1
|
Garlovsky MD, Whittington E, Albrecht T, Arenas-Castro H, Castillo DM, Keais GL, Larson EL, Moyle LC, Plakke M, Reifová R, Snook RR, Ålund M, Weber AAT. Synthesis and Scope of the Role of Postmating Prezygotic Isolation in Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041429. [PMID: 38151330 PMCID: PMC11444258 DOI: 10.1101/cshperspect.a041429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
How barriers to gene flow arise and are maintained are key questions in evolutionary biology. Speciation research has mainly focused on barriers that occur either before mating or after zygote formation. In comparison, postmating prezygotic (PMPZ) isolation-a barrier that acts after gamete release but before zygote formation-is less frequently investigated but may hold a unique role in generating biodiversity. Here we discuss the distinctive features of PMPZ isolation, including the primary drivers and molecular mechanisms underpinning PMPZ isolation. We then present the first comprehensive survey of PMPZ isolation research, revealing that it is a widespread form of prezygotic isolation across eukaryotes. The survey also exposes obstacles in studying PMPZ isolation, in part attributable to the challenges involved in directly measuring PMPZ isolation and uncovering its causal mechanisms. Finally, we identify outstanding knowledge gaps and provide recommendations for improving future research on PMPZ isolation. This will allow us to better understand the nature of this often-neglected reproductive barrier and its contribution to speciation.
Collapse
Affiliation(s)
- Martin D Garlovsky
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden 01062, Germany
| | | | - Tomas Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 60365, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Henry Arenas-Castro
- School of Biological Sciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Dean M Castillo
- Department of Biological Sciences, Miami University, Hamilton, Ohio 45011, USA
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208, USA
| | - Leonie C Moyle
- Department of Biology, Indiana University Bloomington, Indiana 47405, USA
| | - Melissa Plakke
- Division of Science, Mathematics, and Technology, Governors State University, University Park, Illinois 60484, USA
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm 109 61, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Alexandra A-T Weber
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Zürich, Switzerland
| |
Collapse
|
2
|
Farnitano MC, Sweigart AL. Strong postmating reproductive isolation in Mimulus section Eunanus. J Evol Biol 2023; 36:1393-1410. [PMID: 37691442 PMCID: PMC10592011 DOI: 10.1111/jeb.14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 09/12/2023]
Abstract
Postmating reproductive isolation can help maintain species boundaries when premating barriers to reproduction are incomplete. The strength and identity of postmating reproductive barriers are highly variable among diverging species, leading to questions about their genetic basis and evolutionary drivers. These questions have been tackled in model systems but are less often addressed with broader phylogenetic resolution. In this study we analyse patterns of genetic divergence alongside direct measures of postmating reproductive barriers in an overlooked group of sympatric species within the model monkeyflower genus, Mimulus. Within this Mimulus brevipes species group, we find substantial divergence among species, including a cryptic genetic lineage. However, rampant gene discordance and ancient signals of introgression suggest a complex history of divergence. In addition, we find multiple strong postmating barriers, including postmating prezygotic isolation, hybrid seed inviability and hybrid male sterility. M. brevipes and M. fremontii have substantial but incomplete postmating isolation. For all other tested species pairs, we find essentially complete postmating isolation. Hybrid seed inviability appears linked to differences in seed size, providing a window into possible developmental mechanisms underlying this reproductive barrier. While geographic proximity and incomplete mating isolation may have allowed gene flow within this group in the distant past, strong postmating reproductive barriers today have likely played a key role in preventing ongoing introgression. By producing foundational information about reproductive isolation and genomic divergence in this understudied group, we add new diversity and phylogenetic resolution to our understanding of the mechanisms of plant speciation.
Collapse
|
3
|
Cutter AD. Speciation and development. Evol Dev 2023; 25:289-327. [PMID: 37545126 DOI: 10.1111/ede.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Levin DA, Scarpino SV. On the young age of intraspecific herbaceous taxa. THE NEW PHYTOLOGIST 2017; 213:1513-1520. [PMID: 27726173 DOI: 10.1111/nph.14224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
Dated phylogenies rarely include the divergence times of sister intraspecific taxa, and when they do little is said about this subject. We show that over 90% of the intraspecific plant taxa found in a literature search are estimated to be 5 million yr old or younger, with only 4% of taxa estimated to be over 10 million yr old or older. A Bayesian analysis of intraspecific taxon ages indicates that indeed these taxa are expected to be < 10 million yr old. This result for the young age of intraspecific taxa is consistent with the earlier observation that post-pollination reproductive barriers develop between 5 and 10 million yr after lineage splitting, thus leading to species formation. If lineages have not graduated to the species level of divergence by 10 million yr or so, they are likely to have gone extinct by that time as a result of narrow geographical distributions, narrow niche breadths, and relatively small numbers across populations.
Collapse
Affiliation(s)
- Donald A Levin
- Department of Integrative Biology, University of Texas, Austin, TX 78713, USA
| | - Samuel V Scarpino
- Department of Mathematics & Statistics, University of Vermont, Burlington, VT 05401, USA
- Complex Systems Center, University of Vermont, Burlington, VT 05401, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
5
|
Baek YS, Royer SM, Broz AK, Covey PA, López-Casado G, Nuñez R, Kear PJ, Bonierbale M, Orillo M, van der Knaap E, Stack SM, McClure B, Chetelat RT, Bedinger PA. Interspecific reproductive barriers between sympatric populations of wild tomato species (Solanum section Lycopersicon). AMERICAN JOURNAL OF BOTANY 2016; 103:1964-1978. [PMID: 27864262 DOI: 10.3732/ajb.1600356] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/21/2016] [Indexed: 05/09/2023]
Abstract
PREMISE OF THE STUDY Interspecific reproductive barriers (IRBs) often prevent hybridization between closely related species in sympatry. In the tomato clade (Solanum section Lycopersicon), interspecific interactions between natural sympatric populations have not been evaluated previously. In this study, we assessed IRBs between members of the tomato clade from nine sympatric sites in Peru. METHODS Coflowering was assessed at sympatric sites in Peru. Using previously collected seeds from sympatric sites in Peru, we evaluated premating prezygotic (floral morphology), postmating prezygotic (pollen-tube growth), and postzygotic barriers (fruit and seed development) between sympatric species in common gardens. Pollen-tube growth and seed development were examined in reciprocal crosses between sympatric species. KEY RESULTS We confirmed coflowering of sympatric species at five sites in Peru. We found three types of postmating prezygotic IRBs during pollen-pistil interactions: (1) unilateral pollen-tube rejection between pistils of self-incompatible species and pollen of self-compatible species; (2) potential conspecific pollen precedence in a cross between two self-incompatible species; and (3) failure of pollen tubes to target ovules. In addition, we found strong postzygotic IRBs that prevented normal seed development in 11 interspecific crosses, resulting in seed-like structures containing globular embryos and aborted endosperm and, in some cases, overgrown endothelium. Viable seed and F1 hybrid plants were recovered from three of 19 interspecific crosses. CONCLUSIONS We have identified diverse prezygotic and postzygotic IRBs that would prevent hybridization between sympatric wild tomato species, but interspecific hybridization is possible in a few cases.
Collapse
Affiliation(s)
- You Soon Baek
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Suzanne M Royer
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Paul A Covey
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Gloria López-Casado
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | - Reynaldo Nuñez
- Department of Horticulture and Crop Science, Ohio State University, Wooster, Ohio 44691, USA
| | - Philip J Kear
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Merideth Bonierbale
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Matilde Orillo
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Esther van der Knaap
- Department of Horticulture and Crop Science, Ohio State University, Wooster, Ohio 44691, USA
- Department of Horticulture, University of Georgia, Athens, Georgia 30602, USA
| | - Stephen M Stack
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Bruce McClure
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Roger T Chetelat
- Department of Plant Sciences, University of California Davis, Davis, California 95616, USA
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| |
Collapse
|
6
|
Beekman M, Nieuwenhuis B, Ortiz-Barrientos D, Evans JP. Sexual selection in hermaphrodites, sperm and broadcast spawners, plants and fungi. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150541. [PMID: 27619704 PMCID: PMC5031625 DOI: 10.1098/rstb.2015.0541] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 11/12/2022] Open
Abstract
Darwin was the first to recognize that sexual selection is a strong evolutionary force. Exaggerated traits allow same-sex individuals to compete over access to mates and provide a mechanism by which mates are selected. It is relatively easy to appreciate how inter- and intrasexual selection work in organisms with the sensory capabilities to perceive physical or behavioural traits that signal mate quality or mate compatibility, and to assess the relative quality of competitors. It is therefore not surprising that most studies of sexual selection have focused on animals with separate sexes and obvious adaptations that function in the context of reproductive competition. Yet, many sexual organisms are both male and female at the same time, often lack sexual dimorphism and never come into direct contact at mating. How does sexual selection act in such species, and what can we learn from them? Here, we address these questions by exploring the potential for sexual selection in simultaneous hermaphrodites, sperm- and broadcast spawners, plants and fungi. Our review reveals a range of mechanisms of sexual selection, operating primarily after gametes have been released, which are common in many of these groups and also quite possibly in more familiar (internally fertilizing and sexually dimorphic) organisms.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Madeleine Beekman
- School of Life and Environmental Sciences, University of Sydney, 2006 New South Wales, Australia
| | - Bart Nieuwenhuis
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | | | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, 6009 Western Australia, Australia
| |
Collapse
|
7
|
Kenney AM, Sweigart AL. Reproductive isolation and introgression between sympatric
Mimulus
species. Mol Ecol 2016; 25:2499-517. [DOI: 10.1111/mec.13630] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Amanda M. Kenney
- Department of Genetics University of Georgia Athens GA 30602 USA
- Department of Biological Sciences St. Edward's University Austin TX 78704 USA
| | | |
Collapse
|
8
|
Jones MR, Good JM. Targeted capture in evolutionary and ecological genomics. Mol Ecol 2016; 25:185-202. [PMID: 26137993 PMCID: PMC4823023 DOI: 10.1111/mec.13304] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 12/17/2022]
Abstract
The rapid expansion of next-generation sequencing has yielded a powerful array of tools to address fundamental biological questions at a scale that was inconceivable just a few years ago. Various genome-partitioning strategies to sequence select subsets of the genome have emerged as powerful alternatives to whole-genome sequencing in ecological and evolutionary genomic studies. High-throughput targeted capture is one such strategy that involves the parallel enrichment of preselected genomic regions of interest. The growing use of targeted capture demonstrates its potential power to address a range of research questions, yet these approaches have yet to expand broadly across laboratories focused on evolutionary and ecological genomics. In part, the use of targeted capture has been hindered by the logistics of capture design and implementation in species without established reference genomes. Here we aim to (i) increase the accessibility of targeted capture to researchers working in nonmodel taxa by discussing capture methods that circumvent the need of a reference genome, (ii) highlight the evolutionary and ecological applications where this approach is emerging as a powerful sequencing strategy and (iii) discuss the future of targeted capture and other genome-partitioning approaches in the light of the increasing accessibility of whole-genome sequencing. Given the practical advantages and increasing feasibility of high-throughput targeted capture, we anticipate an ongoing expansion of capture-based approaches in evolutionary and ecological research, synergistic with an expansion of whole-genome sequencing.
Collapse
Affiliation(s)
- Matthew R. Jones
- University of Montana, Division of Biological Sciences, 32 Campus Dr. HS104, Missoula, MT 59812, USA
| | - Jeffrey M. Good
- University of Montana, Division of Biological Sciences, 32 Campus Dr. HS104, Missoula, MT 59812, USA
| |
Collapse
|
9
|
Baack E, Melo MC, Rieseberg LH, Ortiz-Barrientos D. The origins of reproductive isolation in plants. THE NEW PHYTOLOGIST 2015; 207:968-84. [PMID: 25944305 DOI: 10.1111/nph.13424] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/16/2015] [Indexed: 05/23/2023]
Abstract
Reproductive isolation in plants occurs through multiple barriers that restrict gene flow between populations, but their origins remain uncertain. Work in the past decade has shown that postpollination barriers, such as the failure to form hybrid seeds or sterility of hybrid offspring, are often less strong than prepollination barriers. Evidence implicates multiple evolutionary forces in the origins of reproductive barriers, including mutation, stochastic processes and natural selection. Although adaptation to different environments is a common element of reproductive isolation, genomic conflicts also play a role, including female meiotic drive. The genetic basis of some reproductive barriers, particularly flower colour influencing pollinator behaviour, is well understood in some species, but the genetic changes underlying many other barriers, especially pollen-stylar interactions, are largely unknown. Postpollination barriers appear to accumulate at a faster rate in annuals compared with perennials, due in part to chromosomal rearrangements. Chromosomal changes can be important isolating barriers in themselves but may also reduce the recombination of genes contributing to isolation. Important questions for the next decade include identifying the evolutionary forces responsible for chromosomal rearrangements, determining how often prezygotic barriers arise due to selection against hybrids, and establishing the relative importance of genomic conflicts in speciation.
Collapse
Affiliation(s)
- Eric Baack
- Department of Biology, Luther College, Decorah, IA, 52101, USA
| | - Maria Clara Melo
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | |
Collapse
|