1
|
Monastirioti M, Koltsaki I, Pitsidianaki I, Skafida E, Batsiotos N, Delidakis C. Notch-Dependent Expression of the Drosophila Hey Gene Is Supported by a Pair of Enhancers with Overlapping Activities. Genes (Basel) 2024; 15:1071. [PMID: 39202431 PMCID: PMC11353301 DOI: 10.3390/genes15081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Drosophila Hey is a basic helix-loop-helix-orange (bHLH-O) protein with an important role in the establishment of distinct identities of postmitotic cells. We have previously identified Hey as a transcriptional target and effector of Notch signalling during the asymmetric division of neuronal progenitors, generating neurons of two types, and we have shown that Notch-dependent expression of Hey also marks a subpopulation of the newborn enteroendocrine (EE) cells in the midgut primordium of the embryo. Here, we investigate the transcriptional regulation of Hey in neuronal and intestinal tissues. We isolated two genomic regions upstream of the promoter (HeyUP) and in the second intron (HeyIN2) of the Hey gene, based on the presence of binding motifs for Su(H), the transcription factor that mediates Notch activity. We found that both regions can direct the overlapping expression patterns of reporter transgenes recapitulating endogenous Hey expression. Moreover, we showed that while HeyIN2 represents a Notch-dependent enhancer, HeyUP confers both Notch-dependent and independent transcriptional regulation. We induced mutations that removed the Su(H) binding motifs in either region and then studied the enhancer functionality in the respective Hey mutant lines. Our results provide direct evidence that although both enhancers support Notch-dependent regulation of the Hey gene, their role is redundant, as a Hey loss-of-function lethal phenotype is observed only after deletion of all their Su(H) binding motifs by CRISPR/Cas9.
Collapse
Affiliation(s)
- Maria Monastirioti
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
| | - Ioanna Koltsaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ioanna Pitsidianaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Department of Cell and Developmental Biology, University College London (UCL), London WC1E 6BT, UK
| | - Emilia Skafida
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Foundation Saint Lucia, Rome and School of Medicine and Surgery, University of Milano-Bicocca (UniMiB), 20900 Monza, Italy
| | - Nikolaos Batsiotos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Evotec SE, 22419 Hamburg, Germany
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
2
|
DeHaro-Arbona FJ, Roussos C, Baloul S, Townson J, Gómez Lamarca MJ, Bray S. Dynamic modes of Notch transcription hubs conferring memory and stochastic activation revealed by live imaging the co-activator Mastermind. eLife 2024; 12:RP92083. [PMID: 38727722 PMCID: PMC11087053 DOI: 10.7554/elife.92083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.
Collapse
Affiliation(s)
- F Javier DeHaro-Arbona
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Charalambos Roussos
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Sarah Baloul
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Jonathan Townson
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - María J Gómez Lamarca
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC/Universidad de Sevilla, Departamento de Biologıa CelularSevilleSpain
| | - Sarah Bray
- Department of Physiology Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
3
|
Schneider M, Allman A, Maillard I. Regulation of immune cell development, differentiation and function by stromal Notch ligands. Curr Opin Cell Biol 2023; 85:102256. [PMID: 37806295 PMCID: PMC10873072 DOI: 10.1016/j.ceb.2023.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
In multicellular organisms, cell-to-cell communication is critical for the regulation of tissue organization. Notch signaling relies on direct interactions between Notch receptors on signal-receiving cells and Notch ligands on adjacent cells. Notch evolved to mediate local cellular interactions that are responsive to spatial cues via dosage-sensitive short-lived signals. Immune cells utilize these unique properties of Notch signaling to direct their development, differentiation, and function. In this review, we explore how immune cells interact through Notch receptors with stromal cells in specialized niches of lymphohematopoietic organs that express Notch-activating ligands. We emphasize factors that control these interactions and focus on how Notch signals communicate spatial, quantitative, and temporal information to program the function of signal-receiving cells in the immune system.
Collapse
Affiliation(s)
- Michael Schneider
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anneka Allman
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Yost PP, Al-Nouman A, Curtiss J. The Rap1 small GTPase affects cell fate or survival and morphogenetic patterning during Drosophila melanogaster eye development. Differentiation 2023; 133:12-24. [PMID: 37437447 PMCID: PMC10528170 DOI: 10.1016/j.diff.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
The Drosophila melanogaster eye has been instrumental for determining both how cells communicate with one another to determine cell fate, as well as cell morphogenesis and patterning. Here, we describe the effects of the small GTPase Rap1 on the development of multiple cell types in the D. melanogaster eye. Although Rap1 has previously been linked to RTK-Ras-MAPK signaling in eye development, we demonstrate that manipulation of Rap1 activity is modified by increase or decrease of Delta/Notch signaling during several events of cell fate specification in eye development. In addition, we demonstrate that manipulating Rap1 function either in primary pigment cells or in interommatidial cells affects cone cell contact switching, primary pigment cell enwrapment of the ommatidial cluster, and sorting of secondary and tertiary pigment cells. These data suggest that Rap1 has roles in both ommatidial cell recruitment/survival and in ommatidial morphogenesis in the pupal stage. They lay groundwork for future experiments on the role of Rap1 in these events.
Collapse
Affiliation(s)
- Philip P Yost
- New Mexico State University, 1780 E University Ave, Las Cruces, NM, 88003, USA
| | | | - Jennifer Curtiss
- New Mexico State University, 1780 E University Ave, Las Cruces, NM, 88003, USA.
| |
Collapse
|
5
|
Martin AP, Bradshaw GA, Eisert RJ, Egan ED, Tveriakhina L, Rogers JM, Dates AN, Scanavachi G, Aster JC, Kirchhausen T, Kalocsay M, Blacklow SC. A spatiotemporal Notch interaction map from plasma membrane to nucleus. Sci Signal 2023; 16:eadg6474. [PMID: 37527352 PMCID: PMC10560377 DOI: 10.1126/scisignal.adg6474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023]
Abstract
Notch signaling relies on ligand-induced proteolysis of the transmembrane receptor Notch to liberate a nuclear effector that drives cell fate decisions. Upon ligand binding, sequential cleavage of Notch by the transmembrane protease ADAM10 and the intracellular protease γ-secretase releases the Notch intracellular domain (NICD), which translocates to the nucleus and forms a complex that induces target gene transcription. To map the location and timing of the individual steps required for the proteolysis and movement of Notch from the plasma membrane to the nucleus, we used proximity labeling with quantitative, multiplexed mass spectrometry to monitor the interaction partners of endogenous NOTCH2 after ligand stimulation in the presence of a γ-secretase inhibitor and as a function of time after inhibitor removal. Our studies showed that γ-secretase-mediated cleavage of NOTCH2 occurred in an intracellular compartment and that formation of nuclear complexes and recruitment of chromatin-modifying enzymes occurred within 45 min of inhibitor washout. These findings provide a detailed spatiotemporal map tracking the path of Notch from the plasma membrane to the nucleus and identify signaling events that are potential targets for modulating Notch activity.
Collapse
Affiliation(s)
- Alexandre P. Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gary A. Bradshaw
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Robyn J. Eisert
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emily D. Egan
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lena Tveriakhina
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Julia M. Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew N. Dates
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jon C. Aster
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Marian Kalocsay
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen C. Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Lead contact
| |
Collapse
|
6
|
Xu X, Seymour PA, Sneppen K, Trusina A, Egeskov-Madsen ALR, Jørgensen MC, Jensen MH, Serup P. Jag1-Notch cis-interaction determines cell fate segregation in pancreatic development. Nat Commun 2023; 14:348. [PMID: 36681690 PMCID: PMC9867774 DOI: 10.1038/s41467-023-35963-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
The Notch ligands Jag1 and Dll1 guide differentiation of multipotent pancreatic progenitor cells (MPCs) into unipotent pro-acinar cells (PACs) and bipotent duct/endocrine progenitors (BPs). Ligand-mediated trans-activation of Notch receptors induces oscillating expression of the transcription factor Hes1, while ligand-receptor cis-interaction indirectly represses Hes1 activation. Despite Dll1 and Jag1 both displaying cis- and trans-interactions, the two mutants have different phenotypes for reasons not fully understood. Here, we present a mathematical model that recapitulates the spatiotemporal differentiation of MPCs into PACs and BPs. The model correctly captures cell fate changes in Notch pathway knockout mice and small molecule inhibitor studies, and a requirement for oscillatory Hes1 expression to maintain the multipotent state. Crucially, the model entails cell-autonomous attenuation of Notch signaling by Jag1-mediated cis-inhibition in MPC differentiation. The model sheds light on the underlying mechanisms, suggesting that cis-interaction is crucial for exiting the multipotent state, while trans-interaction is required for adopting the bipotent fate.
Collapse
Affiliation(s)
- Xiaochan Xu
- The Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Philip Allan Seymour
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Kim Sneppen
- The Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Ala Trusina
- The Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Anuska la Rosa Egeskov-Madsen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Mette Christine Jørgensen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Mogens Høgh Jensen
- The Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark.
| | - Palle Serup
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200, Copenhagen N, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
7
|
Lynch TR, Xue M, Czerniak CW, Lee C, Kimble J. Notch-dependent DNA cis-regulatory elements and their dose-dependent control of C. elegans stem cell self-renewal. Development 2022; 149:dev200332. [PMID: 35394007 PMCID: PMC9058496 DOI: 10.1242/dev.200332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
A long-standing biological question is how DNA cis-regulatory elements shape transcriptional patterns during metazoan development. Reporter constructs, cell culture assays and computational modeling have made major contributions to answering this question, but analysis of elements in their natural context is an important complement. Here, we mutate Notch-dependent LAG-1 binding sites (LBSs) in the endogenous Caenorhabditis elegans sygl-1 gene, which encodes a key stem cell regulator, and analyze the consequences on sygl-1 expression (nascent transcripts, mRNA, protein) and stem cell maintenance. Mutation of one LBS in a three-element cluster approximately halved both expression and stem cell pool size, whereas mutation of two LBSs essentially abolished them. Heterozygous LBS mutant clusters provided intermediate values. Our results lead to two major conclusions. First, both LBS number and configuration impact cluster activity: LBSs act additively in trans and synergistically in cis. Second, the SYGL-1 gradient promotes self-renewal above its functional threshold and triggers differentiation below the threshold. Our approach of coupling CRISPR/Cas9 LBS mutations with effects on both molecular and biological readouts establishes a powerful model for in vivo analyses of DNA cis-regulatory elements.
Collapse
Affiliation(s)
- Tina R. Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, Madison, WI 53706, USA
| | - Mingyu Xue
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Cazza W. Czerniak
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - ChangHwan Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, Madison, WI 53706, USA
| |
Collapse
|
8
|
Lee C, Lynch T, Crittenden SL, Kimble J. Image-Based Single-Molecule Analysis of Notch-Dependent Transcription in Its Natural Context. Methods Mol Biol 2022; 2472:131-149. [PMID: 35674897 DOI: 10.1007/978-1-0716-2201-8_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Notch signaling is crucial to animal development and homeostasis. Notch triggers the transcription of its target genes, which produce diverse outcomes depending on context. The high resolution and spatially precise assessment of Notch-dependent transcription is essential for understanding how Notch operates normally in its native context in vivo and how Notch defects lead to pathogenesis. Here we present biological and computational methods to assess Notch-dependent transcriptional activation in stem cells within their niche, focusing on germline stem cells in the nematode Caenorhabditis elegans. Specifically, we describe visualization of single RNAs in fixed gonads using single-molecule RNA fluorescence in situ hybridization (smFISH), live imaging of transcriptional bursting in the intact organism using the MS2 system, and custom-made MATLAB codes, implementing new image processing algorithms to capture the spatiotemporal patterns of Notch-dependent transcriptional activation. These methods allow a powerful analysis of in vivo transcriptional activation and its dynamics in a whole tissue. Our methods can be adapted to essentially any tissue or cell type for any transcript.
Collapse
Affiliation(s)
- ChangHwan Lee
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| | - Tina Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah L Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
9
|
Nagel AC, Müller D, Zimmermann M, Preiss A. The Membrane-Bound Notch Regulator Mnr Supports Notch Cleavage and Signaling Activity in Drosophila melanogaster. Biomolecules 2021; 11:1672. [PMID: 34827670 PMCID: PMC8615698 DOI: 10.3390/biom11111672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
The Notch signaling pathway is pivotal to cellular differentiation. Activation of this pathway involves proteolysis of the Notch receptor and the release of the biologically active Notch intracellular domain, acting as a transcriptional co-activator of Notch target genes. While the regulation of Notch signaling dynamics at the level of ligand-receptor interaction, endocytosis, and transcriptional regulation has been well studied, little is known about factors influencing Notch cleavage. We identified EP555 as a suppressor of the Notch antagonist Hairless (H). EP555 drives expression of CG32521 encoding membrane-bound proteins, which we accordingly rename membrane-bound Notch regulator (mnr). Within the signal-receiving cell, upregulation of Mnr stimulates Notch receptor activation, whereas a knockdown reduces it, without apparent influence on ligand-receptor interaction. We provide evidence that Mnr plays a role in γ-secretase-mediated intramembrane cleavage of the Notch receptor. As revealed by a fly-eye-based reporter system, γ-secretase activity is stimulated by the overexpression of Mnr, and is inhibited by its knockdown. We conclude that Mnr proteins support Notch signaling activity by fostering the cleavage of the Notch receptor. With Mnr, we identified a membrane-bound factor directly augmenting Notch intra-membrane processing, thereby acting as a positive regulator of Notch signaling activity.
Collapse
Affiliation(s)
- Anja C. Nagel
- Department of General Genetics 190g, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (D.M.); (M.Z.); (A.P.)
| | | | | | | |
Collapse
|
10
|
Kuang Y, Pyo A, Eafergan N, Cain B, Gutzwiller LM, Axelrod O, Gagliani EK, Weirauch MT, Kopan R, Kovall RA, Sprinzak D, Gebelein B. Enhancers with cooperative Notch binding sites are more resistant to regulation by the Hairless co-repressor. PLoS Genet 2021; 17:e1009039. [PMID: 34559800 PMCID: PMC8494340 DOI: 10.1371/journal.pgen.1009039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/06/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Notch signaling controls many developmental processes by regulating gene expression. Notch-dependent enhancers recruit activation complexes consisting of the Notch intracellular domain, the Cbf/Su(H)/Lag1 (CSL) transcription factor (TF), and the Mastermind co-factor via two types of DNA sites: monomeric CSL sites and cooperative dimer sites called Su(H) paired sites (SPS). Intriguingly, the CSL TF can also bind co-repressors to negatively regulate transcription via these same sites. Here, we tested how synthetic enhancers with monomeric CSL sites versus dimeric SPSs bind Drosophila Su(H) complexes in vitro and mediate transcriptional outcomes in vivo. Our findings reveal that while the Su(H)/Hairless co-repressor complex similarly binds SPS and CSL sites in an additive manner, the Notch activation complex binds SPSs, but not CSL sites, in a cooperative manner. Moreover, transgenic reporters with SPSs mediate stronger, more consistent transcription and are more resistant to increased Hairless co-repressor expression compared to reporters with the same number of CSL sites. These findings support a model in which SPS containing enhancers preferentially recruit cooperative Notch activation complexes over Hairless repression complexes to ensure consistent target gene activation. Cell signaling provides a basic means of communication during development. Many signaling pathways, including the Notch pathway, convert extracellular signals into changes in gene expression via transcription factors that bind specific DNA sequences. Importantly, the Notch pathway transcription factor can either form activating complexes upon Notch activation to stimulate gene expression or repression complexes with co-repressors to inhibit gene expression. Prior studies showed that the Notch activation complex binds DNA as either an independent complex on monomer binding sites or as two cooperative complexes (dimer) on paired binding sites. In this study, we used synthetic biology to examine how these two types of DNA sites impact the binding of Notch activation versus repression complexes and the output of Notch target gene expression. Our studies reveal that unlike the Notch activation complex, the repression complex does not cooperatively bind dimer sites. Moreover, our findings support the model that the enhanced stability of the Notch activation complex on dimer sites makes target genes with dimer sites less sensitive to the repression complex than target genes with only monomer sites. Thus, our studies reveal how target genes with different binding sites differ in sensitivity to the ratio of Notch activation to repression complexes.
Collapse
Affiliation(s)
- Yi Kuang
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Anna Pyo
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Natanel Eafergan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Brittany Cain
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Lisa M. Gutzwiller
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ofri Axelrod
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Ellen K. Gagliani
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Matthew T. Weirauch
- Divisions of Biomedical Informatics and Developmental Biology, Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
11
|
Frankenreiter L, Gahr BM, Schmid H, Zimmermann M, Deichsel S, Hoffmeister P, Turkiewicz A, Borggrefe T, Oswald F, Nagel AC. Phospho-Site Mutations in Transcription Factor Suppressor of Hairless Impact Notch Signaling Activity During Hematopoiesis in Drosophila. Front Cell Dev Biol 2021; 9:658820. [PMID: 33937259 PMCID: PMC8079769 DOI: 10.3389/fcell.2021.658820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The highly conserved Notch signaling pathway controls a multitude of developmental processes including hematopoiesis. Here, we provide evidence for a novel mechanism of tissue-specific Notch regulation involving phosphorylation of CSL transcription factors within the DNA-binding domain. Earlier we found that a phospho-mimetic mutation of the Drosophila CSL ortholog Suppressor of Hairless [Su(H)] at Ser269 impedes DNA-binding. By genome-engineering, we now introduced phospho-specific Su(H) mutants at the endogenous Su(H) locus, encoding either a phospho-deficient [Su(H) S269A ] or a phospho-mimetic [Su(H) S269D ] isoform. Su(H) S269D mutants were defective of Notch activity in all analyzed tissues, consistent with impaired DNA-binding. In contrast, the phospho-deficient Su(H) S269A mutant did not generally augment Notch activity, but rather specifically in several aspects of blood cell development. Unexpectedly, this process was independent of the corepressor Hairless acting otherwise as a general Notch antagonist in Drosophila. This finding is in agreement with a novel mode of Notch regulation by posttranslational modification of Su(H) in the context of hematopoiesis. Importantly, our studies of the mammalian CSL ortholog (RBPJ/CBF1) emphasize a potential conservation of this regulatory mechanism: phospho-mimetic RBPJ S221D was dysfunctional in both the fly as well as two human cell culture models, whereas phospho-deficient RBPJ S221A rather gained activity during fly hematopoiesis. Thus, dynamic phosphorylation of CSL-proteins within the DNA-binding domain provides a novel means to fine-tune Notch signal transduction in a context-dependent manner.
Collapse
Affiliation(s)
- Lisa Frankenreiter
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Bernd M Gahr
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Hannes Schmid
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Mirjam Zimmermann
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Sebastian Deichsel
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Philipp Hoffmeister
- Department of Internal Medicine 1, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig University of Giessen, Giessen, Germany
| | - Franz Oswald
- Department of Internal Medicine 1, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Anja C Nagel
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
12
|
Arefin B, Parvin F, Bahrampour S, Stadler CB, Thor S. Drosophila Neuroblast Selection Is Gated by Notch, Snail, SoxB, and EMT Gene Interplay. Cell Rep 2020; 29:3636-3651.e3. [PMID: 31825841 DOI: 10.1016/j.celrep.2019.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/20/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
In the developing Drosophila central nervous system (CNS), neural progenitor (neuroblast [NB]) selection is gated by lateral inhibition, controlled by Notch signaling and proneural genes. However, proneural mutants still generate many NBs, indicating the existence of additional proneural genes. Moreover, recent studies reveal involvement of key epithelial-mesenchymal transition (EMT) genes in NB selection, but the regulatory interplay between Notch signaling and the EMT machinery is unclear. We find that SoxNeuro (SoxB family) and worniu (Snail family) are integrated with the Notch pathway, and constitute the missing proneural genes. Notch signaling, the proneural, SoxNeuro, and worniu genes regulate key EMT genes to orchestrate the NB selection process. Hence, we uncover an expanded lateral inhibition network for NB selection and demonstrate its link to key players in the EMT machinery. The evolutionary conservation of the genes involved suggests that the Notch-SoxB-Snail-EMT network may control neural progenitor selection in many other systems.
Collapse
Affiliation(s)
- Badrul Arefin
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Farjana Parvin
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Shahrzad Bahrampour
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Caroline Bivik Stadler
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden; School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
13
|
Boukhatmi H, Martins T, Pillidge Z, Kamenova T, Bray S. Notch Mediates Inter-tissue Communication to Promote Tumorigenesis. Curr Biol 2020; 30:1809-1820.e4. [DOI: 10.1016/j.cub.2020.02.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
|
14
|
Kuang Y, Golan O, Preusse K, Cain B, Christensen CJ, Salomone J, Campbell I, Okwubido-Williams FV, Hass MR, Yuan Z, Eafergan N, Moberg KH, Kovall RA, Kopan R, Sprinzak D, Gebelein B. Enhancer architecture sensitizes cell specific responses to Notch gene dose via a bind and discard mechanism. eLife 2020; 9:53659. [PMID: 32297857 PMCID: PMC7213981 DOI: 10.7554/elife.53659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/15/2020] [Indexed: 11/13/2022] Open
Abstract
Notch pathway haploinsufficiency can cause severe developmental syndromes with highly variable penetrance. Currently, we have a limited mechanistic understanding of phenotype variability due to gene dosage. Here, we unexpectedly found that inserting an enhancer containing pioneer transcription factor sites coupled to Notch dimer sites can induce a subset of Notch haploinsufficiency phenotypes in Drosophila with wild type Notch gene dose. Using Drosophila genetics, we show that this enhancer induces Notch phenotypes in a Cdk8-dependent, transcription-independent manner. We further combined mathematical modeling with quantitative trait and expression analysis to build a model that describes how changes in Notch signal production versus degradation differentially impact cellular outcomes that require long versus short signal duration. Altogether, these findings support a 'bind and discard' mechanism in which enhancers with specific binding sites promote rapid Cdk8-dependent Notch turnover, and thereby reduce Notch-dependent transcription at other loci and sensitize tissues to gene dose based upon signal duration.
Collapse
Affiliation(s)
- Yi Kuang
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, United States
| | - Ohad Golan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Kristina Preusse
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States
| | - Brittany Cain
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, United States
| | - Collin J Christensen
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Joseph Salomone
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, United States.,Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Ian Campbell
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, United States
| | | | - Matthew R Hass
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Nathanel Eafergan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University and Emory University School of Medicine, Atlanta, United States
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
15
|
Viswanathan R, Necakov A, Trylinski M, Harish RK, Krueger D, Esposito E, Schweisguth F, Neveu P, De Renzis S. Optogenetic inhibition of Delta reveals digital Notch signalling output during tissue differentiation. EMBO Rep 2019; 20:e47999. [PMID: 31668010 PMCID: PMC6893285 DOI: 10.15252/embr.201947999] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 01/18/2023] Open
Abstract
Spatio-temporal regulation of signalling pathways plays a key role in generating diverse responses during the development of multicellular organisms. The role of signal dynamics in transferring signalling information in vivo is incompletely understood. Here, we employ genome engineering in Drosophila melanogaster to generate a functional optogenetic allele of the Notch ligand Delta (opto-Delta), which replaces both copies of the endogenous wild-type locus. Using clonal analysis, we show that optogenetic activation blocks Notch activation through cis-inhibition in signal-receiving cells. Signal perturbation in combination with quantitative analysis of a live transcriptional reporter of Notch pathway activity reveals differential tissue- and cell-scale regulatory modes. While at the tissue-level the duration of Notch signalling determines the probability with which a cellular response will occur, in individual cells Notch activation acts through a switch-like mechanism. Thus, time confers regulatory properties to Notch signalling that exhibit integrative digital behaviours during tissue differentiation.
Collapse
Affiliation(s)
- Ranjith Viswanathan
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Aleksandar Necakov
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Department of Biological ScienceBrock UniversitySt. CatharinesONCanada
| | - Mateusz Trylinski
- Institut PasteurUMR3738CNRSParisFrance
- Sorbonne UniversitéParisFrance
| | - Rohit Krishnan Harish
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| | - Daniel Krueger
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Emilia Esposito
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | | | - Pierre Neveu
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Stefano De Renzis
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
16
|
Abstract
Deafness or hearing deficits are debilitating conditions. They are often caused by loss of sensory hair cells or defects in their function. In contrast to mammals, nonmammalian vertebrates robustly regenerate hair cells after injury. Studying the molecular and cellular basis of nonmammalian vertebrate hair cell regeneration provides valuable insights into developing cures for human deafness. In this review, we discuss the current literature on hair cell regeneration in the context of other models for sensory cell regeneration, such as the retina and the olfactory epithelium. This comparison reveals commonalities with, as well as differences between, the different regenerating systems, which begin to define a cellular and molecular blueprint of regeneration. In addition, we propose how new technical advances can address outstanding questions in the field.
Collapse
Affiliation(s)
- Nicolas Denans
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Sungmin Baek
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Tatjana Piotrowski
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| |
Collapse
|
17
|
Flint Brodsly N, Bitman-Lotan E, Boico O, Shafat A, Monastirioti M, Gessler M, Delidakis C, Rincon-Arano H, Orian A. The transcription factor Hey and nuclear lamins specify and maintain cell identity. eLife 2019; 8:44745. [PMID: 31310235 PMCID: PMC6634966 DOI: 10.7554/elife.44745] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The inability of differentiated cells to maintain their identity is a hallmark of age-related diseases. We found that the transcription factor Hey supervises the identity of differentiated enterocytes (ECs) in the adult Drosophila midgut. Lineage tracing established that Hey-deficient ECs are unable to maintain their unique nuclear organization and identity. To supervise cell identity, Hey determines the expression of nuclear lamins, switching from a stem-cell lamin configuration to a differentiated lamin configuration. Moreover, continued Hey expression is required to conserve large-scale nuclear organization. During aging, Hey levels decline, and EC identity and gut homeostasis are impaired, including pathological reprograming and compromised gut integrity. These phenotypes are highly similar to those observed upon acute targeting of Hey or perturbation of lamin expression in ECs in young adults. Indeed, aging phenotypes were suppressed by continued expression of Hey in ECs, suggesting that a Hey-lamin network safeguards nuclear organization and differentiated cell identity.
Collapse
Affiliation(s)
- Naama Flint Brodsly
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eliya Bitman-Lotan
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Olga Boico
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adi Shafat
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maria Monastirioti
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Manfred Gessler
- Biocenter of Developmental Biochemistry, University of Würzburg, Würzburg, Germany
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Hector Rincon-Arano
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Amir Orian
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Badsha MB, Fu AQ. Learning Causal Biological Networks With the Principle of Mendelian Randomization. Front Genet 2019; 10:460. [PMID: 31164902 PMCID: PMC6536645 DOI: 10.3389/fgene.2019.00460] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/30/2019] [Indexed: 01/09/2023] Open
Abstract
Although large amounts of genomic data are available, it remains a challenge to reliably infer causal (i. e., regulatory) relationships among molecular phenotypes (such as gene expression), especially when multiple phenotypes are involved. We extend the interpretation of the Principle of Mendelian randomization (PMR) and present MRPC, a novel machine learning algorithm that incorporates the PMR in the PC algorithm, a classical algorithm for learning causal graphs in computer science. MRPC learns a causal biological network efficiently and robustly from integrating individual-level genotype and molecular phenotype data, in which directed edges indicate causal directions. We demonstrate through simulation that MRPC outperforms several popular general-purpose network inference methods and PMR-based methods. We apply MRPC to distinguish direct and indirect targets among multiple genes associated with expression quantitative trait loci. Our method is implemented in the R package MRPC, available on CRAN (https://cran.r-project.org/web/packages/MRPC/index.html).
Collapse
Affiliation(s)
- Md. Bahadur Badsha
- Department of Statistical Science, Center for Modeling Complex Interactions, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Audrey Qiuyan Fu
- Department of Statistical Science, Center for Modeling Complex Interactions, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| |
Collapse
|
19
|
Mihajlovic Z, Tanasic D, Bajgar A, Perez-Gomez R, Steffal P, Krejci A. Lime is a new protein linking immunity and metabolism in Drosophila. Dev Biol 2019; 452:83-94. [PMID: 31085193 DOI: 10.1016/j.ydbio.2019.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 01/09/2023]
Abstract
The proliferation, differentiation and function of immune cells in vertebrates, as well as in the invertebrates, is regulated by distinct signalling pathways and crosstalk with systemic and cellular metabolism. We have identified the Lime gene (Linking Immunity and Metabolism, CG18446) as one such connecting factor, linking hemocyte development with systemic metabolism in Drosophila. Lime is expressed in larval plasmatocytes and the fat body and regulates immune cell type and number by influencing the size of hemocyte progenitor populations in the lymph gland and in circulation. Lime mutant larvae exhibit low levels of glycogen and trehalose energy reserves and they develop low number of hemocytes. The low number of hemocytes in Lime mutants can be rescued by Lime overexpression in the fat body. It is well known that immune cell metabolism is tightly regulated with the progress of infection and it must be supported by systemic metabolic changes. Here we demonstrate that Lime mutants fails to induce such systemic metabolic changes essential for the larval immune response. Indeed, Lime mutants are not able to sustain high numbers of circulating hemocytes and are compromised in the number of lamellocytes produced during immune system challenge, using a parasitic wasp infection model. We therefore propose the Lime gene as a novel functional link between systemic metabolism and Drosophila immunity.
Collapse
Affiliation(s)
- Zorana Mihajlovic
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| | - Dajana Tanasic
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Adam Bajgar
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| | - Raquel Perez-Gomez
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| | - Pavel Steffal
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Alena Krejci
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| |
Collapse
|
20
|
Pillidge Z, Bray SJ. SWI/SNF chromatin remodeling controls Notch-responsive enhancer accessibility. EMBO Rep 2019; 20:embr.201846944. [PMID: 30914409 DOI: 10.15252/embr.201846944] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022] Open
Abstract
Notch signaling plays a key role in many cell fate decisions during development by directing different gene expression programs via the transcription factor CSL, known as Su(H) in Drosophila Which target genes are responsive to Notch signaling is influenced by the chromatin state of enhancers, yet how this is regulated is not fully known. Detecting a specific increase in the histone variant H3.3 in response to Notch signaling, we tested which chromatin remodelers or histone chaperones are required for the changes in enhancer accessibility to Su(H) binding. We show a crucial role for the Brahma SWI/SNF chromatin remodeling complex, including the actin-related BAP55 subunit, in conferring enhancer accessibility and enabling the transcriptional response to Notch activity. The Notch-responsive regions have high levels of nucleosome turnover which depend on the Brahma complex, increase in magnitude with Notch signaling, and primarily involve histone H3.3. Together these results highlight the importance of SWI/SNF-mediated nucleosome turnover in rendering enhancers responsive to Notch.
Collapse
Affiliation(s)
- Zoe Pillidge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Martin JL, Sanders EN, Moreno-Roman P, Jaramillo Koyama LA, Balachandra S, Du X, O'Brien LE. Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of division, differentiation and loss. eLife 2018; 7:36248. [PMID: 30427308 PMCID: PMC6277200 DOI: 10.7554/elife.36248] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Organ renewal is governed by the dynamics of cell division, differentiation and loss. To study these dynamics in real time, we present a platform for extended live imaging of the adult Drosophila midgut, a premier genetic model for stem-cell-based organs. A window cut into a living animal allows the midgut to be imaged while intact and physiologically functioning. This approach prolongs imaging sessions to 12–16 hr and yields movies that document cell and tissue dynamics at vivid spatiotemporal resolution. By applying a pipeline for movie processing and analysis, we uncover new and intriguing cell behaviors: that mitotic stem cells dynamically re-orient, that daughter cells use slow kinetics of Notch activation to reach a fate-specifying threshold, and that enterocytes extrude via ratcheted constriction of a junctional ring. By enabling real-time study of midgut phenomena that were previously inaccessible, our platform opens a new realm for dynamic understanding of adult organ renewal.
Collapse
Affiliation(s)
- Judy Lisette Martin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Erin Nicole Sanders
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | - Paola Moreno-Roman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Biology, Stanford University, Stanford, United States
| | - Leslie Ann Jaramillo Koyama
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | - Shruthi Balachandra
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - XinXin Du
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
22
|
Bray SJ, Gomez-Lamarca M. Notch after cleavage. Curr Opin Cell Biol 2018; 51:103-109. [DOI: 10.1016/j.ceb.2017.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/13/2017] [Indexed: 01/13/2023]
|
23
|
Von Stetina JR, Frawley LE, Unhavaithaya Y, Orr-Weaver TL. Variant cell cycles regulated by Notch signaling control cell size and ensure a functional blood-brain barrier. Development 2018; 145:145/3/dev157115. [PMID: 29440220 PMCID: PMC5818001 DOI: 10.1242/dev.157115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/09/2018] [Indexed: 12/31/2022]
Abstract
Regulation of cell size is crucial in development. In plants and animals two cell cycle variants are employed to generate large cells by increased ploidy: the endocycle and endomitosis. The rationale behind the choice of which of these cycles is implemented is unknown. We show that in the Drosophila nervous system the subperineurial glia (SPG) are unique in using both the endocycle and endomitosis to grow. In the brain, the majority of SPG initially endocycle, then switch to endomitosis during larval development. The Notch signaling pathway and the String Cdc25 phosphatase are crucial for the endocycle versus endomitosis choice, providing the means experimentally to change cells from one to the other. This revealed fundamental insights into the control of cell size and the properties of endomitotic cells. Endomitotic cells attain a higher ploidy and larger size than endocycling cells, and endomitotic SPG are necessary for the blood-brain barrier. Decreased Notch signaling promotes endomitosis even in the ventral nerve cord SPG that normally are mononucleate, but not in the endocycling salivary gland cells, revealing tissue-specific cell cycle responses. Highlighted Article: In Drosophila brain lobes, Notch and the mitosis-activating phosphatase String regulate the switch of subperineurial glia from endocycle to endomitosis during larval development, with endomitotic cells attaining increased ploidy and size.
Collapse
Affiliation(s)
| | - Laura E Frawley
- Whitehead Institute, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Terry L Orr-Weaver
- Whitehead Institute, Cambridge, MA 02142, USA .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
24
|
Nandagopal N, Santat LA, LeBon L, Sprinzak D, Bronner ME, Elowitz MB. Dynamic Ligand Discrimination in the Notch Signaling Pathway. Cell 2018; 172:869-880.e19. [PMID: 29398116 PMCID: PMC6414217 DOI: 10.1016/j.cell.2018.01.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 08/10/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023]
Abstract
The Notch signaling pathway comprises multiple ligands that are used in distinct biological contexts. In principle, different ligands could activate distinct target programs in signal-receiving cells, but it is unclear how such ligand discrimination could occur. Here, we show that cells use dynamics to discriminate signaling by the ligands Dll1 and Dll4 through the Notch1 receptor. Quantitative single-cell imaging revealed that Dll1 activates Notch1 in discrete, frequency-modulated pulses that specifically upregulate the Notch target gene Hes1. By contrast, Dll4 activates Notch1 in a sustained, amplitude-modulated manner that predominantly upregulates Hey1 and HeyL. Ectopic expression of Dll1 or Dll4 in chick neural crest produced opposite effects on myogenic differentiation, showing that ligand discrimination can occur in vivo. Finally, analysis of chimeric ligands suggests that ligand-receptor clustering underlies dynamic encoding of ligand identity. The ability of the pathway to utilize ligands as distinct communication channels has implications for diverse Notch-dependent processes.
Collapse
Affiliation(s)
- Nagarajan Nandagopal
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leah A Santat
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lauren LeBon
- Calico Life Sciences, 1170 Veterans Boulevard, South San Francisco, CA 94080, USA
| | - David Sprinzak
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Howard Hughes Medical Institute, Division of Biology and Biological Engineering, Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
25
|
Salazar JL, Yamamoto S. Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:141-185. [PMID: 30030826 PMCID: PMC6233323 DOI: 10.1007/978-3-319-89512-3_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.
Collapse
Affiliation(s)
- Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.
- Program in Developmental Biology, BCM, Houston, TX, USA.
- Department of Neuroscience, BCM, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
26
|
Severson E, Arnett KL, Wang H, Zang C, Taing L, Liu H, Pear WS, Shirley Liu X, Blacklow SC, Aster JC. Genome-wide identification and characterization of Notch transcription complex-binding sequence-paired sites in leukemia cells. Sci Signal 2017; 10:10/477/eaag1598. [PMID: 28465412 DOI: 10.1126/scisignal.aag1598] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Notch transcription complexes (NTCs) drive target gene expression by binding to two distinct types of genomic response elements, NTC monomer-binding sites and sequence-paired sites (SPSs) that bind NTC dimers. SPSs are conserved and have been linked to the Notch responsiveness of a few genes. To assess the overall contribution of SPSs to Notch-dependent gene regulation, we determined the DNA sequence requirements for NTC dimerization using a fluorescence resonance energy transfer (FRET) assay and applied insights from these in vitro studies to Notch-"addicted" T cell acute lymphoblastic leukemia (T-ALL) cells. We found that SPSs contributed to the regulation of about a third of direct Notch target genes. Although originally described in promoters, SPSs are present mainly in long-range enhancers, including an enhancer containing a newly described SPS that regulates HES5 expression. Our work provides a general method for identifying SPSs in genome-wide data sets and highlights the widespread role of NTC dimerization in Notch-transformed leukemia cells.
Collapse
Affiliation(s)
- Eric Severson
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kelly L Arnett
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hongfang Wang
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Chongzhi Zang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02114, USA
| | - Len Taing
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02114, USA
| | - Hudan Liu
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Institute of Medicine and Engineering, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Institute of Medicine and Engineering, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02114, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Aster JC, Pear WS, Blacklow SC. The Varied Roles of Notch in Cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:245-275. [PMID: 27959635 DOI: 10.1146/annurev-pathol-052016-100127] [Citation(s) in RCA: 482] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Notch receptors influence cellular behavior by participating in a seemingly simple signaling pathway, but outcomes produced by Notch signaling are remarkably varied depending on signal dose and cell context. Here, after briefly reviewing new insights into physiologic mechanisms of Notch signaling in healthy tissues and defects in Notch signaling that contribute to congenital disorders and viral infection, we discuss the varied roles of Notch in cancer, focusing on cell autonomous activities that may be either oncogenic or tumor suppressive.
Collapse
Affiliation(s)
- Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
28
|
|
29
|
Abstract
During development and homeostasis, cells integrate multiple signals originating either from neighboring cells or systemically. In turn, responding cells can produce signals that act in an autocrine, paracrine, or endocrine manner. Although the nature of the signals and pathways used in cell-cell communication are well characterized, we lack, in most cases, an integrative view of signaling describing the spatial and temporal interactions between pathways (e.g., whether the signals are processed sequentially or concomitantly when two pathways are required for a specific outcome). To address the extent of cross-talk between the major metazoan signaling pathways, we characterized immediate transcriptional responses to either single- or multiple pathway stimulations in homogeneous Drosophila cell lines. Our study, focusing on seven core pathways, epidermal growth factor receptor (EGFR), bone morphogenetic protein (BMP), Jun kinase (JNK), JAK/STAT, Notch, Insulin, and Wnt, revealed that many ligands and receptors are primary targets of signaling pathways, highlighting that transcriptional regulation of genes encoding pathway components is a major level of signaling cross-talk. In addition, we found that ligands and receptors can integrate multiple pathway activities and adjust their transcriptional responses accordingly.
Collapse
|
30
|
Abstract
The highly conserved Notch signalling pathway functions in many different developmental and homeostatic processes, which raises the question of how this pathway can achieve such diverse outcomes. With a direct route from the membrane to the nucleus, the Notch pathway has fewer opportunities for regulation than do many other signalling pathways, yet it generates exquisitely patterned structures, including sensory hair cells and branched arterial networks. More confusingly, its activity promotes tissue growth and cancers in some circumstances but cell death and tumour suppression in others. Many different regulatory mechanisms help to shape the activity of the Notch pathway, generating functional outputs that are appropriate for each context. These mechanisms include the receptor-ligand landscape, the tissue topology, the nuclear environment and the connectivity of the regulatory networks.
Collapse
Affiliation(s)
- Sarah J Bray
- Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
31
|
Bivik C, MacDonald RB, Gunnar E, Mazouni K, Schweisguth F, Thor S. Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling. PLoS Genet 2016; 12:e1005984. [PMID: 27070787 PMCID: PMC4829154 DOI: 10.1371/journal.pgen.1005984] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/17/2016] [Indexed: 11/18/2022] Open
Abstract
The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems.
Collapse
Affiliation(s)
- Caroline Bivik
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Ryan B. MacDonald
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Erika Gunnar
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Khalil Mazouni
- Institut Pasteur, Paris, France
- CNRS, URA2578, Paris, France
| | | | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| |
Collapse
|
32
|
Li H, Li C, Hu J, Fan X. A Resampling Based Clustering Algorithm for Replicated Gene Expression Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:1295-1303. [PMID: 26671802 DOI: 10.1109/tcbb.2015.2403320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In gene expression data analysis, clustering is a fruitful exploratory technique to reveal the underlying molecular mechanism by identifying groups of co-expressed genes. To reduce the noise, usually multiple experimental replicates are performed. An integrative analysis of the full replicate data, instead of reducing the data to the mean profile, carries the promise of yielding more precise and robust clusters. In this paper, we propose a novel resampling based clustering algorithm for genes with replicated expression measurements. Assuming those replicates are exchangeable, we formulate the problem in the bootstrap framework, and aim to infer the consensus clustering based on the bootstrap samples of replicates. In our approach, we adopt the mixed effect model to accommodate the heterogeneous variances and implement a quasi-MCMC algorithm to conduct statistical inference. Experiments demonstrate that by taking advantage of the full replicate data, our algorithm produces more reliable clusters and has robust performance in diverse scenarios, especially when the data is subject to multiple sources of variance.
Collapse
|
33
|
Hass MR, Liow HH, Chen X, Sharma A, Inoue YU, Inoue T, Reeb A, Martens A, Fulbright M, Raju S, Stevens M, Boyle S, Park JS, Weirauch MT, Brent MR, Kopan R. SpDamID: Marking DNA Bound by Protein Complexes Identifies Notch-Dimer Responsive Enhancers. Mol Cell 2015; 59:685-97. [PMID: 26257285 DOI: 10.1016/j.molcel.2015.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/11/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022]
Abstract
We developed Split DamID (SpDamID), a protein complementation version of DamID, to mark genomic DNA bound in vivo by interacting or juxtapositioned transcription factors. Inactive halves of DAM (DNA adenine methyltransferase) were fused to protein pairs to be queried. Either direct interaction between proteins or proximity enabled DAM reconstitution and methylation of adenine in GATC. Inducible SpDamID was used to analyze Notch-mediated transcriptional activation. We demonstrate that Notch complexes label RBP sites broadly across the genome and show that a subset of these complexes that recruit MAML and p300 undergo changes in chromatin accessibility in response to Notch signaling. SpDamID differentiates between monomeric and dimeric binding, thereby allowing for identification of half-site motifs used by Notch dimers. Motif enrichment of Notch enhancers coupled with SpDamID reveals co-targeting of regulatory sequences by Notch and Runx1. SpDamID represents a sensitive and powerful tool that enables dynamic analysis of combinatorial protein-DNA transactions at a genome-wide level.
Collapse
Affiliation(s)
- Matthew R Hass
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Hien-Haw Liow
- Center for Genome Sciences and Systems Biology, Washington University, Saint Louis, MO 63108, USA
| | - Xiaoting Chen
- School of Electronic and Computing Systems, University of Cincinnati, Cincinnati, OH 45221, USA; Center for Autoimmune Genomics and Etiology (CAGE) and Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ankur Sharma
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Ashley Reeb
- Department of Developmental Biology, Washington University, Saint Louis, MO 63110, USA
| | - Andrew Martens
- Department of Developmental Biology, Washington University, Saint Louis, MO 63110, USA
| | - Mary Fulbright
- Department of Developmental Biology, Washington University, Saint Louis, MO 63110, USA
| | - Saravanan Raju
- Department of Developmental Biology, Washington University, Saint Louis, MO 63110, USA
| | - Michael Stevens
- Department of Developmental Biology, Washington University, Saint Louis, MO 63110, USA
| | - Scott Boyle
- Department of Developmental Biology, Washington University, Saint Louis, MO 63110, USA
| | - Joo-Seop Park
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Pediatric Urology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew T Weirauch
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Autoimmune Genomics and Etiology (CAGE) and Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael R Brent
- Center for Genome Sciences and Systems Biology, Washington University, Saint Louis, MO 63108, USA
| | - Raphael Kopan
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
34
|
Farshbaf M, Lindberg MJ, Truong A, Bevens Z, Chambers E, Pournara A, Wallberg AE, White JB. Mastermind-Like 1 Is Ubiquitinated: Functional Consequences for Notch Signaling. PLoS One 2015. [PMID: 26225565 PMCID: PMC4520489 DOI: 10.1371/journal.pone.0134013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Early studies demonstrated the involvement of ubiquitination of the Notch intracellular domain for rapid turnover of the transcriptional complex at Notch target genes. It was shown that this ubiquitination was promoted by the co-activator Mastermind like 1 (MAML1). MAML1 also contains numerous lysine residues that may also be ubiquitinated and necessary for protein regulation. In this study, we show that over-expressed MAML1 is ubiquitinated and identify eight conserved lysine residues which are required for ubiquitination. We also show that p300 stimulates ubiquitination and that Notch inhibits ubiquitination. Furthermore, we show that a mutant MAML1 that has decreased ubiquitination shows increased output from a HES1 reporter gene assay. Therefore, we speculate that ubiquitination of MAML1 might be a mechanism to maintain low levels of the protein until needed for transcriptional activation. In summary, this study identifies that MAML1 is ubiquitinated in the absence of Notch signaling to maintain low levels of MAML1 in the cell. Our data supports the notion that a precise and tight regulation of the Notch pathway is required for this signaling pathway.
Collapse
Affiliation(s)
- Mozhgan Farshbaf
- From the Department of Biological Sciences, San José State University, San José, California, United States of America
| | - Mikael J. Lindberg
- From the Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anh Truong
- From the Department of Biological Sciences, San José State University, San José, California, United States of America
| | - Zachery Bevens
- From the Department of Biological Sciences, San José State University, San José, California, United States of America
| | - Elaina Chambers
- From the Department of Biological Sciences, San José State University, San José, California, United States of America
| | - Angeliki Pournara
- From the Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annika E. Wallberg
- From the Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (BW); (AW)
| | - J. Brandon White
- From the Department of Biological Sciences, San José State University, San José, California, United States of America
| |
Collapse
|
35
|
Skalska L, Stojnic R, Li J, Fischer B, Cerda-Moya G, Sakai H, Tajbakhsh S, Russell S, Adryan B, Bray SJ. Chromatin signatures at Notch-regulated enhancers reveal large-scale changes in H3K56ac upon activation. EMBO J 2015; 34:1889-904. [PMID: 26069324 DOI: 10.15252/embj.201489923] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 05/13/2015] [Indexed: 12/23/2022] Open
Abstract
The conserved Notch pathway functions in diverse developmental and disease-related processes, requiring mechanisms to ensure appropriate target selection and gene activation in each context. To investigate the influence of chromatin organisation and dynamics on the response to Notch signalling, we partitioned Drosophila chromatin using histone modifications and established the preferred chromatin conditions for binding of Su(H), the Notch pathway transcription factor. By manipulating activity of a co-operating factor, Lozenge/Runx, we showed that it can help facilitate these conditions. While many histone modifications were unchanged by Su(H) binding or Notch activation, we detected rapid changes in acetylation of H3K56 at Notch-regulated enhancers. This modification extended over large regions, required the histone acetyl-transferase CBP and was independent of transcription. Such rapid changes in H3K56 acetylation appear to be a conserved indicator of enhancer activation as they also occurred at the mammalian Notch-regulated Hey1 gene and at Drosophila ecdysone-regulated genes. This intriguing example of a core histone modification increasing over short timescales may therefore underpin changes in chromatin accessibility needed to promote transcription following signalling activation.
Collapse
Affiliation(s)
- Lenka Skalska
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Robert Stojnic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Jinghua Li
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bettina Fischer
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK Department of Genetics, University of Cambridge, Cambridge, UK
| | - Gustavo Cerda-Moya
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hiroshi Sakai
- Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Steven Russell
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK Department of Genetics, University of Cambridge, Cambridge, UK
| | - Boris Adryan
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK Department of Genetics, University of Cambridge, Cambridge, UK
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Bessonov K, Gusareva ES, Van Steen K. A cautionary note on the impact of protocol changes for genome-wide association SNP × SNP interaction studies: an example on ankylosing spondylitis. Hum Genet 2015; 134:761-73. [DOI: 10.1007/s00439-015-1560-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/26/2015] [Indexed: 12/11/2022]
|
37
|
Cell death in development: Signaling pathways and core mechanisms. Semin Cell Dev Biol 2015; 39:12-9. [PMID: 25668151 DOI: 10.1016/j.semcdb.2015.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/22/2015] [Accepted: 02/02/2015] [Indexed: 11/20/2022]
Abstract
Programmed cell death eliminates unneeded and dangerous cells in a timely and effective manner during development. In this review, we examine the role cell death plays during development in worms, flies and mammals. We discuss signaling pathways that regulate developmental cell death, and describe how they communicate with the core cell death pathways. In most organisms, the majority of developmental cell death is seen in the nervous system. Therefore we focus on what is known about the regulation of developmental cell death in this tissue. Understanding how the cell death is regulated during development may provide insight into how this process can be manipulated in the treatment of disease.
Collapse
|
38
|
Abstract
Gene expression is often controlled by transcriptional repressors during development. Many transcription factors lack intrinsic repressive activity but recruit co-factors that inhibit productive transcription. Here we discuss new insights and models for repression mediated by the Groucho/Transducin-Like Enhancer of split (Gro/TLE) family of co-repressor proteins.
Collapse
Key Words
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeat
- ChIP-seq, chromatin immunoprecipitation followed by high throughput sequencing, qPCR, quantitative PCR
- Drosophila
- Drosophila, Drosophila melanogaster, Gro, Groucho
- E(spl), enhancer of split
- GAF, GAGA Factor; NELF, Negative Elongation Factor
- Gro/TLE, Groucho/Transducin-like enhancer of split
- Groucho/TLE
- P-TEFb, Positive Elongation Factor b
- RNA polymerase pausing
- RNAP II, RNA polymerase II
- TALENs, Transcription Activator-Like Effector Nucleases
- TSS, transcription start site
- bHLH, basic helix-loop-helix
- kb, kilobase
- repressor
- transcription factor
- transcriptional repression
Collapse
Affiliation(s)
- Aamna K Kaul
- a Department of Genetics, Evolution and Environment ; University College London ; London , United Kingdom
| | | | | |
Collapse
|
39
|
Kaul A, Schuster E, Jennings BH. The Groucho co-repressor is primarily recruited to local target sites in active chromatin to attenuate transcription. PLoS Genet 2014; 10:e1004595. [PMID: 25165826 PMCID: PMC4148212 DOI: 10.1371/journal.pgen.1004595] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/03/2014] [Indexed: 12/25/2022] Open
Abstract
Gene expression is regulated by the complex interaction between transcriptional activators and repressors, which function in part by recruiting histone-modifying enzymes to control accessibility of DNA to RNA polymerase. The evolutionarily conserved family of Groucho/Transducin-Like Enhancer of split (Gro/TLE) proteins act as co-repressors for numerous transcription factors. Gro/TLE proteins act in several key pathways during development (including Notch and Wnt signaling), and are implicated in the pathogenesis of several human cancers. Gro/TLE proteins form oligomers and it has been proposed that their ability to exert long-range repression on target genes involves oligomerization over broad regions of chromatin. However, analysis of an endogenous gro mutation in Drosophila revealed that oligomerization of Gro is not always obligatory for repression in vivo. We have used chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) to profile Gro recruitment in two Drosophila cell lines. We find that Gro predominantly binds at discrete peaks (<1 kilobase). We also demonstrate that blocking Gro oligomerization does not reduce peak width as would be expected if Gro oligomerization induced spreading along the chromatin from the site of recruitment. Gro recruitment is enriched in “active” chromatin containing developmentally regulated genes. However, Gro binding is associated with local regions containing hypoacetylated histones H3 and H4, which is indicative of chromatin that is not fully open for efficient transcription. We also find that peaks of Gro binding frequently overlap the transcription start sites of expressed genes that exhibit strong RNA polymerase pausing and that depletion of Gro leads to release of polymerase pausing and increased transcription at a bona fide target gene. Our results demonstrate that Gro is recruited to local sites by transcription factors to attenuate rather than silence gene expression by promoting histone deacetylation and polymerase pausing. Repression by transcription factors plays a central role in gene regulation. The Groucho/Transducin-Like Enhancer of split (Gro/TLE) family of co-repressors interacts with many different transcription factors and has many essential roles during animal development. Groucho/TLE proteins form oligomers that are necessary for target gene repression in some contexts. We have profiled the genome-wide recruitment of the founding member of this family, Groucho (from Drosophila) to gain insight into how and where it binds with respect to target genes and to identify factors associated with its binding. We find that Groucho binds in discrete peaks, frequently at transcription start sites, and that blocking Groucho from forming oligomers does not significantly change the pattern of Groucho recruitment. Although Groucho acts as a repressor, Groucho binding is enriched in chromatin that is permissive for transcription, and we find that it acts to attenuate rather than completely silence target gene expression. Thus, Groucho does not act as an “on/off” switch on target gene expression, but rather as a “mute” button.
Collapse
Affiliation(s)
- Aamna Kaul
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Eugene Schuster
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Barbara H. Jennings
- UCL Cancer Institute, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Housden BE, Perrimon N. Spatial and temporal organization of signaling pathways. Trends Biochem Sci 2014; 39:457-64. [PMID: 25155749 DOI: 10.1016/j.tibs.2014.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/14/2022]
Abstract
The development and maintenance of the many different cell types in metazoan organisms requires robust and diverse intercellular communication mechanisms. Relatively few such signaling pathways have been identified, leading to the question of how such a broad diversity of output is generated from relatively simple signals. Recent studies have revealed complex mechanisms integrating temporal and spatial information to generate diversity in signaling pathway output. We review some general principles of signaling pathways, focusing on transcriptional outputs in Drosophila. We consider the role of spatial and temporal aspects of different transduction pathways and then discuss how recently developed tools and approaches are helping to dissect the complex mechanisms linking pathway stimulation to output.
Collapse
Affiliation(s)
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, Li N, Szpankowski L, Fowler B, Chen P, Ramalingam N, Sun G, Thu M, Norris M, Lebofsky R, Toppani D, Kemp DW, Wong M, Clerkson B, Jones BN, Wu S, Knutsson L, Alvarado B, Wang J, Weaver LS, May AP, Jones RC, Unger MA, Kriegstein AR, West JAA. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 2014; 32:1053-8. [PMID: 25086649 PMCID: PMC4191988 DOI: 10.1038/nbt.2967] [Citation(s) in RCA: 614] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/25/2014] [Indexed: 01/17/2023]
Abstract
Large-scale surveys of single-cell gene expression have the potential to reveal rare cell populations and lineage relationships, but require efficient methods for cell capture and mRNA sequencing1–4. Although cellular barcoding strategies allow parallel sequencing of single cells at ultra-low depths5, the limitations of shallow sequencing have not been directly investigated. By capturing 301 single cells from 11 populations using microfluidics and analyzing single-cell transcriptomes across downsampled sequencing depths, we demonstrate that shallow single-cell mRNA sequencing (~50,000 reads per cell) is sufficient for unbiased cell-type classification and biomarker identification. In developing cortex we identify diverse cell types including multiple progenitor and neuronal subtypes, and we identify EGR1 and FOS as previously unreported candidate targets of Notch signaling in human but not mouse radial glia. Our strategy establishes an efficient method for unbiased analysis and comparison of cell populations from heterogeneous tissue by microfluidic single-cell capture and low-coverage sequencing of many cells.
Collapse
Affiliation(s)
- Alex A Pollen
- 1] Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA. [2] Department of Neurology, University of California, San Francisco, San Francisco, California, USA. [3]
| | - Tomasz J Nowakowski
- 1] Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA. [2] Department of Neurology, University of California, San Francisco, San Francisco, California, USA. [3]
| | - Joe Shuga
- 1] Fluidigm Corporation, South San Francisco, California, USA. [2]
| | - Xiaohui Wang
- 1] Fluidigm Corporation, South San Francisco, California, USA. [2]
| | - Anne A Leyrat
- Fluidigm Corporation, South San Francisco, California, USA
| | - Jan H Lui
- 1] Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA. [2] Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Nianzhen Li
- Fluidigm Corporation, South San Francisco, California, USA
| | | | - Brian Fowler
- Fluidigm Corporation, South San Francisco, California, USA
| | - Peilin Chen
- Fluidigm Corporation, South San Francisco, California, USA
| | | | - Gang Sun
- Fluidigm Corporation, South San Francisco, California, USA
| | - Myo Thu
- Fluidigm Corporation, South San Francisco, California, USA
| | - Michael Norris
- Fluidigm Corporation, South San Francisco, California, USA
| | | | | | - Darnell W Kemp
- Fluidigm Corporation, South San Francisco, California, USA
| | - Michael Wong
- Fluidigm Corporation, South San Francisco, California, USA
| | - Barry Clerkson
- Fluidigm Corporation, South San Francisco, California, USA
| | | | - Shiquan Wu
- Fluidigm Corporation, South San Francisco, California, USA
| | | | | | - Jing Wang
- Fluidigm Corporation, South San Francisco, California, USA
| | | | - Andrew P May
- Fluidigm Corporation, South San Francisco, California, USA
| | - Robert C Jones
- Fluidigm Corporation, South San Francisco, California, USA
| | - Marc A Unger
- Fluidigm Corporation, South San Francisco, California, USA
| | - Arnold R Kriegstein
- 1] Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA. [2] Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Jay A A West
- Fluidigm Corporation, South San Francisco, California, USA
| |
Collapse
|
42
|
Doupé DP, Perrimon N. Visualizing and manipulating temporal signaling dynamics with fluorescence-based tools. Sci Signal 2014; 7:re1. [PMID: 24692594 PMCID: PMC4319366 DOI: 10.1126/scisignal.2005077] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The use of genome-wide proteomic and RNA interference approaches has moved our understanding of signal transduction from linear pathways to highly integrated networks centered on core nodes. However, probing the dynamics of flow of information through such networks remains technically challenging. In particular, how the temporal dynamics of an individual pathway can elicit distinct outcomes in a single cell type and how multiple pathways may interact sequentially or synchronously to influence cell fate remain open questions in many contexts. The development of fluorescence-based reporters and optogenetic regulators of pathway activity enables the analysis of signaling in living cells and organisms with unprecedented spatiotemporal resolution and holds the promise of addressing these key questions. We present a brief overview of the evidence for the importance of temporal dynamics in cellular regulation, introduce these fluorescence-based tools, and highlight specific studies that leveraged these tools to probe the dynamics of information flow through signaling networks. In particular, we highlight two studies in Caenorhabditis elegans sensory neurons and cultured mammalian cells that demonstrate the importance of signal dynamics in determining cellular responses.
Collapse
Affiliation(s)
- David P Doupé
- 1Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
43
|
|
44
|
Tremblay I, Paré E, Arsenault D, Douziech M, Boucher MJ. The MEK/ERK pathway promotes NOTCH signalling in pancreatic cancer cells. PLoS One 2013; 8:e85502. [PMID: 24392017 PMCID: PMC3877363 DOI: 10.1371/journal.pone.0085502] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/27/2013] [Indexed: 12/28/2022] Open
Abstract
Activation of the NOTCH receptors relies on their intracellular proteolysis by the gamma-secretase complex. This cleavage liberates the NOTCH intracellular domain (NIC) thereby allowing the translocation of NIC towards the nucleus to assemble into a transcriptional platform. Little information is available regarding the regulatory steps operating on NIC following its release from the transmembrane receptor up to its association with transcriptional partners. Interfering with these regulatory steps might potentially influences the nuclear outcome of NOTCH signalling. Herein, we exploited a reliable model to study the molecular events occurring subsequent to NOTCH1 cleavage. In pancreatic cancer cells, pulse of NOTCH1 activation led to increased expression of NOTCH target genes namely HES1 and c-MYC. We uncovered that, upon its release, the NOTCH1 intracellular domain, NIC1, undergoes a series of post-translational modifications that include phosphorylation. Most interestingly, we found that activation of the MEK/ERK pathway promotes HES1 expression. Inhibition of the gamma-secretase complex prevented the MEK/ERK-induced HES1 expression suggesting a NOTCH-dependent mechanism. Finally, higher levels of NIC1 were found associated with its transcriptional partners [CBF1, Su(H) and LAG-1] (CSL) and MASTERMIND-LIKE 1 (MAML1) upon MEK/ERK activation providing a potential mechanism whereby the MEK/ERK pathway promotes expression of NOTCH target genes. For the first time, our data exposed a signalling pathway, namely the MEK/ERK pathway that positively impacts on NOTCH nuclear outcome.
Collapse
Affiliation(s)
- Isabelle Tremblay
- Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Emanuel Paré
- Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dominique Arsenault
- Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mélanie Douziech
- Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Josée Boucher
- Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
45
|
Inducible defenses stay up late: temporal patterns of immune gene expression in Tenebrio molitor. G3-GENES GENOMES GENETICS 2013; 4:947-55. [PMID: 24318927 PMCID: PMC4065263 DOI: 10.1534/g3.113.008516] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo.
Collapse
|
46
|
Bouissac J, Garwood J, Girlanda-Jungès C, Luu B, Dollé P, Mohier E, Paschaki M. tCFA15, a trimethyl cyclohexenonic long-chain fatty alcohol, affects neural stem fate and differentiation by modulating Notch1 activity. Eur J Pharmacol 2013; 718:383-92. [PMID: 23978568 DOI: 10.1016/j.ejphar.2013.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022]
Abstract
We have investigated the effects of tCFA15, a non-peptidic compound, on the differentiation of neural stem cell-derived neurospheres, and have found that tCFA15 promotes their differentiation into neurons and reduces their differentiation into astrocytes, in a dose-dependent manner. This response is reminiscent of that resulting from the loss-of-function of Notch signaling after inactivation of the Delta-like 1 (Dll1) gene. Further analysis of the expression of genes from the Notch pathway by reverse transcriptase-PCR revealed that tCFA15 treatment results in a consistent decrease in the level of Notch1 mRNA. We have confirmed this result in other cell lines and propose that it reflects a general effect of the tCFA15 molecule. We discuss the implications of this finding with respect to regulation of Notch activity in neural stem cells, and the possible use of tCFA15 as a therapeutic tool for various pathologies that result from impairment of Notch signaling.
Collapse
Affiliation(s)
- Julien Bouissac
- CNRS, UPR 3212, INCI, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Babaoğlan AB, Housden BE, Furriols M, Bray SJ. Deadpan contributes to the robustness of the notch response. PLoS One 2013; 8:e75632. [PMID: 24086596 PMCID: PMC3782438 DOI: 10.1371/journal.pone.0075632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/19/2013] [Indexed: 01/21/2023] Open
Abstract
Notch signaling regulates many fundamental events including lateral inhibition and boundary formation to generate very reproducible patterns in developing tissues. Its targets include genes of the bHLH hairy and Enhancer of split [E(spl)] family, which contribute to many of these developmental decisions. One member of this family in Drosophila, deadpan (dpn), was originally found to have functions independent of Notch in promoting neural development. Employing genome-wide chromatin-immunoprecipitation we have identified several Notch responsive enhancers in dpn, demonstrating its direct regulation by Notch in a range of contexts including the Drosophila wing and eye. dpn expression largely overlaps that of several E(spl) genes and the combined knock-down leads to more severe phenotypes than either alone. In addition, Dpn contributes to the establishment of Cut expression at the wing dorsal-ventral (D/V) boundary; in its absence Cut expression is delayed. Furthermore, over-expression of Dpn inhibits expression from E(spl) gene enhancers, but not vice versa, suggesting that dpn contributes to a feed-back mechanism that limits E(spl) gene expression following Notch activation. Thus the combined actions of dpn and E(spl) appear to provide a mechanism that confers an initial rapid output from Notch activity which becomes self-limited via feedback between the targets.
Collapse
Affiliation(s)
- A. Burcu Babaoğlan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ben E. Housden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Marc Furriols
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Sarah J. Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Rasmussen JP, Feldman JL, Reddy SS, Priess JR. Cell interactions and patterned intercalations shape and link epithelial tubes in C. elegans. PLoS Genet 2013; 9:e1003772. [PMID: 24039608 PMCID: PMC3764189 DOI: 10.1371/journal.pgen.1003772] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/19/2013] [Indexed: 01/15/2023] Open
Abstract
Many animal organs are composed largely or entirely of polarized epithelial tubes, and the formation of complex organ systems, such as the digestive or vascular systems, requires that separate tubes link with a common polarity. The Caenorhabditis elegans digestive tract consists primarily of three interconnected tubes—the pharynx, valve, and intestine—and provides a simple model for understanding the cellular and molecular mechanisms used to form and connect epithelial tubes. Here, we use live imaging and 3D reconstructions of developing cells to examine tube formation. The three tubes develop from a pharynx/valve primordium and a separate intestine primordium. Cells in the pharynx/valve primordium polarize and become wedge-shaped, transforming the primordium into a cylindrical cyst centered on the future lumenal axis. For continuity of the digestive tract, valve cells must have the same, radial axis of apicobasal polarity as adjacent intestinal cells. We show that intestinal cells contribute to valve cell polarity by restricting the distribution of a polarizing cue, laminin. After developing apicobasal polarity, many pharyngeal and valve cells appear to explore their neighborhoods through lateral, actin-rich lamellipodia. For a subset of cells, these lamellipodia precede more extensive intercalations that create the valve. Formation of the valve tube begins when two valve cells become embedded at the left-right boundary of the intestinal primordium. Other valve cells organize symmetrically around these two cells, and wrap partially or completely around the orthogonal, lumenal axis, thus extruding a small valve tube from the larger cyst. We show that the transcription factors DIE-1 and EGL-43/EVI1 regulate cell intercalations and cell fates during valve formation, and that the Notch pathway is required to establish the proper boundary between the pharyngeal and valve tubes. Tubes composed of epithelial cells are universal building blocks of animal organs, and complex organs typically contain multiple interconnected tubes, such as in the digestive tract or vascular system. The nematode Caenorhabditis elegans provides a simple genetic system to study how tubes form and link. Understanding these events provides insight into basic biology, and can inform engineering strategies for building or repairing cellular tubes. A small tube called the valve connects the two major tubular organs of the nematode digestive tract, the pharynx and intestine. The pharynx and valve form from the same primordium, while the intestine forms from a separate primordium. Cells in each primordium polarize around a central axis, and valve formation involves connecting these axes. Using live imaging, we show that valve cells initially resemble other pharyngeal cells, but undergo additional and extensive intercalations around the lumenal axis, effectively squeezing a small tube from the larger primordium. Valve cells develop the same polarity axis as intestinal cells, and we show that this depends on interactions with the intestinal cells. We show that valve formation involves dynamic changes in the localization of adhesive proteins, and identify transcription factors that play a role in valve cell specification and intercalation.
Collapse
Affiliation(s)
- Jeffrey P. Rasmussen
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Jessica L. Feldman
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Sowmya Somashekar Reddy
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
49
|
Fu AQ, Russell S, Bray SJ, Tavaré S. Bayesian clustering of replicated time-course gene expression data with weak signals. Ann Appl Stat 2013. [DOI: 10.1214/13-aoas650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|