1
|
Liu X, Gu L, Hao C, Xu W, Leng F, Zhang P, Li W. Systematic assessment of structural variant annotation tools for genomic interpretation. Life Sci Alliance 2025; 8:e202402949. [PMID: 39658089 PMCID: PMC11632063 DOI: 10.26508/lsa.202402949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024] Open
Abstract
Structural variants (SVs) over 50 base pairs play a significant role in phenotypic diversity and are associated with various diseases, but their analysis is complex and resource-intensive. Numerous computational tools have been developed for SV prioritization, yet their effectiveness in biomedicine remains unclear. Here we benchmarked eight widely used SV prioritization tools, categorized into knowledge-driven (AnnotSV, ClassifyCNV) and data-driven (CADD-SV, dbCNV, StrVCTVRE, SVScore, TADA, XCNV) groups in accordance with the ACMG guidelines. We assessed their accuracy, robustness, and usability across diverse genomic contexts, biological mechanisms and computational efficiency using seven carefully curated independent datasets. Our results revealed that both groups of methods exhibit comparable effectiveness in predicting SV pathogenicity, although performance varies among tools, emphasizing the importance of selecting the appropriate tool based on specific research purposes. Furthermore, we pinpointed the potential improvement of expanding these tools for future applications. Our benchmarking framework provides a crucial evaluation method for SV analysis tools, offering practical guidance for biomedical research and facilitating the advancement of better genomic research tools.
Collapse
Affiliation(s)
- Xuanshi Liu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lei Gu
- Epigenetics Laboratory, Max-Planck Institute for Heart and Lung Research, Cardiopulmonary Institute, Bad Nauheim, Germany
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wenjian Xu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Fei Leng
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Di Girolamo D, Di Iorio E, Missero C. Molecular and Cellular Function of p63 in Skin Development and Genetic Diseases. J Invest Dermatol 2024:S0022-202X(24)02076-1. [PMID: 39340489 DOI: 10.1016/j.jid.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024]
Abstract
The transcription factor p63 is a master regulator of multiple ectodermal derivatives. During epidermal commitment, p63 interacts with several chromatin remodeling complexes to transactivate epidermal-specific genes and repress transcription of simple epithelial and nonepithelial genes. In the postnatal epidermis, p63 is required to control the proliferative potential of progenitor cells, maintain epidermal integrity, and contribute to epidermal differentiation. Autosomal dominant sequence variant in p63 cause a spectrum of syndromic disorders that affect several tissues, including or derived from stratified epithelia. In this review, we describe the recent studies that have provided novel insights into disease pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy
| | - Enzo Di Iorio
- Clinical Genetics Unit, University Hospital of Padua, Padua, Italy; Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
3
|
Smits JPH, Qu J, Pardow F, van den Brink NJM, Rodijk-Olthuis D, van Vlijmen-Willems IMJJ, van Heeringen SJ, Zeeuwen PLJM, Schalkwijk J, Zhou H, van den Bogaard EH. The Aryl Hydrocarbon Receptor Regulates Epidermal Differentiation through Transient Activation of TFAP2A. J Invest Dermatol 2024; 144:2013-2028.e2. [PMID: 38401701 DOI: 10.1016/j.jid.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/26/2024]
Abstract
The aryl hydrocarbon receptor (AHR) is an evolutionary conserved environmental sensor identified as an indispensable regulator of epithelial homeostasis and barrier organ function. Molecular signaling cascade and target genes upon AHR activation and their contribution to cell and tissue function are however not fully understood. Multiomics analyses using human skin keratinocytes revealed that upon ligand activation, AHR binds open chromatin to induce expression of transcription factors, for example, TFAP2A, as a swift response to environmental stimuli. The terminal differentiation program, including upregulation of barrier genes, FLG and keratins, was mediated by TFAP2A as a secondary response to AHR activation. The role of AHR-TFAP2A axis in controlling keratinocyte terminal differentiation for proper barrier formation was further confirmed using CRISPR/Cas9 in human epidermal equivalents. Overall, the study provides additional insights into the molecular mechanism behind AHR-mediated barrier function and identifies potential targets for the treatment of skin barrier diseases.
Collapse
Affiliation(s)
- Jos P H Smits
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands; Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jieqiong Qu
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Felicitas Pardow
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands; Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Noa J M van den Brink
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | | | - Simon J van Heeringen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands; Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands.
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Öztürk Ö, Bagis H, Bolu S. Osteogenesis Imperfecta and Split Foot Malformation due to 7q21.2q21.3 Deletion Including COL1A2, DLX5/6 Genes: Review of the Literature. J Pediatr Genet 2024; 13:69-79. [PMID: 38567169 PMCID: PMC10984717 DOI: 10.1055/s-0041-1736613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
Copy number variation in loss of 7q21 is a genetic disorder characterized by split hand/foot malformation, hearing loss, developmental delay, myoclonus, dystonia, joint laxity, and psychiatric disorders. Osteogenesis imperfecta caused by whole gene deletions of COL1A2 is a very rare condition. We report a Turkish girl with ectrodactyly, joint laxity, multiple bone fractures, blue sclera, early teeth decay, mild learning disability, and depression. A copy number variant in loss of 4.8 Mb at chromosome 7 (q21.2q21.3) included the 58 genes including DLX5, DLX6, DYNC1I1, SLC25A13, SGCE, and COL1A2 . They were identified by chromosomal microarray analysis. We compared the findings in our patients with those previously reported. This case report highlights the importance of using microarray to identify the genetic etiology in patients with ectrodactyly and osteogenesis imperfecta.
Collapse
Affiliation(s)
- Özden Öztürk
- Department of Medical Genetics, Medical School of Adiyaman University, Adiyaman, Türkiye
| | - Haydar Bagis
- Department of Medical Genetics, Medical School of Adiyaman University, Adiyaman, Türkiye
| | - Semih Bolu
- Department of Pediatrics, Division of Pediatric Endocrinology, Medical School of Adiyaman University, Adiyaman, Türkiye
| |
Collapse
|
5
|
Sowińska-Seidler A, Socha M, Szoszkiewicz A, Materna-Kiryluk A, Jamsheer A. A genotype-phenotype correlation in split-hand/foot malformation type 1: further refinement of the phenotypic subregions within the 7q21.3 locus. Front Mol Biosci 2023; 10:1250714. [PMID: 37916192 PMCID: PMC10616856 DOI: 10.3389/fmolb.2023.1250714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Background: Split-hand/foot malformation type 1 (SHFM1) refers to the group of rare congenital limb disorders defined by the absence or hypoplasia of the central rays of the autopods with or without accompanying anomalies, such as hearing loss, craniofacial malformation, and ectodermal dysplasia. Consequently, the condition is characterized by clinical variability that hinders diagnostic and counseling procedures. SHFM1 is caused by pathogenic variants affecting the DLX5/6 genes and/or their tissue-specific enhancers at the 7q21.3 locus. Herein, we report on seven patients from five unrelated Polish families affected by variable symptoms of the SHFM1 spectrum, all harboring 7q21.3 or 7q21.2-q21.3 rearrangements, and provide a genotype-phenotype correlation in the studied cohort. Methods: We applied GTG banding, array-based comparative genomic hybridization (aCGH), and whole-genome sequencing (WGS) in order to identify the causative aberrations in all affected patients. Results: The identified pathogenic structural variants included deletions and/or translocations involving the 7q21.3 locus, i.e., t(7;10)(q21.3;q22.2) and t(7;12)(q21.3;q21.2) in all affected individuals. Interestingly, a sporadic carrier of the latter aberration presented the SHFM1 phenotype with additional features overlapping with Baker-Gordon syndrome (BAGOS), which resulted from the translocation breakpoint at chromosome 12 within the SYT1 gene. Conclusion: Clinical variability of the studied cohort reflects the composition of the DLX5/6 regulatory elements that were dislocated from their target genes by chromosomal rearrangements. The correlation of our data with the previously published observations enabled us to update the phenotypic subregions and regulatory units within the SHFM1 locus. In addition, we present the first case of SHFM1 and BAGOS-like phenotype that resulted from translocation breakpoints at chromosomes 7 and 12, both of which were pathogenic, and consequently, we show the first evidence that BAGOS can also result from the regulatory loss-of-function SYT1 mutations. In this paper, we emphasize the utility of sequence-based approaches in molecular diagnostics of disorders caused by regulatory structural variants.
Collapse
Affiliation(s)
- Anna Sowińska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Socha
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Anna Szoszkiewicz
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Materna-Kiryluk
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
| |
Collapse
|
6
|
Smits JGA, Cunha DL, Amini M, Bertolin M, Laberthonnière C, Qu J, Owen N, Latta L, Seitz B, Roux LN, Stachon T, Ferrari S, Moosajee M, Aberdam D, Szentmary N, van Heeringen SJ, Zhou H. Identification of the regulatory circuit governing corneal epithelial fate determination and disease. PLoS Biol 2023; 21:e3002336. [PMID: 37856539 PMCID: PMC10586658 DOI: 10.1371/journal.pbio.3002336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023] Open
Abstract
The transparent corneal epithelium in the eye is maintained through the homeostasis regulated by limbal stem cells (LSCs), while the nontransparent epidermis relies on epidermal keratinocytes for renewal. Despite their cellular similarities, the precise cell fates of these two types of epithelial stem cells, which give rise to functionally distinct epithelia, remain unknown. We performed a multi-omics analysis of human LSCs from the cornea and keratinocytes from the epidermis and characterized their molecular signatures, highlighting their similarities and differences. Through gene regulatory network analyses, we identified shared and cell type-specific transcription factors (TFs) that define specific cell fates and established their regulatory hierarchy. Single-cell RNA-seq (scRNA-seq) analyses of the cornea and the epidermis confirmed these shared and cell type-specific TFs. Notably, the shared and LSC-specific TFs can cooperatively target genes associated with corneal opacity. Importantly, we discovered that FOSL2, a direct PAX6 target gene, is a novel candidate associated with corneal opacity, and it regulates genes implicated in corneal diseases. By characterizing molecular signatures, our study unveils the regulatory circuitry governing the LSC fate and its association with corneal opacity.
Collapse
Affiliation(s)
- Jos G. A. Smits
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Dulce Lima Cunha
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Maryam Amini
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | | | - Camille Laberthonnière
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Jieqiong Qu
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Nicholas Owen
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Lorenz Latta
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
- Department of Ophthalmology, Saarland University Medical Center, UKS, Homburg, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, UKS, Homburg, Germany
| | | | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | | | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Daniel Aberdam
- INSERM U976, Paris, France
- Université de Paris, INSERM U1138, Centre des Cordeliers, Paris, France
| | - Nora Szentmary
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | - Simon J. van Heeringen
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Huiqing Zhou
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Ambrosetti I, Bernardini L, Pollazzon M, Giuffrida MG, Guida V, Peluso F, Baroni MC, Polizzi V, Napoli M, Rosato S, Trimarchi G, Gelmini C, Caraffi SG, Wischmeijer A, Frattini D, Novelli A, Garavelli L. Split Hand-Foot and Deafness in a Patient with 7q21.13-q21.3 Deletion Not Including the DLX5/6 Genes. Genes (Basel) 2023; 14:1526. [PMID: 37628577 PMCID: PMC10454356 DOI: 10.3390/genes14081526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Split Hand-Foot Malformation (SHFM) is a congenital limb defect characterized by a median cleft of the hands and/or feet due to the absence/hypoplasia of the central rays. It may occur as part of a syndromic condition or as an isolated malformation. The most common of the six genetic loci identified for this condition is correlated to SHFM1 and maps in the 7q21q22 region. SHFM1 is characterized by autosomal dominant transmission, incomplete penetrance and variable expressivity. Associated features often include hearing loss, intellectual disability/developmental delay and craniofacial abnormalities. Disruption of the DLX5/DLX6 genes, mapping within the SHFM1 locus, is now known to be responsible for the phenotype. Through SNP array, we analyzed a patient affected by SHFM1 associated with deafness and an abnormality of the inner ear (incomplete partition type I); we identified a deletion in 7q21, not involving the DLX5/6 genes, but including exons 15 and 17 of DYNC1I1, known to act as exonic enhancers (eExons) of the DLX5/6 genes. We further demonstrated the role of DYNC1I1 eExons in regulating DLX5/6 expression by means of showing a reduced expression of the DLX5/6 genes through RT-PCR in a patient-derived lymphoblastoid cell line. Furthermore, our data and a review of published cases do not support the hypothesis that DLX5/6 are imprinted in humans. This work is an example of how the disruption of regulatory elements can be responsible for congenital malformations.
Collapse
Affiliation(s)
- Irene Ambrosetti
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.A.)
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Laura Bernardini
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Marzia Pollazzon
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Maria Grazia Giuffrida
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Valentina Guida
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Francesca Peluso
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Maria Chiara Baroni
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.A.)
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Valeria Polizzi
- Department of Audiology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Simonetta Rosato
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Gabriele Trimarchi
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Chiara Gelmini
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | | | - Anita Wischmeijer
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Clinical Genetics Service and Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, 39100 Bolzano, Italy
| | - Daniele Frattini
- Child Neurology and Psychiatry Unit, Azienda AUSL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| | - Livia Garavelli
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
8
|
Smits JP, Qu J, Pardow F, van den Brink NJ, Rodijk-Olthuis D, van Vlijmen-Willems IM, van Heeringen SJ, Zeeuwen PL, Schalkwijk J, Zhou H, van den Bogaard EH. The aryl hydrocarbon receptor regulates epidermal differentiation through transient activation of TFAP2A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544032. [PMID: 37333234 PMCID: PMC10274772 DOI: 10.1101/2023.06.07.544032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is an evolutionary conserved environmental sensor identified as indispensable regulator of epithelial homeostasis and barrier organ function. Molecular signaling cascade and target genes upon AHR activation and their contribution to cell and tissue function are however not fully understood. Multi-omics analyses using human skin keratinocytes revealed that, upon ligand activation, AHR binds open chromatin to induce expression of transcription factors (TFs), e.g., Transcription Factor AP-2α (TFAP2A), as a swift response to environmental stimuli. The terminal differentiation program including upregulation of barrier genes, filaggrin and keratins, was mediated by TFAP2A as a secondary response to AHR activation. The role of AHR-TFAP2A axis in controlling keratinocyte terminal differentiation for proper barrier formation was further confirmed using CRISPR/Cas9 in human epidermal equivalents. Overall, the study provides novel insights into the molecular mechanism behind AHR-mediated barrier function and potential novel targets for the treatment of skin barrier diseases.
Collapse
Affiliation(s)
- Jos P.H. Smits
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jieqiong Qu
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Felicitas Pardow
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Noa J.M. van den Brink
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | | | - Simon J. van Heeringen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Patrick L.J.M. Zeeuwen
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc
| | - Ellen H. van den Bogaard
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Wang X, Hallen NR, Lee M, Samuchiwal S, Ye Q, Buchheit KM, Maxfield AZ, Roditi RE, Bergmark RW, Bhattacharyya N, Ryan T, Gakpo D, Raychaudhuri S, Dwyer D, Laidlaw TM, Boyce JA, Gutierrez-Arcelus M, Barrett NA. Type 2 inflammation drives an airway basal stem cell program through insulin receptor substrate signaling. J Allergy Clin Immunol 2023; 151:1536-1549. [PMID: 36804595 PMCID: PMC10784786 DOI: 10.1016/j.jaci.2023.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyposis (CRSwNP) is a type 2 (T2) inflammatory disease associated with an increased number of airway basal cells (BCs). Recent studies have identified transcriptionally distinct BCs, but the molecular pathways that support or inhibit human BC proliferation and differentiation are largely unknown. OBJECTIVE We sought to determine the role of T2 cytokines in regulating airway BCs. METHODS Single-cell and bulk RNA sequencing of sinus and lung airway epithelial cells was analyzed. Human sinus BCs were stimulated with IL-4 and IL-13 in the presence and absence of inhibitors of IL-4R signaling. Confocal analysis of human sinus tissue and murine airway was performed. Murine BC subsets were sorted for RNA sequencing and functional assays. Fate labeling was performed in a murine model of tracheal injury and regeneration. RESULTS Two subsets of BCs were found in human and murine respiratory mucosa distinguished by the expression of basal cell adhesion molecule (BCAM). BCAM expression identifies airway stem cells among P63+KRT5+NGFR+ BCs. In the sinonasal mucosa, BCAMhi BCs expressing TSLP, IL33, CCL26, and the canonical BC transcription factor TP63 are increased in patients with CRSwNP. In cultured BCs, IL-4/IL-13 increases the expression of BCAM and TP63 through an insulin receptor substrate-dependent signaling pathway that is increased in CRSwNP. CONCLUSIONS These findings establish BCAM as a marker of airway stem cells among the BC pool and demonstrate that airway epithelial remodeling in T2 inflammation extends beyond goblet cell metaplasia to the support of a BC stem state poised to perpetuate inflammation.
Collapse
Affiliation(s)
- Xin Wang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Nils R Hallen
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Minkyu Lee
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Sachin Samuchiwal
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Qihua Ye
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Kathleen M Buchheit
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Alice Z Maxfield
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Rachel E Roditi
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Regan W Bergmark
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Neil Bhattacharyya
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Mass
| | - Tessa Ryan
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Deb Gakpo
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, Mass; Divisions of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Mass; Versus Arthritis Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dan Dwyer
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Tanya M Laidlaw
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Joshua A Boyce
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Maria Gutierrez-Arcelus
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Mass; Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Nora A Barrett
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass.
| |
Collapse
|
10
|
Tan M, Pan Q, Wu Q, Li J, Wang J. Aldolase B attenuates clear cell renal cell carcinoma progression by inhibiting CtBP2. Front Med 2023; 17:503-517. [PMID: 36790589 DOI: 10.1007/s11684-022-0947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/28/2022] [Indexed: 02/16/2023]
Abstract
Aldolase B (ALDOB), a glycolytic enzyme, is uniformly depleted in clear cell renal cell carcinoma (ccRCC) tissues. We previously showed that ALDOB inhibited proliferation through a mechanism independent of its enzymatic activity in ccRCC, but the mechanism was not unequivocally identified. We showed that the corepressor C-terminal-binding protein 2 (CtBP2) is a novel ALDOB-interacting protein in ccRCC. The CtBP2-to-ALDOB expression ratio in clinical samples was correlated with the expression of CtBP2 target genes and was associated with shorter survival. ALDOB inhibited CtBP2-mediated repression of multiple cell cycle inhibitor, proapoptotic, and epithelial marker genes. Furthermore, ALDOB overexpression decreased the proliferation and migration of ccRCC cells in an ALDOB-CtBP2 interaction-dependent manner. Mechanistically, our findings showed that ALDOB recruited acireductone dioxygenase 1, which catalyzes the synthesis of an endogenous inhibitor of CtBP2, 4-methylthio 2-oxobutyric acid. ALDOB functions as a scaffold to bring acireductone dioxygenase and CtBP2 in close proximity to potentiate acireductone dioxygenase-mediated inhibition of CtBP2, and this scaffolding effect was independent of ALDOB enzymatic activity. Moreover, increased ALDOB expression inhibited tumor growth in a xenograft model and decreased lung metastasis in vivo. Our findings reveal that ALDOB is a negative regulator of CtBP2 and inhibits tumor growth and metastasis in ccRCC.
Collapse
Affiliation(s)
- Mingyue Tan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Urology Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qi Pan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qi Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, 323000, China
| | - Jianfa Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jun Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Urology Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, 323000, China.
| |
Collapse
|
11
|
Suga K, Suto A, Tanaka S, Sugawara Y, Kageyama T, Ishikawa J, Sanayama Y, Ikeda K, Furuta S, Kagami SI, Iwata A, Hirose K, Suzuki K, Ohara O, Nakajima H. TAp63, a methotrexate target in CD4+ T cells, suppresses Foxp3 expression and exacerbates autoimmune arthritis. JCI Insight 2023; 8:164778. [PMID: 37212280 PMCID: PMC10322677 DOI: 10.1172/jci.insight.164778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/07/2023] [Indexed: 05/23/2023] Open
Abstract
Methotrexate (MTX) is a standard, first-line therapy for rheumatoid arthritis (RA); however, its precise mechanisms of action other than antifolate activity are largely unknown. We performed DNA microarray analyses of CD4+ T cells in patients with RA before and after MTX treatment and found that TP63 was the most significantly downregulated gene after MTX treatment. TAp63, an isoform of TP63, was highly expressed in human IL-17-producing Th (Th17) cells and was suppressed by MTX in vitro. Murine TAp63 was expressed at high levels in Th cells and at lower levels in thymus-derived Treg cells. Importantly, TAp63 knockdown in murine Th17 cells ameliorated the adoptive transfer arthritis model. RNA-Seq analyses of human Th17 cells overexpressing TAp63 and those with TAp63 knockdown identified FOXP3 as a possible TAp63 target gene. TAp63 knockdown in CD4+ T cells cultured under Th17 conditions with low-dose IL-6 increased Foxp3 expression, suggesting that TAp63 balances Th17 cells and Treg cells. Mechanistically, TAp63 knockdown in murine induced Treg (iTreg) cells promoted hypomethylation of conserved noncoding sequence 2 (CNS2) of the Foxp3 gene and enhanced the suppressive function of iTreg cells. Reporter analyses revealed that TAp63 suppressed the activation of the Foxp3 CNS2 enhancer. Collectively, TAp63 suppresses Foxp3 expression and exacerbates autoimmune arthritis.
Collapse
Affiliation(s)
- Kensuke Suga
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Yutaka Sugawara
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Junichi Ishikawa
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Yoshie Sanayama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Kei Ikeda
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Shunsuke Furuta
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Shin-Ichiro Kagami
- Research Center for Allergy and Clinical Immunology, Asahi General Hospital, Asahi, Chiba, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| |
Collapse
|
12
|
Hsueh YJ, Meir YJJ, Hsiao HY, Cheng CM, Ma HKD, Wu WC, Chen HC. Transcription Factor ATF3 Participates in DeltaNp63-Mediated Proliferation of Corneal Epithelial Cells. J Pers Med 2023; 13:jpm13040700. [PMID: 37109086 PMCID: PMC10142479 DOI: 10.3390/jpm13040700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding the regulatory mechanisms underlying corneal epithelial cell (CEC) proliferation in vitro may provide the means to boost CEC production in cell therapy for ocular disorders. The transcription factor ΔNp63 plays a crucial role in the proliferation of CECs, but the underlying mechanisms is yet to be elucidated. TP63 and ΔNp63 are encoded by the TP63 gene via alternative promoters. We previously reported that both ΔNp63 and activating transcription factor (ATF3) are substantially expressed in cultured CECs, but the regulatory relationship between ΔNp63 and ATF3 is unknown. In the present study, we found that ΔNp63 increased ATF3 expression and ATF3 promoter activity in cultured CECs. The deletion of the p63 binding core site reduced ATF3 promoter activity. CECs overexpressing ATF3 exhibited significantly greater proliferation than control CECs. ATF3 knockdown suppressed the ΔNp63-induced increase in cell proliferation. Overexpression of ATF3 in CECs significantly elevated protein and mRNA levels of cyclin D. The protein levels of keratin 3/14, integrin β1, and involucrin did not differ between ATF3-overexpressing CECs, ATF3-downregulated CECs, and control cells. In conclusion, our results suggest that ΔNp63 increases CEC proliferation via the ΔNp63/ATF3/CDK pathway.
Collapse
Affiliation(s)
- Yi-Jen Hsueh
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Yaa-Jyuhn James Meir
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | - Hui-Yi Hsiao
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hui-Kang David Ma
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Chi Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
13
|
Truong BT, Shull LC, Lencer E, Bend EG, Field M, Blue EE, Bamshad MJ, Skinner C, Everman D, Schwartz CE, Flanagan-Steet H, Artinger KB. PRDM1 DNA-binding zinc finger domain is required for normal limb development and is disrupted in split hand/foot malformation. Dis Model Mech 2023; 16:dmm049977. [PMID: 37083955 PMCID: PMC10151829 DOI: 10.1242/dmm.049977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/09/2023] [Indexed: 04/22/2023] Open
Abstract
Split hand/foot malformation (SHFM) is a rare limb abnormality with clefting of the fingers and/or toes. For many individuals, the genetic etiology is unknown. Through whole-exome and targeted sequencing, we detected three novel variants in a gene encoding a transcription factor, PRDM1, that arose de novo in families with SHFM or segregated with the phenotype. PRDM1 is required for limb development; however, its role is not well understood and it is unclear how the PRDM1 variants affect protein function. Using transient and stable overexpression rescue experiments in zebrafish, we show that the variants disrupt the proline/serine-rich and DNA-binding zinc finger domains, resulting in a dominant-negative effect. Through gene expression assays, RNA sequencing, and CUT&RUN in isolated pectoral fin cells, we demonstrate that Prdm1a directly binds to and regulates genes required for fin induction, outgrowth and anterior/posterior patterning, such as fgfr1a, dlx5a, dlx6a and smo. Taken together, these results improve our understanding of the role of PRDM1 in the limb gene regulatory network and identified novel PRDM1 variants that link to SHFM in humans.
Collapse
Affiliation(s)
- Brittany T. Truong
- Human Medical Genetics & Genomics Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lomeli C. Shull
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ezra Lencer
- Biology Department, Lafayette College, Easton, PA 18042, USA
| | - Eric G. Bend
- Greenwood Genetics Center, Greenwood, SC 29646, USA
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW 2298, AUS
| | - Elizabeth E. Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | - Kristin B. Artinger
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Sasamoto Y, Lee CAA, Wilson BJ, Buerger F, Martin G, Mishra A, Kiritoshi S, Tran J, Gonzalez G, Hildebrandt F, Jo VY, Lian CG, Murphy GF, Ksander BR, Frank MH, Frank NY. Limbal BCAM expression identifies a proliferative progenitor population capable of holoclone formation and corneal differentiation. Cell Rep 2022; 40:111166. [PMID: 35947947 PMCID: PMC9480518 DOI: 10.1016/j.celrep.2022.111166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/14/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022] Open
Abstract
The corneal epithelium is renowned for high regenerative potential, which is dependent on the coordinated function of its diverse progenitor subpopulations. However, the molecular pathways governing corneal epithelial progenitor differentiation are incompletely understood. Here, we identify a highly proliferative limbal epithelial progenitor subpopulation characterized by expression of basal cell adhesion molecule (BCAM) that is capable of holocone formation and corneal epithelial sheet generation. BCAM-positive cells can be found among ABCB5-positive limbal stem cells (LSCs) as well as among ABCB5-negative limbal epithelial cell populations. Mechanistically, we show that BCAM is functionally required for cellular migration and differentiation and that its expression is regulated by the transcription factor p63. In aggregate, our study identifies limbal BCAM expression as a marker of highly proliferative corneal epithelial progenitor cells and defines the role of BCAM as a critical molecular mediator of corneal epithelial differentiation. Using scRNA sequencing of ABCB5-positive human limbal stem cells, Sasamoto et al. identify a BCAM-positive highly proliferative limbal epithelial progenitor subpopulation that is capable of holocone formation and corneal epithelial sheet generation. BCAM regulated by the stem cell transcription factor p63 is functionally required for corneal cell migration and differentiation.
Collapse
Affiliation(s)
- Yuzuru Sasamoto
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA; Transplant Research Program, Boston Children's Hospital, Boston, MA, USA
| | - Catherine A A Lee
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA; Transplant Research Program, Boston Children's Hospital, Boston, MA, USA
| | - Brian J Wilson
- Transplant Research Program, Boston Children's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Florian Buerger
- Department of Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Gabrielle Martin
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA; Transplant Research Program, Boston Children's Hospital, Boston, MA, USA
| | - Ananda Mishra
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA; Transplant Research Program, Boston Children's Hospital, Boston, MA, USA
| | - Shoko Kiritoshi
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Johnathan Tran
- Transplant Research Program, Boston Children's Hospital, Boston, MA, USA
| | - Gabriel Gonzalez
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| | | | - Vickie Y Jo
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Christine G Lian
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - George F Murphy
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce R Ksander
- Massachusetts Eye and Ear Infirmary, Schepens Eye Research Institute, Boston, MA, USA
| | - Markus H Frank
- Transplant Research Program, Boston Children's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA; School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.
| | - Natasha Y Frank
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Department of Medicine, VA Boston Healthcare System, Boston, MA, USA.
| |
Collapse
|
15
|
Chen H, Hu K, Xie Y, Qi Y, Li W, He Y, Fan S, Liu W, Li C. CDK1 Promotes Epithelial–Mesenchymal Transition and Migration of Head and Neck Squamous Carcinoma Cells by Repressing ∆Np63α-Mediated Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23137385. [PMID: 35806389 PMCID: PMC9266818 DOI: 10.3390/ijms23137385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
∆Np63α is a key transcription factor overexpressed in types of squamous cell carcinomas (SCCs), which represses epithelial–mesenchymal transition (EMT) and cell migration. In this study, we found that CDK1 phosphorylates ∆Np63α at the T123 site, impairing its affinity to the target promoters of its downstream genes and its regulation of them in turn. Database analysis revealed that CDK1 is overexpressed in head and neck squamous cell carcinomas (HNSCCs), especially the metastatic HNSCCs, and is negatively correlated with overall survival. We further found that CDK1 promotes the EMT and migration of HNSCC cells by inhibiting ∆Np63α. Altogether, our study identified CDK1 as a novel regulator of ΔNp63α, which can modulate EMT and cell migration in HNSCCs. Our findings will help to elucidate the migration mechanism of HNSCC cells.
Collapse
Affiliation(s)
- Huimin Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Ke Hu
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Ying Xie
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Yucheng Qi
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Wenjuan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.L.); (Y.H.); (W.L.)
| | - Yaohui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.L.); (Y.H.); (W.L.)
| | - Shijie Fan
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.L.); (Y.H.); (W.L.)
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
- Correspondence:
| |
Collapse
|
16
|
Osterburg C, Dötsch V. Structural diversity of p63 and p73 isoforms. Cell Death Differ 2022; 29:921-937. [PMID: 35314772 PMCID: PMC9091270 DOI: 10.1038/s41418-022-00975-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023] Open
Abstract
Abstract
The p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this protein family.
Facts
Distinct physiological roles/functions are performed by specific isoforms.
The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73 are divided into two subdomains that are regulated by phosphorylation.
Mdm2 binds to all three family members but ubiquitinates only p53.
TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric.
The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states. During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became destabilized and the transactivation domain split into two subdomains.
Open questions
Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function of genomic quality control in germ cells?
What is the physiological function of the p63/p73 SAM domains?
Do the short isoforms of p63 and p73 have physiological functions?
What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?
Collapse
|
17
|
Enhanced pro-apoptosis gene signature following the activation of TAp63α in oocytes upon γ irradiation. Cell Death Dis 2022; 13:204. [PMID: 35246516 PMCID: PMC8897389 DOI: 10.1038/s41419-022-04659-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
Abstract
Specialized surveillance mechanisms are essential to maintain the genetic integrity of germ cells, which are not only the source of all somatic cells but also of the germ cells of the next generation. DNA damage and chromosomal aberrations are, therefore, not only detrimental for the individual but affect the entire species. In oocytes, the surveillance of the structural integrity of the DNA is maintained by the p53 family member TAp63α. The TAp63α protein is highly expressed in a closed and inactive state and gets activated to the open conformation upon the detection of DNA damage, in particular DNA double-strand breaks. To understand the cellular response to DNA damage that leads to the TAp63α triggered oocyte death we have investigated the RNA transcriptome of oocytes following irradiation at different time points. The analysis shows enhanced expression of pro-apoptotic and typical p53 target genes such as CDKn1a or Mdm2, concomitant with the activation of TAp63α. While DNA repair genes are not upregulated, inflammation-related genes become transcribed when apoptosis is initiated by activation of STAT transcription factors. Furthermore, comparison with the transcriptional profile of the ΔNp63α isoform from other studies shows only a minimal overlap, suggesting distinct regulatory programs of different p63 isoforms.
Collapse
|
18
|
Van Sciver N, Ohashi M, Nawandar DM, Pauly NP, Lee D, Makielski KR, Bristol JA, Tsao SW, Lambert PF, Johannsen EC, Kenney SC. ΔNp63α promotes Epstein-Barr virus latency in undifferentiated epithelial cells. PLoS Pathog 2021; 17:e1010045. [PMID: 34748616 PMCID: PMC8601603 DOI: 10.1371/journal.ppat.1010045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/18/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that causes infectious mononucleosis and contributes to both B-cell and epithelial-cell malignancies. EBV-infected epithelial cell tumors, including nasopharyngeal carcinoma (NPC), are largely composed of latently infected cells, but the mechanism(s) maintaining viral latency are poorly understood. Expression of the EBV BZLF1 (Z) and BRLF1 (R) encoded immediate-early (IE) proteins induces lytic infection, and these IE proteins activate each other's promoters. ΔNp63α (a p53 family member) is required for proliferation and survival of basal epithelial cells and is over-expressed in NPC tumors. Here we show that ΔNp63α promotes EBV latency by inhibiting activation of the BZLF1 IE promoter (Zp). Furthermore, we find that another p63 gene splice variant, TAp63α, which is expressed in some Burkitt and diffuse large B cell lymphomas, also represses EBV lytic reactivation. We demonstrate that ΔNp63α inhibits the Z promoter indirectly by preventing the ability of other transcription factors, including the viral IE R protein and the cellular KLF4 protein, to activate Zp. Mechanistically, we show that ΔNp63α promotes viral latency in undifferentiated epithelial cells both by enhancing expression of a known Zp repressor protein, c-myc, and by decreasing cellular p38 kinase activity. Furthermore, we find that the ability of cis-platinum chemotherapy to degrade ΔNp63α contributes to the lytic-inducing effect of this agent in EBV-infected epithelial cells. Together these findings demonstrate that the loss of ΔNp63α expression, in conjunction with enhanced expression of differentiation-dependent transcription factors such as BLIMP1 and KLF4, induces lytic EBV reactivation during normal epithelial cell differentiation. Conversely, expression of ΔNp63α in undifferentiated nasopharyngeal carcinoma cells and TAp63α in Burkitt lymphoma promotes EBV latency in these malignancies.
Collapse
Affiliation(s)
- Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Dhananjay M. Nawandar
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Currently at Ring Therapeutics, Cambridge, Massachusetts, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Denis Lee
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Kathleen R. Makielski
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul F. Lambert
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
19
|
Huang Y, Yang Q, Zheng Y, Lin L, Xu X, Xu XE, Silva TC, Hazawa M, Peng L, Cao H, Ding Y, Lu D, Berman BP, Xu LY, Li EM, Yin D. Activation of bivalent factor DLX5 cooperates with master regulator TP63 to promote squamous cell carcinoma. Nucleic Acids Res 2021; 49:9246-9263. [PMID: 34370013 PMCID: PMC8450110 DOI: 10.1093/nar/gkab679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022] Open
Abstract
To reconstruct systematically hyperactive transcription factor (TF)-dependent transcription networks in squamous cell carcinomas (SCCs), a computational method (ELMER) was applied to 1293 pan-SCC patient samples, and 44 hyperactive SCC TFs were identified. As a top candidate, DLX5 exhibits a notable bifurcate re-configuration of its bivalent promoter in cancer. Specifically, DLX5 maintains a bivalent state in normal tissues; its promoter is hypermethylation, leading to DLX5 transcriptional silencing in esophageal adenocarcinoma (EAC). In stark contrast, DLX5 promoter gains active histone marks and becomes transcriptionally activated in ESCC, which is directly mediated by SOX2. Functionally, silencing of DLX5 substantially inhibits SCC viability both in vitro and in vivo. Mechanistically, DLX5 cooperates with TP63 in regulating ∼2000 enhancers and promoters, which converge on activating cancer-promoting pathways. Together, our data establish a novel and strong SCC-promoting factor and elucidate a new epigenomic mechanism - bifurcate chromatin re-configuration - during cancer development.
Collapse
Affiliation(s)
- Yongsheng Huang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qian Yang
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, China
| | - Yueyuan Zheng
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lehang Lin
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xin Xu
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, China
| | - Xiu-E Xu
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, China
| | - Tiago C Silva
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192 Ishikawa, Japan
| | - Li Peng
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haotian Cao
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, China
| | - Daning Lu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, China
| | - En-Min Li
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, China
| | - Dong Yin
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
20
|
Woodstock DL, Sammons MA, Fischer M. p63 and p53: Collaborative Partners or Dueling Rivals? Front Cell Dev Biol 2021; 9:701986. [PMID: 34291055 PMCID: PMC8287303 DOI: 10.3389/fcell.2021.701986] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/14/2021] [Indexed: 11/27/2022] Open
Abstract
The tumor suppressor p53 and its oncogenic sibling p63 (ΔNp63) direct opposing fates in tumor development. These paralog proteins are transcription factors that elicit their tumor suppressive and oncogenic capacity through the regulation of both shared and unique target genes. Both proteins predominantly function as activators of transcription, leading to a paradigm shift away from ΔNp63 as a dominant negative to p53 activity. The discovery of p53 and p63 as pioneer transcription factors regulating chromatin structure revealed new insights into how these paralogs can both positively and negatively influence each other to direct cell fate. The previous view of a strict rivalry between the siblings needs to be revisited, as p53 and p63 can also work together toward a common goal.
Collapse
Affiliation(s)
- Dana L Woodstock
- Department of Biological Sciences, The State University of New York at Albany, Albany, NY, United States
| | - Morgan A Sammons
- Department of Biological Sciences, The State University of New York at Albany, Albany, NY, United States
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| |
Collapse
|
21
|
Yu X, Singh PK, Tabrejee S, Sinha S, Buck MJ. ΔNp63 is a pioneer factor that binds inaccessible chromatin and elicits chromatin remodeling. Epigenetics Chromatin 2021; 14:20. [PMID: 33865440 PMCID: PMC8053304 DOI: 10.1186/s13072-021-00394-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/02/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND ΔNp63 is a master transcriptional regulator playing critical roles in epidermal development and other cellular processes. Recent studies suggest that ΔNp63 functions as a pioneer factor that can target its binding sites within inaccessible chromatin and induce chromatin remodeling. METHODS In order to examine if ΔNp63 can bind to inaccessible chromatin and to determine if specific histone modifications are required for binding, we induced ΔNp63 expression in two p63-naïve cell lines. ΔNp63 binding was then examined by ChIP-seq and the chromatin at ΔNp63 targets sites was examined before and after binding. Further analysis with competitive nucleosome binding assays was used to determine how ΔNp63 directly interacts with nucleosomes. RESULTS Our results show that before ΔNp63 binding, targeted sites lack histone modifications, indicating ΔNp63's capability to bind at unmodified chromatin. Moreover, the majority of the sites that are bound by ectopic ΔNp63 expression exist in an inaccessible state. Once bound, ΔNp63 induces acetylation of the histone and the repositioning of nucleosomes at its binding sites. Further analysis with competitive nucleosome binding assays reveal that ΔNp63 can bind directly to nucleosome edges with significant binding inhibition occurring within 50 bp of the nucleosome dyad. CONCLUSION Overall, our results demonstrate that ΔNp63 is a pioneer factor that binds nucleosome edges at inaccessible and unmodified chromatin sites and induces histone acetylation and nucleosome repositioning.
Collapse
Affiliation(s)
- Xinyang Yu
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA.,Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Prashant K Singh
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Shamira Tabrejee
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| | - Michael J Buck
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA. .,Department of Biomedical Informatics, Jacobs School of Medicine & Biomedical Sciences, Buffalo, USA.
| |
Collapse
|
22
|
Isoform-Specific Roles of Mutant p63 in Human Diseases. Cancers (Basel) 2021; 13:cancers13030536. [PMID: 33572532 PMCID: PMC7866788 DOI: 10.3390/cancers13030536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The protein p63 belongs to the family of the p53 tumor suppressor. Mouse models have, however, shown that it is not a classical tumor suppressor but instead involved in developmental processes. Mutations in the p63 gene cause several developmental defects in human patients characterized by limb deformation, cleft lip/palate, and ectodermal dysplasia due to p63’s role as a master regulator of epidermal development. In addition, p63 plays a key role as a quality control factor in oocytes and p63 mutations can result either in compromised genetic quality control or premature cell death of all oocytes. Abstract The p63 gene encodes a master regulator of epidermal commitment, development, and differentiation. Heterozygous mutations in the DNA binding domain cause Ectrodactyly, Ectodermal Dysplasia, characterized by limb deformation, cleft lip/palate, and ectodermal dysplasia while mutations in in the C-terminal domain of the α-isoform cause Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) syndrome, a life-threatening disorder characterized by skin fragility, severe, long-lasting skin erosions, and cleft lip/palate. The molecular disease mechanisms of these syndromes have recently become elucidated and have enhanced our understanding of the role of p63 in epidermal development. Here we review the molecular cause and functional consequences of these p63-mutations for skin development and discuss the consequences of p63 mutations for female fertility.
Collapse
|
23
|
Reichrath J, Reichrath S. The Impact of Notch Signaling for Carcinogenesis and Progression of Nonmelanoma Skin Cancer: Lessons Learned from Cancer Stem Cells, Tumor Angiogenesis, and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:123-154. [PMID: 33034030 DOI: 10.1007/978-3-030-55031-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since many decades, nonmelanoma skin cancer (NMSCs) is the most common malignancy worldwide. Basal cell carcinomas (BCC) and squamous cell carcinomas (SCC) are the major types of NMSCs, representing approximately 70% and 25% of these neoplasias, respectively. Because of their continuously rising incidence rates, NMSCs represent a constantly increasing global challenge for healthcare, although they are in most cases nonlethal and curable (e.g., by surgery). While at present, carcinogenesis of NMSC is still not fully understood, the relevance of genetic and molecular alterations in several pathways, including evolutionary highly conserved Notch signaling, has now been shown convincingly. The Notch pathway, which was first developed during evolution in metazoans and that was first discovered in fruit flies (Drosophila melanogaster), governs cell fate decisions and many other fundamental processes that are of high relevance not only for embryonic development, but also for initiation, promotion, and progression of cancer. Choosing NMSC as a model, we give in this review a brief overview on the interaction of Notch signaling with important oncogenic and tumor suppressor pathways and on its role for several hallmarks of carcinogenesis and cancer progression, including the regulation of cancer stem cells, tumor angiogenesis, and senescence.
Collapse
Affiliation(s)
- Jörg Reichrath
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany.
| | - Sandra Reichrath
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany.,School of Health Professions, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
24
|
Riege K, Kretzmer H, Sahm A, McDade SS, Hoffmann S, Fischer M. Dissecting the DNA binding landscape and gene regulatory network of p63 and p53. eLife 2020; 9:e63266. [PMID: 33263276 PMCID: PMC7735755 DOI: 10.7554/elife.63266] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
The transcription factor p53 is the best-known tumor suppressor, but its sibling p63 is a master regulator of epidermis development and a key oncogenic driver in squamous cell carcinomas (SCC). Despite multiple gene expression studies becoming available, the limited overlap of reported p63-dependent genes has made it difficult to decipher the p63 gene regulatory network. Particularly, analyses of p63 response elements differed substantially among the studies. To address this intricate data situation, we provide an integrated resource that enables assessing the p63-dependent regulation of any human gene of interest. We use a novel iterative de novo motif search approach in conjunction with extensive ChIP-seq data to achieve a precise global distinction between p53-and p63-binding sites, recognition motifs, and potential co-factors. We integrate these data with enhancer:gene associations to predict p63 target genes and identify those that are commonly de-regulated in SCC representing candidates for prognosis and therapeutic interventions.
Collapse
Affiliation(s)
- Konstantin Riege
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University BelfastBelfastUnited Kingdom
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| |
Collapse
|
25
|
Yi M, Tan Y, Wang L, Cai J, Li X, Zeng Z, Xiong W, Li G, Li X, Tan P, Xiang B. TP63 links chromatin remodeling and enhancer reprogramming to epidermal differentiation and squamous cell carcinoma development. Cell Mol Life Sci 2020; 77:4325-4346. [PMID: 32447427 PMCID: PMC7588389 DOI: 10.1007/s00018-020-03539-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/21/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022]
Abstract
Squamous cell carcinoma (SCC) is an aggressive malignancy that can originate from various organs. TP63 is a master regulator that plays an essential role in epidermal differentiation. It is also a lineage-dependent oncogene in SCC. ΔNp63α is the prominent isoform of TP63 expressed in epidermal cells and SCC, and overexpression promotes SCC development through a variety of mechanisms. Recently, ΔNp63α was highlighted to act as an epidermal-specific pioneer factor that binds closed chromatin and enhances chromatin accessibility at epidermal enhancers. ΔNp63α coordinates chromatin-remodeling enzymes to orchestrate the tissue-specific enhancer landscape and three-dimensional high-order architecture of chromatin. Moreover, ΔNp63α establishes squamous-like enhancer landscapes to drive oncogenic target expression during SCC development. Importantly, ΔNp63α acts as an upstream regulator of super enhancers to activate a number of oncogenic transcripts linked to poor prognosis in SCC. Mechanistically, ΔNp63α activates genes transcription through physically interacting with a number of epigenetic modulators to establish enhancers and enhance chromatin accessibility. In contrast, ΔNp63α also represses gene transcription via interacting with repressive epigenetic regulators. ΔNp63α expression is regulated at multiple levels, including transcriptional, post-transcriptional, and post-translational levels. In this review, we summarize recent advances of p63 in epigenomic and transcriptional control, as well as the mechanistic regulation of p63.
Collapse
Affiliation(s)
- Mei Yi
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yixin Tan
- Department of Dermatology, The Second Xiangya Hospital, The Central South University, Changsha, 410011, Hunan, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jing Cai
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Pingqing Tan
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Department of Head and Neck Surgery, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
26
|
Sammons MA, Nguyen TAT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res 2020; 48:8848-8869. [PMID: 32797160 PMCID: PMC7498329 DOI: 10.1093/nar/gkaa666] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The p53 transcription factor confers its potent tumor suppressor functions primarily through the regulation of a large network of target genes. The recent explosion of next generation sequencing protocols has enabled the study of the p53 gene regulatory network (GRN) and underlying mechanisms at an unprecedented depth and scale, helping us to understand precisely how p53 controls gene regulation. Here, we discuss our current understanding of where and how p53 binds to DNA and chromatin, its pioneer-like role, and how this affects gene regulation. We provide an overview of the p53 GRN and the direct and indirect mechanisms through which p53 affects gene regulation. In particular, we focus on delineating the ubiquitous and cell type-specific network of regulatory elements that p53 engages; reviewing our understanding of how, where, and when p53 binds to DNA and the mechanisms through which these events regulate transcription. Finally, we discuss the evolution of the p53 GRN and how recent work has revealed remarkable differences between vertebrates, which are of particular importance to cancer researchers using mouse models.
Collapse
Affiliation(s)
- Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Thuy-Ai T Nguyen
- Genome Integrity & Structural Biology Laboratory and Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
27
|
Anderson RA, Schwalbach KT, Mui SR, LeClair EE, Topczewska JM, Topczewski J. Zebrafish models of skeletal dysplasia induced by cholesterol biosynthesis deficiency. Dis Model Mech 2020; 13:dmm042549. [PMID: 32430393 PMCID: PMC7328163 DOI: 10.1242/dmm.042549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/27/2020] [Indexed: 12/23/2022] Open
Abstract
Human disorders of the post-squalene cholesterol biosynthesis pathway frequently result in skeletal abnormalities, yet our understanding of the mechanisms involved is limited. In a forward-genetic approach, we have found that a late-onset skeletal mutant, named kolibernu7 , is the result of a cis-acting regulatory mutation leading to loss of methylsterol monooxygenase 1 (msmo1) expression within pre-hypertrophic chondrocytes. Generated msmo1nu81 knockdown mutation resulted in lethality at larval stage. We demonstrated that this is a result of both cholesterol deprivation and sterol intermediate accumulation by creating a mutation eliminating activity of Lanosterol synthase (Lss). Our results indicate that double lssnu60;msmo1nu81 and single lssnu60 mutants survive significantly longer than msmo1nu81 homozygotes. Liver-specific restoration of either Msmo1 or Lss in corresponding mutant backgrounds suppresses larval lethality. Rescued mutants develop dramatic skeletal abnormalities, with a loss of Msmo1 activity resulting in a more-severe patterning defect of a near-complete loss of hypertrophic chondrocytes marked by col10a1a expression. Our analysis suggests that hypertrophic chondrocytes depend on endogenous cholesterol synthesis, and blocking C4 demethylation exacerbates the cholesterol deficiency phenotype. Our findings offer new insight into the genetic control of bone development and provide new zebrafish models for human disorders of the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Rebecca A Anderson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kevin T Schwalbach
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Stephanie R Mui
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Elizabeth E LeClair
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Jolanta M Topczewska
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Jacek Topczewski
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| |
Collapse
|
28
|
Gallardo-Fuentes L, Santos-Pereira JM, Tena JJ. Functional Conservation of Divergent p63-Bound cis-Regulatory Elements. Front Genet 2020; 11:339. [PMID: 32411176 PMCID: PMC7200997 DOI: 10.3389/fgene.2020.00339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/20/2020] [Indexed: 11/26/2022] Open
Abstract
The transcription factor p63 is an essential regulator of vertebrate ectoderm development, including epidermis, limbs, and craniofacial tissues. Here, we have investigated the evolutionary conservation of p63 binding sites (BSs) between zebrafish and human. First, we have analyzed sequence conservation of p63 BSs by comparing ChIP-seq data from human keratinocytes and zebrafish embryos, observing a very poor conservation. Next, we compared the gene regulatory network orchestrated by p63 in both species and found a high overlap between them, suggesting a high degree of functional conservation during evolution despite sequence divergence and the large evolutionary distance. Finally, we used transgenic reporter assays in zebrafish embryos to functionally validate a set of equivalent p63 BSs from zebrafish and human located close to genes involved in epidermal development. Reporter expression was driven by human and zebrafish BSs to many common tissues related to p63 expression domains. Therefore, we conclude that the gene regulatory network controlled by p63 is highly conserved across vertebrates despite the fact that p63-bound regulatory elements show high divergence.
Collapse
Affiliation(s)
- Lourdes Gallardo-Fuentes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - José M Santos-Pereira
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
29
|
Alvarez JM, Schinke AL, Brooks MD, Pasquino A, Leonelli L, Varala K, Safi A, Krouk G, Krapp A, Coruzzi GM. Transient genome-wide interactions of the master transcription factor NLP7 initiate a rapid nitrogen-response cascade. Nat Commun 2020; 11:1157. [PMID: 32123177 PMCID: PMC7052136 DOI: 10.1038/s41467-020-14979-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Dynamic reprogramming of gene regulatory networks (GRNs) enables organisms to rapidly respond to environmental perturbation. However, the underlying transient interactions between transcription factors (TFs) and genome-wide targets typically elude biochemical detection. Here, we capture both stable and transient TF-target interactions genome-wide within minutes after controlled TF nuclear import using time-series chromatin immunoprecipitation (ChIP-seq) and/or DNA adenine methyltransferase identification (DamID-seq). The transient TF-target interactions captured uncover the early mode-of-action of NIN-LIKE PROTEIN 7 (NLP7), a master regulator of the nitrogen signaling pathway in plants. These transient NLP7 targets captured in root cells using temporal TF perturbation account for 50% of NLP7-regulated genes not detectably bound by NLP7 in planta. Rapid and transient NLP7 binding activates early nitrogen response TFs, which we validate to amplify the NLP7-initiated transcriptional cascade. Our approaches to capture transient TF-target interactions genome-wide can be applied to validate dynamic GRN models for any pathway or organism of interest. Conventional methods cannot reveal transient transcription factors (TFs) and targets interactions. Here, Alvarez et al. capture both stable and transient TF-target interactions by time-series ChIP-seq and/or DamID-seq in a cell-based TF perturbation system and show NLP7 as a master TF to initiate a rapid nitrogen-response cascade.
Collapse
Affiliation(s)
- José M Alvarez
- Center for Genomics and Systems Biology, New York University, New York, NY, USA.,Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Anna-Lena Schinke
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Matthew D Brooks
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Angelo Pasquino
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Lauriebeth Leonelli
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Kranthi Varala
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Alaeddine Safi
- BPMP, Université de Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Gabriel Krouk
- BPMP, Université de Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Anne Krapp
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, New York University, New York, NY, USA.
| |
Collapse
|
30
|
Liu H, Duncan K, Helverson A, Kumari P, Mumm C, Xiao Y, Carlson JC, Darbellay F, Visel A, Leslie E, Breheny P, Erives AJ, Cornell RA. Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18. eLife 2020; 9:e51325. [PMID: 32031521 PMCID: PMC7039683 DOI: 10.7554/elife.51325] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/06/2020] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies for non-syndromic orofacial clefting (OFC) have identified single nucleotide polymorphisms (SNPs) at loci where the presumed risk-relevant gene is expressed in oral periderm. The functional subsets of such SNPs are difficult to predict because the sequence underpinnings of periderm enhancers are unknown. We applied ATAC-seq to models of human palate periderm, including zebrafish periderm, mouse embryonic palate epithelia, and a human oral epithelium cell line, and to complementary mesenchymal cell types. We identified sets of enhancers specific to the epithelial cells and trained gapped-kmer support-vector-machine classifiers on these sets. We used the classifiers to predict the effects of 14 OFC-associated SNPs at 12q13 near KRT18. All the classifiers picked the same SNP as having the strongest effect, but the significance was highest with the classifier trained on zebrafish periderm. Reporter and deletion analyses support this SNP as lying within a periderm enhancer regulating KRT18/KRT8 expression.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan UniversityWuhanChina
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
- Department of Periodontology, School of Stomatology, Wuhan UniversityWuhanChina
| | - Kaylia Duncan
- Interdisciplinary Program in Molecular Medicine, University of IowaIowa CityUnited States
| | - Annika Helverson
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Priyanka Kumari
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Camille Mumm
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Yao Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan UniversityWuhanChina
| | | | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley LaboratoriesBerkeleyUnited States
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley LaboratoriesBerkeleyUnited States
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley LaboratoriesBerkeleyUnited States
- University of California, MercedMercedUnited States
| | - Elizabeth Leslie
- Department of Human Genetics, Emory University School of MedicineAtlantaGeorgia
| | - Patrick Breheny
- Department of Biostatistics, University of IowaIowa CityUnited States
| | - Albert J Erives
- Department of Biology, University of IowaIowa CityUnited States
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
- Interdisciplinary Program in Molecular Medicine, University of IowaIowa CityUnited States
| |
Collapse
|
31
|
Guan Y, Wang G, Fails D, Nagarajan P, Ge Y. Unraveling cancer lineage drivers in squamous cell carcinomas. Pharmacol Ther 2020; 206:107448. [PMID: 31836455 PMCID: PMC6995404 DOI: 10.1016/j.pharmthera.2019.107448] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Cancer hijacks embryonic development and adult wound repair mechanisms to fuel malignancy. Cancer frequently originates from de-regulated adult stem cells or progenitors, which are otherwise essential units for postnatal tissue remodeling and repair. Cancer genomics studies have revealed convergence of multiple cancers across organ sites, including squamous cell carcinomas (SCCs), a common group of cancers arising from the head and neck, esophagus, lung, cervix and skin. In this review, we summarize our current knowledge on the molecular drivers of SCCs, including these five major organ sites. We especially focus our discussion on lineage dependent driver genes and pathways, in the context of squamous development and stratification. We then use skin as a model to discuss the notion of field cancerization during SCC carcinogenesis, and cancer as a wound that never heals. Finally, we turn to the idea of context dependency widely observed in cancer driver genes, and outline literature support and possible explanations for their lineage specific functions. Through these discussions, we aim to provide an up-to-date summary of molecular mechanisms driving tumor plasticity in squamous cancers. Such basic knowledge will be helpful to inform the clinics for better stratifying cancer patients, revealing novel drug targets and providing effective treatment options.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Guan Wang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Danielle Fails
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yejing Ge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
32
|
Smirnov A, Cappello A, Lena AM, Anemona L, Mauriello A, Di Daniele N, Annicchiarico-Petruzzelli M, Melino G, Candi E. ZNF185 is a p53 target gene following DNA damage. Aging (Albany NY) 2019; 10:3308-3326. [PMID: 30446632 PMCID: PMC6286825 DOI: 10.18632/aging.101639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
Abstract
The transcription factor p53 is a key player in the tumour suppressive DNA damage response and a growing number of target genes involved in these pathways has been identified. p53 has been shown to be implicated in controlling cell motility and its mutant form enhances metastasis by loss of cell directionality, but the p53 role in this context has not yet being investigated. Here, we report that ZNF185, an actin cytoskeleton-associated protein from LIM-family of Zn-finger proteins, is induced following DNA-damage. ChIP-seq analysis, chromatin crosslinking immune-precipitation experiments and luciferase assays demonstrate that ZNF185 is a bona fide p53 target gene. Upon genotoxic stress, caused by DNA-damaging drug etoposide and UVB irradiation, ZNF185 expression is up-regulated and in etoposide-treated cells, ZNF185 depletion does not affect cell proliferation and apoptosis, but interferes with actin cytoskeleton remodelling and cell polarization. Bioinformatic analysis of different types of epithelial cancers from both TCGA and GTEx databases showed a significant decrease in ZNF185 mRNA level compared to normal tissues. These findings are confirmed by tissue micro-array IHC staining. Our data highlight the involvement of ZNF185 and cytoskeleton changes in p53-mediated cellular response to genotoxic stress and indicate ZNF185 as potential biomarker for epithelial cancer diagnosis.
Collapse
Affiliation(s)
- Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Angela Cappello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Lucia Anemona
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome 00133, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy.,MRC-Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy.,Istituto Dermopatico dell'Immacolata-IRCCS, Rome 00163, Italy
| |
Collapse
|
33
|
Frezza V, Fierro C, Gatti E, Peschiaroli A, Lena AM, Petruzzelli MA, Candi E, Anemona L, Mauriello A, Pelicci PG, Melino G, Bernassola F. ΔNp63 promotes IGF1 signalling through IRS1 in squamous cell carcinoma. Aging (Albany NY) 2019; 10:4224-4240. [PMID: 30594912 PMCID: PMC6326668 DOI: 10.18632/aging.101725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Accumulating evidence has proved that deregulation of ΔNp63 expression plays an oncogenic role in head and neck squamous cell carcinomas (HNSCCs). Besides p63, the type 1-insulin-like growth factor (IGF) signalling pathway has been implicated in HNSCC development and progression. Most insulin/IGF1 signalling converges intracellularly onto the protein adaptor insulin receptor substrate-1 (IRS-1) that transmits signals from the receptor to downstream effectors, including the PI3K/AKT and the MAPK kinase pathways, which, ultimately, promote proliferation, invasion, and cell survival. Here we report that p63 directly controls IRS1 transcription and cellular abundance and fosters the PI3K/AKT and MAPK downstream signalling pathways. Inactivation of ΔNp63 expression indeed reduces tumour cell responsiveness to IGF1 stimulation, and inhibits the growth potential of HNSCC cells. In addition, a positive correlation was observed between p63 and IRS1 expression in human HNSCC tissue arrays and in publicly available gene expression data. Our findings indicate that aberrant expression of ΔNp63 in HNSSC may act as an oncogenic stimulus by altering the IGF signalling pathway.
Collapse
Affiliation(s)
- Valentina Frezza
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| | - Claudia Fierro
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| | - Elena Gatti
- Department of Experimental Oncology European Institute of Oncology, Milan 20139, Italy
| | - Angelo Peschiaroli
- National Research Council of Italy Institute of Translational Pharmacology (IFT-CNR), Rome 00133, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| | | | - Eleonora Candi
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy.,Istituto Dermopatico dell'Immacolata, IRCCS,, Rome 00163, Italy
| | - Lucia Anemona
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology European Institute of Oncology, Milan 20139, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy.,Medical Research Council, Toxicology Unit, University of Cambridge, Leicester LE1 9HN, UK
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| |
Collapse
|
34
|
Abraham CG, Ludwig MP, Andrysik Z, Pandey A, Joshi M, Galbraith MD, Sullivan KD, Espinosa JM. ΔNp63α Suppresses TGFB2 Expression and RHOA Activity to Drive Cell Proliferation in Squamous Cell Carcinomas. Cell Rep 2019; 24:3224-3236. [PMID: 30232004 DOI: 10.1016/j.celrep.2018.08.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023] Open
Abstract
The transcriptional repressor ΔNp63α is a potent oncogene widely overexpressed in squamous cell carcinomas (SCCs) of diverse tissue origins, where it promotes malignant cell proliferation and survival. We report here the results of a genome-wide CRISPR screen to identify pathways controlling ΔNp63α-dependent cell proliferation, which revealed that the small GTPase RHOA blocks cell division upon ΔNp63α knockdown. After ΔNp63α depletion, RHOA activity is increased, and cells undergo RHOA-dependent proliferation arrest along with transcriptome changes indicative of increased TGF-β signaling. Mechanistically, ΔNp63α represses transcription of TGFB2, which induces a cell cycle arrest that is partially dependent on RHOA. Ectopic TGFB2 activates RHOA and impairs SCC proliferation, and TGFB2 neutralization restores cell proliferation during ΔNp63α depletion. Genomic data from tumors demonstrate inactivation of RHOA and the TGFBR2 receptor and ΔNp63α overexpression in more than 80% of lung SCCs. These results reveal a signaling pathway controlling SCC proliferation that is potentially amenable to pharmacological intervention.
Collapse
Affiliation(s)
- Christopher G Abraham
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael P Ludwig
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ahwan Pandey
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Molishree Joshi
- Functional Genomics Facility, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kelly D Sullivan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Functional Genomics Facility, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Functional Genomics Facility, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80203, USA.
| |
Collapse
|
35
|
Qu J, Yi G, Zhou H. p63 cooperates with CTCF to modulate chromatin architecture in skin keratinocytes. Epigenetics Chromatin 2019; 12:31. [PMID: 31164150 PMCID: PMC6547520 DOI: 10.1186/s13072-019-0280-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/17/2019] [Indexed: 11/24/2022] Open
Abstract
The transcription factor p63 regulates epidermal genes and the enhancer landscape in skin keratinocytes. Its molecular function in controlling the chromatin structure is, however, not yet completely understood. Here, we integrated multi-omics profiles, including the transcriptome, transcription factor DNA-binding and chromatin accessibility, in skin keratinocytes isolated from EEC syndrome patients carrying p63 mutations, to examine the role of p63 in shaping the chromatin architecture. We found decreased chromatin accessibility in p63- and CTCF-bound open chromatin regions that potentially contributed to gene deregulation in mutant keratinocytes. Cooperation of p63 and CTCF seemed to assist chromatin interactions between p63-bound enhancers and gene promoters in skin keratinocytes. Our study suggests an intriguing model where cell type-specific transcription factors such as p63 cooperate with the genome organizer CTCF in the three-dimensional chromatin space to regulate the transcription program important for the proper cell identity.
Collapse
Affiliation(s)
- Jieqiong Qu
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Guoqiang Yi
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Present Address: Center for Animal Genomics, Agricultural Genome Institute at Shenzhen, Chinese
Academy of Agricultural Sciences, Shenzhen, 518124 China
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Lakshmanachetty S, Balaiya V, High WA, Koster MI. Loss of TP63 Promotes the Metastasis of Head and Neck Squamous Cell Carcinoma by Activating MAPK and STAT3 Signaling. Mol Cancer Res 2019; 17:1279-1293. [PMID: 30910837 DOI: 10.1158/1541-7786.mcr-18-1355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/06/2019] [Accepted: 03/20/2019] [Indexed: 01/02/2023]
Abstract
TP63 is frequently amplified or overexpressed in primary head and neck squamous cell carcinomas (HNSCC). Nevertheless, the role of TP63 in the initiation and progression of HNSCCs is not known. Using archival HNSCC tissue sections, we found that TP63 expression is often downregulated in late-stage human HNSCCs. To establish a causal link between TP63 loss and HNSCC tumorigenesis, we developed a genetically engineered mouse model in which Trp63 (the mouse homolog of human TP63) was ablated from head and neck epithelia. Upon exposure of the mice to a chemical carcinogen, we found that Trp63 ablation accelerated HNSCC initiation and progression. To determine whether these findings are relevant for human HNSCCs, we generated TP63 knockdown HNSCC cell lines. These cells were implanted into the tongue of athymic nude mice to generate orthotopic xenografts. We found that loss of TP63 promoted HNSCC progression and metastasis. Furthermore, we determined that tumor metastasis is dependent on MAPK activation in TP63 knockdown HNSCCs. The significance of these findings is underscored by our finding that pharmacologic inhibition of MAPK activity by trametinib drastically impaired HNSCC metastasis mediated by TP63 loss. In conclusion, our data provide novel mechanistic insights into the role of TP63 loss in HNSCC initiation and progression, and provide a rationale for the development of new therapeutic approaches specifically targeting TP63-dependent tumor pathways. IMPLICATIONS: Our findings uncover a novel functional role for TP63 loss in HNSCC metastasis and identify MAPK signaling as a potential therapeutic target for treating HNSCCs with low TP63 expression.
Collapse
Affiliation(s)
- Senthilnath Lakshmanachetty
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado.,Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Velmurugan Balaiya
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado.,Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Whitney A High
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Maranke I Koster
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado. .,Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Aurora, Colorado.,Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
37
|
Gatti V, Fierro C, Annicchiarico-Petruzzelli M, Melino G, Peschiaroli A. ΔNp63 in squamous cell carcinoma: defining the oncogenic routes affecting epigenetic landscape and tumour microenvironment. Mol Oncol 2019; 13:981-1001. [PMID: 30845357 PMCID: PMC6487733 DOI: 10.1002/1878-0261.12473] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Squamous cell carcinoma (SCC) is a treatment‐refractory tumour which arises from the epithelium of diverse anatomical sites such as oesophagus, head and neck, lung and skin. Accumulating evidence has revealed a number of genomic, clinical and molecular features commonly observed in SCC of distinct origins. Some of these genetic events culminate in fostering the activity of ΔNp63, a potent oncogene which exerts its pro‐tumourigenic effects by regulating specific transcriptional programmes to sustain malignant cell proliferation and survival. In this review, we will describe the genetic and epigenetic determinants underlying ΔNp63 oncogenic activities in SCC, and discuss some relevant transcriptional effectors of ΔNp63, emphasizing their impact in modulating the crosstalk between tumour cells and tumour microenvironment (TME).
Collapse
Affiliation(s)
- Veronica Gatti
- Department of Experimental Medicine, TOR, University of Rome, Tor Vergata, Italy
| | - Claudia Fierro
- Department of Experimental Medicine, TOR, University of Rome, Tor Vergata, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome, Tor Vergata, Italy.,Medical Research Council, Toxicology Unit, University of Cambridge, UK
| | - Angelo Peschiaroli
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy
| |
Collapse
|
38
|
Rai A, Srivastava P, Phadke SR. Deletion 7q21.2-q22.1 in a case with split hand-split foot malformation, sensorineural hearing loss and intellectual disability: Phenotype subtypes and the correlation with genotypes. Eur J Med Genet 2018; 62:103597. [PMID: 30543991 DOI: 10.1016/j.ejmg.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 12/30/2022]
Abstract
The split hand/split foot malformation (SHFM) or ectrodactyly is a rare congenital heterogeneous limb developmental disorder with at least 6 associated loci. It is characterized by absence of central rays of hands and feet and fusion of remaining digits. It can present as an isolated malformation or in combination with additional anomalies (non-syndromic or syndromic ectrodactyly). This is a report of a 4 year old male child with SHFM with facial dysmorphism, profound sensorineural hearing loss, microcephaly and developmental delay associated with a large deletion of 7.242 MB on chromosome 7q21.2-q22.1. This is the region of SHFM1 (OMIM No. 183600) and deletions of varying sizes have been reported. We have reviewed the phenotypes and genotypes of this locus. The deletions with this severe phenotype are large and some of them detected on traditional karyotyping. The cases with submicroscopic deletions are few but show some correlation of genotype with phenotype which will help in counseling the families with prenatally or neonatally detected deletion at this locus.
Collapse
Affiliation(s)
- Archana Rai
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|
39
|
Qu J, Tanis SE, Smits JP, Kouwenhoven EN, Oti M, van den Bogaard EH, Logie C, Stunnenberg HG, van Bokhoven H, Mulder KW, Zhou H. Mutant p63 Affects Epidermal Cell Identity through Rewiring the Enhancer Landscape. Cell Rep 2018; 25:3490-3503.e4. [DOI: 10.1016/j.celrep.2018.11.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/16/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
|
40
|
Lu Y, Cao J, Napoli M, Xia Z, Zhao N, Creighton CJ, Li W, Chen X, Flores ER, McManus MT, Rosen JM. miR-205 Regulates Basal Cell Identity and Stem Cell Regenerative Potential During Mammary Reconstitution. Stem Cells 2018; 36:1875-1889. [PMID: 30267595 PMCID: PMC6379077 DOI: 10.1002/stem.2914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 02/05/2023]
Abstract
Mammary gland development is fueled by stem cell self-renewal and differentiation. External cues from the microenvironment coupled with internal cues such as post-transcriptional regulation exerted by microRNAs regulate stem cell behavior and fate. Here, we have identified a miR-205 regulatory network required for mammary gland ductal development and stem cell regeneration following transplantation into the cleared mammary fat pad. In the postnatal mammary gland, miR-205 is predominantly expressed in the basal/stem cell enriched population. Conditional deletion of miR-205 in mammary epithelial cells impairs stem cell self-renewal and mammary regenerative potential in the in vitro mammosphere formation assay and in vivo mammary reconstitution. miR-205 null transplants display significant changes in basal cells, basement membrane, and stroma. NKD1 and PTPA, which inhibit the Wnt signaling pathway, and AMOT, which causes YAP cytoplasmic retention and inactivation were identified as miR-205 downstream mediators. These studies also confirmed that miR-205 is a direct ΔNp63 target gene that is critical for the regulation of basal cell identity. Stem Cells 2018;36:1875-15.
Collapse
Affiliation(s)
- Yang Lu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX
| | - Jin Cao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Marco Napoli
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Zheng Xia
- Department of Molecular Microbiology & Immunology, Computational Biology Program, Oregon Health & Science University, Portland, Oregon
| | - Na Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Chad J Creighton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Wei Li
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Elsa R Flores
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Michael T McManus
- Department of Microbiology and Immunology, UCSF Diabetes Center and the WM Keck Center for Noncoding RNAs at UCSF, San Francisco, California
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
41
|
van Eijl RAPM, van Buggenum JAGL, Tanis SEJ, Hendriks J, Mulder KW. Single-Cell ID-seq Reveals Dynamic BMP Pathway Activation Upstream of the MAF/MAFB-Program in Epidermal Differentiation. iScience 2018; 9:412-422. [PMID: 30466065 PMCID: PMC6249387 DOI: 10.1016/j.isci.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/28/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022] Open
Abstract
Epidermal homeostasis requires balanced and coordinated adult stem cell renewal and differentiation. These processes are controlled by both extracellular signaling and by cell intrinsic transcription regulatory networks, yet how these control mechanisms are integrated to achieve this is unclear. Here, we developed single-cell Immuno-Detection by sequencing (scID-seq) and simultaneously measured 69 proteins (including 34 phosphorylated epitopes) at single-cell resolution to study the activation state of signaling pathways during human epidermal differentiation. Computational pseudo-timing inference revealed dynamic activation of the JAK-STAT, WNT, and BMP pathways along the epidermal differentiation trajectory. We found that during differentiation, cells start producing BMP2-ligands and activate the canonical intracellular effectors SMAD1/5/9. Mechanistically, the BMP pathway is responsible for activating the MAF/MAFB/ZNF750 transcription factor network to drive late-stage epidermal differentiation. Our work indicates that incorporating signaling pathway activation into this transcription regulatory network enables coordination of transcription programs during epidermal differentiation. scID-seq allows quantification of 70 (phospho-)proteins at single-cell level Pseudo-time inference reveals signaling dynamics during epidermal differentiation BMP signaling drives a late differentiation transcription program BMP signaling activates the MAF/MAFB/ZNF750 transcription factor network
Collapse
Affiliation(s)
- Roderick A P M van Eijl
- Radboud University, Faculty of Science, Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Nijmegen 6525 GA, The Netherlands
| | - Jessie A G L van Buggenum
- Radboud University, Faculty of Science, Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Nijmegen 6525 GA, The Netherlands
| | - Sabine E J Tanis
- Radboud University, Faculty of Science, Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Nijmegen 6525 GA, The Netherlands
| | - Joost Hendriks
- Radboud University, Faculty of Science, Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Nijmegen 6525 GA, The Netherlands
| | - Klaas W Mulder
- Radboud University, Faculty of Science, Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Nijmegen 6525 GA, The Netherlands.
| |
Collapse
|
42
|
ZNF185 is a p63 target gene critical for epidermal differentiation and squamous cell carcinoma development. Oncogene 2018; 38:1625-1638. [PMID: 30337687 PMCID: PMC6755960 DOI: 10.1038/s41388-018-0509-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/13/2018] [Accepted: 08/17/2018] [Indexed: 01/04/2023]
Abstract
Development and maintenance of healthy stratified epithelia require the coordination of complex transcriptional programmes. The transcription factor p63, a member of the p53 family, plays a crucial role in epithelial development and homeostasis. Analysis of the p63-dependent transcriptome indicated that one important aspect of p63 functions in epithelial development is the regulation of cell–cell and cell–matrix adhesion programmes. However, limited knowledge exists on the relevant cell–cell adhesion molecules involved in physiological epithelial formation. Similarly, limited data are available to understand if deregulation of the cell–cell adhesion programme is important in tumour formation. Here, using the epidermis as an experimental model with the RNA sequencing approach, we identify a novel p63-regulated gene induced during differentiation, ZNF185. ZNF185 is an actin-cytoskeleton-associated Lin-l 1, Isl-1 and Mec-3 (LIM) domain-containing protein, whose function is poorly known. We found that p63 binds to a specific enhancer region, promoting its expression to sustain epithelial differentiation. ZNF185 silencing strongly impaired keratinocyte differentiation according to gene array analysis. ZNF185 is detected at the cell–cell periphery where it physically interacts with E-cadherin, indicating that it is important to maintain epithelial integrity beyond its pro-differentiation role. Interestingly, poorly differentiated, including head and neck, cervical and oesophageal, squamous cell carcinomas display loss of ZNF185 expression. Together, these studies reinforce that p63 is a crucial gene for maintaining epithelial tissue integrity and support the deregulation of the cell-cell adhesion programme,which plays a critical role in carcinoma development.
Collapse
|
43
|
Chen Y, Li Y, Peng Y, Zheng X, Fan S, Yi Y, Zeng P, Chen H, Kang H, Zhang Y, Xiao ZX, Li C. ΔNp63α down-regulates c-Myc modulator MM1 via E3 ligase HERC3 in the regulation of cell senescence. Cell Death Differ 2018; 25:2118-2129. [PMID: 29880857 DOI: 10.1038/s41418-018-0132-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 12/31/2022] Open
Abstract
p63 and c-Myc are key transcription factors controlling genes involved in the cell cycle and cellular senescence. We previously reported that p63α can destabilize MM1 protein to derepress c-Myc, resulting in cell cycle progress and tumorigenesis. However, how the proteasomal degradation of MM1 is facilitated remains unclear. In the present study, we identified a novel E3 ligase, HERC3, which can mediate ubiquitination of MM1 and promote its proteasome-dependent degradation. We found that ΔNp63α transcriptionally up-regulates HERC3 and knockdown of HERC3 abrogates ΔNp63α-induced down-regulation of MM1. Either overexpression of MM1 or ablation of HERC3 induces cell senescence, while knockdown of MM1 rescues cell senescence induced by deficiency of either ΔNp63α or HERC3, implicating the involvement of the ΔNp63α/HERC3/MM1/c-Myc axis in the modulation of cell senescence. Additionally, our Oncomine analysis indicates activation of the ΔNp63α/HERC3/MM1/c-Myc axis in invasive breast carcinoma. Together, our data illuminate a novel axis regulating cell senescence: ΔNp63α stimulates transcription of E3 ligase HERC3, which mediates ubiquitination of c-Myc modulator MM1 and targets it to proteasomal degradation; subsequently, c-Myc is derepressed by ΔNp63α, thereby cell senescence is modulated by this axis. Our work provides a new interpretation of crosstalk between p63 and c-Myc, and also sheds new light on ΔNp63α-controlled cell senescence and tumorigenesis.
Collapse
Affiliation(s)
- Yonglong Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yimin Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yougong Peng
- Department of General Surgery, The Second People's Hospital of Jingmen, Jingmen, 448000, Hubei, China
| | - Xuan Zheng
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Shijie Fan
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Peng Zeng
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Hu Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Han Kang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yujun Zhang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
44
|
Arcidiacono P, Webb CM, Brooke MA, Zhou H, Delaney PJ, Ng KE, Blaydon DC, Tinker A, Kelsell DP, Chikh A. p63 is a key regulator of iRHOM2 signalling in the keratinocyte stress response. Nat Commun 2018; 9:1021. [PMID: 29523849 PMCID: PMC5844915 DOI: 10.1038/s41467-018-03470-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 02/14/2018] [Indexed: 02/06/2023] Open
Abstract
Hyperproliferative keratinocytes induced by trauma, hyperkeratosis and/or inflammation display molecular signatures similar to those of palmoplantar epidermis. Inherited gain-of-function mutations in RHBDF2 (encoding iRHOM2) are associated with a hyperproliferative palmoplantar keratoderma and squamous oesophageal cancer syndrome (termed TOC). In contrast, genetic ablation of rhbdf2 in mice leads to a thinning of the mammalian footpad, and reduces keratinocyte hyperproliferation and migration. Here, we report that iRHOM2 is a novel target gene of p63 and that both p63 and iRHOM2 differentially regulate cellular stress-associated signalling pathways in normal and hyperproliferative keratinocytes. We demonstrate that p63-iRHOM2 regulates cell survival and response to oxidative stress via modulation of SURVIVIN and Cytoglobin, respectively. Furthermore, the antioxidant compound Sulforaphane downregulates p63-iRHOM2 expression, leading to reduced proliferation, inflammation, survival and ROS production. These findings elucidate a novel p63-associated pathway that identifies iRHOM2 modulation as a potential therapeutic target to treat hyperproliferative skin disease and neoplasia.
Collapse
Affiliation(s)
- Paola Arcidiacono
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Catherine M Webb
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Matthew A Brooke
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Huiqing Zhou
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, The Netherlands
| | - Paul J Delaney
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Keat-Eng Ng
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Diana C Blaydon
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Andrew Tinker
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - David P Kelsell
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| | - Anissa Chikh
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| |
Collapse
|
45
|
Kantaputra P, Hutsadaloi A, Kaewgahya M, Intachai W, German R, Koparal M, Leethanakul C, Tolun A, Ketudat Cairns J. WNT10B
mutations associated with isolated dental anomalies. Clin Genet 2018; 93:992-999. [DOI: 10.1111/cge.13218] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/05/2018] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Affiliation(s)
- P.N. Kantaputra
- Center of Excellence in Medical Genetics Research; Chiang Mai University; Chiang Mai Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
- Dentaland Clinic; Chiang Mai Thailand
| | | | - M. Kaewgahya
- Center of Excellence in Medical Genetics Research; Chiang Mai University; Chiang Mai Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - W. Intachai
- Center of Excellence in Medical Genetics Research; Chiang Mai University; Chiang Mai Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - R. German
- Center of Excellence in Medical Genetics Research; Chiang Mai University; Chiang Mai Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - M. Koparal
- Department of Oral and Maxillofacial Surgery; Adiyaman University; Adiyaman Turkey
| | - C. Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry; Prince of Songkla University; Hat Yai Thailand
| | - A. Tolun
- Department of Molecular Biology and Genetics; Boğaziçi University; Istanbul Turkey
| | - J.R. Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure Function and Application; Suranaree University of Technology; Nakhon Ratchasima Thailand
- Laboratory of Biochemistry; Chulabhorn Research Institute; Bangkok Thailand
| |
Collapse
|
46
|
Chen Y, Peng Y, Fan S, Li Y, Xiao ZX, Li C. A double dealing tale of p63: an oncogene or a tumor suppressor. Cell Mol Life Sci 2018; 75:965-973. [PMID: 28975366 PMCID: PMC11105324 DOI: 10.1007/s00018-017-2666-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
Abstract
As a member of tumor suppressor p53 family, p63, a gene encoding versatile protein variant, has been documented to correlate with cancer formation and progression, though it is rarely mutated in cancer patients. However, it has long been controversial on whether p63 is an oncogene or a tumor suppressor. Here, we comprehensively reviewed reports on roles of p63 in development, tumorigenesis and tumor progression. According to data from molecular cell biology, genetic models and clinic research, we conclude that p63 may act as either an oncogene or a tumor suppressor gene in different scenarios: TA isoforms of p63 gene are generally tumor-suppressive through repressing cell proliferation, survival and metastasis; ΔN isoforms, however, may initiate tumorigenesis via promoting cell proliferation and survival, but inhibit tumor metastasis and progression; effects of p63 on tumor formation and progression depend on the context of the whole p53 family, and either amplification or loss of p63 gene locus can break the balance to cause tumorigenesis.
Collapse
Affiliation(s)
- Yonglong Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yougong Peng
- Department of General Surgery, The Second People's Hospital of Jingmen, Jingmen, 448000, China
| | - Shijie Fan
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yimin Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
47
|
Protein aggregation of the p63 transcription factor underlies severe skin fragility in AEC syndrome. Proc Natl Acad Sci U S A 2018; 115:E906-E915. [PMID: 29339502 PMCID: PMC5798343 DOI: 10.1073/pnas.1713773115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The p63 gene encodes a master regulator of epidermal development and function. Specific mutations in p63 are causative of a life-threatening disorder mainly characterized by severe skin erosions and cleft palate. Little is known about the mechanisms underlying disease pathology and possible treatments. Based on biochemical studies, genetic mouse models, and functional assays, we demonstrate that these mutations cause p63 protein misfolding and aggregation. Protein aggregation lead to reduced DNA binding and impaired transcriptional activity. Importantly, genetic modifications of p63 that abolish aggregation of the mutant proteins rescue its function, revealing that ankyloblepharon-ectodermal defects-cleft lip/palate syndrome is a protein aggregation disorder and opening avenues for therapeutic intervention. The p63 gene encodes a master regulator of epidermal commitment, development, and differentiation. Heterozygous mutations in the C-terminal domain of the p63 gene can cause ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome, a life-threatening disorder characterized by skin fragility and severe, long-lasting skin erosions. Despite deep knowledge of p63 functions, little is known about mechanisms underlying disease pathology and possible treatments. Here, we show that multiple AEC-associated p63 mutations, but not those causative of other diseases, lead to thermodynamic protein destabilization, misfolding, and aggregation, similar to the known p53 gain-of-function mutants found in cancer. AEC mutant proteins exhibit impaired DNA binding and transcriptional activity, leading to dominant negative effects due to coaggregation with wild-type p63 and p73. Importantly, p63 aggregation occurs also in a conditional knock-in mouse model for the disorder, in which the misfolded p63 mutant protein leads to severe epidermal defects. Variants of p63 that abolish aggregation of the mutant proteins are able to rescue p63’s transcriptional function in reporter assays as well as in a human fibroblast-to-keratinocyte conversion assay. Our studies reveal that AEC syndrome is a protein aggregation disorder and opens avenues for therapeutic intervention.
Collapse
|
48
|
Deletion of a Long-Range Dlx5 Enhancer Disrupts Inner Ear Development in Mice. Genetics 2018; 208:1165-1179. [PMID: 29301908 DOI: 10.1534/genetics.117.300447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/09/2017] [Indexed: 12/19/2022] Open
Abstract
Distal enhancers are thought to play important roles in the spatiotemporal regulation of gene expression during embryonic development, but few predicted enhancer elements have been shown to affect transcription of their endogenous genes or to alter phenotypes when disrupted. Here, we demonstrate that a 123.6-kb deletion within the mouse Slc25a13 gene is associated with reduced transcription of Dlx5, a gene located 660 kb away. Mice homozygous for the Slc25a13 deletion mutation [named hyperspin (hspn)] have malformed inner ears and are deaf with balance defects, whereas previously reported Slc25a13 knockout mice showed no phenotypic abnormalities. Inner ears of Slc25a13hspn/hspn mice have malformations similar to those of Dlx5-/- embryos, and Dlx5 expression is severely reduced in the otocyst but not the branchial arches of Slc25a13hspn/hspn embryos, indicating that the Slc25a13hspn deletion affects otic-specific enhancers of Dlx5 In addition, transheterozygous Slc25a13+/hspn Dlx5+/- mice exhibit noncomplementation with inner ear dysmorphologies similar to those of Slc25a13hspn/hspn and Dlx5-/-embryos, verifying a cis-acting effect of the Slc25a13hspn deletion on Dlx5 expression. CRISPR/Cas9-mediated deletions of putative enhancer elements located within the Slc25a13hspn deleted region failed to phenocopy the defects of Slc25a13hspn/hspn mice, suggesting the possibility of multiple enhancers with redundant functions. Our findings in mice suggest that analogous enhancer elements in the human SLC25A13 gene may regulate DLX5 expression and underlie the hearing loss that is associated with split-hand/-foot malformation 1 syndrome. Slc25a13hspn/hspn mice provide a new animal model for studying long-range enhancer effects on Dlx5 expression in the developing inner ear.
Collapse
|
49
|
Compagnone M, Gatti V, Presutti D, Ruberti G, Fierro C, Markert EK, Vousden KH, Zhou H, Mauriello A, Anemone L, Bongiorno-Borbone L, Melino G, Peschiaroli A. ΔNp63-mediated regulation of hyaluronic acid metabolism and signaling supports HNSCC tumorigenesis. Proc Natl Acad Sci U S A 2017; 114:13254-13259. [PMID: 29162693 PMCID: PMC5740608 DOI: 10.1073/pnas.1711777114] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and several molecular pathways that underlie the molecular tumorigenesis of HNSCC have been identified. Among them, amplification or overexpression of ΔNp63 isoforms is observed in the majority of HNSCCs. Here, we unveiled a ΔNp63-dependent transcriptional program able to regulate the metabolism and the signaling of hyaluronic acid (HA), the major component of the extracellular matrix (ECM). We found that ∆Np63 is capable of sustaining the production of HA levels in cell culture and in vivo by regulating the expression of the HA synthase HAS3 and two hyaluronidase genes, HYAL-1 and HYAL-3. In addition, ∆Np63 directly regulates the expression of CD44, the major HA cell membrane receptor. By controlling this transcriptional program, ∆Np63 sustains the epithelial growth factor receptor (EGF-R) activation and the expression of ABCC1 multidrug transporter gene, thus contributing to tumor cell proliferation and chemoresistance. Importantly, p63 expression is positively correlated with CD44, HAS3, and ABCC1 expression in squamous cell carcinoma datasets and p63-HA pathway is a negative prognostic factor of HNSCC patient survival. Altogether, our data shed light on a ∆Np63-dependent pathway functionally important to the regulation of HNSCC progression.
Collapse
Affiliation(s)
- Mirco Compagnone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Veronica Gatti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00015 Monterotondo (Rome), Italy
| | - Dario Presutti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00015 Monterotondo (Rome), Italy
| | - Giovina Ruberti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00015 Monterotondo (Rome), Italy
| | - Claudia Fierro
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Elke Katrin Markert
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD United Kingdom
| | | | - Huiqing Zhou
- Radboud Institute for Molecular Life Sciences, Department of Human Genetics 855, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
- Faculty of Science, Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Alessandro Mauriello
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Lucia Anemone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Lucilla Bongiorno-Borbone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy;
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, United Kingdom
| | - Angelo Peschiaroli
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00015 Monterotondo (Rome), Italy;
| |
Collapse
|
50
|
Smirnov A, Panatta E, Lena A, Castiglia D, Di Daniele N, Melino G, Candi E. FOXM1 regulates proliferation, senescence and oxidative stress in keratinocytes and cancer cells. Aging (Albany NY) 2017; 8:1384-97. [PMID: 27385468 PMCID: PMC4993337 DOI: 10.18632/aging.100988] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/12/2016] [Indexed: 02/07/2023]
Abstract
Several transcription factors, including the master regulator of the epidermis, p63, are involved in controlling human keratinocyte proliferation and differentiation. Here, we report that in normal keratinocytes, the expression of FOXM1, a member of the Forkhead superfamily of transcription factors, is controlled by p63. We observe that, together with p63, FOXM1 strongly contributes to the maintenance of high proliferative potential in keratinocytes, whereas its expression decreases during differentiation, as well as during replicative-induced senescence. Depletion of FOXM1 is sufficient to induce keratinocyte senescence, paralleled by an increased ROS production and an inhibition of ROS-scavenger genes (SOD2, CAT, GPX2, PRDX). Interestingly, FOXM1 expression is strongly reduced in keratinocytes isolated from old human subjects compared with young subjects. FOXM1 depletion sensitizes both normal keratinocytes and squamous carcinoma cells to apoptosis and ROS-induced apoptosis. Together, these data identify FOXM1 as a key regulator of ROS in normal dividing epithelial cells and suggest that squamous carcinoma cells may also use FOXM1 to control oxidative stress to escape premature senescence and apoptosis.
Collapse
Affiliation(s)
- Artem Smirnov
- University of Rome "Tor Vergata", Department of Experimental Medicine and Surgery, 00133, Rome, Italy
| | - Emanuele Panatta
- University of Rome "Tor Vergata", Department of Experimental Medicine and Surgery, 00133, Rome, Italy
| | - AnnaMaria Lena
- University of Rome "Tor Vergata", Department of Experimental Medicine and Surgery, 00133, Rome, Italy
| | - Daniele Castiglia
- Istituto Dermopatico dell'Immacolata (IDI-IRCCS), 00166, Rome, Italy
| | - Nicola Di Daniele
- University of "Tor Vergata", Department of Systems Medicine, 00133, Rome, Italy
| | - Gerry Melino
- University of Rome "Tor Vergata", Department of Experimental Medicine and Surgery, 00133, Rome, Italy
| | - Eleonora Candi
- University of Rome "Tor Vergata", Department of Experimental Medicine and Surgery, 00133, Rome, Italy.,Istituto Dermopatico dell'Immacolata (IDI-IRCCS), 00166, Rome, Italy
| |
Collapse
|