1
|
Abstract
One of the most fundamental questions in developmental biology is how one fertilized cell can give rise to a fully mature organism and how gene regulation governs this process. Precise spatiotemporal gene expression is required for development and is believed to be achieved through a complex interplay of sequence-specific information, epigenetic modifications, trans-acting factors, and chromatin folding. Here we review the role of chromatin folding during development, the mechanisms governing 3D genome organization, and how it is established in the embryo. Furthermore, we discuss recent advances and debated questions regarding the contribution of the 3D genome to gene regulation during organogenesis. Finally, we describe the mechanisms that can reshape the 3D genome, including disease-causing structural variations and the emerging view that transposable elements contribute to chromatin organization.
Collapse
Affiliation(s)
- Juliane Glaser
- RG Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Stefan Mundlos
- RG Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
- Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, 10178 Berlin, Germany
| |
Collapse
|
2
|
Pitsava G, Feldkamp ML, Pankratz N, Lane J, Kay DM, Conway KM, Hobbs C, Shaw GM, Reefhuis J, Jenkins MM, Almli LM, Moore C, Werler M, Browne ML, Cunniff C, Olshan AF, Pangilinan F, Brody LC, Sicko RJ, Finnell RH, Bamshad MJ, McGoldrick D, Nickerson DA, Mullikin JC, Romitti PA, Mills JL. Exome sequencing identifies variants in infants with sacral agenesis. Birth Defects Res 2022; 114:215-227. [PMID: 35274497 PMCID: PMC9338687 DOI: 10.1002/bdr2.1987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/22/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Sacral agenesis (SA) consists of partial or complete absence of the caudal end of the spine and often presents with additional birth defects. Several studies have examined gene variants for syndromic forms of SA, but only one has examined exomes of children with non-syndromic SA. METHODS Using buccal cell specimens from families of children with non-syndromic SA, exomes of 28 child-parent trios (eight with and 20 without a maternal diagnosis of pregestational diabetes) and two child-father duos (neither with diagnosis of maternal pregestational diabetes) were exome sequenced. RESULTS Three children had heterozygous missense variants in ID1 (Inhibitor of DNA Binding 1), with CADD scores >20 (top 1% of deleterious variants in the genome); two children inherited the variant from their fathers and one from the child's mother. Rare missense variants were also detected in PDZD2 (PDZ Domain Containing 2; N = 1) and SPTBN5 (Spectrin Beta, Non-erythrocytic 5; N = 2), two genes previously suggested to be associated with SA etiology. Examination of variants with autosomal recessive and X-linked recessive inheritance identified five and two missense variants, respectively. Compound heterozygous variants were identified in several genes. In addition, 12 de novo variants were identified, all in different genes in different children. CONCLUSIONS To our knowledge, this is the first study reporting a possible association between ID1 and non-syndromic SA. Although maternal pregestational diabetes has been strongly associated with SA, the missense variants in ID1 identified in two of three children were paternally inherited. These findings add to the knowledge of gene variants associated with non-syndromic SA and provide data for future studies.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Marcia L. Feldkamp
- Division of Medical Genetics, Department of Pediatrics, 295 Chipeta Way, Suite 2S010, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Denise M. Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kristin M. Conway
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Charlotte Hobbs
- Rady Children’s Institute for Genomic Medicine, San Diego, California, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mary M. Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lynn M. Almli
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cynthia Moore
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martha Werler
- Slone Epidemiology Center at Boston University, Boston, MA
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA
| | - Marilyn L. Browne
- New York State Department of Health, Birth Defects Registry, Albany, New York, USA
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, New York, USA
| | - Chris Cunniff
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Faith Pangilinan
- Gene and Environment Interaction Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Lawrence C. Brody
- Gene and Environment Interaction Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Robert J. Sicko
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Richard H. Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Daniel McGoldrick
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - James C. Mullikin
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - James L. Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
3
|
Wolf G, de Iaco A, Sun MA, Bruno M, Tinkham M, Hoang D, Mitra A, Ralls S, Trono D, Macfarlan TS. KRAB-zinc finger protein gene expansion in response to active retrotransposons in the murine lineage. eLife 2020; 9:56337. [PMID: 32479262 PMCID: PMC7289599 DOI: 10.7554/elife.56337] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/31/2020] [Indexed: 11/13/2022] Open
Abstract
The Krüppel-associated box zinc finger protein (KRAB-ZFP) family diversified in mammals. The majority of human KRAB-ZFPs bind transposable elements (TEs), however, since most TEs are inactive in humans it is unclear whether KRAB-ZFPs emerged to suppress TEs. We demonstrate that many recently emerged murine KRAB-ZFPs also bind to TEs, including the active ETn, IAP, and L1 families. Using a CRISPR/Cas9-based engineering approach, we genetically deleted five large clusters of KRAB-ZFPs and demonstrate that target TEs are de-repressed, unleashing TE-encoded enhancers. Homozygous knockout mice lacking one of two KRAB-ZFP gene clusters on chromosome 2 and chromosome 4 were nonetheless viable. In pedigrees of chromosome 4 cluster KRAB-ZFP mutants, we identified numerous novel ETn insertions with a modest increase in mutants. Our data strongly support the current model that recent waves of retrotransposon activity drove the expansion of KRAB-ZFP genes in mice and that many KRAB-ZFPs play a redundant role restricting TE activity.
Collapse
Affiliation(s)
- Gernot Wolf
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, United States
| | - Alberto de Iaco
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ming-An Sun
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, United States
| | - Melania Bruno
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, United States
| | - Matthew Tinkham
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, United States
| | - Don Hoang
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, United States
| | - Apratim Mitra
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, United States
| | - Sherry Ralls
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, United States
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, United States
| |
Collapse
|
4
|
van de Putte R, Dworschak GC, Brosens E, Reutter HM, Marcelis CLM, Acuna-Hidalgo R, Kurtas NE, Steehouwer M, Dunwoodie SL, Schmiedeke E, Märzheuser S, Schwarzer N, Brooks AS, de Klein A, Sloots CEJ, Tibboel D, Brisighelli G, Morandi A, Bedeschi MF, Bates MD, Levitt MA, Peña A, de Blaauw I, Roeleveld N, Brunner HG, van Rooij IALM, Hoischen A. A Genetics-First Approach Revealed Monogenic Disorders in Patients With ARM and VACTERL Anomalies. Front Pediatr 2020; 8:310. [PMID: 32656166 PMCID: PMC7324789 DOI: 10.3389/fped.2020.00310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background: The VATER/VACTERL association (VACTERL) is defined as the non-random occurrence of the following congenital anomalies: Vertebral, Anal, Cardiac, Tracheal-Esophageal, Renal, and Limb anomalies. As no unequivocal candidate gene has been identified yet, patients are diagnosed phenotypically. The aims of this study were to identify patients with monogenic disorders using a genetics-first approach, and to study whether variants in candidate genes are involved in the etiology of VACTERL or the individual features of VACTERL: Anorectal malformation (ARM) or esophageal atresia with or without trachea-esophageal fistula (EA/TEF). Methods: Using molecular inversion probes, a candidate gene panel of 56 genes was sequenced in three patient groups: VACTERL (n = 211), ARM (n = 204), and EA/TEF (n = 95). Loss-of-function (LoF) and additional likely pathogenic missense variants, were prioritized and validated using Sanger sequencing. Validated variants were tested for segregation and patients were clinically re-evaluated. Results: In 7 out of the 510 patients (1.4%), pathogenic or likely pathogenic variants were identified in SALL1, SALL4, and MID1, genes that are associated with Townes-Brocks, Duane-radial-ray, and Opitz-G/BBB syndrome. These syndromes always include ARM or EA/TEF, in combination with at least two other VACTERL features. We did not identify LoF variants in the remaining candidate genes. Conclusions: None of the other candidate genes were identified as novel unequivocal disease genes for VACTERL. However, a genetics-first approach allowed refinement of the clinical diagnosis in seven patients, in whom an alternative molecular-based diagnosis was found with important implications for the counseling of the families.
Collapse
Affiliation(s)
- Romy van de Putte
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gabriel C Dworschak
- Department of Pediatrics, Children's Hospital, University Hospital Bonn, Bonn, Germany.,Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, Netherlands.,Department of Pediatric Surgery, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Heiko M Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Neonatology, Children's Hospital, University Hospital Bonn, Bonn, Germany
| | - Carlo L M Marcelis
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rocio Acuna-Hidalgo
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nehir E Kurtas
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marloes Steehouwer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Eberhard Schmiedeke
- Department of Pediatric Surgery and Urology, Centre for Child and Youth Health, Klinikum Bremen-Mitte, Bremen, Germany
| | - Stefanie Märzheuser
- Department of Pediatric Surgery, Campus Virchow Clinic, Charité University Hospital Berlin, Berlin, Germany
| | - Nicole Schwarzer
- SoMA e.V., Self-Help Organization for People With Anorectal Malformation, Munich, Germany
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Cornelius E J Sloots
- Department of Pediatric Surgery, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Giulia Brisighelli
- Department of Paediatric Surgery, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa.,Department of Pediatric Surgery, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Morandi
- Department of Pediatric Surgery, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria F Bedeschi
- Medical Genetic Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Michael D Bates
- Division of Gastroenterology and Nutrition, Dayton Children's Hospital, Dayton, OH, United States.,Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Marc A Levitt
- Division of Gastroenterology and Nutrition, Dayton Children's Hospital, Dayton, OH, United States.,Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.,Department of Surgery, Center for Colorectal and Pelvic Reconstruction, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States
| | - Alberto Peña
- Division of Gastroenterology and Nutrition, Dayton Children's Hospital, Dayton, OH, United States.,Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.,Department of Surgery, International Center for Colorectal Care, Children's Hospital Colorado, University of Colorado, Aurora, CO, United States
| | - Ivo de Blaauw
- Department of Surgery-Pediatric Surgery, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nel Roeleveld
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Han G Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Iris A L M van Rooij
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
5
|
Marzban H, Rahimi-Balaei M, Hawkes R. Early trigeminal ganglion afferents enter the cerebellum before the Purkinje cells are born and target the nuclear transitory zone. Brain Struct Funct 2019; 224:2421-2436. [PMID: 31256239 DOI: 10.1007/s00429-019-01916-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/25/2019] [Indexed: 12/20/2022]
Abstract
In the standard model for the development of climbing and mossy fiber afferent pathways to the cerebellum, the ingrowing axons target the embryonic Purkinje cell somata (around embryonic ages (E13-E16 in mice). In this report, we describe a novel earlier stage in afferent development. Immunostaining for a neurofilament-associated antigen (NAA) reveals the early axon distributions with remarkable clarity. Using a combination of DiI axon tract tracing, analysis of neurogenin1 null mice, which do not develop trigeminal ganglia, and mouse embryos maintained in vitro, we show that the first axons to innervate the cerebellar primordium as early as E9 arise from the trigeminal ganglion. Therefore, early trigeminal axons are in situ before the Purkinje cells are born. Double immunostaining for NAA and markers of the different domains in the cerebellar primordium reveal that afferents first target the nuclear transitory zone (E9-E10), and only later (E10-E11) are the axons, either collaterals from the trigeminal ganglion or a new afferent source (e.g., vestibular ganglia), seen in the Purkinje cell plate. The finding that the earliest axons to the cerebellum derive from the trigeminal ganglion and enter the cerebellar primordium before the Purkinje cells are born, where they seem to target the cerebellar nuclei, reveals a novel stage in the development of the cerebellar afferents.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada. .,Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm 129 BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| | - Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Richard Hawkes
- Department of Cell Biology and Anatomy and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
6
|
Gagnier L, Belancio VP, Mager DL. Mouse germ line mutations due to retrotransposon insertions. Mob DNA 2019; 10:15. [PMID: 31011371 PMCID: PMC6466679 DOI: 10.1186/s13100-019-0157-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
Transposable element (TE) insertions are responsible for a significant fraction of spontaneous germ line mutations reported in inbred mouse strains. This major contribution of TEs to the mutational landscape in mouse contrasts with the situation in human, where their relative contribution as germ line insertional mutagens is much lower. In this focussed review, we provide comprehensive lists of TE-induced mouse mutations, discuss the different TE types involved in these insertional mutations and elaborate on particularly interesting cases. We also discuss differences and similarities between the mutational role of TEs in mice and humans.
Collapse
Affiliation(s)
- Liane Gagnier
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Dixie L. Mager
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| |
Collapse
|
7
|
Orchard P, White JS, Thomas PE, Mychalowych A, Kiseleva A, Hensley J, Allen B, Parker SCJ, Keegan CE. Genome-wide chromatin accessibility and transcriptome profiling show minimal epigenome changes and coordinated transcriptional dysregulation of hedgehog signaling in Danforth's short tail mice. Hum Mol Genet 2019; 28:736-750. [PMID: 30380057 PMCID: PMC6381317 DOI: 10.1093/hmg/ddy378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022] Open
Abstract
Danforth's short tail (Sd) mice provide an excellent model for investigating the underlying etiology of human caudal birth defects, which affect 1 in 10 000 live births. Sd animals exhibit aberrant axial skeleton, urogenital and gastrointestinal development similar to human caudal malformation syndromes including urorectal septum malformation, caudal regression, vertebral-anal-cardiac-tracheo-esophageal fistula-renal-limb (VACTERL) association and persistent cloaca. Previous studies have shown that the Sd mutation results from an endogenous retroviral (ERV) insertion upstream of the Ptf1a gene resulting in its ectopic expression at E9.5. Though the genetic lesion has been determined, the resulting epigenomic and transcriptomic changes driving the phenotype have not been investigated. Here, we performed ATAC-seq experiments on isolated E9.5 tailbud tissue, which revealed minimal changes in chromatin accessibility in Sd/Sd mutant embryos. Interestingly, chromatin changes were localized to a small interval adjacent to the Sd ERV insertion overlapping a known Ptf1a enhancer region, which is conserved in mice and humans. Furthermore, mRNA-seq experiments revealed increased transcription of Ptf1a target genes and, importantly, downregulation of hedgehog pathway genes. Reduced sonic hedgehog (SHH) signaling was confirmed by in situ hybridization and immunofluorescence suggesting that the Sd phenotype results, in part, from downregulated SHH signaling. Taken together, these data demonstrate substantial transcriptome changes in the Sd mouse, and indicate that the effect of the ERV insertion on Ptf1a expression may be mediated by increased chromatin accessibility at a conserved Ptf1a enhancer. We propose that human caudal dysgenesis disorders may result from dysregulation of hedgehog signaling pathways.
Collapse
Affiliation(s)
- Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - James S White
- Department of Pediatrics, Division of Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Peedikayil E Thomas
- Department of Pediatrics, Division of Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Anna Mychalowych
- Department of Pediatrics, Division of Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Anya Kiseleva
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - John Hensley
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Catherine E Keegan
- Department of Pediatrics, Division of Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Jin K, Xiang M. Transcription factor Ptf1a in development, diseases and reprogramming. Cell Mol Life Sci 2019; 76:921-940. [PMID: 30470852 PMCID: PMC11105224 DOI: 10.1007/s00018-018-2972-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
The transcription factor Ptf1a is a crucial helix-loop-helix (bHLH) protein selectively expressed in the pancreas, retina, spinal cord, brain, and enteric nervous system. Ptf1a is preferably assembled into a transcription trimeric complex PTF1 with an E protein and Rbpj (or Rbpjl). In pancreatic development, Ptf1a is indispensable in controlling the expansion of multipotent progenitor cells as well as the specification and maintenance of the acinar cells. In neural tissues, Ptf1a is transiently expressed in the post-mitotic cells and specifies the inhibitory neuronal cell fates, mostly mediated by downstream genes such as Tfap2a/b and Prdm13. Mutations in the coding and non-coding regulatory sequences resulting in Ptf1a gain- or loss-of-function are associated with genetic diseases such as pancreatic and cerebellar agenesis in the rodent and human. Surprisingly, Ptf1a alone is sufficient to reprogram mouse or human fibroblasts into tripotential neural stem cells. Its pleiotropic functions in many biological processes remain to be deciphered in the future.
Collapse
Affiliation(s)
- Kangxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
9
|
Reutter H, Hilger AC, Hildebrandt F, Ludwig M. Underlying genetic factors of the VATER/VACTERL association with special emphasis on the "Renal" phenotype. Pediatr Nephrol 2016; 31:2025-33. [PMID: 26857713 PMCID: PMC5207487 DOI: 10.1007/s00467-016-3335-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/18/2022]
Abstract
The acronym VATER/VACTERL association (OMIM #192350) refers to the rare non-random co-occurrence of the following component features (CFs): vertebral defects (V), anorectal malformations (A), cardiac defects (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb defects (L). According to epidemiological studies, the majority of patients with VATER/VACTERL association present with a "Renal" phenotype comprising a large spectrum of congenital renal anomalies. This finding is supported by evidence linking all of the human disease genes for the VATER/VACTERL association identified to date, namely, FGF8, FOXF1, HOXD13, LPP, TRAP1, and ZIC3, with renal malformations. Here we review these genotype-phenotype correlations and suggest that the elucidation of the genetic causes of the VATER/VACTERL association will ultimately provide insights into the genetic causes of the complete spectrum of congenital renal anomalies per se.
Collapse
Affiliation(s)
- Heiko Reutter
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany. .,Department of Neonatology and Pediatric Intensive Care, Children's Hospital-University of Bonn, Bonn, Germany.
| | - Alina C Hilger
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital-Harvard Medical School, Boston, MA, USA
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Nxf1 natural variant E610G is a semi-dominant suppressor of IAP-induced RNA processing defects. PLoS Genet 2015; 11:e1005123. [PMID: 25835743 PMCID: PMC4383553 DOI: 10.1371/journal.pgen.1005123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/03/2015] [Indexed: 12/13/2022] Open
Abstract
Endogenous retroviruses and retrotransposons contribute functional genetic variation in animal genomes. In mice, Intracisternal A Particles (IAPs) are a frequent source of both new mutations and polymorphism across laboratory strains. Intronic IAPs can induce alternative RNA processing choices, including alternative splicing. We previously showed IAP I∆1 subfamily insertional mutations are suppressed by a wild-derived allele of the major mRNA export factor, Nxf1. Here we show that a wider diversity of IAP insertions present in the mouse reference sequence induce insertion-dependent alternative processing that is suppressed by Nxf1CAST alleles. These insertions typically show more modest gene expression changes than de novo mutations, suggesting selection or attenuation. Genome-wide splicing-sensitive microarrays and gene-focused assays confirm specificity of Nxf1 genetic modifier activity for IAP insertion alleles. Strikingly, CRISPR/Cas9-mediated genome editing demonstrates that a single amino acid substitution in Nxf1, E610G, is sufficient to recreate a quantitative genetic modifier in a co-isogenic background.
Collapse
|
11
|
Gurung N, Grosse G, Draaken M, Hilger AC, Nauman N, Müller A, Gembruch U, Merz WM, Reutter H, Ludwig M. Mutations in PTF1A are not a common cause for human VATER/VACTERL association or neural tube defects mirroring Danforth's short tail mouse. Mol Med Rep 2015; 12:1579-83. [PMID: 25775927 DOI: 10.3892/mmr.2015.3486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 02/27/2015] [Indexed: 11/05/2022] Open
Abstract
Danforth's short tail (Sd) mutant mice exhibit defects of the neural tube and other abnormalities, which are similar to the human vertebral anomalies, anal atresia, cardiac defects, tracheosophageal fistula and/or esophageal atresia, renal and radial abnormalities, and limb defects (VATER/VACTERL) association, including defects of the hindgut. Sd has been shown to underlie ectopic gene expression of murine Ptf1a, which encodes pancreas-specific transcription factor 1A, due to the insertion of a retrotansposon in its 5' regulatory domain. In order to investigate the possible involvement of this gene in human VATER/VACTERL association and human neural tube defects (NTDs), a sequence analysis was performed. DNA samples from 103 patients with VATER/VACTERL and VATER/VACTERL‑like association, all presenting with anorectal malformations, and 72 fetuses with NTDs, where termination of pregnancy had been performed, were included in the current study. The complete PTF1A coding region, splice sites and 1.5 kb of the 5' flanking promotor region was sequenced. However, no pathogenic alterations were detected. The results of the present study do not support the hypothesis that high penetrant mutations in these regions of PTF1A are involved in the development of human VATER/VACTERL association or NTDs, although rare mutations may be detectable in larger patient samples.
Collapse
Affiliation(s)
- Nirmala Gurung
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn D‑53127, Germany
| | - Greta Grosse
- Institute of Human Genetics, University of Bonn, Bonn D‑53127, Germany
| | - Markus Draaken
- Institute of Human Genetics, University of Bonn, Bonn D‑53127, Germany
| | - Alina C Hilger
- Institute of Human Genetics, University of Bonn, Bonn D‑53127, Germany
| | - Nuzhat Nauman
- Department of Pathology, Holy Family Hospital, Rawalpindi 46000, Pakistan
| | - Andreas Müller
- Department of Neonatology, Children's Hospital, University of Bonn, Bonn D‑53127, Germany
| | - Ulrich Gembruch
- Department of Obstetrics and Prenatal Medicine, University of Bonn, Bonn D‑53127, Germany
| | - Waltraut M Merz
- Department of Obstetrics and Prenatal Medicine, University of Bonn, Bonn D‑53127, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University of Bonn, Bonn D‑53127, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn D‑53127, Germany
| |
Collapse
|
12
|
Draaken M, Knapp M, Pennimpede T, Schmidt JM, Ebert AK, Rösch W, Stein R, Utsch B, Hirsch K, Boemers TM, Mangold E, Heilmann S, Ludwig KU, Jenetzky E, Zwink N, Moebus S, Herrmann BG, Mattheisen M, Nöthen MM, Ludwig M, Reutter H. Genome-wide association study and meta-analysis identify ISL1 as genome-wide significant susceptibility gene for bladder exstrophy. PLoS Genet 2015; 11:e1005024. [PMID: 25763902 PMCID: PMC4357422 DOI: 10.1371/journal.pgen.1005024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
The bladder exstrophy-epispadias complex (BEEC) represents the severe end of the uro-rectal malformation spectrum, and is thought to result from aberrant embryonic morphogenesis of the cloacal membrane and the urorectal septum. The most common form of BEEC is isolated classic bladder exstrophy (CBE). To identify susceptibility loci for CBE, we performed a genome-wide association study (GWAS) of 110 CBE patients and 1,177 controls of European origin. Here, an association was found with a region of approximately 220kb on chromosome 5q11.1. This region harbors the ISL1 (ISL LIM homeobox 1) gene. Multiple markers in this region showed evidence for association with CBE, including 84 markers with genome-wide significance. We then performed a meta-analysis using data from a previous GWAS by our group of 98 CBE patients and 526 controls of European origin. This meta-analysis also implicated the 5q11.1 locus in CBE risk. A total of 138 markers at this locus reached genome-wide significance in the meta-analysis, and the most significant marker (rs9291768) achieved a P value of 2.13 × 10-12. No other locus in the meta-analysis achieved genome-wide significance. We then performed murine expression analyses to follow up this finding. Here, Isl1 expression was detected in the genital region within the critical time frame for human CBE development. Genital regions with Isl1 expression included the peri-cloacal mesenchyme and the urorectal septum. The present study identified the first genome-wide significant locus for CBE at chromosomal region 5q11.1, and provides strong evidence for the hypothesis that ISL1 is the responsible candidate gene in this region.
Collapse
Affiliation(s)
- Markus Draaken
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- * E-mail:
| | - Michael Knapp
- Institute of Medical Biometry, Informatics, and Epidemiology, University of Bonn, Bonn, Germany
- * E-mail:
| | - Tracie Pennimpede
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail:
| | | | - Anne-Karolin Ebert
- Department of Urology and Pediatric Urology, University Hospital of Ulm, Germany
| | - Wolfgang Rösch
- Department of Pediatric Urology, St. Hedwig Hospital Barmherzige Brüder, Regensburg, Germany
| | - Raimund Stein
- Department of Urology, Division of Pediatric Urology, University of Mainz, Mainz, Germany
| | - Boris Utsch
- Department of General Pediatrics and Neonatology, Justus Liebig University, Giessen, Germany
| | - Karin Hirsch
- Department of Urology, Division of Paediatric Urology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas M. Boemers
- Department of Pediatric Surgery and Pediatric Urology, Children’s Hospital of Cologne, Cologne, Germany
| | | | - Stefanie Heilmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Kerstin U. Ludwig
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Ekkehart Jenetzky
- Department of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Johannes-Gutenberg University, Mainz, Germany
| | - Nadine Zwink
- Department of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Susanne Moebus
- Institute of Medical Informatics, Biometry, and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Bernhard G. Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Manuel Mattheisen
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Genomic Mathematics, University of Bonn, Bonn, Germany
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Neonatology, Children's Hospital, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
13
|
Reutter H, Gurung N, Ludwig M. Evidence for annular pancreas as an associated anomaly in the VATER/VACTERL association and investigation of the gene encoding pancreas specific transcription factor 1A as a candidate gene. Am J Med Genet A 2014; 164A:1611-3. [PMID: 24668915 DOI: 10.1002/ajmg.a.36479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/03/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Heiko Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany; Department of Neonatology, Children's Hospital, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
14
|
Lehoczky JA, Thomas PE, Patrie KM, Owens KM, Villarreal LM, Galbraith K, Washburn J, Johnson CN, Gavino B, Borowsky AD, Millen KJ, Wakenight P, Law W, Van Keuren ML, Gavrilina G, Hughes ED, Saunders TL, Brihn L, Nadeau JH, Innis JW. A novel intergenic ETnII-β insertion mutation causes multiple malformations in polypodia mice. PLoS Genet 2013; 9:e1003967. [PMID: 24339789 PMCID: PMC3854779 DOI: 10.1371/journal.pgen.1003967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 10/04/2013] [Indexed: 11/28/2022] Open
Abstract
Mouse early transposon insertions are responsible for ∼10% of spontaneous mutant phenotypes. We previously reported the phenotypes and genetic mapping of Polypodia, (Ppd), a spontaneous, X-linked dominant mutation with profound effects on body plan morphogenesis. Our new data shows that mutant mice are not born in expected Mendelian ratios secondary to loss after E9.5. In addition, we refined the Ppd genetic interval and discovered a novel ETnII-β early transposon insertion between the genes for Dusp9 and Pnck. The ETn inserted 1.6 kb downstream and antisense to Dusp9 and does not disrupt polyadenylation or splicing of either gene. Knock-in mice engineered to carry the ETn display Ppd characteristic ectopic caudal limb phenotypes, showing that the ETn insertion is the Ppd molecular lesion. Early transposons are actively expressed in the early blastocyst. To explore the consequences of the ETn on the genomic landscape at an early stage of development, we compared interval gene expression between wild-type and mutant ES cells. Mutant ES cell expression analysis revealed marked upregulation of Dusp9 mRNA and protein expression. Evaluation of the 5′ LTR CpG methylation state in adult mice revealed no correlation with the occurrence or severity of Ppd phenotypes at birth. Thus, the broad range of phenotypes observed in this mutant is secondary to a novel intergenic ETn insertion whose effects include dysregulation of nearby interval gene expression at early stages of development. Mobile genetic elements, particularly early transposons (ETn), cause malformations by inserting within genes leading to disruption of exons, splicing or polyadenylation. Few mutagenic early transposon insertions have been found outside genes and the effects of such insertions on surrounding gene regulation is poorly understood. We discovered a novel intergenic ETnII-β insertion in the mouse mutant Polypodia (Ppd). We reproduced the mutant phenotype after engineering the mutation in wild-type cells with homologous recombination, proving that this early transposon insertion is Ppd. Mutant mice are not born in expected Mendelian ratios secondary to loss after E9.5. Embryonic stem cells from mutant mice show upregulated transcription of an adjacent gene, Dusp9. Thus, at an early and critical stage of development, dysregulated gene transcription is one consequence of the insertion mutation. DNA methylation of the ETn 5′ LTR is not correlated with phenotypic outcome in mutant mice. Polypodia is an example of an intergenic mobile element insertion in mice causing dramatic morphogenetic defects and fetal death.
Collapse
Affiliation(s)
- Jessica A. Lehoczky
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peedikayil E. Thomas
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kevin M. Patrie
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kailey M. Owens
- Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lisa M. Villarreal
- Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kenneth Galbraith
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joe Washburn
- Biomedical Research Core Facilities, DNA Sequencing Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Craig N. Johnson
- Biomedical Research Core Facilities, DNA Sequencing Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bryant Gavino
- Murine Molecular Constructs Laboratory-MMCL Mouse Biology Program, University of California, Davis, California, United States of America
| | - Alexander D. Borowsky
- University of California, Davis, Center for Comparative Medicine and Comprehensive Cancer Center, Department of Pathology and Laboratory Medicine, Davis, California, United States of America
| | - Kathleen J. Millen
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington, United States of America
| | - Paul Wakenight
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington, United States of America
| | - William Law
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Margaret L. Van Keuren
- Transgenic Animal Model Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Galina Gavrilina
- Transgenic Animal Model Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Elizabeth D. Hughes
- Transgenic Animal Model Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas L. Saunders
- Transgenic Animal Model Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lesil Brihn
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Joseph H. Nadeau
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Jeffrey W. Innis
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
15
|
Neijts R, Simmini S, Giuliani F, van Rooijen C, Deschamps J. Region-specific regulation of posterior axial elongation during vertebrate embryogenesis. Dev Dyn 2013; 243:88-98. [PMID: 23913366 DOI: 10.1002/dvdy.24027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/18/2013] [Accepted: 07/21/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The vertebrate body axis extends sequentially from the posterior tip of the embryo, fueled by the gastrulation process at the primitive streak and its continuation within the tailbud. Anterior structures are generated early, and subsequent nascent tissues emerge from the posterior growth zone and continue to elongate the axis until its completion. The underlying processes have been shown to be disrupted in mouse mutants, some of which were described more than half a century ago. RESULTS Important progress in elucidating the cellular and genetic events involved in body axis elongation has recently been made on several fronts. Evidence for the residence of self-renewing progenitors, some of which are bipotential for neurectoderm and mesoderm, has been obtained by embryo-grafting techniques and by clonal analyses in the mouse embryo. Transcription factors of several families including homeodomain proteins have proven instrumental for regulating the axial progenitor niche in the growth zone. A complex genetic network linking these transcription factors and signaling molecules is being unraveled that underlies the phenomenon of tissue lengthening from the axial stem cells. The concomitant events of cell fate decision among descendants of these progenitors begin to be better understood at the levels of molecular genetics and cell behavior. CONCLUSIONS The emerging picture indicates that the ontogenesis of the successive body regions is regulated according to different rules. In addition, parameters controlling vertebrate axial length during evolution have emerged from comparative experimental studies. It is on these issues that this review will focus, mainly addressing the study of axial extension in the mouse embryo with some comparison with studies in chick and zebrafish, aiming at unveiling the recent progress, and pointing at still unanswered questions for a thorough understanding of the process of embryonic axis elongation.
Collapse
Affiliation(s)
- Roel Neijts
- Hubrecht Institute and University Medical Center, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
|