1
|
Aloisi M, Grifoni D, Zarivi O, Colafarina S, Morciano P, Poma AMG. Plastic Fly: What Drosophila melanogaster Can Tell Us about the Biological Effects and the Carcinogenic Potential of Nanopolystyrene. Int J Mol Sci 2024; 25:7965. [PMID: 39063206 PMCID: PMC11277132 DOI: 10.3390/ijms25147965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Today, plastic pollution is one of the biggest threats to the environment and public health. In the tissues of exposed species, micro- and nano-fragments accumulate, leading to genotoxicity, altered metabolism, and decreased lifespan. A model to investigate the genotoxic and tumor-promoting potential of nanoplastics (NPs) is Drosophila melanogaster. Here we tested polystyrene, which is commonly used in food packaging, is not well recycled, and makes up at least 30% of landfills. In order to investigate the biological effects and carcinogenic potential of 100 µm polystyrene nanoparticles (PSNPs), we raised Oregon [R] wild-type flies on contaminated food. After prolonged exposure, fluorescent PSNPs accumulated in the gut and fat bodies. Furthermore, PSNP-fed flies showed considerable alterations in weight, developmental time, and lifespan, as well as a compromised ability to recover from starvation. Additionally, we noticed a decrease in motor activity in DNAlig4 mutants fed with PSNPs, which are known to be susceptible to dietary stressors. A qPCR molecular investigation of the larval intestines revealed a markedly elevated expression of the genes drice and p53, suggesting a response to cell damage. Lastly, we used warts-defective mutants to assess the carcinogenic potential of PSNPs and discovered that exposed flies had more aberrant masses than untreated ones. In summary, our findings support the notion that ingested nanopolystyrene triggers metabolic and genetic modifications in the exposed organisms, eventually delaying development and accelerating death and disease.
Collapse
Affiliation(s)
- Massimo Aloisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Daniela Grifoni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Patrizia Morciano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
- INFN Laboratori Nazionali del Gran Sasso, Assergi, 67100 L’Aquila, Italy
| | - Anna Maria Giuseppina Poma
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| |
Collapse
|
2
|
Neuman SD, Lee AR, Selegue JE, Cavanagh AT, Bashirullah A. A novel function for Rab1 and Rab11 during secretory granule maturation. J Cell Sci 2021; 134:jcs259037. [PMID: 34342349 PMCID: PMC8353522 DOI: 10.1242/jcs.259037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
Regulated exocytosis is an essential process whereby specific cargo proteins are secreted in a stimulus-dependent manner. Cargo-containing secretory granules are synthesized in the trans-Golgi network (TGN); after budding from the TGN, granules undergo modifications, including an increase in size. These changes occur during a poorly understood process called secretory granule maturation. Here, we leverage the Drosophila larval salivary glands as a model to characterize a novel role for Rab GTPases during granule maturation. We find that secretory granules increase in size ∼300-fold between biogenesis and release, and loss of Rab1 or Rab11 reduces granule size. Surprisingly, we find that Rab1 and Rab11 localize to secretory granule membranes. Rab11 associates with granule membranes throughout maturation, and Rab11 recruits Rab1. In turn, Rab1 associates specifically with immature granules and drives granule growth. In addition to roles in granule growth, both Rab1 and Rab11 appear to have additional functions during exocytosis; Rab11 function is necessary for exocytosis, while the presence of Rab1 on immature granules may prevent precocious exocytosis. Overall, these results highlight a new role for Rab GTPases in secretory granule maturation.
Collapse
Affiliation(s)
| | | | | | | | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| |
Collapse
|
3
|
Crocker KL, Marischuk K, Rimkus SA, Zhou H, Yin JCP, Boekhoff-Falk G. Neurogenesis in the adult Drosophila brain. Genetics 2021; 219:6297258. [PMID: 34117750 PMCID: PMC8860384 DOI: 10.1093/genetics/iyab092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/08/2021] [Indexed: 11/14/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's and Parkinson's currently affect ∼25 million people worldwide (Erkkinen et al. 2018). The global incidence of traumatic brain injury (TBI) is estimated at ∼70 million/year (Dewan et al. 2018). Both neurodegenerative diseases and TBI remain without effective treatments. We are utilizing adult Drosophila melanogaster to investigate the mechanisms of brain regeneration with the long term goal of identifying targets for neural regenerative therapies. We specifically focused on neurogenesis, i.e. the generation of new cells, as opposed to the regrowth of specific subcellular structures such as axons. Like mammals, Drosophila have few proliferating cells in the adult brain. Nonetheless, within 24 hours of a Penetrating Traumatic Brain Injury (PTBI) to the central brain, there is a significant increase in the number of proliferating cells. We subsequently detect both new glia and new neurons and the formation of new axon tracts that target appropriate brain regions. Glial cells divide rapidly upon injury to give rise to new glial cells. Other cells near the injury site upregulate neural progenitor genes including asense and deadpan and later give rise to the new neurons. Locomotor abnormalities observed after PTBI are reversed within two weeks of injury, supporting the idea that there is functional recovery. Together, these data indicate that adult Drosophila brains are capable of neuronal repair. We anticipate that this paradigm will facilitate the dissection of the mechanisms of neural regeneration and that these processes will be relevant to human brain repair.
Collapse
Affiliation(s)
- Kassi L Crocker
- Genetics Graduate Training Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA.,Science and Medicine Graduate Research Scholars Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Khailee Marischuk
- Genetics Graduate Training Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Stacey A Rimkus
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Hong Zhou
- Department of Genetics, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Jerry C P Yin
- Department of Genetics, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Grace Boekhoff-Falk
- Genetics Graduate Training Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
4
|
Bazylev SS, Adashev VE, Shatskikh AS, Olenina LV, Kotov AA. Somatic Cyst Cells as a Microenvironment for the Maintenance and Differentiation of Germline Cells in Drosophila Spermatogenesis. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Wang J, Li T, Deng S, Ma E, Zhang J, Xing S. The RNA helicase DDX3 is required for ovarian development and oocyte maturation in Locusta migratoria. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21775. [PMID: 33644918 DOI: 10.1002/arch.21775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
DDX3 represents a well-defined subfamily of DEAD-box RNA helicase and exerts multiple functions in RNA metabolism, cell cycle, tumorigenesis, signal pathway, and fertility. Our previous study has shown that LmDDX3, the ortholog of DDX3 in Locusta migratoria, is ubiquitously expressed, and with a high abundance in testis and ovary. Knockdown of LmDDX3 results in a lethal phenotype in nymph, but it still remains unclear for its role in reproductive process. In this study, we therefore characterized LmDDX3 expression in female adult locust and analyzed its function in oocyte development. LmDDX3 was expressed in all tissues examined with significant more transcripts in ovary and hindgut. In ovary, a strong expression level was detected at the day just after adult eclosion, and a dramatic reduction then occurred during the oocyte development. LmDDX3 RNAi led to a reduced vitellogenin (Vg) expression in fat body via partially at least, the JH signaling pathway, and caused an upregulation of vitellogenin receptor (VgR) in ovary, and thus blocked the ovarian development and oocyte maturation. Sequence and phylogenetic analysis indicated that LmDDX3 was closely related to termite DDX3. Taken together, these data reveal a critical role for LmDDX3 in regulating the transcription of Vg and VgR, two major factors in vitellogenesis that is a key process required for ovary development and oocyte maturation in locust, and contribute thereof a new putative target for locust biological control.
Collapse
Affiliation(s)
- Junxiu Wang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Tingting Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Sufang Deng
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Agricultural Integrated Pest Management, Taiyuan, Shanxi, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Agricultural Integrated Pest Management, Taiyuan, Shanxi, China
| | - Shuping Xing
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Agricultural Integrated Pest Management, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Neuman SD, Terry EL, Selegue JE, Cavanagh AT, Bashirullah A. Mistargeting of secretory cargo in retromer-deficient cells. Dis Model Mech 2021; 14:dmm.046417. [PMID: 33380435 PMCID: PMC7847263 DOI: 10.1242/dmm.046417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Intracellular trafficking is a basic and essential cellular function required for delivery of proteins to the appropriate subcellular destination; this process is especially demanding in professional secretory cells, which synthesize and secrete massive quantities of cargo proteins via regulated exocytosis. The Drosophila larval salivary glands are composed of professional secretory cells that synthesize and secrete mucin proteins at the onset of metamorphosis. Using the larval salivary glands as a model system, we have identified a role for the highly conserved retromer complex in trafficking of secretory granule membrane proteins. We demonstrate that retromer-dependent trafficking via endosomal tubules is induced at the onset of secretory granule biogenesis, and that recycling via endosomal tubules is required for delivery of essential secretory granule membrane proteins to nascent granules. Without retromer function, nascent granules do not contain the proper membrane proteins; as a result, cargo from these defective granules is mistargeted to Rab7-positive endosomes, where it progressively accumulates to generate dramatically enlarged endosomes. Retromer complex dysfunction is strongly associated with neurodegenerative diseases, including Alzheimer's disease, characterized by accumulation of amyloid β (Aβ). We show that ectopically expressed amyloid precursor protein (APP) undergoes regulated exocytosis in salivary glands and accumulates within enlarged endosomes in retromer-deficient cells. These results highlight recycling of secretory granule membrane proteins as a critical step during secretory granule maturation and provide new insights into our understanding of retromer complex function in secretory cells. These findings also suggest that missorting of secretory cargo, including APP, may contribute to the progressive nature of neurodegenerative disease.
Collapse
Affiliation(s)
- Sarah D Neuman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | - Erica L Terry
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | - Jane E Selegue
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | - Amy T Cavanagh
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| |
Collapse
|
7
|
RNA-binding protein DDX3 mediates posttranscriptional regulation of androgen receptor: A mechanism of castration resistance. Proc Natl Acad Sci U S A 2020; 117:28092-28101. [PMID: 33106406 DOI: 10.1073/pnas.2008479117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer (CaP) driven by androgen receptor (AR) is treated with androgen deprivation; however, therapy failure results in lethal castration-resistant prostate cancer (CRPC). AR-low/negative (ARL/-) CRPC subtypes have recently been characterized and cannot be targeted by hormonal therapies, resulting in poor prognosis. RNA-binding protein (RBP)/helicase DDX3 (DEAD-box helicase 3 X-linked) is a key component of stress granules (SG) and is postulated to affect protein translation. Here, we investigated DDX3-mediated posttranscriptional regulation of AR mRNA (messenger RNA) in CRPC. Using patient samples and preclinical models, we objectively quantified DDX3 and AR expression in ARL/- CRPC. We utilized CRPC models to identify DDX3:AR mRNA complexes by RNA immunoprecipitation, assess the effects of DDX3 gain/loss-of-function on AR expression and signaling, and address clinical implications of targeting DDX3 by assessing sensitivity to AR-signaling inhibitors (ARSI) in CRPC xenografts in vivo. ARL/- CRPC expressed abundant AR mRNA despite diminished levels of AR protein. DDX3 protein was highly expressed in ARL/- CRPC, where it bound to AR mRNA. Consistent with a repressive regulatory role, DDX3 localized to cytoplasmic puncta with SG marker PABP1 in CRPC. While induction of DDX3-nucleated SGs resulted in decreased AR protein expression, inhibiting DDX3 was sufficient to restore 1) AR protein expression, 2) AR signaling, and 3) sensitivity to ARSI in vitro and in vivo. Our findings implicate the RBP protein DDX3 as a mechanism of posttranscriptional regulation for AR in CRPC. Clinically, DDX3 may be targetable for sensitizing ARL/- CRPC to AR-directed therapies.
Collapse
|
8
|
Chebbo S, Josway S, Belote JM, Manier MK. A putative novel role for Eip74EF in male reproduction in promoting sperm elongation at the cost of male fecundity. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:620-628. [PMID: 32725718 DOI: 10.1002/jez.b.22986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 11/06/2022]
Abstract
Spermatozoa are the most morphologically variable cell type, yet little is known about genes controlling natural variation in sperm shape. Drosophila fruit flies have the longest sperm known, which are evolving under postcopulatory sexual selection, driven by sperm competition and cryptic female choice. Long sperm outcompete short sperm but primarily when females have a long seminal receptacle (SR), the primary sperm storage organ. Thus, the selection on sperm length is mediated by SR length, and the two traits are coevolving across the Drosophila lineage, driven by a genetic correlation and fitness advantage of long sperm and long SR genotypes in both males and females. Ecdysone-induced protein 74EF (Eip74EF) is expressed during postmeiotic stages of spermatogenesis when spermatid elongation occurs, and we found that it is rapidly evolving under positive selection in Drosophila. Hypomorphic knockout of the E74A isoform leads to shorter sperm but does not affect SR length, suggesting that E74A may be involved in promoting spermatid elongation but is not a genetic driver of male-female coevolution. We also found that E74A knockout has opposing effects on fecundity in males and females, with an increase in fecundity for males but a decrease in females, consistent with its documented role in oocyte maturation. Our results suggest a novel function of Eip74EF in spermatogenesis and demonstrates that this gene influences both male and female reproductive success. We speculate on possible roles for E74A in spermatogenesis and male reproductive success.
Collapse
Affiliation(s)
- Sharif Chebbo
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Sarah Josway
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - John M Belote
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Mollie K Manier
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
9
|
Damulewicz M, Mazzotta GM. One Actor, Multiple Roles: The Performances of Cryptochrome in Drosophila. Front Physiol 2020; 11:99. [PMID: 32194430 PMCID: PMC7066326 DOI: 10.3389/fphys.2020.00099] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/27/2020] [Indexed: 01/19/2023] Open
Abstract
Cryptochromes (CRYs) are flavoproteins that are sensitive to blue light, first identified in Arabidopsis and then in Drosophila and mice. They are evolutionarily conserved and play fundamental roles in the circadian clock of living organisms, enabling them to adapt to the daily 24-h cycles. The role of CRYs in circadian clocks differs among different species: in plants, they have a blue light-sensing activity whereas in mammals they act as light-independent transcriptional repressors within the circadian clock. These two different functions are accomplished by two principal types of CRYs, the light-sensitive plant/insect type 1 CRY and the mammalian type 2 CRY acting as a negative autoregulator in the molecular circadian clockwork. Drosophila melanogaster possesses just one CRY, belonging to type 1 CRYs. Nevertheless, this single CRY appears to have different functions, specific to different organs, tissues, and even subset of cells in which it is expressed. In this review, we will dissect the multiple roles of this single CRY in Drosophila, focusing on the regulatory mechanisms that make its pleiotropy possible.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
10
|
The Drosophila RNA Helicase Belle (DDX3) Non-Autonomously Suppresses Germline Tumorigenesis Via Regulation of a Specific mRNA Set. Cells 2020; 9:cells9030550. [PMID: 32111103 PMCID: PMC7140462 DOI: 10.3390/cells9030550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022] Open
Abstract
DDX3 subfamily DEAD-box RNA helicases are essential developmental regulators of RNA metabolism in eukaryotes. belle, the single DDX3 ortholog in Drosophila, is required for fly viability, fertility, and germline stem cell maintenance. Belle is involved both in translational activation and repression of target mRNAs in different tissues; however, direct targets of Belle in the testes are essentially unknown. Here we showed that belle RNAi knockdown in testis cyst cells caused a disruption of adhesion between germ and cyst cells and generation of tumor-like clusters of stem-like germ cells. Ectopic expression of β-integrin in cyst cells rescued early stages of spermatogenesis in belle knockdown testes, indicating that integrin adhesion complexes are required for the interaction between somatic and germ cells in a cyst. To address Belle functions in spermatogenesis in detail we performed cross-linking immunoprecipitation and sequencing (CLIP-seq) analysis and identified multiple mRNAs that interacted with Belle in the testes. The set of Belle targets includes transcripts of proteins that are essential for preventing the tumor-like clusters of germ cells and for sustaining spermatogenesis. By our hypothesis, failures in the translation of a number of mRNA targets additively contribute to developmental defects observed in the testes with belle knockdowns both in cyst cells and in the germline.
Collapse
|
11
|
Xu T, Jiang X, Denton D, Kumar S. Ecdysone controlled cell and tissue deletion. Cell Death Differ 2020; 27:1-14. [PMID: 31745213 PMCID: PMC7205961 DOI: 10.1038/s41418-019-0456-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
The removal of superfluous and unwanted cells is a critical part of animal development. In insects the steroid hormone ecdysone, the focus of this review, is an essential regulator of developmental transitions, including molting and metamorphosis. Like other steroid hormones, ecdysone works via nuclear hormone receptors to direct spatial and temporal regulation of gene transcription including genes required for cell death. During insect metamorphosis, pulses of ecdysone orchestrate the deletion of obsolete larval tissues, including the larval salivary glands and the midgut. In this review we discuss the molecular machinery and mechanisms of ecdysone-dependent cell and tissue removal, with a focus on studies in Drosophila and Lepidopteran insects.
Collapse
Affiliation(s)
- Tianqi Xu
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Xin Jiang
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia.
| |
Collapse
|
12
|
Linsalata AE, He F, Malik AM, Glineburg MR, Green KM, Natla S, Flores BN, Krans A, Archbold HC, Fedak SJ, Barmada SJ, Todd PK. DDX3X and specific initiation factors modulate FMR1 repeat-associated non-AUG-initiated translation. EMBO Rep 2019; 20:e47498. [PMID: 31347257 PMCID: PMC6726903 DOI: 10.15252/embr.201847498] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
A CGG trinucleotide repeat expansion in the 5' UTR of FMR1 causes the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). This repeat supports a non-canonical mode of protein synthesis known as repeat-associated, non-AUG (RAN) translation. The mechanism underlying RAN translation at CGG repeats remains unclear. To identify modifiers of RAN translation and potential therapeutic targets, we performed a candidate-based screen of eukaryotic initiation factors and RNA helicases in cell-based assays and a Drosophila melanogaster model of FXTAS. We identified multiple modifiers of toxicity and RAN translation from an expanded CGG repeat in the context of the FMR1 5'UTR. These include the DEAD-box RNA helicase belle/DDX3X, the helicase accessory factors EIF4B/4H, and the start codon selectivity factors EIF1 and EIF5. Disrupting belle/DDX3X selectively inhibited FMR1 RAN translation in Drosophila in vivo and cultured human cells, and mitigated repeat-induced toxicity in Drosophila and primary rodent neurons. These findings implicate RNA secondary structure and start codon fidelity as critical elements mediating FMR1 RAN translation and identify potential targets for treating repeat-associated neurodegeneration.
Collapse
Affiliation(s)
- Alexander E Linsalata
- Cellular and Molecular Biology Graduate ProgramUniversity of MichiganAnn ArborMIUSA
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Fang He
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
- Department of Biological and Health SciencesTexas A&M University, KingsvilleKingsvilleTXUSA
| | - Ahmed M Malik
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborMIUSA
| | | | - Katelyn M Green
- Cellular and Molecular Biology Graduate ProgramUniversity of MichiganAnn ArborMIUSA
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Sam Natla
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Brittany N Flores
- Cellular and Molecular Biology Graduate ProgramUniversity of MichiganAnn ArborMIUSA
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Amy Krans
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | | | | | - Sami J Barmada
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Peter K Todd
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
- Ann Arbor VA Medical CenterAnn ArborMIUSA
| |
Collapse
|
13
|
Liao SE, Kandasamy SK, Zhu L, Fukunaga R. DEAD-box RNA helicase Belle posttranscriptionally promotes gene expression in an ATPase activity-dependent manner. RNA (NEW YORK, N.Y.) 2019; 25:825-839. [PMID: 30979781 PMCID: PMC6573787 DOI: 10.1261/rna.070268.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Drosophila Belle (human ortholog DDX3) is a conserved DEAD-box RNA helicase implicated in regulating gene expression. However, the molecular mechanisms by which Belle/DDX3 regulates gene expression are poorly understood. Here we performed systematic mutational analysis to determine the contributions of conserved motifs within Belle to its in vivo function. We found that Belle RNA-binding and RNA-unwinding activities and intrinsically disordered regions (IDRs) are required for Belle in vivo function. Expression of Belle ATPase mutants that cannot bind, hydrolyze, or release ATP resulted in dominant toxic phenotypes. Mechanistically, we discovered that Belle up-regulates reporter protein level when tethered to reporter mRNA, without corresponding changes at the mRNA level, indicating that Belle promotes translation of mRNA that it binds. Belle ATPase activity and amino-terminal IDR were required for this translational promotion activity. We also found that ectopic ovary expression of dominant Belle ATPase mutants decreases levels of cyclin proteins, including Cyclin B, without corresponding changes in their mRNA levels. Finally, we found that Belle binds endogenous cyclin B mRNA. We propose that Belle promotes translation of specific target mRNAs, including cyclin B mRNA, in an ATPase activity-dependent manner.
Collapse
Affiliation(s)
- Susan E Liao
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Suresh K Kandasamy
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Li Zhu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
14
|
Cusumano P, Damulewicz M, Carbognin E, Caccin L, Puricella A, Specchia V, Bozzetti MP, Costa R, Mazzotta GM. The RNA Helicase BELLE Is Involved in Circadian Rhythmicity and in Transposons Regulation in Drosophila melanogaster. Front Physiol 2019; 10:133. [PMID: 30842743 PMCID: PMC6392097 DOI: 10.3389/fphys.2019.00133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/04/2019] [Indexed: 02/05/2023] Open
Abstract
Circadian clocks control and synchronize biological rhythms of several behavioral and physiological phenomena in most, if not all, organisms. Rhythm generation relies on molecular auto-regulatory oscillations of interlocked transcriptional-translational feedback loops. Rhythmic clock-gene expression is at the base of rhythmic protein accumulation, though post-transcriptional and post-translational mechanisms have evolved to adjust and consolidate the proper pace of the clock. In Drosophila, BELLE, a conserved DEAD-box RNA helicase playing important roles in reproductive capacity, is involved in the small RNA-mediated regulation associated to the piRNA pathway. Here, we report that BELLE is implicated in the circadian rhythmicity and in the regulation of endogenous transposable elements (TEs) in both nervous system and gonads. We suggest that BELLE acts as important element in the piRNA-mediated regulation of the TEs and raise the hypothesis that this specific regulation could represent another level of post-transcriptional control adopted by the clock to ensure the proper rhythmicity.
Collapse
Affiliation(s)
- Paola Cusumano
- Department of Biology, University of Padua, Padua, Italy
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | | | - Laura Caccin
- Department of Biology, University of Padua, Padua, Italy
| | - Antonietta Puricella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Maria Pia Bozzetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padua, Padua, Italy
| | | |
Collapse
|
15
|
Olesnicky EC, Antonacci S, Popitsch N, Lybecker MC, Titus MB, Valadez R, Derkach PG, Marean A, Miller K, Mathai SK, Killian DJ. Shep interacts with posttranscriptional regulators to control dendrite morphogenesis in sensory neurons. Dev Biol 2018; 444:116-128. [PMID: 30352216 DOI: 10.1016/j.ydbio.2018.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/20/2018] [Accepted: 09/09/2018] [Indexed: 10/28/2022]
Abstract
RNA binding proteins (RBPs) mediate posttranscriptional gene regulatory events throughout development. During neurogenesis, many RBPs are required for proper dendrite morphogenesis within Drosophila sensory neurons. Despite their fundamental role in neuronal morphogenesis, little is known about the molecular mechanisms in which most RBPs participate during neurogenesis. In Drosophila, alan shepard (shep) encodes a highly conserved RBP that regulates dendrite morphogenesis in sensory neurons. Moreover, the C. elegans ortholog sup-26 has also been implicated in sensory neuron dendrite morphogenesis. Nonetheless, the molecular mechanism by which Shep/SUP-26 regulate dendrite development is not understood. Here we show that Shep interacts with the RBPs Trailer Hitch (Tral), Ypsilon schachtel (Yps), Belle (Bel), and Poly(A)-Binding Protein (PABP), to direct dendrite morphogenesis in Drosophila sensory neurons. Moreover, we identify a conserved set of Shep/SUP-26 target RNAs that include regulators of cell signaling, posttranscriptional gene regulators, and known regulators of dendrite development.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States.
| | - Simona Antonacci
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Niko Popitsch
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, A-1090 Vienna, Austria
| | - Meghan C Lybecker
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - M Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - Racquel Valadez
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - Paul G Derkach
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - Amber Marean
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Katherine Miller
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Samuel K Mathai
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| |
Collapse
|
16
|
Baker LR, Weasner BM, Nagel A, Neuman SD, Bashirullah A, Kumar JP. Eyeless/Pax6 initiates eye formation non-autonomously from the peripodial epithelium. Development 2018; 145:dev.163329. [PMID: 29980566 DOI: 10.1242/dev.163329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
The transcription factor Pax6 is considered the master control gene for eye formation because (1) it is present within the genomes and retina/lens of all animals with a visual system; (2) severe retinal defects accompany its loss; (3) Pax6 genes have the ability to substitute for one another across the animal kingdom; and (4) Pax6 genes are capable of inducing ectopic eye/lens in flies and mammals. Many roles of Pax6 were first elucidated in Drosophila through studies of the gene eyeless (ey), which controls both growth of the entire eye-antennal imaginal disc and fate specification of the eye. We show that Ey also plays a surprising role within cells of the peripodial epithelium to control pattern formation. It regulates the expression of decapentaplegic (dpp), which is required for initiation of the morphogenetic furrow in the eye itself. Loss of Ey within the peripodial epithelium leads to the loss of dpp expression within the eye, failure of the furrow to initiate, and abrogation of retinal development. These findings reveal an unexpected mechanism for how Pax6 controls eye development in Drosophila.
Collapse
Affiliation(s)
- Luke R Baker
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Bonnie M Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Athena Nagel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Sarah D Neuman
- Department of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA
| | - Arash Bashirullah
- Department of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
17
|
Xu QY, Meng QW, Deng P, Fu KY, Guo WC, Li GQ. Requirement of Leptinotarsa decemlineata gene within the 74EF puff for larval-pupal metamorphosis and appendage growth. INSECT MOLECULAR BIOLOGY 2018; 27:439-453. [PMID: 29582498 DOI: 10.1111/imb.12384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two Drosophila melanogaster E-twenty-six domain transcription factor isoforms (E74A and E74B) act differentially at the start of the 20-hydroxyecdysone (20E) signalling cascade to regulate larval-pupal metamorphosis. In the present paper, we identified the two isoforms (LdE74A and LdE74B) in Leptinotarsa decemlineata. During the larval development stage, the mRNA transcript levels of the two LdE74 isoforms were correlated with circulating 20E titres. In vitro midgut culture and in vivo dietary supplementation with 20E revealed that the presence of 20E induced expression peaks of both LdE74A and LdE74B, with similar patterns observed for the two isoforms. Moreover, the mRNA transcript levels of both LdE74A and LdE74B isoforms were significantly downregulated in the L. decemlineata ecdysone receptor RNA interference (RNAi) specimens, but not in the LdE75 RNAi beetles. Ingestion of 20E reduced the larval fresh weights and shortened the larval development period, irrespective of knockdown of LdE74 or not. RNAi of LdE74 did not affect 20E-induced expression of the Ecdysone induced protein 75-hormone receptor 3-fushi tarazu factor 1 (E75-HR3-FTZ-F1) transcriptional cascade. Thus, it seems that LdE74 mediates 20E signalling independent of the E75-HR3-FTZ-F1 transcriptional cascade. Furthermore, silencing of both LdE74 isoforms caused failure of ecdysis. Most of the LdE74 RNAi beetles remained as prepupae. The LdE74 RNAi prepupae exhibited adult character-like forms underneath after removal of the apolysed larval cuticle. Their appendages such as antennae, legs and wings were shorter than those of control larvae. Only a few LdE74 RNAi larvae finally became deformed pupae, with shortened antennae and legs. Therefore, LdE74 is required for larval-pupal metamorphosis and appendage growth in L. decemlineata.
Collapse
Affiliation(s)
- Q-Y Xu
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Q-W Meng
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - P Deng
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - K-Y Fu
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - W-C Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - G-Q Li
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Neuman SD, Bashirullah A. Hobbit regulates intracellular trafficking to drive insulin-dependent growth during Drosophila development. Development 2018; 145:dev161356. [PMID: 29891564 PMCID: PMC6031322 DOI: 10.1242/dev.161356] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/08/2018] [Indexed: 12/17/2022]
Abstract
All animals must coordinate growth rate and timing of maturation to reach the appropriate final size. Here, we describe hobbit, a novel and conserved gene identified in a forward genetic screen for Drosophila animals with small body size. hobbit is highly conserved throughout eukaryotes, but its function remains unknown. We demonstrate that hobbit mutant animals have systemic growth defects because they fail to secrete insulin. Other regulated secretion events also fail in hobbit mutant animals, including mucin-like 'glue' protein secretion from the larval salivary glands. hobbit mutant salivary glands produce glue-containing secretory granules that are reduced in size. Importantly, secretory granules in hobbit mutant cells lack essential membrane fusion machinery required for exocytosis, including Synaptotagmin 1 and the SNARE SNAP-24. These membrane fusion proteins instead accumulate inside enlarged late endosomes. Surprisingly, however, the Hobbit protein localizes to the endoplasmic reticulum. Our results suggest that Hobbit regulates a novel step in intracellular trafficking of membrane fusion proteins. Our studies also suggest that genetic control of body size, as a measure of insulin secretion, is a sensitive functional readout of the secretory machinery.
Collapse
Affiliation(s)
- Sarah D Neuman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
19
|
Allocation of distinct organ fates from a precursor field requires a shift in expression and function of gene regulatory networks. PLoS Genet 2018; 14:e1007185. [PMID: 29351292 PMCID: PMC5792024 DOI: 10.1371/journal.pgen.1007185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/31/2018] [Accepted: 01/03/2018] [Indexed: 11/30/2022] Open
Abstract
A common occurrence in metazoan development is the rise of multiple tissues/organs from a single uniform precursor field. One example is the anterior forebrain of vertebrates, which produces the eyes, hypothalamus, diencephalon, and telencephalon. Another instance is the Drosophila wing disc, which generates the adult wing blade, the hinge, and the thorax. Gene regulatory networks (GRNs) that are comprised of signaling pathways and batteries of transcription factors parcel the undifferentiated field into discrete territories. This simple model is challenged by two observations. First, many GRN members that are thought to control the fate of one organ are actually expressed throughout the entire precursor field at earlier points in development. Second, each GRN can simultaneously promote one of the possible fates choices while repressing the other alternatives. It is therefore unclear how GRNs function to allocate tissue fates if their members are uniformly expressed and competing with each other within the same populations of cells. We address this paradigm by studying fate specification in the Drosophila eye-antennal disc. The disc, which begins its development as a homogeneous precursor field, produces a number of adult structures including the compound eyes, the ocelli, the antennae, the maxillary palps, and the surrounding head epidermis. Several selector genes that control the fates of the eye and antenna, respectively, are first expressed throughout the entire eye-antennal disc. We show that during early stages, these genes are tasked with promoting the growth of the entire field. Upon segregation to distinct territories within the disc, each GRN continues to promote growth while taking on the additional roles of promoting distinct primary fates and repressing alternate fates. The timing of both expression pattern restriction and expansion of functional duties is an elemental requirement for allocating fates within a single field. A battery of transcription factors collectively called the retinal determination (RD) network controls the earliest steps in the specification of the fruit fly compound eye. Loss-of-function mutations lead to the loss of the compound eyes while over-expression of RD network members in non-retinal tissues induces the formation of ectopic eyes. These observations suggest that the network governs the growth, specification, and patterning of the eye field. Recent studies have also shown that the RD network represses the fates of the non-ocular tissues that are also derived from the disc such as the antenna, maxillary palp, and head epidermis. One inconsistency in the model for how this network controls eye specification is that many of its members are expressed throughout the entire eye-antennal disc. In this study, we show that early in development, the RD network is expressed throughout and promotes the growth of the entire eye-antennal disc. After the initial growth phase, the expression of these genes is restricted to just the eye field. This temporal and spatial limiting of the RD network to the developing eye is essential so that its role can expand to include promoting eye specification and repressing non-ocular fates.
Collapse
|
20
|
Götze M, Dufourt J, Ihling C, Rammelt C, Pierson S, Sambrani N, Temme C, Sinz A, Simonelig M, Wahle E. Translational repression of the Drosophila nanos mRNA involves the RNA helicase Belle and RNA coating by Me31B and Trailer hitch. RNA (NEW YORK, N.Y.) 2017; 23:1552-1568. [PMID: 28701521 PMCID: PMC5602113 DOI: 10.1261/rna.062208.117] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/10/2017] [Indexed: 05/10/2023]
Abstract
Translational repression of maternal mRNAs is an essential regulatory mechanism during early embryonic development. Repression of the Drosophila nanos mRNA, required for the formation of the anterior-posterior body axis, depends on the protein Smaug binding to two Smaug recognition elements (SREs) in the nanos 3' UTR. In a comprehensive mass spectrometric analysis of the SRE-dependent repressor complex, we identified Smaug, Cup, Me31B, Trailer hitch, eIF4E, and PABPC, in agreement with earlier data. As a novel component, the RNA-dependent ATPase Belle (DDX3) was found, and its involvement in deadenylation and repression of nanos was confirmed in vivo. Smaug, Cup, and Belle bound stoichiometrically to the SREs, independently of RNA length. Binding of Me31B and Tral was also SRE-dependent, but their amounts were proportional to the length of the RNA and equimolar to each other. We suggest that "coating" of the RNA by a Me31B•Tral complex may be at the core of repression.
Collapse
Affiliation(s)
- Michael Götze
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Jérémy Dufourt
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Christian Ihling
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Stephanie Pierson
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Nagraj Sambrani
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Claudia Temme
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Martine Simonelig
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
21
|
Tango7 regulates cortical activity of caspases during reaper-triggered changes in tissue elasticity. Nat Commun 2017; 8:603. [PMID: 28928435 PMCID: PMC5605750 DOI: 10.1038/s41467-017-00693-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 07/20/2017] [Indexed: 11/08/2022] Open
Abstract
Caspases perform critical functions in both living and dying cells; however, how caspases perform physiological functions without killing the cell remains unclear. Here we identify a novel physiological function of caspases at the cortex of Drosophila salivary glands. In living glands, activation of the initiator caspase dronc triggers cortical F-actin dismantling, enabling the glands to stretch as they accumulate secreted products in the lumen. We demonstrate that tango7, not the canonical Apaf-1-adaptor dark, regulates dronc activity at the cortex; in contrast, dark is required for cytoplasmic activity of dronc during salivary gland death. Therefore, tango7 and dark define distinct subcellular domains of caspase activity. Furthermore, tango7-dependent cortical dronc activity is initiated by a sublethal pulse of the inhibitor of apoptosis protein (IAP) antagonist reaper. Our results support a model in which biological outcomes of caspase activation are regulated by differential amplification of IAP antagonists, unique caspase adaptor proteins, and mutually exclusive subcellular domains of caspase activity. Caspases are known for their role in cell death, but they can also participate in other physiological functions without killing the cells. Here the authors show that unique caspase adaptor proteins can regulate caspase activity within mutually-exclusive and independently regulated subcellular domains.
Collapse
|
22
|
Guerra AD, Rose WE, Hematti P, Kao WJ. Minocycline modulates NFκB phosphorylation and enhances antimicrobial activity against Staphylococcus aureus in mesenchymal stromal/stem cells. Stem Cell Res Ther 2017; 8:171. [PMID: 28732530 PMCID: PMC5521110 DOI: 10.1186/s13287-017-0623-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/05/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties due to their anti-inflammatory, angiogenic, and even antibacterial properties. We have shown previously that minocycline enhances the wound healing phenotype of MSCs, and MSCs encapsulated in poly(ethylene glycol) and gelatin-based hydrogels with minocycline have antibacterial properties against Staphylococcus aureus (SA). Here, we investigated the signaling pathway that minocycline modulates in MSCs which results in their enhanced wound healing phenotype and determined whether preconditioning MSCs with minocycline has an effect on antimicrobial activity. We further investigated the in-vivo antimicrobial efficacy of MSC and antibiotic-loaded hydrogels in inoculated full-thickness cutaneous wounds. Methods Modulation of cell signaling pathways in MSCs with minocycline was analyzed via western blot, immunofluorescence, and ELISA. Antimicrobial efficacy of MSCs pretreated with minocycline was determined by direct and transwell coculture with SA. MSC viability after SA coculture was determined via a LIVE/DEAD® stain. Internalization of SA by MSCs pretreated with minocycline was determined via confocal imaging. All protein and cytokine analysis was done via ELISA. The in-vivo antimicrobial efficacy of MSC and antibiotic-loaded hydrogels was determined in Sprague–Dawley rats inoculated with SA. Two-way ANOVA for multiple comparisons was used with Bonferroni test assessment and an unpaired two-tailed Student’s t test was used to determine p values for all assays with multiple or two conditions, respectively. Results Minocycline leads to the phosphorylation of transcriptional nuclear factor-κB (NFκB), but not c-Jun NH2-terminal kinase (JNK) or mitogen-activated protein kinase (ERK). Inhibition of NFκB activation prevented the minocycline-induced increase in VEGF secretion. Preconditioning of MSCs with minocycline led to a reduced production of the antimicrobial peptide LL-37, but enhanced antimicrobial activity against SA via an increased production of IL-6 and SA internalization. MSC and antibiotic-loaded hydrogels reduced SA bioburden in inoculated wounds over 3 days and accelerated reepithelialization. Conclusions Minocycline modulates the NFκB pathway in MSCs that leads to an enhanced production of IL-6 and internalization of SA. This mechanism may have contributed to the in-vivo antibacterial efficacy of MSC and antibiotic-loaded hydrogels. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0623-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alberto Daniel Guerra
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 7123 Rennebohm Hall, Madison, WI, 53705, USA
| | - Warren E Rose
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 7123 Rennebohm Hall, Madison, WI, 53705, USA
| | - Peiman Hematti
- School of Medicine and Public Health, Department of Medicine, Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI, 53705, USA
| | - W John Kao
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 7123 Rennebohm Hall, Madison, WI, 53705, USA. .,College of Engineering, Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA. .,School of Medicine and Public Health, Department of Surgery, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI, 53705, USA. .,Present Address: 10/F Knowles Building, Pokfulam, Hong Kong.
| |
Collapse
|
23
|
HDAC Inhibitors Disrupt Programmed Resistance to Apoptosis During Drosophila Development. G3-GENES GENOMES GENETICS 2017; 7:1985-1993. [PMID: 28455414 PMCID: PMC5473774 DOI: 10.1534/g3.117.041541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have previously shown that the ability to respond to apoptotic triggers is regulated during Drosophila development, effectively dividing the fly life cycle into stages that are either sensitive or resistant to apoptosis. Here, we show that the developmentally programmed resistance to apoptosis involves transcriptional repression of critical proapoptotic genes by histone deacetylases (HDACs). Administration of HDAC inhibitors (HDACi), like trichostatin A or suberoylanilide hydroxamic acid, increases expression of proapoptotic genes and is sufficient to sensitize otherwise resistant stages. Conversely, reducing levels of proapoptotic genes confers resistance to otherwise sensitive stages. Given that resistance to apoptosis is a hallmark of cancer cells, and that HDACi have been recently added to the repertoire of FDA-approved agents for cancer therapy, our results provide new insights for how HDACi help kill malignant cells and also raise concerns for their potential unintended effects on healthy cells.
Collapse
|
24
|
Mutants for Drosophila Isocitrate Dehydrogenase 3b Are Defective in Mitochondrial Function and Larval Cell Death. G3-GENES GENOMES GENETICS 2017; 7:789-799. [PMID: 28104670 PMCID: PMC5345709 DOI: 10.1534/g3.116.037366] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The death of larval salivary gland cells during metamorphosis in Drosophila melanogaster has been a key system for studying steroid controlled programmed cell death. This death is induced by a pulse of the steroid hormone ecdysone that takes place at the end of the prepupal period. For many years, it has been thought that the ecdysone direct response gene Eip93F (E93) plays a critical role in initiating salivary gland cell death. This conclusion was based largely on the finding that the three “type” alleles of E93 cause a near-complete block in salivary gland cell death. Here, we show that these three mutations are in fact allelic to Idh3b, a nearby gene that encodes the β subunit of isocitrate dehydrogenase 3, a mitochondrial enzyme of the tricarboxylic acid (TCA) cycle. The strongest of the Idh3b alleles appears to cause a near-complete block in oxidative phosphorylation, as mitochondria are depolarized in mutant larvae, and development arrests early during cleavage in embryos from homozygous-mutant germline mothers. Idh3b-mutant larval salivary gland cells fail to undergo mitochondrial fragmentation, which normally precedes the death of these cells, and do not initiate autophagy, an early step in the cell death program. These observations suggest a close relationship between the TCA cycle and the initiation of larval cell death. In normal development, tagged Idh3b is released from salivary gland mitochondria during their fragmentation, suggesting that Idh3b may be an apoptogenic factor that functions much like released cytochrome c in mammalian cells.
Collapse
|
25
|
Retinal Expression of the Drosophila eyes absent Gene Is Controlled by Several Cooperatively Acting Cis-regulatory Elements. PLoS Genet 2016; 12:e1006462. [PMID: 27930646 PMCID: PMC5145141 DOI: 10.1371/journal.pgen.1006462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022] Open
Abstract
The eyes absent (eya) gene of the fruit fly, Drosophila melanogaster, is a member of an evolutionarily conserved gene regulatory network that controls eye formation in all seeing animals. The loss of eya leads to the complete elimination of the compound eye while forced expression of eya in non-retinal tissues is sufficient to induce ectopic eye formation. Within the developing retina eya is expressed in a dynamic pattern and is involved in tissue specification/determination, cell proliferation, apoptosis, and cell fate choice. In this report we explore the mechanisms by which eya expression is spatially and temporally governed in the developing eye. We demonstrate that multiple cis-regulatory elements function cooperatively to control eya transcription and that spacing between a pair of enhancer elements is important for maintaining correct gene expression. Lastly, we show that the loss of eya expression in sine oculis (so) mutants is the result of massive cell death and a progressive homeotic transformation of retinal progenitor cells into head epidermis. Activation of a gene requires interactions between enhancer and promoter elements. It has been known for some time that transcription of a gene expressed in a complex pattern or in multiple tissues is regulated by an array of enhancers. Recent studies have also demonstrated that multiple enhancers can regulate a single expression pattern within a single tissue. In this study we asked how the expression pattern of eyes absent (eya) is regulated at the level of the enhancer in the developing retina. We found that several adjacently positioned enhancer elements function cooperatively to control temporal and spatial expression of eya and that the spacing between two of these cis-regulatory elements is important to their function. This study shows the importance of enhancer cooperation and architecture in regulating complex and dynamically changing expression patterns.
Collapse
|
26
|
Valentin-Vega YA, Wang YD, Parker M, Patmore DM, Kanagaraj A, Moore J, Rusch M, Finkelstein D, Ellison DW, Gilbertson RJ, Zhang J, Kim HJ, Taylor JP. Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. Sci Rep 2016; 6:25996. [PMID: 27180681 PMCID: PMC4867597 DOI: 10.1038/srep25996] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/21/2016] [Indexed: 12/26/2022] Open
Abstract
DDX3X is a DEAD-box RNA helicase that has been implicated in multiple aspects of RNA metabolism including translation initiation and the assembly of stress granules (SGs). Recent genomic studies have reported recurrent DDX3X mutations in numerous tumors including medulloblastoma (MB), but the physiological impact of these mutations is poorly understood. Here we show that a consistent feature of MB-associated mutations is SG hyper-assembly and concomitant translation impairment. We used CLIP-seq to obtain a comprehensive assessment of DDX3X binding targets and ribosome profiling for high-resolution assessment of global translation. Surprisingly, mutant DDX3X expression caused broad inhibition of translation that impacted DDX3X targeted and non-targeted mRNAs alike. Assessment of translation efficiency with single-cell resolution revealed that SG hyper-assembly correlated precisely with impaired global translation. SG hyper-assembly and translation impairment driven by mutant DDX3X were rescued by a genetic approach that limited SG assembly and by deletion of the N-terminal low complexity domain within DDX3X. Thus, in addition to a primary defect at the level of translation initiation caused by DDX3X mutation, SG assembly itself contributes to global translation inhibition. This work provides mechanistic insights into the consequences of cancer-related DDX3X mutations, suggesting that globally reduced translation may provide a context-dependent survival advantage that must be considered as a possible contributor to tumorigenesis.
Collapse
Affiliation(s)
- Yasmine A. Valentin-Vega
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Matthew Parker
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Deanna M. Patmore
- Department of Oncology, Cambridge Cancer Centre, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Anderson Kanagaraj
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jennifer Moore
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David W. Ellison
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Richard J. Gilbertson
- Department of Oncology, Cambridge Cancer Centre, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - J. Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
27
|
Lee TV, Kamber Kaya HE, Simin R, Baehrecke EH, Bergmann A. The initiator caspase Dronc is subject of enhanced autophagy upon proteasome impairment in Drosophila. Cell Death Differ 2016; 23:1555-64. [PMID: 27104928 DOI: 10.1038/cdd.2016.40] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 11/09/2022] Open
Abstract
A major function of ubiquitylation is to deliver target proteins to the proteasome for degradation. In the apoptotic pathway in Drosophila, the inhibitor of apoptosis protein 1 (Diap1) regulates the activity of the initiator caspase Dronc (death regulator Nedd2-like caspase; caspase-9 ortholog) by ubiquitylation, supposedly targeting Dronc for degradation by the proteasome. Using a genetic approach, we show that Dronc protein fails to accumulate in epithelial cells with impaired proteasome function suggesting that it is not degraded by the proteasome, contrary to the expectation. Similarly, decreased autophagy, an alternative catabolic pathway, does not result in increased Dronc protein levels. However, combined impairment of the proteasome and autophagy triggers accumulation of Dronc protein levels suggesting that autophagy compensates for the loss of the proteasome with respect to Dronc turnover. Consistently, we show that loss of the proteasome enhances endogenous autophagy in epithelial cells. We propose that enhanced autophagy degrades Dronc if proteasome function is impaired.
Collapse
Affiliation(s)
- T V Lee
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H E Kamber Kaya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - R Simin
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - E H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - A Bergmann
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
28
|
Lo PK, Huang YC, Poulton JS, Leake N, Palmer WH, Vera D, Xie G, Klusza S, Deng WM. RNA helicase Belle/DDX3 regulates transgene expression in Drosophila. Dev Biol 2016; 412:57-70. [PMID: 26900887 DOI: 10.1016/j.ydbio.2016.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 11/28/2022]
Abstract
Belle (Bel), the Drosophila homolog of the yeast DEAD-box RNA helicase DED1 and human DDX3, has been shown to be required for oogenesis and female fertility. Here we report a novel role of Bel in regulating the expression of transgenes. Abrogation of Bel by mutations or RNAi induces silencing of a variety of P-element-derived transgenes. This silencing effect depends on downregulation of their RNA levels. Our genetic studies have revealed that the RNA helicase Spindle-E (Spn-E), a nuage RNA helicase that plays a crucial role in regulating RNA processing and PIWI-interacting RNA (piRNA) biogenesis in germline cells, is required for loss-of-bel-induced transgene silencing. Conversely, Bel abrogation alleviates the nuage-protein mislocalization phenotype in spn-E mutants, suggesting a competitive relationship between these two RNA helicases. Additionally, disruption of the chromatin remodeling factor Mod(mdg4) or the microRNA biogenesis enzyme Dicer-1 (Dcr-1) also alleviates the transgene-silencing phenotypes in bel mutants, suggesting the involvement of chromatin remodeling and microRNA biogenesis in loss-of-bel-induced transgene silencing. Finally we show that genetic inhibition of Bel function leads to de novo generation of piRNAs from the transgene region inserted in the genome, suggesting a potential piRNA-dependent mechanism that may mediate transgene silencing as Bel function is inhibited.
Collapse
Affiliation(s)
- Pang-Kuo Lo
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Yi-Chun Huang
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - John S Poulton
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Nicholas Leake
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - William H Palmer
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Daniel Vera
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Stephen Klusza
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
29
|
Kotov AA, Olenkina OM, Kibanov MV, Olenina LV. RNA helicase Belle (DDX3) is essential for male germline stem cell maintenance and division in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1093-105. [PMID: 26876306 DOI: 10.1016/j.bbamcr.2016.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 01/08/2023]
Abstract
The present study showed that RNA helicase Belle (DDX3) was required intrinsically for mitotic progression and survival of germline stem cells (GSCs) and spermatogonial cells in the Drosophila melanogaster testes. We found that deficiency of Belle in the male germline resulted in a strong germ cell loss phenotype. Early germ cells are lost through cell death, whereas somatic hub and cyst cell populations are maintained. The observed phenotype is related to that of the human Sertoli Cell-Only Syndrome caused by the loss of DBY (DDX3) expression in the human testes and results in a complete lack of germ cells with preservation of somatic Sertoli cells. We found the hallmarks of mitotic G2 delay in early germ cells of the larval testes of bel mutants. Both mitotic cyclins, A and B, are markedly reduced in the gonads of bel mutants. Transcription levels of cycB and cycA decrease significantly in the testes of hypomorph bel mutants. Overexpression of Cyclin B in the germline partially rescues germ cell survival, mitotic progression and fertility in the bel-RNAi knockdown testes. Taken together, these results suggest that a role of Belle in GSC maintenance and regulation of early germ cell divisions is associated with the expression control of mitotic cyclins.
Collapse
Affiliation(s)
- Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Oxana M Olenkina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Mikhail V Kibanov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Ludmila V Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow 123182, Russia.
| |
Collapse
|
30
|
Valzania L, Ono H, Ignesti M, Cavaliere V, Bernardi F, Gamberi C, Lasko P, Gargiulo G. Drosophila 4EHP is essential for the larval-pupal transition and required in the prothoracic gland for ecdysone biosynthesis. Dev Biol 2015; 410:14-23. [PMID: 26721418 DOI: 10.1016/j.ydbio.2015.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 10/25/2022]
Abstract
Maternal expression of the translational regulator 4EHP (eIF4E-Homologous Protein) has an established role in generating protein gradients essential for specifying the Drosophila embryonic pattern. We generated a null mutation of 4EHP, which revealed for the first time that it is essential for viability and for completion of development. In fact, 4EHP null larvae, and larvae ubiquitously expressing RNAi targeting 4EHP, are developmentally delayed, fail to grow and eventually die. In addition, we found that expressing RNAi that targets 4EHP specifically in the prothoracic gland disrupted ecdysone biosynthesis, causing a block of the transition from the larval to pupal stages. This phenotype can be rescued by dietary administration of ecdysone. Consistent with this, 4EHP is highly expressed in the prothoracic gland and it is required for wild type expression levels of steroidogenic enzymes. Taken together, these results uncover a novel essential function for 4EHP in regulating ecdysone biosynthesis.
Collapse
Affiliation(s)
- Luca Valzania
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, Bologna, Italy
| | - Hajime Ono
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Marilena Ignesti
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, Bologna, Italy
| | - Valeria Cavaliere
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, Bologna, Italy
| | - Fabio Bernardi
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, Bologna, Italy
| | - Chiara Gamberi
- Department of Biology, McGill University, Montreal, Quebec, Canada H3G 0B1; Department of Biology, Concordia University, Montreal, Quebec, Canada H4B 1R6.
| | - Paul Lasko
- Department of Biology, McGill University, Montreal, Quebec, Canada H3G 0B1.
| | - Giuseppe Gargiulo
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, Bologna, Italy.
| |
Collapse
|
31
|
Abstract
In eukaryotic organisms, the orthologs of the DEAD-box RNA helicase Ded1p from yeast and DDX3 from human form a well-defined subfamily that is characterized by high sequence conservation in their helicase core and their N- and C- termini. Individual members of this Ded1/DDX3 subfamily perform multiple functions in RNA metabolism in both nucleus and cytoplasm. Ded1/DDX3 subfamily members have also been implicated in cellular signaling pathways and are targeted by diverse viruses. In this review, we discuss the considerable body of work on the biochemistry and biology of these proteins, including the recently discovered link of human DDX3 to tumorigenesis.
Collapse
Affiliation(s)
- Deepak Sharma
- Center for RNA Molecular Biology & Department of Biochemistry, School of Medicine, Case Western Reserve University , Cleveland, OH , USA
| | | |
Collapse
|
32
|
Paz-Gómez D, Villanueva-Chimal E, Navarro RE. The DEAD Box RNA helicase VBH-1 is a new player in the stress response in C. elegans. PLoS One 2014; 9:e97924. [PMID: 24844228 PMCID: PMC4028217 DOI: 10.1371/journal.pone.0097924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/25/2014] [Indexed: 12/29/2022] Open
Abstract
For several years, DEAD box RNA helicase Vasa (DDX4) has been used as a bona fide germline marker in different organisms. C. elegans VBH-1 is a close homolog of the Vasa protein, which plays an important role in gametogenesis, germ cell survival and embryonic development. Here, we show that VBH-1 protects nematodes from heat shock and oxidative stress. Using the germline-defective mutant glp-4(bn2) we found that a potential somatic expression of vbh-1 might be important for stress survival. We also show that the VBH-1 paralog LAF-1 is important for stress survival, although this protein is not redundant with its counterpart. Furthermore, we observed that the mRNAs of the heat shock proteins hsp-1 and sip-1 are downregulated when vbh-1 or laf-1 are silenced. Previously, we reported that in C. elegans, VBH-1 was primarily expressed in P granules of germ cells and in the cytoplasm of all blastomeres. Here we show that during stress, VBH-1 co-localizes with CGH-1 in large aggregates in the gonad core and oocytes; however, VBH-1 aggregates do not overlap with CGH-1 foci in early embryos under the same conditions. These data demonstrate that, in addition to the previously described role for this protein in the germline, VBH-1 plays an important role during the stress response in C. elegans through the potential direct or indirect regulation of stress response mRNAs.
Collapse
Affiliation(s)
- Daniel Paz-Gómez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Emmanuel Villanueva-Chimal
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Rosa E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal, México
- * E-mail:
| |
Collapse
|
33
|
Neuman SD, Ihry RJ, Gruetzmacher KM, Bashirullah A. INO80-dependent regression of ecdysone-induced transcriptional responses regulates developmental timing in Drosophila. Dev Biol 2014; 387:229-39. [PMID: 24468295 DOI: 10.1016/j.ydbio.2014.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 01/11/2014] [Indexed: 11/19/2022]
Abstract
Sequential pulses of the steroid hormone ecdysone regulate the major developmental transitions in Drosophila, and the duration of each developmental stage is determined by the length of time between ecdysone pulses. Ecdysone regulates biological responses by directly initiating target gene transcription. In turn, these transcriptional responses are known to be self-limiting, with mechanisms in place to ensure regression of hormone-dependent transcription. However, the biological significance of these transcriptional repression mechanisms remains unclear. Here we show that the chromatin remodeling protein INO80 facilitates transcriptional repression of ecdysone-regulated genes during prepupal development. In ino80 mutant animals, inefficient repression of transcriptional responses to the late larval ecdysone pulse delays the onset of the subsequent prepupal ecdysone pulse, resulting in a significantly longer prepupal stage. Conversely, increased expression of ino80 is sufficient to shorten the prepupal stage by increasing the rate of transcriptional repression. Furthermore, we demonstrate that enhancing the rate of regression of the mid-prepupal competence factor βFTZ-F1 is sufficient to determine the timing of head eversion and thus the duration of prepupal development. Although ino80 is conserved from yeast to humans, this study represents the first characterization of a bona fide ino80 mutation in any metazoan, raising the possibility that the functions of ino80 in transcriptional repression and developmental timing are evolutionarily conserved.
Collapse
Affiliation(s)
- Sarah D Neuman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA; Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Robert J Ihry
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA; Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kelly M Gruetzmacher
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA; College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA; Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
34
|
Abstract
Steroid hormones trigger a wide variety of biological responses through stage- and tissue-specific activation of target gene expression. The mechanisms that provide specificity to systemically released pulses of steroids, however, remain poorly understood. We previously completed a forward genetic screen for mutations that disrupt the destruction of larval salivary glands during metamorphosis in Drosophila melanogaster, a process triggered by the steroid hormone 20-hydroxyecdysone (ecdysone). Here, we characterize 10 complementation groups mapped to genes from this screen. Most of these mutations disrupt the ecdysone-induced expression of death activators, thereby failing to initiate tissue destruction. However, other responses to ecdysone, even within salivary glands, occur normally in mutant animals. Many of these newly identified regulators of ecdysone signaling, including brwd3, med12, med24, pak, and psg2, represent novel components of the ecdysone-triggered transcriptional hierarchy. These genes function combinatorially to provide specificity to ecdysone pulses, amplifying the hormonal cue in a stage-, tissue-, and target gene-specific manner. Most of the ecdysone response genes identified in this screen encode homologs of mammalian nuclear receptor coregulators, demonstrating an unexpected degree of functional conservation in the mechanisms that regulate steroid signaling between insects and mammals.
Collapse
|
35
|
A steroid-controlled global switch in sensitivity to apoptosis during Drosophila development. Dev Biol 2013; 386:34-41. [PMID: 24333635 DOI: 10.1016/j.ydbio.2013.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/19/2013] [Accepted: 12/04/2013] [Indexed: 11/22/2022]
Abstract
Precise control over activation of the apoptotic machinery is critical for development, tissue homeostasis and disease. In Drosophila, the decision to trigger apoptosis--whether in response to developmental cues or to DNA damage--converges on transcription of inhibitor of apoptosis protein (IAP) antagonists reaper, hid and grim. Here we describe a parallel process that regulates the sensitivity to, rather than the execution of, apoptosis. This process establishes developmental windows that are permissive or restrictive for triggering apoptosis, where the status of cells determines their capacity to die. We characterize one switch in the sensitivity to apoptotic triggers, from restrictive to permissive, that occurs during third-instar larval (L3) development. Early L3 animals are highly resistant to induction of apoptosis by expression of IAP-antagonists, DNA-damaging agents and even knockdown of the IAP diap1. This resistance to apoptosis, however, is lost in wandering L3 animals after acquiring a heightened sensitivity to apoptotic triggers. This switch in sensitivity to death activators is mediated by a change in mechanisms available for activating endogenous caspases, from an apoptosome-independent to an apoptosome-dependent pathway. This switch in apoptotic pathways is regulated in a cell-autonomous manner by the steroid hormone ecdysone, through changes in expression of critical pro-, but not anti-, apoptotic genes. This steroid-controlled switch defines a novel, physiologically-regulated, mechanism for controlling sensitivity to apoptosis and provides new insights into the control of apoptosis during development.
Collapse
|
36
|
Rapid recombination mapping for high-throughput genetic screens in Drosophila. G3-GENES GENOMES GENETICS 2013; 3:2313-9. [PMID: 24170736 PMCID: PMC3852393 DOI: 10.1534/g3.113.008615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutagenesis screens are a staple of classical genetics. Chemical-induced mutations, however, are often difficult and time-consuming to identify. Here, we report that recombination analysis with pairs of dominant visible markers provides a rapid and reliable strategy to map mutations in Drosophila melanogaster. This method requires only two generations and a total of six crosses in vials to estimate the genetic map position of the responsible lesion with high accuracy. This genetic map position can then be reliably used to identify the mutated gene through complementation testing with an average of nine deficiencies and Sanger sequencing. We have used this approach to successfully map a collection of mutations from an ethyl methanesulfonate−based mutagenesis screen on the third chromosome. We propose that this method also may be used in conjunction with whole-genome sequencing, particularly when multiple independent alleles of the mutated locus are not available. By facilitating the rapid identification of mutated genes, our mapping strategy removes a primary obstacle to the widespread use of powerful chemical mutagenesis screens to understand fundamental biological phenomena.
Collapse
|
37
|
Hooper C, Hilliker A. Packing them up and dusting them off: RNA helicases and mRNA storage. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:824-34. [PMID: 23528738 DOI: 10.1016/j.bbagrm.2013.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 12/31/2022]
Abstract
Cytoplasmic mRNA can be translated, translationally repressed, localized or degraded. Regulation of translation is an important step in control of gene expression and the cell can change whether and to what extent an mRNA is translated. If an mRNA is not translating, it will associate with translation repression factors; the mRNA can be stored in these non-translating states. The movement of mRNA into storage and back to translation is dictated by the recognition of the mRNA by trans factors. So, remodeling the factors that bind mRNA is critical for changing the fate of mRNA. RNA helicases, which have the ability to remodel RNA or RNA-protein complexes, are excellent candidates for facilitating such rearrangements. This review will focus on the RNA helicases implicated in translation repression and/or mRNA storage and how their study has illuminated mechanisms of mRNA regulation. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Christopher Hooper
- Department of Neonatology, Vanderbilt Children's Hospital, Nashville, TN, USA
| | | |
Collapse
|