.1101/2023.12.27.573464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A large-scale comparative genomic analysis was conducted for the global human fungal pathogens within the Cryptococcus genus, compared to non-pathogenic Cryptococcus species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species of both genera, resulting in a dataset encompassing virtually all of their known diversity. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at pre-adaptive pathogenic potential, our analysis found evidence in pathogenic Cryptococcus species of specific examples of gene gain (via horizontal gene transfer) and gene loss, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the two genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5 or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes, underwent chromosome reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Taken together, our findings advance our understanding of genomic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Terrance Shea
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Katharine Bowers
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | | | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Andrey M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
5
|
Deng Y, Guo L, Lin L, Li Y, Zhang J, Zhang Y, Yuan B, Ke L, Xie B, Ming R. Meiosis in an asymmetric dikaryotic genome of Tremella fuciformis Tr01 facilitates new chromosome formation. Genome Biol 2023; 24:280. [PMID: 38053144 PMCID: PMC10696834 DOI: 10.1186/s13059-023-03093-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/22/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND The dikaryotic stage dominates most of the life cycle in basidiomycetes, and each cell carries two different haploid nuclei. Accurate phasing of these two nuclear genomes and their interactions have long been of interest. RESULTS We combine PacBio HiFi reads, Nanopore ultra-long reads, and Hi-C data to generate a complete, high-quality asymmetric dikaryotic genome of Tremella fuciformis Tr01, including Haplotypes A and B genomes. We assemble a meiotic haploid DBZ04 genome and detect three recombination events in these two haplotypes. We identify several chromosomal rearrangements that lead to differences in chromosome number, length, content, and sequence arrangement between these two haplotypes. Each nucleus contains a two-speed genome, harboring three accessory chromosomes and two accessory compartments that affect horizontal chromatin transfer between nuclei. We find few basidiospores are ejected from fruiting bodies of Tr01. Most monospore isolates sequenced belong to Tr01-Haplotype A genome architecture. More than one-third of monospore isolates carry one or two extra chromosomes including Chr12B and two new chromosomes ChrN1 and ChrN2. We hypothesize that homologous regions of seven sister chromatids pair into a large complex during meiosis, followed by inter-chromosomal recombination at physical contact sites and formation of new chromosomes. CONCLUSION We assemble two haplotype genomes of T. fuciformis Tr01 and provide the first overview of basidiomycetous genomes with discrete genomic architecture. Meiotic activities of asymmetric dikaryotic genomes result in formation of new chromosomes, aneuploidy of some daughter cells, and inviability of most other daughter cells. We propose a new approach for breeding of sporeless mushroom.
Collapse
Affiliation(s)
- Youjin Deng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lin Guo
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Longji Lin
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yuefeng Li
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jinxiang Zhang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yue Zhang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Bin Yuan
- Zhangzhou Institute of Agricultural Science, Zhangzhou, Fujian, 363005, China
| | - Lina Ke
- Zhangzhou Institute of Agricultural Science, Zhangzhou, Fujian, 363005, China
| | - Baogui Xie
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Ray Ming
- Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Yadav V, Sun S, Heitman J. On the evolution of variation in sexual reproduction through the prism of eukaryotic microbes. Proc Natl Acad Sci U S A 2023; 120:e2219120120. [PMID: 36867686 PMCID: PMC10013875 DOI: 10.1073/pnas.2219120120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 03/05/2023] Open
Abstract
Almost all eukaryotes undergo sexual reproduction to generate diversity and select for fitness in their population pools. Interestingly, the systems by which sex is defined are highly diverse and can even differ between evolutionarily closely related species. While the most commonly known form of sex determination involves males and females in animals, eukaryotic microbes can have as many as thousands of different mating types for the same species. Furthermore, some species have found alternatives to sexual reproduction and prefer to grow clonally and yet undergo infrequent facultative sexual reproduction. These organisms are mainly invertebrates and microbes, but several examples are also present among vertebrates suggesting that alternative modes of sexual reproduction evolved multiple times throughout evolution. In this review, we summarize the sex-determination modes and variants of sexual reproduction found across the eukaryotic tree of life and suggest that eukaryotic microbes provide unique opportunities to study these processes in detail. We propose that understanding variations in modes of sexual reproduction can serve as a foundation to study the evolution of sex and why and how it evolved in the first place.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
7
|
Fu R, Chen C, Wang J, Liu Y, Zhao L, Lu D. Diversity Analysis of the Rice False Smut Pathogen Ustilaginoidea virens in Southwest China. J Fungi (Basel) 2022; 8:1204. [PMID: 36422026 PMCID: PMC9694781 DOI: 10.3390/jof8111204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 04/10/2024] Open
Abstract
Rice false smut caused by Ustilaginoidea virens is a destructive disease in rice cropping areas of the world. The present study is focused on the morphology, pathogenicity, mating-type loci distribution, and genetic characterization of different isolates of U. virens. A total of 221 strains of U. virens were collected from 13 rice-growing regions in southwest China. The morphological features of these strains exhibited high diversity, and the pathogenicity of the smut fungus showed significant differentiation. There was no correlation between pathogenicity and sporulation. Mating-type locus (MAT) analysis revealed that all 221 isolates comprised heterothallic and homothallic forms, wherein 204 (92.31%) and 17 (7.69%) isolates belonged to heterothallic and homothallic mating types, respectively. Among 204 strains of heterothallic mating types, 62 (28.05%) contained MAT1-1-1 idiomorphs, and 142 isolates (64.25%) had the MAT1-2-1 idiomorph. Interestingly, strains isolated from the same fungus ball had different mating types. The genetic structure of the isolates was analyzed using simple sequence repeats (SSRs) and single-nucleotide polymorphisms (SNPs). All isolates were clustered into five genetic groups. The values of Nei's gene diversity (H) and Shannon's information index (I) indicated that all strains as a group had higher genetic diversity than strains from a single geographical population. The pairwise population fixation index (FST) values also indicated significant genetic differentiation among all compared geographical populations. The analysis of molecular variation (AMOVA) indicated greater genetic variation within individual populations and less genetic variation among populations. The results showed that most of the strains were not clustered according to their geographical origin, showing the rich genetic diversity and the complex and diverse genetic background of U. virens in southwest China. These results should help to better understand the biological and genetic diversity of U. virens in southwest China and provide a theoretical basis for building effective management strategies.
Collapse
Affiliation(s)
- Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Rd., Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Rd., Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Rd., Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Yao Liu
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Liyu Zhao
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Rd., Chengdu 610066, China
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Rd., Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| |
Collapse
|
8
|
Kassaza K, Wasswa F, Nielsen K, Bazira J. Cryptococcus neoformans Genotypic Diversity and Disease Outcome among HIV Patients in Africa. J Fungi (Basel) 2022; 8:734. [PMID: 35887489 PMCID: PMC9325144 DOI: 10.3390/jof8070734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cryptococcal meningoencephalitis, a disease with poor patient outcomes, remains the most prevalent invasive fungal infection worldwide, accounting for approximately 180,000 deaths each year. In several areas of sub-Saharan Africa with the highest HIV prevalence, cryptococcal meningitis is the leading cause of community-acquired meningitis, with a high mortality among HIV-infected individuals. Recent studies show that patient disease outcomes are impacted by the genetics of the infecting isolate. Yet, there is still limited knowledge of how these genotypic variations contribute to clinical disease outcome. Further, it is unclear how the genetic heterogeneity of C. neoformans and the extensive phenotypic variation observed between and within isolates affects infection and disease. In this review, we discuss current knowledge of how various genotypes impact disease progression and patient outcome in HIV-positive populations in sub-Saharan African, a setting with a high burden of cryptococcosis.
Collapse
Affiliation(s)
- Kennedy Kassaza
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| | - Fredrickson Wasswa
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joel Bazira
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| |
Collapse
|
9
|
Bharudin I, Ab Wahab AFF, Abd Samad MA, Xin Yie N, Zairun MA, Abu Bakar FD, Abdul Murad AM. Review Update on the Life Cycle, Plant–Microbe Interaction, Genomics, Detection and Control Strategies of the Oil Palm Pathogen Ganoderma boninense. BIOLOGY 2022; 11:biology11020251. [PMID: 35205119 PMCID: PMC8869222 DOI: 10.3390/biology11020251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
Plant pathogens are key threats to agriculture and global food security, causing various crop diseases that lead to massive economic losses. Palm oil is a commodity export of economic importance in Southeast Asia, especially in Malaysia and Indonesia. However, the sustainability of oil palm plantations and production is threatened by basal stem rot (BSR), a devastating disease predominantly caused by the fungus Ganoderma boninense Pat. In Malaysia, infected trees have been reported in nearly 60% of plantation areas, and economic losses are estimated to reach up to ~USD500 million a year. This review covers the current knowledge of the mechanisms utilized by G. boninense during infection and the methods used in the disease management to reduce BSR, including cultural practices, chemical treatments and antagonistic microorganism manipulations. Newer developments arising from multi-omics technologies such as whole-genome sequencing (WGS) and RNA sequencing (RNA-Seq) are also reviewed. Future directions are proposed to increase the understanding of G. boninense invasion mechanisms against oil palm. It is hoped that this review can contribute towards an improved disease management and a sustainable oil palm production in this region.
Collapse
Affiliation(s)
- Izwan Bharudin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
- Fraser’s Hill Research Centre (PPBF), Faculty of Science & Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia
- Correspondence:
| | - Anis Farhan Fatimi Ab Wahab
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
- FGV Innovation Centre (Biotechnology), Pt. 23417 Lengkuk Teknologi, Bandar Enstek 71760, Malaysia
| | - Muhammad Asyraff Abd Samad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
| | - Ng Xin Yie
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
| | - Madihah Ahmad Zairun
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
- Plant Pathology & Biosecurity Unit, Biology & Sustainability Research Division, 6, Malaysian Palm Oil Board, Bandar Baru Bangi, Kajang 43000, Malaysia
| | - Farah Diba Abu Bakar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (A.F.F.A.W.); (M.A.A.S.); (N.X.Y.); (M.A.Z.); (F.D.A.B.); (A.M.A.M.)
| |
Collapse
|
10
|
Guerreiro MA, Ahrendt S, Pangilinan J, Chen C, Yan M, Lipzen A, Barry K, Grigoriev IV, Begerow D, Nowrousian M. Draft genome sequences of strains CBS6241 and CBS6242 of the basidiomycetous yeast Filobasidium floriforme. G3-GENES GENOMES GENETICS 2021; 12:6428540. [PMID: 34791213 PMCID: PMC9210288 DOI: 10.1093/g3journal/jkab398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 12/03/2022]
Abstract
The Tremellomycetes are a species-rich group within the basidiomycete fungi; however, most analyses of this group to date have focused on pathogenic Cryptococcus species within the order Tremellales. Recent genome-assisted studies of other Tremellomycetes have identified interesting features with respect to biotechnological applications as well as the evolution of genes involved in mating and sexual development. Here, we report genome sequences of two strains of Filobasidium floriforme, a species from the order Filobasidiales, which branches basally to the Tremellales, Trichosporonales, and Holtermanniales. The assembled genomes of strains CBS6241 and CBS6242 are 27.4 Mb and 26.4 Mb in size, respectively, with 8314 and 7695 predicted protein-coding genes. Overall sequence identity at nucleic acid level between the strains is 97%. Among the predicted genes are pheromone precursor and pheromone receptor genes as well as two genes encoding homedomain (HD) transcription factors, which are predicted to be part of the mating type (MAT) locus. Sequence analysis indicates that CBS6241 and CBS6242 carry different alleles for both the pheromone/receptor genes as well as the HD transcription factors. Orthology inference identified 1482 orthogroups exclusively found in F. floriforme, some of which were involved in carbohydrate transport and metabolism. Subsequent CAZyme repertoire characterization identified 267 and 247 enzymes for CBS6241 and CBS6242, respectively, the second highest number of CAZymes among the analyzed Tremellomycete species. In addition, F. floriforme contains five CAZymes absent in other species and several plant-cell-wall degrading CAZymes with the highest copy number in Tremellomycota, indicating the biotechnological potential of this species.
Collapse
Affiliation(s)
| | - Steven Ahrendt
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jasmyn Pangilinan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Cindy Chen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Mi Yan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Dominik Begerow
- Lehrstuhl für Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
11
|
Abstract
Quorum sensing (QS) is one of the most studied cell-cell communication mechanisms in fungi. Research in the last 20 years has explored various fungal QS systems that are involved in a wide range of biological processes, especially eukaryote- or fungus-specific behaviors, mirroring the significant contribution of QS regulation to fungal biology and evolution. Based on recent progress, we summarize in this review fungal QS regulation, with an emphasis on its functional role in behaviors unique to fungi or eukaryotes. We suggest that using fungi as genetically amenable eukaryotic model systems to address why and how QS regulation is integrated into eukaryotic reproductive strategies and molecular or cellular processes could be an important direction for QS research. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
12
|
Sun S, Coelho MA, David-Palma M, Priest SJ, Heitman J. The Evolution of Sexual Reproduction and the Mating-Type Locus: Links to Pathogenesis of Cryptococcus Human Pathogenic Fungi. Annu Rev Genet 2019; 53:417-444. [PMID: 31537103 PMCID: PMC7025156 DOI: 10.1146/annurev-genet-120116-024755] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cryptococcus species utilize a variety of sexual reproduction mechanisms, which generate genetic diversity, purge deleterious mutations, and contribute to their ability to occupy myriad environmental niches and exhibit a range of pathogenic potential. The bisexual and unisexual cycles of pathogenic Cryptococcus species are stimulated by properties associated with their environmental niches and proceed through well-characterized signaling pathways and corresponding morphological changes. Genes governing mating are encoded by the mating-type (MAT) loci and influence pathogenesis, population dynamics, and lineage divergence in Cryptococcus. MAT has undergone significant evolutionary changes within the Cryptococcus genus, including transition from the ancestral tetrapolar state in nonpathogenic species to a bipolar mating system in pathogenic species, as well as several internal reconfigurations. Owing to the variety of established sexual reproduction mechanisms and the robust characterization of the evolution of mating and MAT in this genus, Cryptococcus species provide key insights into the evolution of sexual reproduction.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Shelby J Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| |
Collapse
|
13
|
Abstract
Cryptococcus neoformans is a ubiquitous environmental fungus and an opportunistic pathogen that causes fatal cryptococcal meningitis. Advances in genomics, genetics, and cellular and molecular biology of C. neoformans have dramatically improved our understanding of this important pathogen, rendering it a model organism to study eukaryotic biology and microbial pathogenesis. In light of recent progress, we describe in this review the life cycle of C. neoformans with a special emphasis on the regulation of the yeast-to-hypha transition and different modes of sexual reproduction, in addition to the impacts of the life cycle on cryptococcal populations and pathogenesis.
Collapse
Affiliation(s)
- Youbao Zhao
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Yumeng Fan
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| |
Collapse
|
14
|
Heitman J. E Pluribus Unum: The Fungal Kingdom as a Rosetta Stone for Biology and Medicine. Genetics 2019; 213:1-7. [PMID: 31488591 PMCID: PMC6727799 DOI: 10.1534/genetics.119.302537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
THE Genetics Society of America's (GSA's) Edward Novitski Prize recognizes a single experimental accomplishment or a body of work in which an exceptional level of creativity, and intellectual ingenuity, has been used to design and execute scientific experiments to solve a difficult problem in genetics. The 2019 recipient is Joseph Heitman, who is recognized for his work on fungal pathogens of humans and for ingenious experiments using yeast to identify the molecular targets of widely used immunosuppressive drugs. The latter work, part of Heitman's postdoctoral research, proved to be a seminal contribution to the discovery of the conserved Target of Rapamycin (TOR) pathway. In his own research group, a recurring theme has been the linking of fundamental insights in fungal biology to medically important problems. His studies have included defining fungal mating-type loci, including their evolution and links to virulence, and illustrating convergent transitions from outcrossing to inbreeding in fungal pathogens of plants and animals. He has led efforts to establish new genetic and genomic methods for studying pathogenesis in Cryptococcus species. Heitman's group also discovered unisexual reproduction, a novel mode of fungal reproduction with implications for pathogen evolution and the origins of sexual reproduction.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
15
|
Sun S, Coelho MA, Heitman J, Nowrousian M. Convergent evolution of linked mating-type loci in basidiomycete fungi. PLoS Genet 2019; 15:e1008365. [PMID: 31490920 PMCID: PMC6730849 DOI: 10.1371/journal.pgen.1008365] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Sexual development is a key evolutionary innovation of eukaryotes. In many species, mating involves interaction between compatible mating partners that can undergo cell and nuclear fusion and subsequent steps of development including meiosis. Mating compatibility in fungi is governed by the mating type (MAT) loci. In basidiomycetes, the ancestral state is hypothesized to be tetrapolar, with two genetically unlinked MAT loci containing homeodomain transcription factor genes (HD locus) and pheromone and pheromone receptor genes (P/R locus), respectively. Alleles at both loci must differ between mating partners for completion of sexual development. However, there are also basidiomycetes with bipolar mating systems, which can arise through genomic linkage of the HD and P/R loci. In the order Tremellales, bipolarity is found only in the pathogenic Cryptococcus species. Here, we describe the analysis of MAT loci from 24 species of the Trichosporonales, a sister order to the Tremellales. In all of the species analyzed, the MAT loci are fused and a single HD gene is present in each mating type, similar to the organization in the pathogenic Cryptococci. However, the HD and P/R allele combinations in the Trichosporonales are different from those in the pathogenic Cryptococci. This and the existence of tetrapolar species in the Tremellales suggest that fusion of the HD and P/R loci occurred independently in the Trichosporonales and pathogenic Cryptococci, supporting the hypothesis of convergent evolution towards fused MAT regions, similar to previous findings in other fungal groups. Unlike the fused MAT loci in several other basidiomycete lineages though, the gene content and gene order within the fused MAT loci are highly conserved in the Trichosporonales, and there is no apparent suppression of recombination extending from the MAT loci to adjacent chromosomal regions, suggesting different mechanisms for the evolution of physically linked MAT loci in these groups.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
16
|
Passer AR, Coelho MA, Billmyre RB, Nowrousian M, Mittelbach M, Yurkov AM, Averette AF, Cuomo CA, Sun S, Heitman J. Genetic and Genomic Analyses Reveal Boundaries between Species Closely Related to Cryptococcus Pathogens. mBio 2019; 10:e00764-19. [PMID: 31186317 PMCID: PMC6561019 DOI: 10.1128/mbio.00764-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Speciation is a central mechanism of biological diversification. While speciation is well studied in plants and animals, in comparison, relatively little is known about speciation in fungi. One fungal model is the Cryptococcus genus, which is best known for the pathogenic Cryptococcus neoformans/Cryptococcus gattii species complex that causes >200,000 new human infections annually. Elucidation of how these species evolved into important human-pathogenic species remains challenging and can be advanced by studying the most closely related nonpathogenic species, Cryptococcus amylolentus and Tsuchiyaea wingfieldii However, these species have only four known isolates, and available data were insufficient to determine species boundaries within this group. By analyzing full-length chromosome assemblies, we reappraised the phylogenetic relationships of the four available strains, confirmed the genetic separation of C. amylolentus and T. wingfieldii (now Cryptococcus wingfieldii), and revealed an additional cryptic species, for which the name Cryptococcus floricola is proposed. The genomes of the three species are ∼6% divergent and exhibit significant chromosomal rearrangements, including inversions and a reciprocal translocation that involved intercentromeric ectopic recombination, which together likely impose significant barriers to genetic exchange. Using genetic crosses, we show that while C. wingfieldii cannot interbreed with any of the other strains, C. floricola can still undergo sexual reproduction with C. amylolentus However, most of the resulting spores were inviable or sterile or showed reduced recombination during meiosis, indicating that intrinsic postzygotic barriers had been established. Our study and genomic data will foster additional studies addressing fungal speciation and transitions between nonpathogenic and pathogenic Cryptococcus lineages.IMPORTANCE The evolutionary drivers of speciation are critical to our understanding of how new pathogens arise from nonpathogenic lineages and adapt to new environments. Here we focus on the Cryptococcus amylolentus species complex, a nonpathogenic fungal lineage closely related to the human-pathogenic Cryptococcus neoformans/Cryptococcus gattii complex. Using genetic and genomic analyses, we reexamined the species boundaries of four available isolates within the C. amylolentus complex and revealed three genetically isolated species. Their genomes are ∼6% divergent and exhibit chromosome rearrangements, including translocations and small-scale inversions. Although two of the species (C. amylolentus and newly described C. floricola) were still able to interbreed, the resulting hybrid progeny were usually inviable or sterile, indicating that barriers to reproduction had already been established. These results advance our understanding of speciation in fungi and highlight the power of genomics in assisting our ability to correctly identify and discriminate fungal species.
Collapse
Affiliation(s)
- Andrew Ryan Passer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Moritz Mittelbach
- Geobotany, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Andrey M Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
17
|
Sun S, Priest SJ, Heitman J. Cryptococcus neoformans Mating and Genetic Crosses. ACTA ACUST UNITED AC 2019; 53:e75. [PMID: 30661293 DOI: 10.1002/cpmc.75] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Cryptococcus pathogenic species complex is a group of opportunistic human fungal pathogens that cause cryptococcal meningoencephalitis, an infection associated with unacceptably high mortality rates. The public health relevance of these pathogens has galvanized extensive research over the past several decades and led to characterization of their sexual cycles. This research has allowed several Cryptococcus species to develop into model fungal organisms for both pathogenesis and basic science studies. Many of these studies require observation of the meiotic process and its associated mating structures as well as generation of meiotic progeny with novel phenotypes and genotypes. Herein, we describe how to set up genetic crosses between Cryptococcus strains and observe their mating phenotypes as well as how to recover progeny from these crosses for further analysis. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Shelby J Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
18
|
Metin B, Döğen A, Yıldırım E, de Hoog GS, Heitman J, Ilkit M. Mating type (MAT) locus and possible sexuality of the opportunistic pathogen Exophiala dermatitidis. Fungal Genet Biol 2019; 124:29-38. [PMID: 30611834 DOI: 10.1016/j.fgb.2018.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 11/27/2022]
Abstract
Sexual reproduction among the black yeasts is generally limited to environmental saprobic species and is rarely observed among opportunists in humans. To date, a complete sexual cycle has not been observed in Exophiala dermatitidis. In this study, we aimed to gain insight into the reproductive mode of E. dermatitidis by characterizing its mating type (MAT) locus, conducting MAT screening of environmental and clinical isolates, examining the expression of the MAT genes and analyzing the virulence of the isolates of different mating types. Similar to other members of the Pezizomycotina, the E. dermatitidis genome harbors a high mobility group (HMG) domain gene (MAT1-2-1) in the vicinity of the SLA2 and APN2 genes. The MAT loci of 74 E. dermatitidis isolates (11 clinical and 63 environmental) were screened by PCR, and the surrounding region was amplified using long-range PCR. Sequencing of the ∼ 12-kb PCR product of a MAT1-1 isolate revealed an α-box gene (MAT1-1-1). The MAT1-1 idiomorph was 3544-bp long and harbored the MAT1-1-1 and MAT1-1-4 genes. The MAT1-2 idiomorph was longer, 3771-bp, and harbored only the MAT1-2-1 gene. This structure suggests a heterothallic reproduction mode. The distribution of MAT among 74 isolates was ∼ 1:1 with a MAT1-1:MAT1-2 ratio of 35:39. RT-PCR analysis indicated that the MAT genes are transcribed. No significant difference was detected in the virulence of isolates representing different mating types using a Galleria mellonella model (P > 0.05). Collectively, E. dermatitidis is the first opportunistic black yeast in which both MAT idiomorphs have been characterized. The occurrence of isolates bearing both idiomorphs, their approximately equal distribution, and the expression of the MAT genes suggest that E. dermatitidis might reproduce sexually.
Collapse
Affiliation(s)
- Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | - Esra Yıldırım
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| | - G Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; Center of Expertise in Mycology of Radboudumc/CWZ, Nijmegen, the Netherlands.
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey.
| |
Collapse
|
19
|
Chantha SC, Herman AC, Castric V, Vekemans X, Marande W, Schoen DJ. The unusual S locus of Leavenworthia is composed of two sets of paralogous loci. THE NEW PHYTOLOGIST 2017; 216:1247-1255. [PMID: 28906557 DOI: 10.1111/nph.14764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/25/2017] [Indexed: 05/28/2023]
Abstract
The Leavenworthia self-incompatibility locus (S locus) consists of paralogs (Lal2, SCRL) of the canonical Brassicaceae S locus genes (SRK, SCR), and is situated in a genomic position that differs from the ancestral one in the Brassicaceae. Unexpectedly, in a small number of Leavenworthia alabamica plants examined, sequences closely resembling exon 1 of SRK have been found, but the function of these has remained unclear. BAC cloning and expression analyses were employed to characterize these SRK-like sequences. An SRK-positive Bacterial Artificial Chromosome clone was found to contain complete SRK and SCR sequences located close by one another in the derived genomic position of the Leavenworthia S locus, and in place of the more typical Lal2 and SCRL sequences. These sequences are expressed in stigmas and anthers, respectively, and crossing data show that the SRK/SCR haplotype is functional in self-incompatibility. Population surveys indicate that < 5% of Leavenworthia S loci possess such alleles. An ancestral translocation or recombination event involving SRK/SCR and Lal2/SCRL likely occurred, together with neofunctionalization of Lal2/SCRL, and both haplotype groups now function as Leavenworthia S locus alleles. These findings suggest that S locus alleles can have distinctly different evolutionary origins.
Collapse
Affiliation(s)
- Sier-Ching Chantha
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, Canada, H3A1B1
| | - Adam C Herman
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, Canada, H3A1B1
- Department of Plant Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Vincent Castric
- Unité Evo-Eco-Paléo (EEP) - UMR 8198, CNRS/Université de Lille - Sciences et Technologies, Villeneuve d'Ascq Cedex, F-59655, France
| | - Xavier Vekemans
- Unité Evo-Eco-Paléo (EEP) - UMR 8198, CNRS/Université de Lille - Sciences et Technologies, Villeneuve d'Ascq Cedex, F-59655, France
| | - William Marande
- Institut National de la Recherche Agronomique, 31326, Castanet Tolosan Cedex, France
| | - Daniel J Schoen
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, Canada, H3A1B1
| |
Collapse
|
20
|
The influence of the mating type on virulence of Mucor irregularis. Sci Rep 2017; 7:10629. [PMID: 28878325 PMCID: PMC5587739 DOI: 10.1038/s41598-017-10954-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022] Open
Abstract
Mucor irregularis is an emerging fungal pathogen that cause cutaneous infection and could cause death. However, little is known about its mechanism of pathogenesis. There is evidence suggesting virulence vary with mating types in fungi, including the Mucorales. Here, we characterized the mating type locus of M. irregularis and the mating type ratio of 17 clinical isolates in China. Genomic data indicated M. irregularis is heterothallic having two mating types – bearing either SexP or SexM allele. Also, we employed a mice model to study the inflammation and pathological effects of different mating types. The comparison of the inflammatory response, cytokine profiles and Th-1, Th-2 and Th-17 cells numbers in each mating type treated mice showed that the severity and disease progress were enhanced in (+) mating type treated mice. One (+/0) mutant strain, with multiple mutations at the mating locus, had defects in sexual mating ability but appeared to be more virulent than the (−) mating type. Although (+) mating type appeared to be more virulent, most of our clinical isolates presented belonged to (−) mating type. Our findings support the involvement of MAT genes in sexual fertility, and the influence of mating type on the severity of cutaneous infection.
Collapse
|
21
|
Genomic and transcriptomic analyses reveal differential regulation of diverse terpenoid and polyketides secondary metabolites in Hericium erinaceus. Sci Rep 2017; 7:10151. [PMID: 28860534 PMCID: PMC5579188 DOI: 10.1038/s41598-017-10376-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/07/2017] [Indexed: 12/29/2022] Open
Abstract
The lion's mane mushroom Hericium erinaceus is a famous traditional medicinal fungus credited with anti-dementia activity and a producer of cyathane diterpenoid natural products (erinacines) useful against nervous system diseases. To date, few studies have explored the biosynthesis of these compounds, although their chemical synthesis is known. Here, we report the first genome and tanscriptome sequence of the medicinal fungus H. erinaceus. The size of the genome is 39.35 Mb, containing 9895 gene models. The genome of H. erinaceus reveals diverse enzymes and a large family of cytochrome P450 (CYP) proteins involved in the biosynthesis of terpenoid backbones, diterpenoids, sesquiterpenes and polyketides. Three gene clusters related to terpene biosynthesis and one gene cluster for polyketides biosynthesis (PKS) were predicted. Genes involved in terpenoid biosynthesis were generally upregulated in mycelia, while the PKS gene was upregulated in the fruiting body. Comparative genome analysis of 42 fungal species of Basidiomycota revealed that most edible and medicinal mushroom show many more gene clusters involved in terpenoid and polyketide biosynthesis compared to the pathogenic fungi. None of the gene clusters for terpenoid or polyketide biosynthesis were predicted in the poisonous mushroom Amanita muscaria. Our findings may facilitate future discovery and biosynthesis of bioactive secondary metabolites from H. erinaceus and provide fundamental information for exploring the secondary metabolites in other Basidiomycetes.
Collapse
|
22
|
Fungal genome and mating system transitions facilitated by chromosomal translocations involving intercentromeric recombination. PLoS Biol 2017; 15:e2002527. [PMID: 28800596 PMCID: PMC5568439 DOI: 10.1371/journal.pbio.2002527] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/23/2017] [Accepted: 07/25/2017] [Indexed: 01/14/2023] Open
Abstract
Species within the human pathogenic Cryptococcus species complex are major threats to public health, causing approximately 1 million annual infections globally. Cryptococcus amylolentus is the most closely known related species of the pathogenic Cryptococcus species complex, and it is non-pathogenic. Additionally, while pathogenic Cryptococcus species have bipolar mating systems with a single large mating type (MAT) locus that represents a derived state in Basidiomycetes, C. amylolentus has a tetrapolar mating system with 2 MAT loci (P/R and HD) located on different chromosomes. Thus, studying C. amylolentus will shed light on the transition from tetrapolar to bipolar mating systems in the pathogenic Cryptococcus species, as well as its possible link with the origin and evolution of pathogenesis. In this study, we sequenced, assembled, and annotated the genomes of 2 C. amylolentus isolates, CBS6039 and CBS6273, which are sexual and interfertile. Genome comparison between the 2 C. amylolentus isolates identified the boundaries and the complete gene contents of the P/R and HD MAT loci. Bioinformatic and chromatin immunoprecipitation sequencing (ChIP-seq) analyses revealed that, similar to those of the pathogenic Cryptococcus species, C. amylolentus has regional centromeres (CENs) that are enriched with species-specific transposable and repetitive DNA elements. Additionally, we found that while neither the P/R nor the HD locus is physically closely linked to its centromere in C. amylolentus, and the regions between the MAT loci and their respective centromeres show overall synteny between the 2 genomes, both MAT loci exhibit genetic linkage to their respective centromere during meiosis, suggesting the presence of recombinational suppressors and/or epistatic gene interactions in the MAT-CEN intervening regions. Furthermore, genomic comparisons between C. amylolentus and related pathogenic Cryptococcus species provide evidence that multiple chromosomal rearrangements mediated by intercentromeric recombination have occurred during descent of the 2 lineages from their common ancestor. Taken together, our findings support a model in which the evolution of the bipolar mating system was initiated by an ectopic recombination event mediated by similar repetitive centromeric DNA elements shared between chromosomes. This translocation brought the P/R and HD loci onto the same chromosome, and further chromosomal rearrangements then resulted in the 2 MAT loci becoming physically linked and eventually fusing to form the single contiguous MAT locus that is now extant in the pathogenic Cryptococcus species. This manuscript explores the evolution of the genomic regions encoding the mating type loci of basidiomycetous fungi. Typically, the mating system is tetrapolar, meaning that it is composed of 2 unlinked mating type (MAT) loci (P/R and HD) that are located on different chromosomes. However, species with bipolar mating systems, in which the P/R and HD loci are located on the same chromosome, have also been identified. Tetrapolar and bipolar species are often closely related, suggesting the transition between these 2 mating systems might occur frequently. For example, the species within the human fungal pathogenic Cryptococcus species complex have bipolar mating systems, with 1 large MAT locus that appears to be a fusion product of the P/R and HD loci. On the other hand, the species that is the closest outgroup to these pathogenic species, Cryptococcus amylolentus, appears to have a classic tetrapolar mating system. Interestingly, the 2 MAT loci of C. amylolentus exhibit centromeric linkage during meiosis, and as a consequence, their resulting meiotic segregation pattern differs from other regions of the genome. Additionally, both pathogenic and non-pathogenic species are found to have large regional centromeres enriched with transposable and repetitive elements. Our genome comparison analyses indicated that these regional centromeres underwent ectopic recombination during the evolution of these 2 lineages. Based on these observations, we propose a model for the transition from the tetrapolar mating system in non-pathogenic C. amylolentus to the bipolar mating system in its related pathogenic species that is initiated by intercentromeric ectopic recombination, followed by chromosomal rearrangements. These events moved the 2 MAT loci closer to each other and eventually fused them to form a single MAT locus. This model is also consistent with recent findings on the organization of MAT loci in other basidiomycetous species.
Collapse
|
23
|
Coelho MA, Bakkeren G, Sun S, Hood ME, Giraud T. Fungal Sex: The Basidiomycota. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0046-2016. [PMID: 28597825 PMCID: PMC5467461 DOI: 10.1128/microbiolspec.funk-0046-2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Indexed: 12/29/2022] Open
Abstract
Fungi of the Basidiomycota, representing major pathogen lineages and mushroom-forming species, exhibit diverse means to achieve sexual reproduction, with particularly varied mechanisms to determine compatibilities of haploid mating partners. For species that require mating between distinct genotypes, discrimination is usually based on both the reciprocal exchange of diffusible mating pheromones, rather than sexes, and the interactions of homeodomain protein signals after cell fusion. Both compatibility factors must be heterozygous in the product of mating, and genetic linkage relationships of the mating pheromone/receptor and homeodomain genes largely determine the complex patterns of mating-type variation. Independent segregation of the two compatibility factors can create four haploid mating genotypes from meiosis, referred to as tetrapolarity. This condition is thought to be ancestral to the basidiomycetes. Alternatively, cosegregation by linkage of the two mating factors, or in some cases the absence of the pheromone-based discrimination, yields only two mating types from meiosis, referred to as bipolarity. Several species are now known to have large and highly rearranged chromosomal regions linked to mating-type genes. At the population level, polymorphism of the mating-type genes is an exceptional aspect of some basidiomycete fungi, where selection under outcrossing for rare, intercompatible allelic variants is thought to be responsible for numbers of mating types that may reach several thousand. Advances in genome sequencing and assembly are yielding new insights by comparative approaches among and within basidiomycete species, with the promise to resolve the evolutionary origins and dynamics of mating compatibility genetics in this major eukaryotic lineage.
Collapse
Affiliation(s)
- Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, V0H 1Z0, Canada
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, MA 01002
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
24
|
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Timothy Y. James
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
25
|
Bellora N, Moliné M, David-Palma M, Coelho MA, Hittinger CT, Sampaio JP, Gonçalves P, Libkind D. Comparative genomics provides new insights into the diversity, physiology, and sexuality of the only industrially exploited tremellomycete: Phaffia rhodozyma. BMC Genomics 2016; 17:901. [PMID: 27829365 PMCID: PMC5103461 DOI: 10.1186/s12864-016-3244-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/01/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The class Tremellomycete (Agaricomycotina) encompasses more than 380 fungi. Although there are a few edible Tremella spp., the only species with current biotechnological use is the astaxanthin-producing yeast Phaffia rhodozyma (Cystofilobasidiales). Besides astaxanthin, a carotenoid pigment with potent antioxidant activity and great value for aquaculture and pharmaceutical industries, P. rhodozyma possesses multiple exceptional traits of fundamental and applied interest. The aim of this study was to obtain, and analyze two new genome sequences of representative strains from the northern (CBS 7918T, the type strain) and southern hemispheres (CRUB 1149) and compre them to a previously published genome sequence (strain CBS 6938). Photoprotection and antioxidant related genes, as well as genes involved in sexual reproduction were analyzed. RESULTS Both genomes had ca. 19 Mb and 6000 protein coding genes, similar to CBS 6938. Compared to other fungal genomes P. rhodozyma strains and other Cystofilobasidiales have the highest number of intron-containing genes and highest number of introns per gene. The Patagonian strain showed 4.4 % of nucleotide sequence divergence compared to the European strains which differed from each other by only 0.073 %. All known genes related to the synthesis of astaxanthin were annotated. A hitherto unknown gene cluster potentially responsible for photoprotection (mycosporines) was found in the newly sequenced P. rhodozyma strains but was absent in the non-mycosporinogenic strain CBS 6938. A broad battery of enzymes that act as scavengers of free radical oxygen species were detected, including catalases and superoxide dismutases (SODs). Additionally, genes involved in sexual reproduction were found and annotated. CONCLUSIONS A draft genome sequence of the type strain of P. rhodozyma is now available, and comparison with that of the Patagonian population suggests the latter deserves to be assigned to a distinct variety. An unexpected genetic trait regarding high occurrence of introns in P. rhodozyma and other Cystofilobasidiales was revealed. New genomic insights into fungal homothallism were also provided. The genetic basis of several additional photoprotective and antioxidant strategies were described, indicating that P. rhodozyma is one of the fungi most well-equipped to cope with environmental oxidative stress, a factor that has probably contributed to shaping its genome.
Collapse
Affiliation(s)
- Nicolás Bellora
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino-Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - UNComahue, Quintral 1250, 8400, Bariloche, Argentina
| | - Martín Moliné
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino-Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - UNComahue, Quintral 1250, 8400, Bariloche, Argentina
| | - Márcia David-Palma
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - José P Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino-Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - UNComahue, Quintral 1250, 8400, Bariloche, Argentina.
| |
Collapse
|
26
|
Heitman J. Evolution of sexual reproduction: a view from the Fungal Kingdom supports an evolutionary epoch with sex before sexes. FUNGAL BIOL REV 2015; 29:108-117. [PMID: 26834823 DOI: 10.1016/j.fbr.2015.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sexual reproduction is conserved throughout each supergroup within the eukaryotic tree of life, and therefore thought to have evolved once and to have been present in the last eukaryotic common ancestor (LECA). Given the antiquity of sex, there are features of sexual reproduction that are ancient and ancestral, and thus shared in diverse extant organisms. On the other hand, the vast evolutionary distance that separates any given extant species from the LECA necessarily implies that other features of sex will be derived. While most types of sex we are familiar with involve two opposite sexes or mating types, recent studies in the fungal kingdom have revealed novel and unusual patterns of sexual reproduction, including unisexual reproduction. In this mode of reproduction a single mating type can on its own undergo self-fertile/homothallic reproduction, either with itself or with other members of the population of the same mating type. Unisexual reproduction has arisen independently as a derived feature in several different lineages. That a myriad of different types of sex determination and sex determinants abound in animals, plants, protists, and fungi suggests that sex specification itself may not be ancestral and instead may be a derived trait. If so, then the original form of sexual reproduction may have been unisexual, onto which sexes were superimposed as a later feature. In this model, unisexual reproduction is both an ancestral and a derived trait. In this review, we consider what is new and what is old about sexual reproduction from the unique vantage point of the fungal kingdom.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
27
|
Genomics and Transcriptomics Analyses of the Oil-Accumulating Basidiomycete Yeast Trichosporon oleaginosus: Insights into Substrate Utilization and Alternative Evolutionary Trajectories of Fungal Mating Systems. mBio 2015. [PMID: 26199329 PMCID: PMC4513080 DOI: 10.1128/mbio.00918-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial fermentation of agro-industrial waste holds great potential for reducing the environmental impact associated with the production of lipids for industrial purposes from plant biomass. However, the chemical complexity of many residues currently prevents efficient conversion into lipids, creating a high demand for strains with the ability to utilize all energy-rich components of agricultural residues. Here, we present results of genome and transcriptome analyses of Trichosporon oleaginosus. This oil-accumulating yeast is able to grow on a wide variety of substrates, including pentoses and N-acetylglucosamine, making it an interesting candidate for biotechnological applications. Transcriptomics shows specific changes in gene expression patterns under lipid-accumulating conditions. Furthermore, gene content and expression analyses indicate that T. oleaginosus is well-adapted for the utilization of chitin-rich biomass. We also focused on the T. oleaginosus mating type, because this species is a member of the Tremellomycetes, a group that has been intensively analyzed as a model for the evolution of sexual development, the best-studied member being Cryptococcus neoformans. The structure of the T. oleaginosus mating-type regions differs significantly from that of other Tremellomycetes and reveals a new evolutionary trajectory paradigm. Comparative analysis shows that recruitment of developmental genes to the ancestral tetrapolar mating-type loci occurred independently in the Trichosporon and Cryptococcus lineages, supporting the hypothesis of a trend toward larger mating-type regions in fungi. Finite fossil fuel resources pose sustainability challenges to society and industry. Microbial oils are a sustainable feedstock for biofuel and chemical production that does not compete with food production. We describe genome and transcriptome analyses of the oleaginous yeast Trichosporon oleaginosus, which can accumulate up to 70% of its dry weight as lipids. In contrast to conventional yeasts, this organism not only shows an absence of diauxic effect while fermenting hexoses and pentoses but also effectively utilizes xylose and N-acetylglucosamine, which are building blocks of lignocellulose and chitin, respectively. Transcriptome analysis revealed metabolic networks that govern conversion of xylose or N-acetylglucosamine as well as lipid accumulation. These data form the basis for a targeted strain optimization strategy. Furthermore, analysis of the mating type of T. oleaginosus supports the hypothesis of a trend toward larger mating-type regions in fungi, similar to the evolution of sex chromosomes in animals and plants.
Collapse
|
28
|
Evolution of Mating Systems in Basidiomycetes and the Genetic Architecture Underlying Mating-Type Determination in the Yeast Leucosporidium scottii. Genetics 2015; 201:75-89. [PMID: 26178967 DOI: 10.1534/genetics.115.177717] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/13/2015] [Indexed: 11/18/2022] Open
Abstract
In most fungi, sexual reproduction is bipolar; that is, two alternate sets of genes at a single mating-type (MAT) locus determine two mating types. However, in the Basidiomycota, a unique (tetrapolar) reproductive system emerged in which sexual identity is governed by two unlinked MAT loci, each of which controls independent mechanisms of self/nonself recognition. Tetrapolar-to-bipolar transitions have occurred on multiple occasions in the Basidiomycota, resulting, for example, from linkage of the two MAT loci into a single inheritable unit. Nevertheless, owing to the scarcity of molecular data regarding tetrapolar systems in the earliest-branching lineage of the Basidiomycota (subphylum Pucciniomycotina), it is presently unclear if the last common ancestor was tetrapolar or bipolar. Here, we address this question, by investigating the mating system of the Pucciniomycotina yeast Leucosporidium scottii. Using whole-genome sequencing and chromoblot analysis, we discovered that sexual reproduction is governed by two physically unlinked gene clusters: a multiallelic homeodomain (HD) locus and a pheromone/receptor (P/R) locus that is biallelic, thereby dismissing the existence of a third P/R allele as proposed earlier. Allele distribution of both MAT genes in natural populations showed that the two loci were in strong linkage disequilibrium, but independent assortment of MAT alleles was observed in the meiotic progeny of a test cross. The sexual cycle produces fertile progeny with similar proportions of the four mating types, but approximately 2/3 of the progeny was found to be nonhaploid. Our study adds to others in reinforcing tetrapolarity as the ancestral state of all basidiomycetes.
Collapse
|
29
|
Fu C, Sun S, Billmyre RB, Roach KC, Heitman J. Unisexual versus bisexual mating in Cryptococcus neoformans: Consequences and biological impacts. Fungal Genet Biol 2015; 78:65-75. [PMID: 25173822 PMCID: PMC4344436 DOI: 10.1016/j.fgb.2014.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/14/2014] [Indexed: 11/22/2022]
Abstract
Cryptococcus neoformans is an opportunistic human fungal pathogen and can undergo both bisexual and unisexual mating. Despite the fact that one mating type is dispensable for unisexual mating, the two sexual cycles share surprisingly similar features. Both mating cycles are affected by similar environmental factors and regulated by the same pheromone response pathway. Recombination takes place during unisexual reproduction in a fashion similar to bisexual reproduction and can both admix pre-existing genetic diversity and also generate diversity de novo just like bisexual reproduction. These common features may allow the unisexual life cycle to provide phenotypic and genotypic plasticity for the natural Cryptococcus population, which is predominantly α mating type, and to avoid Muller's ratchet. The morphological transition from yeast to hyphal growth during both bisexual and unisexual mating may provide increased opportunities for outcrossing and the ability to forage for nutrients at a distance. The unisexual life cycle is a key evolutionary factor for Cryptococcus as a highly successful global fungal pathogen.
Collapse
Affiliation(s)
- Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - R B Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kevin C Roach
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
30
|
Yurkov A, Guerreiro MA, Sharma L, Carvalho C, Fonseca Á. Multigene assessment of the species boundaries and sexual status of the basidiomycetous yeasts Cryptococcus flavescens and C. terrestris (Tremellales). PLoS One 2015; 10:e0120400. [PMID: 25811603 PMCID: PMC4374795 DOI: 10.1371/journal.pone.0120400] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/21/2015] [Indexed: 02/06/2023] Open
Abstract
Cryptococcus flavescens and C. terrestris are phenotypically indistinguishable sister species that belong to the order Tremellales (Tremellomycetes, Basidiomycota) and which may be mistaken for C. laurentii based on phenotype. Phylogenetic separation between C. flavescens and C. terrestris was based on rDNA sequence analyses, but very little is known on their intraspecific genetic variability or propensity for sexual reproduction. We studied 59 strains from different substrates and geographic locations, and used a multilocus sequencing (MLS) approach complemented with the sequencing of mating type (MAT) genes to assess genetic variation and reexamine the boundaries of the two species, as well as their sexual status. The following five loci were chosen for MLS: the rDNA ITS-LSU region, the rDNA IGS1 spacer, and fragments of the genes encoding the largest subunit of RNA polymerase II (RPB1), the translation elongation factor 1 alpha (TEF1) and the p21-activated protein kinase (STE20). Phylogenetic network analyses confirmed the genetic separation of the two species and revealed two additional cryptic species, for which the names Cryptococcus baii and C. ruineniae are proposed. Further analyses of the data revealed a high degree of genetic heterogeneity within C. flavescens as well as evidence for recombination between lineages detected for this species. Strains of C. terrestris displayed higher levels of similarity in all analysed genes and appear to make up a single recombining group. The two MAT genes (STE3 and SXI1/SXI2) sequenced for C. flavescens strains confirmed the potential for sexual reproduction and suggest the presence of a tetrapolar mating system with a biallelic pheromone/receptor locus and a multiallelic HD locus. In C. terrestris we could only sequence STE3, which revealed a biallelic P/R locus. In spite of the strong evidence for sexual recombination in the two species, attempts at mating compatible strains of both species on culture media were unsuccessful.
Collapse
Affiliation(s)
- Andrey Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- * E-mail:
| | - Marco A. Guerreiro
- Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Lav Sharma
- Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Cláudia Carvalho
- Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Álvaro Fonseca
- Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
31
|
Structural and functional conservation of fungal MatA and human SRY sex-determining proteins. Nat Commun 2014; 5:5434. [PMID: 25399555 PMCID: PMC4235659 DOI: 10.1038/ncomms6434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/01/2014] [Indexed: 11/25/2022] Open
Abstract
Sex determination in animals and fungi is regulated by specific sex determining genes. The Aspergillus nidulans (A.nidulans) mating type gene matA and the human SRY (Sex Determining Region Y) encode proteins containing a single HMG (High Mobility Group) domain. Analysis of the amino acid sequence of MatA and SRY transcription factors revealed significant structural similarity. The human SRY protein is able to functionally replace MatA and drives the sexual cycle in the fungus A. nidulans. Functional studies indicate that SRY drives early fruiting body development, and hybrid MatA protein carrying the SRY HMG box is fully capable of driving both early and late stages of sexual development, including gametogenesis. Our data suggest that SRY and MatA are both structurally and functionally related and conserved in regulating sexual processes. The fundamental mechanisms driving evolution of the genetic pathways underlying sex determination, sex chromosomes and sexual reproduction in eukaryotes appear similar.
Collapse
|
32
|
Abstract
Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation.
Collapse
Affiliation(s)
- Ursula Goodenough
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | |
Collapse
|
33
|
Maintaining two mating types: structure of the mating type locus and its role in heterokaryosis in Podospora anserina. Genetics 2014; 197:421-32. [PMID: 24558260 DOI: 10.1534/genetics.113.159988] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudo-homothallism is a reproductive strategy elected by some fungi producing heterokaryotic sexual spores containing genetically different but sexually compatible nuclei. This lifestyle appears as a compromise between true homothallism (self-fertility with predominant inbreeding) and complete heterothallism (with exclusive outcrossing). However, pseudohomothallic species face the problem of maintaining heterokaryotic mycelia to fully benefit from this lifestyle, as homokaryons are self-sterile. Here, we report on the structure of chromosome 1 in mat+ and mat- isolates of strain S of the pseudohomothallic fungus Podospora anserina. Chromosome 1 contains either one of the mat+ and mat- mating types of P. anserina, which is mostly found in nature as a mat+/mat- heterokaryotic mycelium harboring sexually compatible nuclei. We identified a "mat" region ∼0.8 Mb long, devoid of meiotic recombination and containing the mating-type idiomorphs, which is a candidate to be involved in the maintenance of the heterokaryotic state, since the S mat+ and S mat- strains have different physiology that may enable hybrid-vigor-like phenomena in the heterokaryons. The mat region contains 229 coding sequences. A total of 687 polymorphisms were detected between the S mat+ and S mat- chromosomes. Importantly, the mat region is colinear between both chromosomes, which calls for an original mechanism of recombination inhibition. Microarray analyses revealed that 10% of the P. anserina genes have different transcriptional profiles in S mat+ and S mat-, in line with their different phenotypes. Finally, we show that the heterokaryotic state is faithfully maintained during mycelium growth of P. anserina, yet mat+/mat+ and mat-/mat- heterokaryons are as stable as mat+/mat- ones, evidencing a maintenance of heterokaryosis that does not rely on fitness-enhancing complementation between the S mat+ and S mat- strains.
Collapse
|
34
|
Leducq JB. Ecological Genomics of Adaptation and Speciation in Fungi. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:49-72. [DOI: 10.1007/978-94-007-7347-9_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Molecular and genetic evidence for a tetrapolar mating system in the basidiomycetous yeast Kwoniella mangrovensis and two novel sibling species. EUKARYOTIC CELL 2013; 12:746-60. [PMID: 23524993 DOI: 10.1128/ec.00065-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Kwoniella mangrovensis has been described as a sexual species with a bipolar mating system. Phylogenetic analysis of multiple genes places this species together with Kwoniella heveanensis in the Kwoniella clade, a sister clade to that containing two pathogenic species of global importance, Cryptococcus neoformans and Cryptococcus gattii, within the Tremellales. Recent studies defining the mating type loci (MAT) of species in these clades showed that, with the exception of C. neoformans and C. gattii, which are bipolar with a single biallelic multigene MAT locus, several other species feature a tetrapolar mating system with two unlinked loci (homeodomain [HD] and pheromone/receptor [P/R] loci). We characterized several strains from the original study describing K. mangrovensis; two MAT regions were amplified and sequenced: the STE20 gene (P/R locus) and the divergently transcribed SXI1 and SXI2 genes (HD locus). We identified five different mating types with different STE20/SXI allele combinations that together with results of mating experiments demonstrate that K. mangrovensis is not bipolar but instead has a tetrapolar mating system. Sequence and gene analysis for a 43-kb segment of the K. mangrovensis type strain MAT locus revealed remarkable synteny with the homologous K. heveanensis MAT P/R region, providing new insights into slower evolution of MAT loci in the Kwoniella compared to the Cryptococcus clade of the Tremellales. The study of additional isolates from plant substrates in Europe and Botswana using a combination of multilocus sequencing with MAT gene analysis revealed two novel sibling species that we name Kwoniella europaea and Kwoniella botswanensis and which appear to also have tetrapolar mating systems.
Collapse
|
36
|
Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proc Natl Acad Sci U S A 2013; 110:1476-81. [PMID: 23307807 DOI: 10.1073/pnas.1217943110] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Penicillium chrysogenum is a filamentous fungus of major medical and historical importance, being the original and present-day industrial source of the antibiotic penicillin. The species has been considered asexual for more than 100 y, and despite concerted efforts, it has not been possible to induce sexual reproduction, which has prevented sexual crosses being used for strain improvement. However, using knowledge of mating-type (MAT) gene organization, we now describe conditions under which a sexual cycle can be induced leading to production of meiotic ascospores. Evidence of recombination was obtained using both molecular and phenotypic markers. The identified heterothallic sexual cycle was used for strain development purposes, generating offspring with novel combinations of traits relevant to penicillin production. Furthermore, the MAT1-1-1 mating-type gene, known primarily for a role in governing sexual identity, was also found to control transcription of a wide range of genes with biotechnological relevance including those regulating penicillin production, hyphal morphology, and conidial formation. These discoveries of a sexual cycle and MAT gene function are likely to be of broad relevance for manipulation of other asexual fungi of economic importance.
Collapse
|
37
|
Abstract
It is now well established that plants have an important place in studies of sex chromosome evolution because of the repeated independent evolution of separate sexes and sex chromosomes. There has been considerable recent progress in studying plant sex chromosomes. In this review, I focus on how these recent studies have helped clarify or answer several important questions about sex chromosome evolution, and I shall also try to clarify some common misconceptions. I also outline future work that will be needed to make further progress, including testing some important ideas by genetic, molecular, and developmental approaches. Systems with different ages can clearly help show the time course of events during changes from an ancestral co-sexual state (hermaphroditism or monoecy), and I will also explain how different questions can be studied in lineages whose dioecy or sex chromosomes evolved at different times in the past.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| |
Collapse
|
38
|
Abstract
Genomic regions that determine mating compatibility are subject to distinct evolutionary forces that can lead to a cessation of meiotic recombination and the accumulation of structural changes between members of the homologous chromosome pair. The relatively recent discovery of dimorphic mating-type chromosomes in fungi can aid the understanding of sex chromosome evolution that is common to dioecious plants and animals. For the anther-smut fungus, Microbotryum lychnidis-dioicae (= M. violaceum isolated from Silene latifolia), the extent of recombination cessation on the dimorphic mating-type chromosomes has been conflictingly reported. Comparison of restriction digest optical maps for the two mating-type chromosomes shows that divergence extends over 90% of the chromosome lengths, flanked at either end by two pseudoautosomal regions. Evidence to support the expansion of recombination cessation in stages from the mating-type locus toward the pseudoautosomal regions was not found, but evidence of such expansion could be obscured by ongoing processes that affect genome structure. This study encourages the comparison of forces that may drive large-scale recombination suppression in fungi and other eukaryotes characterized by dimorphic chromosome pairs associated with sexual life cycles.
Collapse
|
39
|
Sun S, Heitman J. Should Y stay or should Y go: the evolution of non-recombining sex chromosomes. Bioessays 2012; 34:938-42. [PMID: 22948853 DOI: 10.1002/bies.201200064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gradual degradation seems inevitable for non-recombining sex chromosomes. This has been supported by the observation of degenerated non-recombining sex chromosomes in a variety of species. The human Y chromosome has also degenerated significantly during its evolution, and theories have been advanced that the Y chromosome could disappear within the next ~5 million years, if the degeneration rate it has experienced continues. However, recent studies suggest that this is unlikely. Conservative evolutionary forces such as strong purifying selection and intrachromosomal repair through gene conversion balance the degeneration tendency of the Y chromosome and maintain its integrity after an initial period of faster degeneration. We discuss the evidence both for and against the extinction of the Y chromosome. We also discuss potential insights gained on the evolution of sex-determining chromosomes by studying simpler sex-determining chromosomal regions of unicellular and multicellular microorganisms.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
40
|
Gioti A, Mushegian AA, Strandberg R, Stajich JE, Johannesson H. Unidirectional Evolutionary Transitions in Fungal Mating Systems and the Role of Transposable Elements. Mol Biol Evol 2012; 29:3215-26. [DOI: 10.1093/molbev/mss132] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
41
|
Petit E, Giraud T, de Vienne DM, Coelho MA, Aguileta G, Amselem J, Kreplak J, Poulain J, Gavory F, Wincker P, Young SK, Cuomo C, Perlin MH, Hood ME. Linkage to the mating-type locus across the genus Microbotryum: insights into nonrecombining chromosomes. Evolution 2012; 66:3519-33. [PMID: 23106715 DOI: 10.1111/j.1558-5646.2012.01703.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parallels have been drawn between the evolution of nonrecombining regions in fungal mating-type chromosomes and animal and plant sex chromosomes, particularly regarding the stages of recombination cessation forming evolutionary strata of allelic divergence. Currently, evidence and explanations for recombination cessation in fungi are sparse, and the presence of evolutionary strata has been examined in a minimal number of fungal taxa. Here, the basidiomycete genus Microbotryum was used to determine the history of recombination cessation for loci on the mating-type chromosomes. Ancestry of linkage with mating type for 13 loci was assessed across 20 species by a phylogenetic method. No locus was found to exhibit trans-specific polymorphism for alternate alleles as old as the mating pheromone receptor, indicating that ages of linkage to mating type varied among the loci. The ordering of loci in the ancestry of linkage to mating type does not agree with their previously proposed assignments to evolutionary strata. This study suggests that processes capable of influencing divergence between alternate alleles may act at loci in the nonrecombining regions (e.g., gene conversion) and encourages further work to dissect the evolutionary processes acting upon genomic regions that determine mating compatibility.
Collapse
Affiliation(s)
- Elsa Petit
- Department of Biology, Amherst College, Amherst, Massachusetts 01002, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Function of Cryptococcus neoformans KAR7 (SEC66) in karyogamy during unisexual and opposite-sex mating. EUKARYOTIC CELL 2012; 11:783-94. [PMID: 22544906 DOI: 10.1128/ec.00066-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human basidiomycetous fungal pathogen Cryptococcus neoformans serves as a model fungus to study sexual development and produces infectious propagules, basidiospores, via the sexual cycle. Karyogamy is the process of nuclear fusion and an essential step to complete mating. Therefore, regulation of nuclear fusion is central to understanding sexual development of C. neoformans. However, our knowledge of karyogamy genes was limited. In this study, using a BLAST search with the Saccharomyces cerevisiae KAR genes, we identified five C. neoformans karyogamy gene orthologs: CnKAR2, CnKAR3, CnKAR4, CnKAR7 (or CnSEC66), and CnKAR8. There are no apparent orthologs of the S. cerevisiae genes ScKAR1, ScKAR5, and ScKar9 in C. neoformans. Karyogamy involves the congression of two nuclei followed by nuclear membrane fusion, which results in diploidization. ScKar7 (or ScSec66) is known to be involved in nuclear membrane fusion. In C. neoformans, kar7 mutants display significant defects in hyphal growth and basidiospore chain formation during both a-α opposite and α-α unisexual reproduction. Fluorescent nuclear imaging revealed that during kar7 × kar7 bilateral mutant matings, the nuclei congress but fail to fuse in the basidia. These results demonstrate that the KAR7 gene plays an integral role in both opposite-sex and unisexual mating, indicating that proper control of nuclear dynamics is important. CnKAR2 was found to be essential for viability, and its function in mating is not known. No apparent phenotypes were observed during mating of kar3, kar4, or kar8 mutants, suggesting that the role of these genes may be dispensable for C. neoformans mating, which demonstrates a different evolutionary trajectory for the KAR genes in C. neoformans compared to those in S. cerevisiae.
Collapse
|
43
|
Chen R, Jiang YM, Wei SC, Wang QM. Kwoniella shandongensis sp. nov., a basidiomycetous yeast isolated from soil and bark from an apple orchard. Int J Syst Evol Microbiol 2012; 62:2774-2777. [PMID: 22447698 DOI: 10.1099/ijs.0.039172-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four basidiomycetous yeast strains (Y13-1(T), Y2-1, Y6-3 and Y8-2) were isolated from soil and bark collected from an apple orchard in Tai'an, Shandong province, PR China. Phylogenetic analysis based on 26S rRNA gene D1/D2 domains and ITS regions revealed that these novel strains were located in the Kwoniella clade in the class Tremellomycetes and were closely related to Cryptococcus cuniculi and Kwoniella heveanensis, but were clearly distinct from these species. Therefore, it is proposed that the new strains represent a novel species, Kwoniella shandongensis sp. nov., with the type strain Y13-1(T)(=CGMCC 2.04458(T)=CBS 12478(T)). The MycoBank number for the novel species is MB 564868.
Collapse
Affiliation(s)
- Ru Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China
| | - Yuan-Mao Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China
| | - Shao-Chong Wei
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China
| | - Qi-Ming Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 52 Sanlihe Road, Beijing 100101, PR China
| |
Collapse
|
44
|
Findley K, Sun S, Fraser JA, Hsueh YP, Averette AF, Li W, Dietrich FS, Heitman J. Discovery of a modified tetrapolar sexual cycle in Cryptococcus amylolentus and the evolution of MAT in the Cryptococcus species complex. PLoS Genet 2012; 8:e1002528. [PMID: 22359516 PMCID: PMC3280970 DOI: 10.1371/journal.pgen.1002528] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/21/2011] [Indexed: 12/16/2022] Open
Abstract
Sexual reproduction in fungi is governed by a specialized genomic region called the mating-type locus (MAT). The human fungal pathogenic and basidiomycetous yeast Cryptococcus neoformans has evolved a bipolar mating system (a, α) in which the MAT locus is unusually large (>100 kb) and encodes >20 genes including homeodomain (HD) and pheromone/receptor (P/R) genes. To understand how this unique bipolar mating system evolved, we investigated MAT in the closely related species Tsuchiyaea wingfieldii and Cryptococcus amylolentus and discovered two physically unlinked loci encoding the HD and P/R genes. Interestingly, the HD (B) locus sex-specific region is restricted (∼2 kb) and encodes two linked and divergently oriented homeodomain genes in contrast to the solo HD genes (SXI1α, SXI2a) of C. neoformans and Cryptococcus gattii. The P/R (A) locus contains the pheromone and pheromone receptor genes but has expanded considerably compared to other outgroup species (Cryptococcus heveanensis) and is linked to many of the genes also found in the MAT locus of the pathogenic Cryptococcus species. Our discovery of a heterothallic sexual cycle for C. amylolentus allowed us to establish the biological roles of the sex-determining regions. Matings between two strains of opposite mating-types (A1B1×A2B2) produced dikaryotic hyphae with fused clamp connections, basidia, and basidiospores. Genotyping progeny using markers linked and unlinked to MAT revealed that meiosis and uniparental mitochondrial inheritance occur during the sexual cycle of C. amylolentus. The sexual cycle is tetrapolar and produces fertile progeny of four mating-types (A1B1, A1B2, A2B1, and A2B2), but a high proportion of progeny are infertile, and fertility is biased towards one parental mating-type (A1B1). Our studies reveal insights into the plasticity and transitions in both mechanisms of sex determination (bipolar versus tetrapolar) and sexual reproduction (outcrossing versus inbreeding) with implications for similar evolutionary transitions and processes in fungi, plants, and animals.
Collapse
Affiliation(s)
- Keisha Findley
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - James A. Fraser
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia
| | - Yen-Ping Hsueh
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wenjun Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
45
|
Kellner R, Vollmeister E, Feldbrügge M, Begerow D. Interspecific sex in grass smuts and the genetic diversity of their pheromone-receptor system. PLoS Genet 2011; 7:e1002436. [PMID: 22242007 PMCID: PMC3248468 DOI: 10.1371/journal.pgen.1002436] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 11/09/2011] [Indexed: 01/07/2023] Open
Abstract
The grass smuts comprise a speciose group of biotrophic plant parasites, so-called Ustilaginaceae, which are specifically adapted to hosts of sweet grasses, the Poaceae family. Mating takes a central role in their life cycle, as it initiates parasitism by a morphological and physiological transition from saprobic yeast cells to pathogenic filaments. As in other fungi, sexual identity is determined by specific genomic regions encoding allelic variants of a pheromone-receptor (PR) system and heterodimerising transcription factors. Both operate in a biphasic mating process that starts with PR-triggered recognition, directed growth of conjugation hyphae, and plasmogamy of compatible mating partners. So far, studies on the PR system of grass smuts revealed diverse interspecific compatibility and mating type determination. However, many questions concerning the specificity and evolutionary origin of the PR system remain unanswered. Combining comparative genetics and biological approaches, we report on the specificity of the PR system and its genetic diversity in 10 species spanning about 100 million years of mating type evolution. We show that three highly syntenic PR alleles are prevalent among members of the Ustilaginaceae, favouring a triallelic determination as the plesiomorphic characteristic of this group. Furthermore, the analysis of PR loci revealed increased genetic diversity of single PR locus genes compared to genes of flanking regions. Performing interspecies sex tests, we detected a high potential for hybridisation that is directly linked to pheromone signalling as known from intraspecies sex. Although the PR system seems to be optimised for intraspecific compatibility, the observed functional plasticity of the PR system increases the potential for interspecific sex, which might allow the hybrid-based genesis of newly combined host specificities.
Collapse
Affiliation(s)
- Ronny Kellner
- Ruhr-Universität Bochum, Geobotany Laboratory, Bochum, Germany
| | - Evelyn Vollmeister
- Heinrich-Heine University Düsseldorf, Institute for Microbiology, Düsseldorf, Germany
| | - Michael Feldbrügge
- Heinrich-Heine University Düsseldorf, Institute for Microbiology, Düsseldorf, Germany
| | - Dominik Begerow
- Ruhr-Universität Bochum, Geobotany Laboratory, Bochum, Germany
| |
Collapse
|
46
|
Abstract
Sexual reproduction enables genetic exchange in eukaryotic organisms as diverse as fungi, animals, plants, and ciliates. Given its ubiquity, sex is thought to have evolved once, possibly concomitant with or shortly after the origin of eukaryotic organisms themselves. The basic principles of sex are conserved, including ploidy changes, the formation of gametes via meiosis, mate recognition, and cell-cell fusion leading to the production of a zygote. Although the basic tenants are shared, sex determination and sexual reproduction occur in myriad forms throughout nature, including outbreeding systems with more than two mating types or sexes, unisexual selfing, and even examples in which organisms switch mating type. As robust and diverse genetic models, fungi provide insights into the molecular nature of sex, sexual specification, and evolution to advance our understanding of sexual reproduction and its impact throughout the eukaryotic tree of life.
Collapse
Affiliation(s)
- Min Ni
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
47
|
Byrnes EJ, Li W, Ren P, Lewit Y, Voelz K, Fraser JA, Dietrich FS, May RC, Chatuverdi S, Chatuverdi V, Heitman J. A diverse population of Cryptococcus gattii molecular type VGIII in southern Californian HIV/AIDS patients. PLoS Pathog 2011; 7:e1002205. [PMID: 21909264 PMCID: PMC3164645 DOI: 10.1371/journal.ppat.1002205] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 06/25/2011] [Indexed: 11/18/2022] Open
Abstract
Cryptococcus gattii infections in southern California have been reported in patients with HIV/AIDS. In this study, we examined the molecular epidemiology, population structure, and virulence attributes of isolates collected from HIV/AIDS patients in Los Angeles County, California. We show that these isolates consist almost exclusively of VGIII molecular type, in contrast to the VGII molecular type isolates causing the North American Pacific Northwest outbreak. The global VGIII population structure can be divided into two molecular groups, VGIIIa and VGIIIb. Isolates from the Californian patients are virulent in murine and macrophage models of infection, with VGIIIa significantly more virulent than VGIIIb. Several VGIII isolates are highly fertile and produce abundant sexual spores that may serve as infectious propagules. The a and α VGIII MAT locus alleles are largely syntenic with limited rearrangements compared to the known VGI (a/α) and VGII (α) MAT loci, but each has unique characteristics including a distinct deletion flanking the 5' VGIII MATa alleles and the α allele is more heterogeneous than the a allele. Our studies indicate that C. gattii VGIII is endemic in southern California, with other isolates originating from the neighboring regions of Mexico, and in rarer cases from Oregon and Washington state. Given that >1,000,000 cases of cryptococcal infection and >620,000 attributable mortalities occur annually in the context of the global AIDS pandemic, our findings suggest a significant burden of C. gattii may be unrecognized, with potential prognostic and therapeutic implications. These results signify the need to classify pathogenic Cryptococcus cases and highlight possible host differences among the C. gattii molecular types influencing infection of immunocompetent (VGI/VGII) vs. immunocompromised (VGIII/VGIV) hosts.
Collapse
Affiliation(s)
- Edmond J. Byrnes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wenjun Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ping Ren
- Mycology Laboratory, Wadsworth Center, Albany, New York, United States of America
| | - Yonathan Lewit
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kerstin Voelz
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James A. Fraser
- Centre for Infectious Disease Research, Department of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robin C. May
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Sudha Chatuverdi
- Mycology Laboratory, Wadsworth Center, Albany, New York, United States of America
| | - Vishnu Chatuverdi
- Mycology Laboratory, Wadsworth Center, Albany, New York, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
48
|
Massive changes in genome architecture accompany the transition to self-fertility in the filamentous fungus Neurospora tetrasperma. Genetics 2011; 189:55-69. [PMID: 21750257 PMCID: PMC3176108 DOI: 10.1534/genetics.111.130690] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A large region of suppressed recombination surrounds the sex-determining locus of the self-fertile fungus Neurospora tetrasperma. This region encompasses nearly one-fifth of the N. tetrasperma genome and suppression of recombination is necessary for self-fertility. The similarity of the N. tetrasperma mating chromosome to plant and animal sex chromosomes and its recent origin (<5 MYA), combined with a long history of genetic and cytological research, make this fungus an ideal model for studying the evolutionary consequences of suppressed recombination. Here we compare genome sequences from two N. tetrasperma strains of opposite mating type to determine whether structural rearrangements are associated with the nonrecombining region and to examine the effect of suppressed recombination for the evolution of the genes within it. We find a series of three inversions encompassing the majority of the region of suppressed recombination and provide evidence for two different types of rearrangement mechanisms: the recently proposed mechanism of inversion via staggered single-strand breaks as well as ectopic recombination between transposable elements. In addition, we show that the N. tetrasperma mat a mating-type region appears to be accumulating deleterious substitutions at a faster rate than the other mating type (mat A) and thus may be in the early stages of degeneration.
Collapse
|
49
|
Li CH, Cervantes M, Springer DJ, Boekhout T, Ruiz-Vazquez RM, Torres-Martinez SR, Heitman J, Lee SC. Sporangiospore size dimorphism is linked to virulence of Mucor circinelloides. PLoS Pathog 2011; 7:e1002086. [PMID: 21698218 PMCID: PMC3116813 DOI: 10.1371/journal.ppat.1002086] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 04/14/2011] [Indexed: 01/08/2023] Open
Abstract
Mucor circinelloides is a zygomycete fungus and an emerging opportunistic pathogen in immunocompromised patients, especially transplant recipients and in some cases otherwise healthy individuals. We have discovered a novel example of size dimorphism linked to virulence. M. circinelloides is a heterothallic fungus: (+) sex allele encodes SexP and (-) sex allele SexM, both of which are HMG domain protein sex determinants. M. circinelloides f. lusitanicus (Mcl) (-) mating type isolates produce larger asexual sporangiospores that are more virulent in the wax moth host compared to (+) isolates that produce smaller less virulent sporangiospores. The larger sporangiospores germinate inside and lyse macrophages, whereas the smaller sporangiospores do not. sexMΔ mutants are sterile and still produce larger virulent sporangiospores, suggesting that either the sex locus is not involved in virulence/spore size or the sexP allele plays an inhibitory role. Phylogenetic analysis supports that at least three extant subspecies populate the M. circinelloides complex in nature: Mcl, M. circinelloides f. griseocyanus, and M. circinelloides f. circinelloides (Mcc). Mcc was found to be more prevalent among clinical Mucor isolates, and more virulent than Mcl in a diabetic murine model in contrast to the wax moth host. The M. circinelloides sex locus encodes an HMG domain protein (SexP for plus and SexM for minus mating types) flanked by genes encoding triose phosphate transporter (TPT) and RNA helicase homologs. The borders of the sex locus between the three subspecies differ: the Mcg sex locus includes the promoters of both the TPT and the RNA helicase genes, whereas the Mcl and Mcc sex locus includes only the TPT gene promoter. Mating between subspecies was restricted compared to mating within subspecies. These findings demonstrate that spore size dimorphism is linked to virulence of M. circinelloides species and that plasticity of the sex locus and adaptations in pathogenicity have occurred during speciation of the M. circinelloides complex.
Collapse
Affiliation(s)
- Charles H. Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Maria Cervantes
- Departamento de Genetica y Microbiologia, Facultad de Biologia, Universidad de Murcia, Murcia, Spain
| | - Deborah J. Springer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Rosa M. Ruiz-Vazquez
- Departamento de Genetica y Microbiologia, Facultad de Biologia, Universidad de Murcia, Murcia, Spain
| | | | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JH); (SCL)
| | - Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JH); (SCL)
| |
Collapse
|
50
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|