1
|
Berger F. Meiosis as a mechanism for epigenetic reprogramming and cellular rejuvenation. Development 2024; 151:dev203046. [PMID: 39399899 DOI: 10.1242/dev.203046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Meiosis is a hallmark of sexual reproduction because it represents the transition from one life cycle to the next and, in animals, meiosis produces gametes. Why meiosis evolved has been debated and most studies have focused on recombination of the parental alleles as the main function of meiosis. However, 40 years ago, Robin Holliday proposed that an essential function of meiosis is to oppose the consequence of successive mitoses that cause cellular aging. Cellular aging results from accumulated defective organelles and proteins and modifications of chromatin in the form of DNA methylation and histone modifications referred to collectively as epigenetic marks. Here, recent findings supporting the hypothesis that meiosis opposes cellular aging are reviewed and placed in the context of the diversity of the life cycles of eukaryotes, including animals, yeast, flowering plants and the bryophyte Marchantia.
Collapse
Affiliation(s)
- Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
2
|
Singh V, Schimenti JC. Relevance, strategies, and added value of mouse models in androgenetics. Andrology 2024. [PMID: 39300831 DOI: 10.1111/andr.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Male Infertility is a prevalent condition worldwide, and a substantial fraction of cases are thought to have a genetic basis. Investigations into the responsible genes is limited experimentally, so mice have been used extensively to identify genes required for fertility and to understand their functions. OBJECTIVES To review the progress made in reproductive genetics based on experiments in mice, the impact upon clinical fertility genetics, and discuss how evolving technologies will continue to advance our understanding of human infertility genes. RESULTS AND DISCUSSION Gene knockout studies in mice have shown that several hundreds of genes are required for normal fertility and that this number is much higher in males than in females. In addition to gene discovery, the mouse is a powerful platform for functionally dissecting genetic pathways, modeling putative human infertility variants, identifying contraceptive targets, and developing in vitro gametogenesis. CONCLUSION These ongoing studies in mice have made an enormous contribution to our understanding of the genetics of human reproduction in the sense that the "parts list" of genes for mammalian gametogenesis is being elucidated. This would have been impossible to do in humans, and in vitro systems are not yet adequate to associate genes with andrological phenotypes, especially in the germline.
Collapse
Affiliation(s)
- Vertika Singh
- Department of Biomedical Sciences, Cornell College of Veterinary Medicine, Ithaca, New York, USA
| | - John C Schimenti
- Department of Biomedical Sciences, Cornell College of Veterinary Medicine, Ithaca, New York, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Zhang R, Liu B, Tian Y, Xin M, Li Q, Huang X, Liu Y, Zhao L, Qi F, Wang R, Meng X, Chen J, Zhou J, Gao J. A chromosome-coupled ubiquitin-proteasome pathway is required for meiotic surveillance. Cell Death Differ 2024:10.1038/s41418-024-01375-6. [PMID: 39237708 DOI: 10.1038/s41418-024-01375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Defects in meiotic prophase can cause meiotic chromosome missegregation and aneuploid gamete formation. Meiotic checkpoints are activated in germ cells with meiotic defects, and cells with unfixed errors are eliminated by apoptosis. How such a surveillance process is regulated remains elusive. Here, we report that a chromosome-coupled ubiquitin-proteasome pathway (UPP) regulates meiotic checkpoint activation and promotes germ cell apoptosis in C. elegans meiosis-defective mutants. We identified an F-box protein, FBXL-2, that functions as a core component within the pathway. This chromosome-coupled UPP regulates meiotic DSB repair kinetics and chromosome dynamic behaviors in synapsis defective mutants. Disrupted UPP impairs the axial recruitment of the HORMA domain protein HIM-3, which is required for efficient germ cell apoptosis in synapsis defective mutants. Our data suggest that an efficient chromosome-coupled UPP functions as a part of the meiotic surveillance system by enhancing the integrity of the meiotic chromosome axis.
Collapse
Affiliation(s)
- Ruirui Zhang
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Bohan Liu
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Yuqi Tian
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Mingyu Xin
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Qian Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiuhua Huang
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Yuanyuan Liu
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Li Zhao
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Feifei Qi
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Xiaoqian Meng
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Jianguo Chen
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Jun Zhou
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinmin Gao
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China.
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Zhang YW, Wu SX, Wang GW, Wan RD, Yang QE. Single-cell analysis identifies critical regulators of spermatogonial development and differentiation in cattle-yak bulls. J Dairy Sci 2024; 107:7317-7336. [PMID: 38642661 DOI: 10.3168/jds.2023-24442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/11/2024] [Indexed: 04/22/2024]
Abstract
Spermatogenesis is a continuous process in which functional sperm are produced through a series of mitotic and meiotic divisions and morphological changes in germ cells. The aberrant development and fate transitions of spermatogenic cells cause hybrid sterility in mammals. Cattle-yak, a hybrid animal between taurine cattle (Bos taurus) and yak (Bos grunniens), exhibits male-specific sterility due to spermatogenic failure. In the present study, we performed single-cell RNA sequencing analysis to identify differences in testicular cell composition and the developmental trajectory of spermatogenic cells between yak and cattle-yak. The composition and molecular signatures of spermatogonial subtypes were dramatically different between these 2 animals, and the expression of genes associated with stem cell maintenance, cell differentiation and meiotic entry was altered in cattle-yak, indicating the impairment of undifferentiated spermatogonial fate decisions. Cell communication analysis revealed that signaling within different spermatogenic cell subpopulations was weakened, and progenitor spermatogonia were unable to or delayed receiving and sending signals for transformation to the next stage in cattle-yak. Simultaneously, the communication between niche cells and germ cells was also abnormal. Collectively, we obtained the expression profiles of transcriptome signatures of different germ cells and testicular somatic cell populations at the single-cell level and identified critical regulators of spermatogonial differentiation and meiosis in yak and sterile cattle-yak. The findings of this study shed light on the genetic mechanisms that lead to hybrid sterility and speciation in bovid species.
Collapse
Affiliation(s)
- Yi-Wen Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo-Wen Wang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Xining, Qinghai 810016, China
| | - Rui-Dong Wan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China.
| |
Collapse
|
5
|
Chotiner JY, Leu NA, Yang F, Cossu IG, Guan Y, Lin H, Wang PJ. TRIP13 localizes to synapsed chromosomes and functions as a dosage-sensitive regulator of meiosis. eLife 2024; 12:RP92195. [PMID: 39207914 PMCID: PMC11361706 DOI: 10.7554/elife.92195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Meiotic progression requires coordinated assembly and disassembly of protein complexes involved in chromosome synapsis and meiotic recombination. Mouse TRIP13 and its ortholog Pch2 are instrumental in remodeling HORMA domain proteins. HORMAD proteins are associated with unsynapsed chromosome axes but depleted from the synaptonemal complex (SC) of synapsed homologs. Here we report that TRIP13 localizes to the synapsed SC in early pachytene spermatocytes and to telomeres throughout meiotic prophase I. Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC and chromosome asynapsis that preferentially affects XY and centromeric ends. These major phenotypes are consistent with reported phenotypes of Trip13 hypomorph alleles. Trip13 heterozygous mice exhibit meiotic defects that are less severe than the Trip13-null mice, showing that TRIP13 is a dosage-sensitive regulator of meiosis. Localization of TRIP13 to the synapsed SC is independent of SC axial element proteins such as REC8 and SYCP2/SYCP3. Terminal FLAG-tagged TRIP13 proteins are functional and recapitulate the localization of native TRIP13 to SC and telomeres. Therefore, the evolutionarily conserved localization of TRIP13/Pch2 to the synapsed chromosomes provides an explanation for dissociation of HORMA domain proteins upon synapsis in diverse organisms.
Collapse
Affiliation(s)
- Jessica Y Chotiner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Isabella G Cossu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
- College of Life Sciences, Capital Normal UniversityBeijingChina
| | - Huijuan Lin
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| |
Collapse
|
6
|
Munakata Y, Hu M, Kitamura Y, Bynder AL, Fritz AS, Schultz RM, Namekawa SH. Chromatin remodeler CHD4 establishes chromatin states required for ovarian reserve formation, maintenance, and germ cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607691. [PMID: 39185217 PMCID: PMC11343143 DOI: 10.1101/2024.08.12.607691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The ovarian reserve defines female reproductive lifespan, which in humans spans decades due to the maintenance of meiotic arrest in non-growing oocytes (NGO) residing in primordial follicles. Unknown is how the chromatin state of NGOs is established to enable long-term maintenance of the ovarian reserve. Here, we show that a chromatin remodeler, CHD4, a member of the Nucleosome Remodeling and Deacetylase (NuRD) complex, establishes chromatin states required for formation and maintenance of the ovarian reserve. Conditional loss of CHD4 in perinatal mouse oocytes results in acute death of NGOs and depletion of the ovarian reserve. CHD4 establishes closed chromatin at regulatory elements of pro-apoptotic genes to prevent cell death and at specific genes required for meiotic prophase I to facilitate the transition from meiotic prophase I oocytes to meiotic arrested NGOs. In addition, CHD4 establishes closed chromatin at the regulatory elements of pro-apoptotic genes in male germ cells, allowing male germ cell survival. These results demonstrate a role for CHD4 in defining a chromatin state that ensures germ cell survival, thereby enabling the long-term maintenance of both female and male germ cells.
Collapse
Affiliation(s)
- Yasuhisa Munakata
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Mengwen Hu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Adam L. Bynder
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Amelia S. Fritz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Richard M. Schultz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| |
Collapse
|
7
|
Kogo H, Kikuchi-Kokubo Y, Tajika Y, Iizuka-Kogo A, Yamamoto H, Ikezawa M, Kurahashi H, Matsuzaki T. Differential phosphorylation of two serine clusters in mouse HORMAD1 during meiotic prophase I progression. Exp Cell Res 2024; 440:114133. [PMID: 38897409 DOI: 10.1016/j.yexcr.2024.114133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Mouse HORMAD1 is a phospho-protein involved in multiple functions during meiotic prophase I. To obtain insight into the significance of its phosphorylation, we generated phospho-specific antibodies against two serine residues, Ser307 and Ser378, representing each of two serine clusters in mouse HORMAD1. The Ser307 phosphorylation is detectable from early leptotene substage in both wild-type and Spo11-/- spermatocytes, indicating that Ser307 is a primary and SPO11-independent phosphorylation site. In contrast, the Ser378 phosphorylation is negligible at earlier substages in wild-type and Spo11-/- spermatocytes. After mid-zygotene substage, the Ser378 phosphorylation is abundant on unsynapsed chromosome axes in wild-type spermatocytes and is detected only in a part of unsynapsed chromosome axes in Spo11-/- spermatocytes. We also generated a non-phosphorylated Ser307-specific antibody and found that Ser307 is phosphorylated on sex chromosome axes but is almost entirely unphosphorylated on desynapsed chromosome axes in diplotene spermatocytes. These results demonstrated a substage-specific phosphorylation status of mouse HORMAD1, which might be associated with multiple substage-specific functions.
Collapse
Affiliation(s)
- Hiroshi Kogo
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; Division of Molecular Genetics, Center for Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Yuka Kikuchi-Kokubo
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yukiko Tajika
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akiko Iizuka-Kogo
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hanako Yamamoto
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Maiko Ikezawa
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Center for Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Toshiyuki Matsuzaki
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
8
|
Dubois E, Boisnard S, Bourbon HM, Yefsah K, Budin K, Debuchy R, Zhang L, Kleckner N, Zickler D, Espagne E. Canonical and noncanonical roles of Hop1 are crucial for meiotic prophase in the fungus Sordaria macrospora. PLoS Biol 2024; 22:e3002705. [PMID: 38950075 PMCID: PMC11244814 DOI: 10.1371/journal.pbio.3002705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/12/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
We show here that in the fungus Sordaria macrospora, the meiosis-specific HORMA-domain protein Hop1 is not essential for the basic early events of chromosome axis development, recombination initiation, or recombination-mediated homolog coalignment/pairing. In striking contrast, Hop1 plays a critical role at the leptotene/zygotene transition which is defined by transition from pairing to synaptonemal complex (SC) formation. During this transition, Hop1 is required for maintenance of normal axis structure, formation of SC from telomere to telomere, and development of recombination foci. These hop1Δ mutant defects are DSB dependent and require Sme4/Zip1-mediated progression of the interhomolog interaction program, potentially via a pre-SC role. The same phenotype occurs not only in hop1Δ but also in absence of the cohesin Rec8 and in spo76-1, a non-null mutant of cohesin-associated Spo76/Pds5. Thus, Hop1 and cohesins collaborate at this crucial step of meiotic prophase. In addition, analysis of 4 non-null mutants that lack this transition defect reveals that Hop1 also plays important roles in modulation of axis length, homolog-axis juxtaposition, interlock resolution, and spreading of the crossover interference signal. Finally, unexpected variations in crossover density point to the existence of effects that both enhance and limit crossover formation. Links to previously described roles of the protein in other organisms are discussed.
Collapse
Affiliation(s)
- Emeline Dubois
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphanie Boisnard
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Henri-Marc Bourbon
- Centre de Biologie Intégrative, Molecular, Cellular & Developmental Biology Unit, Université Fédérale de Toulouse, Toulouse, France
| | - Kenza Yefsah
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Karine Budin
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Robert Debuchy
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Denise Zickler
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Eric Espagne
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
9
|
Ishiguro KI. Mechanisms of meiosis initiation and meiotic prophase progression during spermatogenesis. Mol Aspects Med 2024; 97:101282. [PMID: 38797021 DOI: 10.1016/j.mam.2024.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Meiosis is a critical step for spermatogenesis and oogenesis. Meiosis commences with pre-meiotic S phase that is subsequently followed by meiotic prophase. The meiotic prophase is characterized by the meiosis-specific chromosomal events such as chromosome recombination and homolog synapsis. Meiosis initiator (MEIOSIN) and stimulated by retinoic acid gene 8 (STRA8) initiate meiosis by activating the meiotic genes by installing the meiotic prophase program at pre-meiotic S phase. This review highlights the mechanisms of meiotic initiation and meiotic prophase progression from the point of the gene expression program and its relevance to infertility. Furthermore, upstream pathways that regulate meiotic initiation will be discussed in the context of spermatogenic development, indicating the sexual differences in the mode of meiotic entry.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
10
|
Dali O, Muriel-Muriel JA, Vargas-Baco A, Tevosian S, Zubcevic J, Smagulova F, Hayward LF. Prenatal nicotine exposure leads to epigenetic alterations in peripheral nervous system signaling genes in the testis of the rat. Epigenetics Chromatin 2024; 17:14. [PMID: 38715099 PMCID: PMC11075221 DOI: 10.1186/s13072-024-00539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Prenatal nicotine exposure (PNE) has been documented to cause numerous deleterious effects on fetal development. However, the epigenetic changes promoted by nicotine exposure on germ cells are still not well understood. OBJECTIVES In this study, we focused on elucidating the impact of prenatal nicotine exposure on regulatory epigenetic mechanisms important for germ cell development. METHODS Sprague-Dawley rats were exposed to nicotine during pregnancy and male progeny was analyzed at 11 weeks of age. Testis morphology was analyzed using frozen testis sections and expression of germ cell markers was examined by RT-qPCR; histone modifications were assessed by Western Blot (WB). DNA methylation analysis was performed by methylation-specific PCR of bisulfite converted DNA. Genome-wide DNA methylation was analyzed using Methylated DNA immunoprecipitation (MeDIP)-seq. We also carried out transcriptomics analysis of pituitary glands by RNA-seq. RESULTS We show that gestational exposure to nicotine reduces germ cell numbers, perturbs meiosis, affects the expression of germ line reprogramming responsive genes, and impacts the DNA methylation of nervous system genes in the testis. PNE also causes perturbation of gene expression in the pituitary gland of the brain. CONCLUSIONS Our data demonstrate that PNE leads to perturbation of male spermatogenesis, and the observed effects are associated with changes of peripheral nervous system signaling pathways. Alterations in the expression of genes associated with diverse biological activities such as cell migration, cell adhesion and GABA signaling in the pituitary gland underscore the complexity of the effects of nicotine exposure during pregnancy.
Collapse
Affiliation(s)
- Ouzna Dali
- EHESP, Inserm, Irset (Institut de recherche en sante, environnement et travail)-UMR_S 1085, Univ. Rennes, 35000, Rennes, France
| | - Jose Antonio Muriel-Muriel
- EHESP, Inserm, Irset (Institut de recherche en sante, environnement et travail)-UMR_S 1085, Univ. Rennes, 35000, Rennes, France
| | - Ana Vargas-Baco
- EHESP, Inserm, Irset (Institut de recherche en sante, environnement et travail)-UMR_S 1085, Univ. Rennes, 35000, Rennes, France
| | - Sergei Tevosian
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, Box 100144, Gainesville, FL, 32610, USA
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
| | - Fatima Smagulova
- EHESP, Inserm, Irset (Institut de recherche en sante, environnement et travail)-UMR_S 1085, Univ. Rennes, 35000, Rennes, France.
| | - Linda F Hayward
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, Box 100144, Gainesville, FL, 32610, USA
| |
Collapse
|
11
|
Laisné M, Rodgers B, Benlamara S, Wicinski J, Nicolas A, Djerroudi L, Gupta N, Ferry L, Kirsh O, Daher D, Philippe C, Okada Y, Charafe-Jauffret E, Cristofari G, Meseure D, Vincent-Salomon A, Ginestier C, Defossez PA. A novel bioinformatic approach reveals cooperation between Cancer/Testis genes in basal-like breast tumors. Oncogene 2024; 43:1369-1385. [PMID: 38467851 PMCID: PMC11065691 DOI: 10.1038/s41388-024-03002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Breast cancer is the most prevalent type of cancer in women worldwide. Within breast tumors, the basal-like subtype has the worst prognosis, prompting the need for new tools to understand, detect, and treat these tumors. Certain germline-restricted genes show aberrant expression in tumors and are known as Cancer/Testis genes; their misexpression has diagnostic and therapeutic applications. Here we designed a new bioinformatic approach to examine Cancer/Testis gene misexpression in breast tumors. We identify several new markers in Luminal and HER-2 positive tumors, some of which predict response to chemotherapy. We then use machine learning to identify the two Cancer/Testis genes most associated with basal-like breast tumors: HORMAD1 and CT83. We show that these genes are expressed by tumor cells and not by the microenvironment, and that they are not expressed by normal breast progenitors; in other words, their activation occurs de novo. We find these genes are epigenetically repressed by DNA methylation, and that their activation upon DNA demethylation is irreversible, providing a memory of past epigenetic disturbances. Simultaneous expression of both genes in breast cells in vitro has a synergistic effect that increases stemness and activates a transcriptional profile also observed in double-positive tumors. Therefore, we reveal a functional cooperation between Cancer/Testis genes in basal breast tumors; these findings have consequences for the understanding, diagnosis, and therapy of the breast tumors with the worst outcomes.
Collapse
Affiliation(s)
- Marthe Laisné
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Brianna Rodgers
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Sarah Benlamara
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Julien Wicinski
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | - André Nicolas
- Platform of Experimental Pathology, Department of Diagnostic and Theranostic Medicine, Institut Curie-Hospital, 75005, Paris, France
| | - Lounes Djerroudi
- Department of Pathology, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Nikhil Gupta
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Olivier Kirsh
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Diana Daher
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | | | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | | | - Didier Meseure
- Platform of Experimental Pathology, Department of Diagnostic and Theranostic Medicine, Institut Curie-Hospital, 75005, Paris, France
| | | | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | | |
Collapse
|
12
|
Arter M, Keeney S. Divergence and conservation of the meiotic recombination machinery. Nat Rev Genet 2024; 25:309-325. [PMID: 38036793 DOI: 10.1038/s41576-023-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
Sexually reproducing eukaryotes use recombination between homologous chromosomes to promote chromosome segregation during meiosis. Meiotic recombination is almost universally conserved in its broad strokes, but specific molecular details often differ considerably between taxa, and the proteins that constitute the recombination machinery show substantial sequence variability. The extent of this variation is becoming increasingly clear because of recent increases in genomic resources and advances in protein structure prediction. We discuss the tension between functional conservation and rapid evolutionary change with a focus on the proteins that are required for the formation and repair of meiotic DNA double-strand breaks. We highlight phylogenetic relationships on different time scales and propose that this remarkable evolutionary plasticity is a fundamental property of meiotic recombination that shapes our understanding of molecular mechanisms in reproductive biology.
Collapse
Affiliation(s)
- Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
13
|
Dereli I, Telychko V, Papanikos F, Raveendran K, Xu J, Boekhout M, Stanzione M, Neuditschko B, Imjeti NS, Selezneva E, Tuncay H, Demir S, Giannattasio T, Gentzel M, Bondarieva A, Stevense M, Barchi M, Schnittger A, Weir JR, Herzog F, Keeney S, Tóth A. Seeding the meiotic DNA break machinery and initiating recombination on chromosome axes. Nat Commun 2024; 15:2941. [PMID: 38580643 PMCID: PMC10997794 DOI: 10.1038/s41467-024-47020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/15/2024] [Indexed: 04/07/2024] Open
Abstract
Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.
Collapse
Affiliation(s)
- Ihsan Dereli
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Vladyslav Telychko
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Frantzeskos Papanikos
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Kavya Raveendran
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Jiaqi Xu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
| | - Michiel Boekhout
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marcello Stanzione
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Benjamin Neuditschko
- Institute Krems Bioanalytics, IMC University of Applied Sciences, 3500, Krems, Austria
| | - Naga Sailaja Imjeti
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Elizaveta Selezneva
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Hasibe Tuncay
- Department of Developmental Biology, University of Hamburg, 22609, Hamburg, Germany
| | - Sevgican Demir
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Teresa Giannattasio
- University of Rome "Tor Vergata", Section of Anatomy, Via Montpellier, 1, 00133, Rome, Italy
| | - Marc Gentzel
- Core Facility Mass Spectrometry & Proteomics, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Anastasiia Bondarieva
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Michelle Stevense
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Marco Barchi
- University of Rome "Tor Vergata", Section of Anatomy, Via Montpellier, 1, 00133, Rome, Italy
- Saint Camillus International University of Health Sciences, Rome, Italy
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, 22609, Hamburg, Germany
| | - John R Weir
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Franz Herzog
- Institute Krems Bioanalytics, IMC University of Applied Sciences, 3500, Krems, Austria
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Attila Tóth
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany.
| |
Collapse
|
14
|
Cossu IG, Leu NA, Guan Y, Wang PJ. The N-terminal modification of HORMAD2 causes its ectopic persistence on synapsed chromosomes without meiotic blockade. Reproduction 2024; 167:e230330. [PMID: 38401263 PMCID: PMC10993814 DOI: 10.1530/rep-23-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/22/2024] [Indexed: 02/26/2024]
Abstract
In brief The dissociation of HORMA domain protein 2 (HORMAD2) from the synaptonemal complex is tightly regulated. This study reveals that the N-terminal region of HORMAD2 is critical for its dissociation from synapsed meiotic chromosomes. Abstract During meiosis, homologous chromosomes undergo synapsis and recombination. HORMA domain proteins regulate key processes in meiosis. Mammalian HORMAD1 and HORMAD2 localize to unsynapsed chromosome axes but are removed upon synapsis by the TRIP13 AAA+ ATPase. TRIP13 engages the N-terminal region of HORMA domain proteins to induce an open conformation, resulting in the disassembly of protein complexes. Here, we report introduction of a 3×FLAG-HA tag to the N-terminus of HORMAD2 in mice. Coimmunoprecipitation coupled with mass spectrometry identified HORMAD1 and SYCP2 as HORMAD2-associated proteins in the testis. Unexpectedly, the N-terminal tagging of HORMAD2 resulted in its abnormal persistence along synapsed regions in pachynema and ectopic localization to telomeres in diplonema. Super-resolution microscopy revealed that 3×FLAG-HA-HORMAD2 was distributed along the central region of the synaptonemal complex, whereas wild-type HORMAD1 persisted along the lateral elements in 3×FLAG-HA-HORMAD2 meiocytes. Although homozygous mice completed meiosis and were fertile, homozygous males exhibited a significant reduction in sperm count. Collectively, these results suggest that the N-terminus of HORMAD2 is important for its timely removal from meiotic chromosome axes.
Collapse
Affiliation(s)
- Isabella G. Cossu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - N. Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
- College of Life Sciences, Capital Normal University, Beijing, China
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Lisachov A, Dedukh D, Simanovsky S, Panthum T, Singchat W, Srikulnath K. Spaghetti Connections: Synaptonemal Complexes as a Tool to Explore Chromosome Structure, Evolution, and Meiotic Behavior in Fish. Cytogenet Genome Res 2024; 164:1-15. [PMID: 38452741 DOI: 10.1159/000538238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The synaptonemal complex (SC) is a protein axis formed along chromosomes during meiotic prophase to ensure proper pairing and crossing over. SC analysis has been widely used to study the chromosomes of mammals and less frequently of birds, reptiles, and fish. It is a promising method to investigate the evolution of fish genomes and chromosomes as a part of complex approach. SUMMARY Compared with conventional metaphase chromosomes, pachytene chromosomes are less condensed and exhibit pairing between homologous chromosomes. These features of SCs facilitate the study of the small chromosomes that are typical in fish. Moreover, it allows the study of heteromorphisms in sex chromosomes and supernumerary chromosomes. In addition, it enables the investigation of the pairing between orthologous chromosomes in hybrids, which is crucial for uncovering the causes of hybrid sterility and asexual reproduction, such as gynogenesis or hybridogenesis. However, the application of SC analysis to fish chromosomes is limited by the associated complications. First, in most fish, meiosis does not occur during every season and life stage. Second, different SC preparation methods are optimal for different fish species. Third, commercial antibodies targeting meiotic proteins have been primarily developed against mammalian antigens, and not all of them are suitable for fish chromosomes. KEY MESSAGES In the present review, we provide an overview of the methods for preparing fish SCs and highlight important studies using SC analysis in fish. This study will be valuable for planning and designing research that applies SC analysis to fish cytogenetics and genomics.
Collapse
Affiliation(s)
- Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
| | - Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
| | - Sergey Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
16
|
Ascenção C, Sims JR, Dziubek A, Comstock W, Fogarty EA, Badar J, Freire R, Grimson A, Weiss RS, Cohen PE, Smolka MB. A TOPBP1 allele causing male infertility uncouples XY silencing dynamics from sex body formation. eLife 2024; 12:RP90887. [PMID: 38391183 PMCID: PMC10942628 DOI: 10.7554/elife.90887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Meiotic sex chromosome inactivation (MSCI) is a critical feature of meiotic prophase I progression in males. While the ATR kinase and its activator TOPBP1 are key drivers of MSCI within the specialized sex body (SB) domain of the nucleus, how they promote silencing remains unclear given their multifaceted meiotic functions that also include DNA repair, chromosome synapsis, and SB formation. Here we report a novel mutant mouse harboring mutations in the TOPBP1-BRCT5 domain. Topbp1B5/B5 males are infertile, with impaired MSCI despite displaying grossly normal events of early prophase I, including synapsis and SB formation. Specific ATR-dependent events are disrupted, including phosphorylation and localization of the RNA:DNA helicase Senataxin. Topbp1B5/B5 spermatocytes initiate, but cannot maintain ongoing, MSCI. These findings reveal a non-canonical role for the ATR-TOPBP1 signaling axis in MSCI dynamics at advanced stages in pachynema and establish the first mouse mutant that separates ATR signaling and MSCI from SB formation.
Collapse
Affiliation(s)
- Carolline Ascenção
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Jennie R Sims
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Alexis Dziubek
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - William Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Jumana Badar
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Raimundo Freire
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de CanariasSanta Cruz de TenerifeSpain
- Instituto de Tecnologías Biomédicas, Universidad de La LagunaLa LagunaSpain
- Universidad Fernando Pessoa CanariasLas Palmas de Gran CanariaSpain
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell UniversityIthacaUnited States
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell UniversityIthacaUnited States
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| |
Collapse
|
17
|
Chotiner JY, Leu NA, Yang F, Cossu IG, Guan Y, Lin H, Wang PJ. TRIP13 localizes to synapsed chromosomes and functions as a dosage-sensitive regulator of meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559355. [PMID: 37808842 PMCID: PMC10557606 DOI: 10.1101/2023.09.25.559355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Meiotic progression requires coordinated assembly and disassembly of protein complexes involved in chromosome synapsis and meiotic recombination. The AAA+ ATPase TRIP13 and its orthologue Pch2 are instrumental in remodeling HORMA domain proteins. Meiosis-specific HORMAD proteins are associated with unsynapsed chromosome axes but depleted from the synaptonemal complex (SC) of synapsed chromosome homologues. Here we report that TRIP13 localizes to the synapsed SC in early pachytene spermatocytes and to telomeres throughout meiotic prophase I. Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC and chromosome asynapsis that preferentially affects XY and centromeric ends. These findings confirm the previously reported phenotypes of the Trip13 hypomorph alleles. Trip13 heterozygous (Trip13+/-) mice also exhibit meiotic defects that are less severe than the Trip13-null mice, showing that TRIP13 is a dosage-sensitive regulator of meiosis. Localization of TRIP13 to the synapsed SC is independent of SC axial element proteins such as REC8 and SYCP2/SYCP3. The N- or C-terminal FLAG-tagged TRIP13 proteins are functional and recapitulate the localization of native TRIP13 to SC and telomeres in knockin mice. Therefore, the evolutionarily conserved localization of TRIP13/Pch2 to the synapsed chromosomes provides an explanation for dissociation of HORMA domain proteins upon chromosome synapsis in diverse organisms.
Collapse
Affiliation(s)
- Jessica Y. Chotiner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - N. Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Isabella G. Cossu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Huijuan Lin
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Wang H, Xie R, Niu F, Yang Q, An L, Wu C, Liu X, Yang X. Structural and biochemical insights into the interaction mechanism underlying HORMAD1 and its partner proteins. Structure 2023; 31:1578-1588.e3. [PMID: 37794593 DOI: 10.1016/j.str.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
The mammalian HORMA domain-containing protein 1 (HORMAD1) regulates DNA mismatch repair and homologous recombination (HR) repair in many cancers. Here, we show that the structure of human HORMAD1 adopts a self-closed conformation and displays an intra-molecular HORMA domain-closure motif interaction mode. Structural and biochemical data suggest that the interaction modes of the peptide motifs from HORMAD2 and MCM9 with HORMAD1 are highly similar to that of HORMAD1 own closure motif. The peptide motifs from diverse binding partners of HORMAD1 share a conserved Ser-Glu-Pro sequence. Additionally, structural comparison unveiled the HORMA-peptide motif interaction mode diversity among HORMA-containing proteins. Finally, cell-based assays revealed that this HORMA-closure motif interaction pattern contributes to DNA mismatch repair and is required for HORMAD1-dependent HR repair. Together, our results provide structural and biochemical insights into the common theme and functional plasticity of the HORMA domain-containing protein family, and also reveal a universal regulation mechanism for HORMAD1.
Collapse
Affiliation(s)
- Hong Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Rong Xie
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China; Department of Biochemistry and Molecular Biology, School of Basic Medicine and Life Science, Hainan Medical College, Haikou, Hainan 571199, China
| | - Fumin Niu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Qian Yang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Lina An
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Chen Wu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China.
| | - Xiuhua Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China.
| | - Xiaoyun Yang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China; Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
19
|
Dereli I, Telychko V, Papanikos F, Raveendran K, Xu J, Boekhout M, Stanzione M, Neuditschko B, Imjeti NS, Selezneva E, Erbasi HT, Demir S, Giannattasio T, Gentzel M, Bondarieva A, Stevense M, Barchi M, Schnittger A, Weir JR, Herzog F, Keeney S, Tóth A. Seeding the meiotic DNA break machinery and initiating recombination on chromosome axes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568863. [PMID: 38077023 PMCID: PMC10705248 DOI: 10.1101/2023.11.27.568863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Programmed DNA double-strand break (DSB) formation is a unique meiotic feature that initiates recombination-mediated linking of homologous chromosomes, thereby enabling chromosome number halving in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We discovered in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms, which are based on a DBF4-dependent kinase (DDK)-modulated interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.
Collapse
|
20
|
Ascencao CFR, Sims JR, Dziubek A, Comstock W, Fogarty EA, Badar J, Freire R, Grimson A, Weiss RS, Cohen PE, Smolka M. A TOPBP1 Allele Causing Male Infertility Uncouples XY Silencing Dynamics From Sex Body Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543071. [PMID: 37398453 PMCID: PMC10312512 DOI: 10.1101/2023.05.31.543071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Meiotic sex chromosome inactivation (MSCI) is a critical feature of meiotic prophase I progression in males. While the ATR kinase and its activator TOPBP1 are key drivers of MSCI within the specialized sex body (SB) domain of the nucleus, how they promote silencing remains unclear given their multifaceted meiotic functions that also include DNA repair, chromosome synapsis and SB formation. Here we report a novel mutant mouse harboring mutations in the TOPBP1-BRCT5 domain. Topbp1 B5/B5 males are infertile, with impaired MSCI despite displaying grossly normal events of early prophase I, including synapsis and SB formation. Specific ATR-dependent events are disrupted including phosphorylation and localization of the RNA:DNA helicase Senataxin. Topbp1 B5/B5 spermatocytes initiate, but cannot maintain ongoing, MSCI. These findings reveal a non-canonical role for the ATR-TOPBP1 signaling axis in MSCI dynamics at advanced stages in pachynema and establish the first mouse mutant that separates ATR signaling and MSCI from SB formation.
Collapse
|
21
|
Herrera LR, Johnson RA, McGlynn K, Gibbs ZA, Davis AJ, Whitehurst AW. The cancer testes antigen, HORMAD1, limits genomic instability in cancer cells by protecting stalled replication forks. J Biol Chem 2023; 299:105348. [PMID: 37838177 PMCID: PMC10656231 DOI: 10.1016/j.jbc.2023.105348] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023] Open
Abstract
Tumors anomalously induce the expression of meiotic genes, which are otherwise restricted only to developing gametes. If and how these aberrantly expressed meiotic proteins influence DNA metabolism is not clear, but could have important implications for how tumors acquire and mitigate genomic instability. HORMAD1 is a highly conserved meiotic protein that is frequently expressed in lung adenocarincoma where its expression correlates with reduced patient survival and increased mutation burden. Here, we find that HORMAD1 associates with the replisome and is critical for protecting stalled DNA replication forks. Loss of HORMAD1 leads to nascent DNA strand degradation, an event which is mediated by the MRE11-DNA2-BLM pathway. We find that these phenotypes are due to limited RAD51 loading onto stalled replication forks in the absence of HORMAD1. Ultimately, loss of HORMAD1 leads to increased DNA breaks and chromosomal defects, which is exacerbated dramatically by induction of replication stress. Tumor cells proliferate despite encountering chronic replication stress, placing them on the precipice of catastrophic genomic damage. Our data support the hypothesis that the aberrant expression of HORMAD1 is engaged to attenuate the accumulation of excessive DNA damage due to chronic replication stress, which may otherwise lead to accumulation of toxic levels of genomic instability.
Collapse
Affiliation(s)
- Luis Reza Herrera
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ronnesha A Johnson
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kathleen McGlynn
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Zane A Gibbs
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Davis
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas, USA.
| | | |
Collapse
|
22
|
Ozturk S. Genetic variants underlying spermatogenic arrests in men with non-obstructive azoospermia. Cell Cycle 2023; 22:1021-1061. [PMID: 36740861 PMCID: PMC10081088 DOI: 10.1080/15384101.2023.2171544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Spermatogenic arrest is a severe form of non-obstructive azoospermia (NOA), which occurs in 10-15% of infertile men. Interruption in spermatogenic progression at premeiotic, meiotic, or postmeiotic stage can lead to arrest in men with NOA. Recent studies have intensively focused on defining genetic variants underlying these spermatogenic arrests by making genome/exome sequencing. A number of variants were discovered in the genes involving in mitosis, meiosis, germline differentiation and other basic cellular events. Herein, defined variants in NOA cases with spermatogenic arrests and created knockout mouse models for the related genes are comprehensively reviewed. Also, importance of gene panel-based screening for NOA cases was discussed. Screening common variants in these infertile men with spermatogenic arrests may contribute to elucidating the molecular background and designing novel treatment strategies.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
23
|
Russo AE, Giacopazzi S, Deshong A, Menon M, Ortiz V, Ego KM, Corbett KD, Bhalla N. The conserved AAA ATPase PCH-2 distributes its regulation of meiotic prophase events through multiple meiotic HORMADs in C. elegans. PLoS Genet 2023; 19:e1010708. [PMID: 37058535 PMCID: PMC10132761 DOI: 10.1371/journal.pgen.1010708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/26/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
During meiotic prophase, the essential events of homolog pairing, synapsis, and recombination are coordinated with meiotic progression to promote fidelity and prevent aneuploidy. The conserved AAA+ ATPase PCH-2 coordinates these events to guarantee crossover assurance and accurate chromosome segregation. How PCH-2 accomplishes this coordination is poorly understood. Here, we provide evidence that PCH-2 decelerates pairing, synapsis and recombination in C. elegans by remodeling meiotic HORMADs. We propose that PCH-2 converts the closed versions of these proteins, which drive these meiotic prophase events, to unbuckled conformations, destabilizing interhomolog interactions and delaying meiotic progression. Further, we find that PCH-2 distributes this regulation among three essential meiotic HORMADs in C. elegans: PCH-2 acts through HTP-3 to regulate pairing and synapsis, HIM-3 to promote crossover assurance, and HTP-1 to control meiotic progression. In addition to identifying a molecular mechanism for how PCH-2 regulates interhomolog interactions, our results provide a possible explanation for the expansion of the meiotic HORMAD family as a conserved evolutionary feature of meiosis. Taken together, our work demonstrates that PCH-2's remodeling of meiotic HORMADs has functional consequences for the rate and fidelity of homolog pairing, synapsis, recombination and meiotic progression, ensuring accurate meiotic chromosome segregation.
Collapse
Affiliation(s)
- Anna E. Russo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Stefani Giacopazzi
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Alison Deshong
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Malaika Menon
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Valery Ortiz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Kaori M. Ego
- Department of Cellular and Molecular Medicine, University of California, San Diego, California, United States of America
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, California, United States of America
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
24
|
Bi-allelic MEI1 variants cause meiosis arrest and non-obstructive azoospermia. J Hum Genet 2023; 68:383-392. [PMID: 36759719 DOI: 10.1038/s10038-023-01119-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 02/11/2023]
Abstract
Non-obstructive azoospermia (NOA) is characterized by the failure of sperm production due to testicular disorders and represents the most severe form of male infertility. Growing evidences have indicated that gene defects could be the potential cause of NOA via genome-wide sequencing approaches. Here, bi-allelic deleterious variants in meiosis inhibitor protein 1 (MEI1) were identified by whole-exome sequencing in four Chinese patients with NOA. Testicular pathologic analysis and immunohistochemical staining revealed that spermatogenesis is arrested at spermatocyte stage, with defective programmed DNA double-strand breaks (DSBs) homoeostasis and meiotic chromosome synapsis in patients carrying the variants. In addition, our results showed that one missense variant (c.G186C) reduced the expression of MEI1 and one frameshift variant (c.251delT) led to truncated proteins of MEI1 in in vitro. Furthermore, the missense variant (c.T1585A) was assumed to affect the interaction between MEI1 and its partners via bioinformatic analysis. Collectively, our findings provide direct genetic and functional evidences that bi-allelic variants in MEI1 could cause defective DSBs homoeostasis and meiotic chromosome synapsis, which subsequently lead to meiosis arrest and male infertility. Thus, our study deepens our knowledge of the role of MEI1 in male fertility and provides a novel insight to understand the genetic aetiology of NOA.
Collapse
|
25
|
Herrera LR, McGlynn K, Gibbs ZA, Davis AJ, Whitehurst AW. The Cancer Testes Antigen, HORMAD1, is a Tumor-Specific Replication Fork Protection Factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526348. [PMID: 36778501 PMCID: PMC9915569 DOI: 10.1101/2023.01.31.526348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumors frequently activate the expression of genes that are only otherwise required for meiosis. HORMAD1, which is essential for meiotic recombination in multiple species, is expressed in over 50% of human lung adenocarcinoma cells (LUAD). We previously found that HORMAD1 promotes DNA double strand break (DSB) repair in LUAD. Here, we report that HORMAD1 takes on an additional role in protecting genomic integrity. Specifically, we find HORMAD1 is critical for protecting stalled DNA replication forks in LUAD. Loss of HORMAD1 leads to nascent DNA degradation, an event which is mediated by the MRE11-DNA2-BLM pathway. Moreover, following exogenous induction of DNA replication stress, HORMAD1 deleted cells accumulate single stranded DNA (ssDNA). We find that these phenotypes are the result of a lack of RAD51 and BRCA2 loading onto stalled replication forks. Ultimately, loss of HORMAD1 leads to increased DSBs and chromosomal aberrations in response to replication stress. Collectively, our data support a model where HORMAD1 expression is selected to mitigate DNA replication stress, which would otherwise induce deleterious genomic instability.
Collapse
|
26
|
Okutman O, Boivin M, Muller J, Charlet-Berguerand N, Viville S. A biallelic loss of function variant in HORMAD1 within a large consanguineous Turkish family is associated with spermatogenic arrest. Hum Reprod 2023; 38:306-314. [PMID: 36524333 DOI: 10.1093/humrep/deac259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
STUDY QUESTION Can the analysis of a large Turkish consanguineous family via whole exome sequencing (WES) identify novel causative genetic variation responsible for nonobstructive azoospermia (NOA) characterized by arrest at primary spermatocyte stage? SUMMARY ANSWER WES analysis revealed a homozygous nonsense variant in HORMAD1 in three affected brothers of a Turkish family. WHAT IS KNOWN ALREADY Studying patient cohorts in small or large consanguineous families using high-throughput sequencing allows the identification of genetic causes of different pathologies, including infertility. Over the last two decades, a number of genes involved in human male infertility have been discovered, but only 14 genes have been identified as being at least moderately linked to isolated NOA or oligozoospermia in men. STUDY DESIGN, SIZE, DURATION The study included a Turkish family comprising three brothers with NOA. Two brothers had a normal karyotype, normal hormonal levels and no Yq microdeletion. The testicular histopathology analysis revealed the complete arrest of spermatogenesis at the primary spermatocyte stage. PARTICIPANTS/MATERIALS, SETTING, METHODS We recruited a consanguineous Turkish family where parents were first-degree cousins and had seven children; three sons who had NOA, two sons who were fertile and two daughters for whom no information was available. Saliva samples from the index patient, his two affected brothers, parents and two nonaffected brothers (seven samples in total) were collected. Prior to WES, the index patient underwent targeted genetic testing using an infertility panel, which includes 133 infertility genes. No pathogenic variations were identified. WES was then performed on the DNA of the seven family members available. Bioinformatics analysis was performed using an in-house pipeline. Detected variants were scored and ranked, and copy number variants were called and annotated.The consequences of mutation on protein expression and localization were investigated by cell transfection followed by immunofluorescence or immunoblotting. MAIN RESULTS AND THE ROLE OF CHANCE WES revealed a homozygous nonsense variant chr1:150675797G>A; HORMAD1 (NM_032132.5): c.1021C>T, p.Gln341* in exon 13, which was confirmed in all three affected brothers. HORMAD1 encodes the HORMA domain-containing protein 1. The parents as well as the two fertile brothers were carriers of this variant. This variant may lead to the production of a truncated protein lacking the nuclear localization signal; therefore, human cells were transfected with the wild-type and mutated form, in fusion with green fluorescent protein. Immunoblotting experiments confirmed the production of a truncated HORMAD1 protein, and immunofluorescence microscopy revealed that the mutated protein displayed cytoplasmic localization while the wild type protein located to the nucleus. Altogether, our findings validate HORMAD1 as an essential genetic factor in the meiotic process in human. LIMITATIONS, REASONS FOR CAUTION According to one scoring system used to evaluate the clinical validity of male infertility genes, this study would classify HORMAD1 as displaying limited clinical evidence of being involved in male infertility. However, such a score is the maximum possible when only one family is analyzed and the addition of one patient showing a pathogenic or likely pathogenic variant would immediately change this classification to 'moderate'. Thus, this report should prompt other researchers to screen patients with NOA for this genetic variant. WIDER IMPLICATIONS OF THE FINDINGS Identification of new genetic factors involved in the human meiosis process will contribute to an improvement of our knowledge at the basic level, which in turn will allow the management of better care for infertile patients. Since Hormad1-/- knock-out female mice are also infertile, HORMAD1 could also be involved in human female infertility. Our findings have direct implications for the genetic counseling of patients and their family members. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by Fondation Maladies Rares (High Throughput Sequencing and Rare Diseases-2018, 'GenOmics of rare diseases'). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Ozlem Okutman
- Laboratoire de Génétique Médicale LGM, Institut de Génétique Médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France.,Laboratoire de Diagnostic Génétique, Unité de Génétique de l'infertilité (UF3472), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Manon Boivin
- Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM), U964/Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Jean Muller
- Laboratoire de Génétique Médicale LGM, Institut de Génétique Médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France.,Laboratoires de Diagnostic Génétique, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Unité Fonctionnelle de Bioinformatique Médicale appliquée au diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nicolas Charlet-Berguerand
- Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM), U964/Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Stéphane Viville
- Laboratoire de Génétique Médicale LGM, Institut de Génétique Médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France.,Laboratoire de Diagnostic Génétique, Unité de Génétique de l'infertilité (UF3472), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
27
|
Huang Y, Roig I. Genetic control of meiosis surveillance mechanisms in mammals. Front Cell Dev Biol 2023; 11:1127440. [PMID: 36910159 PMCID: PMC9996228 DOI: 10.3389/fcell.2023.1127440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Meiosis is a specialized cell division that generates haploid gametes and is critical for successful sexual reproduction. During the extended meiotic prophase I, homologous chromosomes progressively pair, synapse and desynapse. These chromosomal dynamics are tightly integrated with meiotic recombination (MR), during which programmed DNA double-strand breaks (DSBs) are formed and subsequently repaired. Consequently, parental chromosome arms reciprocally exchange, ultimately ensuring accurate homolog segregation and genetic diversity in the offspring. Surveillance mechanisms carefully monitor the MR and homologous chromosome synapsis during meiotic prophase I to avoid producing aberrant chromosomes and defective gametes. Errors in these critical processes would lead to aneuploidy and/or genetic instability. Studies of mutation in mouse models, coupled with advances in genomic technologies, lead us to more clearly understand how meiosis is controlled and how meiotic errors are linked to mammalian infertility. Here, we review the genetic regulations of these major meiotic events in mice and highlight our current understanding of their surveillance mechanisms. Furthermore, we summarize meiotic prophase genes, the mutations that activate the surveillance system leading to meiotic prophase arrest in mouse models, and their corresponding genetic variants identified in human infertile patients. Finally, we discuss their value for the diagnosis of causes of meiosis-based infertility in humans.
Collapse
Affiliation(s)
- Yan Huang
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
28
|
Vainshelbaum NM, Giuliani A, Salmina K, Pjanova D, Erenpreisa J. The Transcriptome and Proteome Networks of Malignant Tumours Reveal Atavistic Attractors of Polyploidy-Related Asexual Reproduction. Int J Mol Sci 2022; 23:ijms232314930. [PMID: 36499258 PMCID: PMC9736112 DOI: 10.3390/ijms232314930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
The expression of gametogenesis-related (GG) genes and proteins, as well as whole genome duplications (WGD), are the hallmarks of cancer related to poor prognosis. Currently, it is not clear if these hallmarks are random processes associated only with genome instability or are programmatically linked. Our goal was to elucidate this via a thorough bioinformatics analysis of 1474 GG genes in the context of WGD. We examined their association in protein-protein interaction and coexpression networks, and their phylostratigraphic profiles from publicly available patient tumour data. The results show that GG genes are upregulated in most WGD-enriched somatic cancers at the transcriptome level and reveal robust GG gene expression at the protein level, as well as the ability to associate into correlation networks and enrich the reproductive modules. GG gene phylostratigraphy displayed in WGD+ cancers an attractor of early eukaryotic origin for DNA recombination and meiosis, and one relative to oocyte maturation and embryogenesis from early multicellular organisms. The upregulation of cancer-testis genes emerging with mammalian placentation was also associated with WGD. In general, the results suggest the role of polyploidy for soma-germ transition accessing latent cancer attractors in the human genome network, which appear as pre-formed along the whole Evolution of Life.
Collapse
Affiliation(s)
- Ninel M. Vainshelbaum
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
- Faculty of Biology, The University of Latvia, LV-1586 Riga, Latvia
- Correspondence: (N.M.V.); (J.E.)
| | - Alessandro Giuliani
- Environmen and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Kristine Salmina
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
| | - Dace Pjanova
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
| | - Jekaterina Erenpreisa
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
- Correspondence: (N.M.V.); (J.E.)
| |
Collapse
|
29
|
Luo H, Mipam T, Wu S, Xu C, Yi C, Zhao W, Chai Z, Chen X, Wu Z, Wang J, Wang J, Wang H, Zhong J, Cai X. DNA methylome of primary spermatocyte reveals epigenetic dysregulation associated with male sterility of cattleyak. Theriogenology 2022; 191:153-167. [PMID: 35988507 DOI: 10.1016/j.theriogenology.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
DNA cytosine methylation modification in the germline is of particular importance since it is a highly heritable epigenetic mark. Although cytosine methylation has been analyzed at the genome-scale for several mammalian species, our knowledge of DNA methylation patterns and the mechanisms underlying male hybrid sterility is still limited in domestic animals such as cattleyak. Here we for the first time show the genome-wide and single-base resolution landscape of methylcytosines (mC) in the primary spermatocyte (PSC) genome of yak with normal spermatogenesis and the inter-specific hybrid cattleyak with male infertility. A comparative investigation revealed that widespread differences are observed in the composition and patterning of DNA cytosine methylation between the two methylomes. Global CG or non-CG DNA methylation levels, as well as the number of mC sites, are increased in cattleyak compared to yak. Notably, the DNA methylome in cattleyak PSC exhibits promoter hypermethylation of meiosis-specific genes and piRNA pathway genes with respect to yak. Furthermore, major retrotransposonson classes are predominantly hypermethylated in cattleyak while those are fully hypomethylated in yak. KEGG pathway enrichment indicates Rap1 signaling and MAPK pathways may play potential roles in the spermatogenic arrest of cattleyak. Our present study not only provides valuable insights into distinct features of the cattleyak PSC methylome but also paves the way toward elucidating the complex, yet highly coordinated epigenetic modification during male germline development for inter-specific hybrid animals.
Collapse
Affiliation(s)
- Hui Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Shixin Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Xuemei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
30
|
PRC1-mediated epigenetic programming is required to generate the ovarian reserve. Nat Commun 2022; 13:4510. [PMID: 35948547 PMCID: PMC9365831 DOI: 10.1038/s41467-022-31759-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
The ovarian reserve defines the female reproductive lifespan, which in humans spans decades due to robust maintenance of meiotic arrest in oocytes residing in primordial follicles. Epigenetic reprogramming, including DNA demethylation, accompanies meiotic entry, but the chromatin changes that underpin the generation and preservation of ovarian reserves are poorly defined. We report that the Polycomb Repressive Complex 1 (PRC1) establishes repressive chromatin states in perinatal mouse oocytes that directly suppress the gene expression program of meiotic prophase-I and thereby enable the transition to dictyate arrest. PRC1 dysfuction causes depletion of the ovarian reserve and leads to premature ovarian failure. Our study demonstrates a fundamental role for PRC1-mediated gene silencing in female reproductive lifespan, and reveals a critical window of epigenetic programming required to establish ovarian reserve. In humans, the ovarian reserve is maintained over decades by meiotic arrest of oocytes. Here the authors show that Polycomb Repressive Complex 1 (PRC1)-mediated epigenetic programming is essential for formation of ovarian reserve and thus female reproductive lifespan.
Collapse
|
31
|
Ki BS, Shim SH, Park C, Yoo H, La H, Lee OH, Kwon Y, Skalnik DG, Okada Y, Yoon HG, Kim JH, Hong K, Choi Y. Epigenetic regulator Cfp1 safeguards male meiotic progression by regulating meiotic gene expression. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1098-1108. [PMID: 35918532 PMCID: PMC9440128 DOI: 10.1038/s12276-022-00813-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
Meiosis occurs specifically in germ cells to produce sperm and oocytes that are competent for sexual reproduction. Multiple factors are required for successful meiotic entry, progression, and termination. Among them, trimethylation of histone H3 on lysine 4 (H3K4me3), a mark of active transcription, has been implicated in spermatogenesis by forming double-strand breaks (DSBs). However, the role of H3K4me in transcriptional regulation during meiosis remains poorly understood. Here, we reveal that mouse CXXC finger protein 1 (Cfp1), a component of the H3K4 methyltransferase Setd1a/b, is dynamically expressed in differentiating male germ cells and safeguards meiosis by controlling gene expression. Genetic ablation of mouse CFP1 in male germ cells caused complete infertility with failure in prophase I of the 1st meiosis. Mechanistically, CFP1 binds to genes essential for spermatogenesis, and its loss leads to a reduction in H3K4me3 levels and gene expression. Importantly, CFP1 is highly enriched within the promoter/TSS of target genes to elevate H3K4me3 levels and gene expression at the pachytene stage of meiotic prophase I. The most enriched genes were associated with meiosis and homologous recombination during the differentiation of spermatocytes to round spermatids. Therefore, our study establishes a mechanistic link between CFP1-mediated transcriptional control and meiotic progression and might provide an unprecedented genetic basis for understanding human sterility. Details of the role of a protein in the development of sperm cells in mice could lead to new understanding of sterility in men. An international research team led by Youngsok Choi and Kwonho Hong at Konkuk University, Seoul, South Korea, investigated the role of protein Cfp1, which they found to be required for sperm formation in mice. The protein is a component of an enzyme complex that transfers methyl groups (CH3) onto other proteins involved in controlling gene activity. The researchers identified key aspects of the mechanism by which Cfp1 controls the activity of genes essential for sperm formation to proceed normally. Absence of Cfp1 specifically interferes with the process of meiosis, which generates sperm cells containing only one copy of each chromosome instead of the two copies found in other cells.
Collapse
Affiliation(s)
- Byeong Seong Ki
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Sung Han Shim
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyunjin Yoo
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ok-Hee Lee
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - David G Skalnik
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo, 113-0032, Japan
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
32
|
Multi-color dSTORM microscopy in Hormad1-/- spermatocytes reveals alterations in meiotic recombination intermediates and synaptonemal complex structure. PLoS Genet 2022; 18:e1010046. [PMID: 35857787 PMCID: PMC9342782 DOI: 10.1371/journal.pgen.1010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/01/2022] [Accepted: 06/15/2022] [Indexed: 12/05/2022] Open
Abstract
Recombinases RAD51 and its meiosis-specific paralog DMC1 accumulate on single-stranded DNA (ssDNA) of programmed DNA double strand breaks (DSBs) in meiosis. Here we used three-color dSTORM microscopy, and a mouse model with severe defects in meiotic DSB formation and synapsis (Hormad1-/-) to obtain more insight in the recombinase accumulation patterns in relation to repair progression. First, we used the known reduction in meiotic DSB frequency in Hormad1-/- spermatocytes to be able to conclude that the RAD51/DMC1 nanofoci that preferentially localize at distances of ~300 nm form within a single DSB site, whereas a second preferred distance of ~900 nm, observed only in wild type, represents inter-DSB distance. Next, we asked whether the proposed role of HORMAD1 in repair inhibition affects the RAD51/DMC1 accumulation patterns. We observed that the two most frequent recombinase configurations (1 DMC1 and 1 RAD51 nanofocus (D1R1), and D2R1) display coupled frequency dynamics over time in wild type, but were constant in the Hormad1-/- model, indicating that the lifetime of these intermediates was altered. Recombinase nanofoci were also smaller in Hormad1-/- spermatocytes, consistent with changes in ssDNA length or protein accumulation. Furthermore, we established that upon synapsis, recombinase nanofoci localized closer to the synaptonemal complex (SYCP3), in both wild type and Hormad1-/- spermatocytes. Finally, the data also revealed a hitherto unknown function of HORMAD1 in inhibiting coil formation in the synaptonemal complex. SPO11 plays a similar but weaker role in coiling and SYCP1 had the opposite effect. Using this large super-resolution dataset, we propose models with the D1R1 configuration representing one DSB end containing recombinases, and the other end bound by other ssDNA binding proteins, or both ends loaded by the two recombinases, but in below-resolution proximity. This may then often evolve into D2R1, then D1R2, and finally back to D1R1, when DNA synthesis has commenced. In order to correctly pair homologous chromosomes in the first meiotic prophase, repair of programmed double strand breaks (DSBs) is essential. By unravelling molecular details of the protein assemblies at single DSBs, using super-resolution microscopy, we aim to understand the dynamics of repair intermediates and their functions. We investigated the localization of the two recombinases RAD51 and DMC1 in wild type and HORMAD1-deficient cells. HORMAD1 is involved in multiple aspects of homologous chromosome association: it regulates formation and repair of DSBs, and it stimulates formation of the synaptonemal complex (SC), the macromolecular protein assembly that connects paired chromosomes. RAD51 and DMC1 enable chromosome pairing by promoting the invasions of the intact chromatids by single-stranded DNA ends that result from DSBs. We found that in absence of HORMAD1, RAD51 and DMC1 showed small but significant morphological and positional changes, combined with altered kinetics of specific RAD51/DMC1 configurations. We also determined that there is a generally preferred distance of ~900 nm between meiotic DSBs along the SC. Finally, we observed changes in the structure of the SC in Hormad1-/- spermatocytes. This study contributes to a better understanding of the molecular details of meiotic homologous recombination and the role of HORMAD1 in meiotic prophase.
Collapse
|
33
|
Pilot Study Showing Feasibility of Phosphoproteomic Profiling of Pathway-Level Molecular Alterations in Barrett’s Esophagus. Genes (Basel) 2022; 13:genes13071215. [PMID: 35885999 PMCID: PMC9325186 DOI: 10.3390/genes13071215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Barrett’s esophagus is a major risk factor for esophageal adenocarcinoma. In this pilot study, we employed precision mass spectrometry to map global (phospho)protein perturbations in Barrett’s esophagus lesions and adjacent normal tissue to glean insights into disease progression. (2) Methods: Biopsies were collected from two small but independent cohorts. Comparative analyses were performed between Barrett’s esophagus samples and adjacent matched (normal) tissues from patients with known pathology, while specimens from healthy patients served as additional controls. (3) Results: We identified and quantified 6810 proteins and 6395 phosphosites in the discovery cohort, revealing hundreds of statistically significant differences in protein abundances and phosphorylation states. We identified a robust proteomic signature that accurately classified the disease status of samples from the independent patient cohorts. Pathway-level analysis of the phosphoproteomic profiles revealed the dysregulation of specific cellular processes, including DNA repair, in Barrett’s esophagus relative to paired controls. Comparative analysis with previously published transcriptomic profiles provided independent evidence in support of these preliminary findings. (4) Conclusions: This pilot study establishes the feasibility of using unbiased quantitative phosphoproteomics to identify molecular perturbations associated with disease progression in Barrett’s esophagus to define potentially clinically actionable targets warranting further assessment.
Collapse
|
34
|
Morgan C, Nayak A, Hosoya N, Smith GR, Lambing C. Meiotic chromosome organization and its role in recombination and cancer. Curr Top Dev Biol 2022; 151:91-126. [PMID: 36681479 PMCID: PMC10022578 DOI: 10.1016/bs.ctdb.2022.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosomes adopt specific conformations to regulate various cellular processes. A well-documented chromosome configuration is the highly compacted chromosome structure during metaphase. More regional chromatin conformations have also been reported, including topologically associated domains encompassing mega-bases of DNA and local chromatin loops formed by kilo-bases of DNA. In this review, we discuss the changes in chromatin conformation taking place between somatic and meiotic cells, with a special focus on the establishment of a proteinaceous structure, called the chromosome axis, at the beginning of meiosis. The chromosome axis is essential to support key meiotic processes such as chromosome pairing, homologous recombination, and balanced chromosome segregation to transition from a diploid to a haploid stage. We review the role of the chromosome axis in meiotic chromatin organization and provide a detailed description of its protein composition. We also review the conserved and distinct roles between species of axis proteins in meiotic recombination, which is a major factor contributing to the creation of genetic diversity and genome evolution. Finally, we discuss situations where the chromosome axis is deregulated and evaluate the effects on genome integrity and the consequences from protein deregulation in meiocytes exposed to heat stress, and aberrant expression of genes encoding axis proteins in mammalian somatic cells associated with certain types of cancers.
Collapse
Affiliation(s)
| | - Aditya Nayak
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zürich, Switzerland
| | - Noriko Hosoya
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Christophe Lambing
- Plant Science Department, Rothamsted Research, Harpenden, United Kingdom.
| |
Collapse
|
35
|
Abstract
Meiosis is critical for germ cell development in multicellular organisms. Initiation of meiosis coincides with pre-meiotic S phase, which is followed by meiotic prophase, a prolonged G2 phase that ensures numerous meiosis-specific chromosome events. Meiotic prophase is accompanied by robust alterations of gene expression. In mouse germ cells, MEIOSIN and STRA8 direct cell cycle switch from mitosis to meiosis. MEIOSIN and STRA8 coordinate meiotic initiation with cell cycle, by activating the meiotic genes to have meiotic prophase program installed at S phase. This review mainly focuses on the mechanism of meiotic initiation in mouse germ cells from the viewpoint of the transcription of meiotic genes. Furthermore, signaling pathways that regulate meiotic initiation will be discussed in the context of germ cell development, pointing out the sexual differences in the mode of meiotic initiation.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
36
|
Oura S, Hino T, Satoh T, Noda T, Koyano T, Isotani A, Matsuyama M, Akira S, Ishiguro KI, Ikawa M. Trim41 is required to regulate chromosome axis protein dynamics and meiosis in male mice. PLoS Genet 2022; 18:e1010241. [PMID: 35648791 PMCID: PMC9191731 DOI: 10.1371/journal.pgen.1010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/13/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Meiosis is a hallmark event in germ cell development that accompanies sequential events executed by numerous molecules. Therefore, characterization of these factors is one of the best strategies to clarify the mechanism of meiosis. Here, we report tripartite motif-containing 41 (TRIM41), a ubiquitin ligase E3, as an essential factor for proper meiotic progression and fertility in male mice. Trim41 knockout (KO) spermatocytes exhibited synaptonemal complex protein 3 (SYCP3) overloading, especially on the X chromosome. Furthermore, mutant mice lacking the RING domain of TRIM41, required for the ubiquitin ligase E3 activity, phenocopied Trim41 KO mice. We then examined the behavior of mutant TRIM41 (ΔRING-TRIM41) and found that ΔRING-TRIM41 accumulated on the chromosome axes with overloaded SYCP3. This result suggested that TRIM41 exerts its function on the chromosome axes. Our study revealed that Trim41 is essential for preventing SYCP3 overloading, suggesting a TRIM41-mediated mechanism for regulating chromosome axis protein dynamics during male meiotic progression.
Collapse
Affiliation(s)
- Seiya Oura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Toshiaki Hino
- Department of Biological Sciences, Asahikawa Medical University, Asahikawa, Japan
| | - Takashi Satoh
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
- Division of Reproductive Biology, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Ayako Isotani
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| |
Collapse
|
37
|
Guan Y, Lin H, Leu NA, Ruthel G, Fuchs SY, Busino L, Luo M, Wang PJ. SCF ubiquitin E3 ligase regulates DNA double-strand breaks in early meiotic recombination. Nucleic Acids Res 2022; 50:5129-5144. [PMID: 35489071 PMCID: PMC9122608 DOI: 10.1093/nar/gkac304] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Homeostasis of meiotic DNA double strand breaks (DSB) is critical for germline genome integrity and homologous recombination. Here we demonstrate an essential role for SKP1, a constitutive subunit of the SCF (SKP1-Cullin-F-box) ubiquitin E3 ligase, in early meiotic processes. SKP1 restrains accumulation of HORMAD1 and the pre-DSB complex (IHO1-REC114-MEI4) on the chromosome axis in meiotic germ cells. Loss of SKP1 prior to meiosis leads to aberrant localization of DSB repair proteins and a failure in synapsis initiation in meiosis of both males and females. Furthermore, SKP1 is crucial for sister chromatid cohesion during the pre-meiotic S-phase. Mechanistically, FBXO47, a meiosis-specific F-box protein, interacts with SKP1 and HORMAD1 and targets HORMAD1 for polyubiquitination and degradation in HEK293T cells. Our results support a model wherein the SCF ubiquitin E3 ligase prevents hyperactive DSB formation through proteasome-mediated degradation of HORMAD1 and subsequent modulation of the pre-DSB complex during meiosis.
Collapse
Affiliation(s)
- Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Huijuan Lin
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
- Department of Tissue and Embryology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Luca Busino
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mengcheng Luo
- Department of Tissue and Embryology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
38
|
Ravindranathan R, Raveendran K, Papanikos F, San-Segundo P, Tóth A. Chromosomal synapsis defects can trigger oocyte apoptosis without elevating numbers of persistent DNA breaks above wild-type levels. Nucleic Acids Res 2022; 50:5617-5634. [PMID: 35580048 PMCID: PMC9177993 DOI: 10.1093/nar/gkac355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/14/2022] Open
Abstract
Generation of haploid gametes depends on a modified version of homologous recombination in meiosis. Meiotic recombination is initiated by single-stranded DNA (ssDNA) ends originating from programmed DNA double-stranded breaks (DSBs) that are generated by the topoisomerase-related SPO11 enzyme. Meiotic recombination involves chromosomal synapsis, which enhances recombination-mediated DSB repair, and thus, crucially contributes to genome maintenance in meiocytes. Synapsis defects induce oocyte apoptosis ostensibly due to unrepaired DSBs that persist in asynaptic chromosomes. In mice, SPO11-deficient oocytes feature asynapsis, apoptosis and, surprisingly, numerous foci of the ssDNA-binding recombinase RAD51, indicative of DSBs of unknown origin. Hence, asynapsis is suggested to trigger apoptosis due to inefficient DSB repair even in mutants that lack programmed DSBs. By directly detecting ssDNAs, we discovered that RAD51 is an unreliable marker for DSBs in oocytes. Further, SPO11-deficient oocytes have fewer persistent ssDNAs than wild-type oocytes. These observations suggest that oocyte quality is safeguarded in mammals by a synapsis surveillance mechanism that can operate without persistent ssDNAs.
Collapse
Affiliation(s)
- Ramya Ravindranathan
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Kavya Raveendran
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Frantzeskos Papanikos
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Pedro A San-Segundo
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| | - Attila Tóth
- To whom correspondence should be addressed. Tel: +49 351 458 6467; Fax: +49 351 458 6305;
| |
Collapse
|
39
|
Prince JP, Martinez-Perez E. Functions and Regulation of Meiotic HORMA-Domain Proteins. Genes (Basel) 2022; 13:777. [PMID: 35627161 PMCID: PMC9141381 DOI: 10.3390/genes13050777] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022] Open
Abstract
During meiosis, homologous chromosomes must recognize, pair, and recombine with one another to ensure the formation of inter-homologue crossover events, which, together with sister chromatid cohesion, promote correct chromosome orientation on the first meiotic spindle. Crossover formation requires the assembly of axial elements, proteinaceous structures that assemble along the length of each chromosome during early meiosis, as well as checkpoint mechanisms that control meiotic progression by monitoring pairing and recombination intermediates. A conserved family of proteins defined by the presence of a HORMA (HOp1, Rev7, MAd2) domain, referred to as HORMADs, associate with axial elements to control key events of meiotic prophase. The highly conserved HORMA domain comprises a flexible safety belt sequence, enabling it to adopt at least two of the following protein conformations: one closed, where the safety belt encircles a small peptide motif present within an interacting protein, causing its topological entrapment, and the other open, where the safety belt is reorganized and no interactor is trapped. Although functional studies in multiple organisms have revealed that HORMADs are crucial regulators of meiosis, the mechanisms by which HORMADs implement key meiotic events remain poorly understood. In this review, we summarize protein complexes formed by HORMADs, discuss their roles during meiosis in different organisms, draw comparisons to better characterize non-meiotic HORMADs (MAD2 and REV7), and highlight possible areas for future research.
Collapse
Affiliation(s)
- Josh P. Prince
- Meiosis Group, MRC London Institute of Medical Sciences, London W12 0NN, UK;
| | - Enrique Martinez-Perez
- Meiosis Group, MRC London Institute of Medical Sciences, London W12 0NN, UK;
- Faculty of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
40
|
Xiong M, Zhou S, Feng S, Gui Y, Li J, Wu Y, Dong J, Yuan S. UHRF1 is indispensable for meiotic sex chromosome inactivation and interacts with the DNA damage response pathway in mice. Biol Reprod 2022; 107:168-182. [PMID: 35284939 DOI: 10.1093/biolre/ioac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/04/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
During male meiosis, the constitutively unsynapsed XY chromosomes undergo meiotic sex chromosome inactivation (MSCI), and the DNA damage response (DDR) pathway is critical for MSCI establishment. Our previous study showed that UHRF1(ubiquitin-like, with PHD and ring finger domains 1) deletion led to meiotic arrest and male infertility; however, the underlying mechanisms of UHRF1 in the regulation of meiosis remain unclear. Here, we report that UHRF1 is required for MSCI and cooperates with the DDR pathway in male meiosis. UHRF1-deficient spermatocytes display aberrant pairing and synapsis of homologous chromosomes during the pachytene stage. In addition, UHRF1 deficiency leads to aberrant recruitment of ATR and FANCD2 on the sex chromosomes and disrupts the diffusion of ATR to the XY chromatin. Furthermore, we show that UHRF1 acts as a cofactor of BRCA1 to facilitate the recruitment of DDR factors onto sex chromosomes for MSCI establishment. Accordingly, deletion of UHRF1 leads to the failure of meiotic silencing on sex chromosomes, resulting in meiotic arrest. In addition to our previous findings, the present study reveals that UHRF1 participates in MSCI, ensuring the progression of male meiosis. This suggests a multifunctional role of UHRF1 in the male germline.
Collapse
Affiliation(s)
- Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinmei Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanqing Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juan Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China.,Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
41
|
FBXO47 is essential for preventing the synaptonemal complex from premature disassembly in mouse male meiosis. iScience 2022; 25:104008. [PMID: 35310947 PMCID: PMC8931362 DOI: 10.1016/j.isci.2022.104008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/27/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Meiotic prophase I is a prolonged G2 phase that ensures the completion of numerous meiosis-specific chromosome events. During meiotic prophase I, homologous chromosomes undergo synapsis to facilitate meiotic recombination yielding crossovers. It remains largely elusive how homolog synapsis is temporally maintained and destabilized during meiotic prophase I. Here we show that FBXO47 is the stabilizer of the synaptonemal complex during male meiotic prophase I. Disruption of FBXO47 shows severe impact on homologous chromosome synapsis, meiotic recombination, and XY body formation, leading to male infertility. Notably, in the absence of FBXO47, although once homologous chromosomes are synapsed, the synaptonemal complex is precociously disassembled before progressing beyond pachytene. Remarkably, Fbxo47 KO spermatocytes remain in an earlier stage of meiotic prophase I and lack crossovers, despite apparently exhibiting diplotene-like chromosome morphology. We propose that FBXO47 plays a crucial role in preventing the synaptonemal complex from premature disassembly during cell cycle progression of meiotic prophase I. FBXO47 is a stabilizer of the synaptonemal complex during male meiotic prophase FBXO47 KO shows precocious disassembly of the synaptonemal complex FBXO47 may function independently of SCF E3 ligase to maintain homolog synapsis
Collapse
|
42
|
Lingg L, Rottenberg S, Francica P. Meiotic Genes and DNA Double Strand Break Repair in Cancer. Front Genet 2022; 13:831620. [PMID: 35251135 PMCID: PMC8895043 DOI: 10.3389/fgene.2022.831620] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Tumor cells show widespread genetic alterations that change the expression of genes driving tumor progression, including genes that maintain genomic integrity. In recent years, it has become clear that tumors frequently reactivate genes whose expression is typically restricted to germ cells. As germ cells have specialized pathways to facilitate the exchange of genetic information between homologous chromosomes, their aberrant regulation influences how cancer cells repair DNA double strand breaks (DSB). This drives genomic instability and affects the response of tumor cells to anticancer therapies. Since meiotic genes are usually transcriptionally repressed in somatic cells of healthy tissues, targeting aberrantly expressed meiotic genes may provide a unique opportunity to specifically kill cancer cells whilst sparing the non-transformed somatic cells. In this review, we highlight meiotic genes that have been reported to affect DSB repair in cancers derived from somatic cells. A better understanding of their mechanistic role in the context of homology-directed DNA repair in somatic cancers may provide useful insights to find novel vulnerabilities that can be targeted.
Collapse
Affiliation(s)
- Lea Lingg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
- *Correspondence: Sven Rottenberg, ; Paola Francica,
| | - Paola Francica
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
- *Correspondence: Sven Rottenberg, ; Paola Francica,
| |
Collapse
|
43
|
Fujisawa Y, Ono H, Konno A, Yao I, Itoh H, Baba T, Morohashi K, Katoh-Fukui Y, Miyado M, Fukami M, Ogata T. Intrauterine hyponutrition reduces fetal testosterone production and postnatal sperm count in the mouse. J Endocr Soc 2022; 6:bvac022. [PMID: 35265782 PMCID: PMC8901363 DOI: 10.1210/jendso/bvac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 11/19/2022] Open
Abstract
Abstract
Although intrauterine hyponutrition is regarded as a risk factor for the development of "testicular dysgenesis syndrome" (TDS) in the human, underlying mechanism(s) remain largely unknown. To clarify the underlying mechanism(s), we fed vaginal plug-positive C57BL/6N female mice with regular food ad libitum throughout the pregnant course (control females) (C-females) or with 50% of the mean daily intake of the C-females from 6.5 dpc (calorie-restricted females) (R-females), and compared male reproductive findings between 17.5-dpc-old male mice delivered from C-females (C-fetuses) and those delivered from R-females (R-fetuses) and between 6-week-old male mice born to C-females (C-offspring) and those born to R-females (R-offspring). Compared with the C-fetuses, the R-fetuses had (1) morphologically normal external genitalia with significantly reduced anogenital distance index, (2) normal numbers of testicular component cells, and (3) significantly low intratesticular testosterone, in association with significantly reduced expressions of steroidogenic genes. Furthermore, compared with the C-offspring, the R-offspring had (1) significantly increased TUNEL-positive cells and normal numbers of other testicular component cells, (2) normal intratesticular testosterone, in association with normal expressions of steroidogenic genes, (3) significantly reduced sperm count, and normal testis weight and sperm motility, and (4) significantly altered expressions of oxidation stress-related, apoptosis-related, and spermatogenesis-related genes. The results, together with the previous data including the association between testosterone deprivation and oxidative stress-evoked apoptotic activation, imply that reduced fetal testosterone production is the primary underlying factor for the development of TDS in intrauterine hyponutrition, and that TDS is included in the clinical spectrum of Developmental Origins of Health and Disease.
Collapse
Affiliation(s)
- Yasuko Fujisawa
- Departments of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Ono
- Departments of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Aru Konno
- Departments of Medical Spectroscopy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ikuko Yao
- Departments of Optical Imaging, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroaki Itoh
- Departments of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takashi Baba
- Department of Molecular Biology, Kyushu University, Fukuoka, Japan
| | | | - Yuko Katoh-Fukui
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Departments of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Departments of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu, Japan
| |
Collapse
|
44
|
Pereira C, Arroyo-Martinez GA, Guo MZ, Downey MS, Kelly ER, Grive KJ, Mahadevaiah SK, Sims JR, Faca VM, Tsai C, Schiltz CJ, Wit N, Jacobs H, Clark NL, Freire R, Turner J, Lyndaker AM, Brieno-Enriquez MA, Cohen PE, Smolka MB, Weiss RS. Multiple 9-1-1 complexes promote homolog synapsis, DSB repair, and ATR signaling during mammalian meiosis. eLife 2022; 11:68677. [PMID: 35133274 PMCID: PMC8824475 DOI: 10.7554/elife.68677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/15/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage response mechanisms have meiotic roles that ensure successful gamete formation. While completion of meiotic double-strand break (DSB) repair requires the canonical RAD9A-RAD1-HUS1 (9A-1-1) complex, mammalian meiocytes also express RAD9A and HUS1 paralogs, RAD9B and HUS1B, predicted to form alternative 9-1-1 complexes. The RAD1 subunit is shared by all predicted 9-1-1 complexes and localizes to meiotic chromosomes even in the absence of HUS1 and RAD9A. Here, we report that testis-specific disruption of RAD1 in mice resulted in impaired DSB repair, germ cell depletion, and infertility. Unlike Hus1 or Rad9a disruption, Rad1 loss in meiocytes also caused severe defects in homolog synapsis, impaired phosphorylation of ATR targets such as H2AX, CHK1, and HORMAD2, and compromised meiotic sex chromosome inactivation. Together, these results establish critical roles for both canonical and alternative 9-1-1 complexes in meiotic ATR activation and successful prophase I completion.
Collapse
Affiliation(s)
| | | | - Matthew Z Guo
- Department of Biomedical Sciences, Cornell University
| | | | - Emma R Kelly
- Division of Mathematics and Natural Sciences, Elmira College
| | | | | | - Jennie R Sims
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University
| | - Vitor M Faca
- Department of Biochemistry and Immunology, FMRP, University of São Paulo
| | - Charlton Tsai
- Department of Biomedical Sciences, Cornell University
| | | | - Niek Wit
- Division of Immunology, The Netherlands Cancer Institute
| | - Heinz Jacobs
- Division of Immunology, The Netherlands Cancer Institute
| | | | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna
- Universidad Fernando Pessoa Canarias
| | - James Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute
| | - Amy M Lyndaker
- Division of Mathematics and Natural Sciences, Elmira College
| | - Miguel A Brieno-Enriquez
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University
| | | |
Collapse
|
45
|
Gu Y, Desai A, Corbett KD. Evolutionary Dynamics and Molecular Mechanisms of HORMA Domain Protein Signaling. Annu Rev Biochem 2022; 91:541-569. [PMID: 35041460 DOI: 10.1146/annurev-biochem-090920-103246] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Controlled assembly and disassembly of multi-protein complexes is central to cellular signaling. Proteins of the widespread and functionally diverse HORMA family nucleate assembly of signaling complexes by binding short peptide motifs through a distinctive safety-belt mechanism. HORMA proteins are now understood as key signaling proteins across kingdoms, serving as infection sensors in a bacterial immune system and playing central roles in eukaryotic cell cycle, genome stability, sexual reproduction, and cellular homeostasis pathways. Here, we describe how HORMA proteins' unique ability to adopt multiple conformational states underlies their functions in these diverse contexts. We also outline how a dedicated AAA+ ATPase regulator, Pch2/TRIP13, manipulates HORMA proteins' conformational states to activate or inactivate signaling in different cellular contexts. The emergence of Pch2/TRIP13 as a lynchpin for HORMA protein action in multiple genome-maintenance pathways accounts for its frequent misregulation in human cancers and highlights TRIP13 as a novel therapeutic target. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yajie Gu
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA;
| | - Arshad Desai
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA; .,Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, USA.,Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California, USA
| | - Kevin D Corbett
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
46
|
Xie C, Wang W, Tu C, Meng L, Lu G, Lin G, Lu LY, Tan YQ. OUP accepted manuscript. Hum Reprod Update 2022; 28:763-797. [PMID: 35613017 DOI: 10.1093/humupd/dmac024] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chunbo Xie
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Weili Wang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lanlan Meng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
47
|
Alavattam KG, Maezawa S, Andreassen PR, Namekawa SH. Meiotic sex chromosome inactivation and the XY body: a phase separation hypothesis. Cell Mol Life Sci 2021; 79:18. [PMID: 34971404 DOI: 10.1007/s00018-021-04075-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
In mammalian male meiosis, the heterologous X and Y chromosomes remain unsynapsed and, as a result, are subject to meiotic sex chromosome inactivation (MSCI). MSCI is required for the successful completion of spermatogenesis. Following the initiation of MSCI, the X and Y chromosomes undergo various epigenetic modifications and are transformed into a nuclear body termed the XY body. Here, we review the mechanisms underlying the initiation of two essential, sequential processes in meiotic prophase I: MSCI and XY-body formation. The initiation of MSCI is directed by the action of DNA damage response (DDR) pathways; downstream of the DDR, unique epigenetic states are established, leading to the formation of the XY body. Accumulating evidence suggests that MSCI and subsequent XY-body formation may be driven by phase separation, a physical process that governs the formation of membraneless organelles and other biomolecular condensates. Thus, here we gather literature-based evidence to explore a phase separation hypothesis for the initiation of MSCI and the formation of the XY body.
Collapse
Affiliation(s)
- Kris G Alavattam
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - So Maezawa
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
48
|
Ishiguro KI, Shimada R. MEIOSIN directs initiation of meiosis and subsequent meiotic prophase program during spermatogenesis. Genes Genet Syst 2021; 97:27-39. [PMID: 34955498 DOI: 10.1266/ggs.21-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Meiosis is a crucial process for spermatogenesis and oogenesis. Initiation of meiosis coincides with spermatocyte differentiation and is followed by meiotic prophase, a prolonged G2 phase that ensures the completion of numerous meiosis-specific chromosome events. During meiotic prophase, chromosomes are organized into axis-loop structures, which underlie meiosis-specific events such as meiotic recombination and homolog synapsis. In spermatocytes, meiotic prophase is accompanied by robust alterations of gene expression programs and chromatin status for subsequent sperm production. The mechanisms regulating meiotic initiation and subsequent meiotic prophase programs are enigmatic. Recently, we discovered MEIOSIN (Meiosis initiator), a DNA-binding protein that directs the switch from mitosis to meiosis. This review mainly focuses on how MEIOSIN is involved in meiotic initiation and the meiotic prophase program during spermatogenesis. Further, we discuss the downstream genes activated by MEIOSIN, which are crucial for meiotic prophase-specific events, from the viewpoint of chromosome dynamics and the gene expression program.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University
| | - Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University
| |
Collapse
|
49
|
Campbell KM, Xu Y, Patel C, Rayl JM, Zomer HD, Osuru HP, Pratt M, Pramoonjago P, Timken M, Miller LM, Ralph A, Storey KM, Peng Y, Drnevich J, Lagier-Tourenne C, Wong PC, Qiao H, Reddi PP. Loss of TDP-43 in male germ cells causes meiotic failure and impairs fertility in mice. J Biol Chem 2021; 297:101231. [PMID: 34599968 PMCID: PMC8569592 DOI: 10.1016/j.jbc.2021.101231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Meiotic arrest is a common cause of human male infertility, but the causes of this arrest are poorly understood. Transactive response DNA-binding protein of 43 kDa (TDP-43) is highly expressed in spermatocytes in the preleptotene and pachytene stages of meiosis. TDP-43 is linked to several human neurodegenerative disorders wherein its nuclear clearance accompanied by cytoplasmic aggregates underlies neurodegeneration. Exploring the functional requirement for TDP-43 for spermatogenesis for the first time, we show here that conditional KO (cKO) of the Tardbp gene (encoding TDP-43) in male germ cells of mice leads to reduced testis size, depletion of germ cells, vacuole formation within the seminiferous epithelium, and reduced sperm production. Fertility trials also indicated severe subfertility. Spermatocytes of cKO mice showed failure to complete prophase I of meiosis with arrest at the midpachytene stage. Staining of synaptonemal complex protein 3 and γH2AX, markers of the meiotic synaptonemal complex and DNA damage, respectively, and super illumination microscopy revealed nonhomologous pairing and synapsis defects. Quantitative RT-PCR showed reduction in the expression of genes critical for prophase I of meiosis, including Spo11 (initiator of meiotic double-stranded breaks), Rec8 (meiotic recombination protein), and Rad21L (RAD21-like, cohesin complex component), as well as those involved in the retinoic acid pathway critical for entry into meiosis. RNA-Seq showed 1036 upregulated and 1638 downregulated genes (false discovery rate <0.05) in the Tardbp cKO testis, impacting meiosis pathways. Our work reveals a crucial role for TDP-43 in male meiosis and suggests that some forms of meiotic arrest seen in infertile men may result from the loss of function of TDP-43.
Collapse
Affiliation(s)
- Kaitlyn M Campbell
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yiding Xu
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Chintan Patel
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jeremy M Rayl
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Helena D Zomer
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Hari Prasad Osuru
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Michael Pratt
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Patcharin Pramoonjago
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Madeline Timken
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Lyndzi M Miller
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Abigail Ralph
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kathryn M Storey
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yiheng Peng
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jenny Drnevich
- High-Performance Biological Computing (HPCBio) Group, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
50
|
Imai Y, Olaya I, Sakai N, Burgess SM. Meiotic Chromosome Dynamics in Zebrafish. Front Cell Dev Biol 2021; 9:757445. [PMID: 34692709 PMCID: PMC8531508 DOI: 10.3389/fcell.2021.757445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies in zebrafish have revealed key features of meiotic chromosome dynamics, including clustering of telomeres in the bouquet configuration, biogenesis of chromosome axis structures, and the assembly and disassembly of the synaptonemal complex that aligns homologs end-to-end. The telomere bouquet stage is especially pronounced in zebrafish meiosis and sub-telomeric regions play key roles in mediating pairing and homologous recombination. In this review, we discuss the temporal progression of these events in meiosis prophase I and highlight the roles of proteins associated with meiotic chromosome architecture in homologous recombination. Finally, we discuss the interplay between meiotic mutants and gonadal sex differentiation and future research directions to study meiosis in living cells, including cell culture.
Collapse
Affiliation(s)
- Yukiko Imai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Ivan Olaya
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States.,Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, United States
| | - Noriyoshi Sakai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.,Department of Genetics, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Sean M Burgess
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|