1
|
Fang D, Wang R, Fan X, Li M, Qian C, Cao B, Yu J, Liu H, Lou Y, Wan K. Recombinant BCG vaccine expressing multistage antigens of Mycobacterium tuberculosis provides long-term immunity against tuberculosis in BALB/c mice. Hum Vaccin Immunother 2024; 20:2299607. [PMID: 38258510 PMCID: PMC10807470 DOI: 10.1080/21645515.2023.2299607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) persistently kills nearly 1.5 million lives per year in the world, whereas the only licensed TB vaccine BCG exhibits unsatisfactory efficacy in adults. Taking BCG as a vehicle to express Mtb antigens is a promising way to enhance its efficacy against Mtb infection. In this study, the immune efficacy of recombination BCG (rBCG-ECD003) expressing specific antigens ESAT-6, CFP-10, and nDnaK was evaluated at different time points after immunizing BALB/c mice. The results revealed that rBCG-ECD003 induced multiple Th1 cytokine secretion including IFN-γ, TNF-α, IL-2, and IL-12 when compared to the parental BCG. Under the action of PPD or ECD003, rBCG-ECD003 immunization resulted in a significant increase in the proportion of IL-2+ and IFN-γ+IL-2+ CD4+T cells. Importantly, rBCG-ECD003 induced a stronger long-term humoral immune response without compromising the safety of the parental BCG vaccine. By means of the protective efficacy assay in vitro, rBCG-ECD003 showed a greater capacity to inhibit Mtb growth in the long term. Collectively, these features of rBCG-ECD003 indicate long-term protection and the promising effect of controlling Mtb infection.
Collapse
Affiliation(s)
- Danang Fang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruihuan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xueting Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Machao Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chenyu Qian
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bin Cao
- School of Public Health, University of South China, Hengyang, China
| | - Jinjie Yu
- School of Public Health, University of South China, Hengyang, China
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kanglin Wan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Zhao H, Li J, Feng S, Xu L, Yan B, Li C, Li M, Wang Y, Li Y, Liang L, Zhou D, Wan J, Wang W, Tian GB, Gu B, Huang X. High-throughput mutagenesis and screening approach for the identification of drug-resistant mutations in the rifampicin resistance-determining region of mycobacteria. Int J Antimicrob Agents 2024; 63:107158. [PMID: 38537722 DOI: 10.1016/j.ijantimicag.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 03/22/2024] [Indexed: 05/31/2024]
Abstract
Rifampicin is the most powerful first-line antibiotic for tuberculosis, which is caused by Mycobacterium tuberculosis. Although accumulating evidence from sequencing data of clinical M. tuberculosis isolates suggested that mutations in the rifampicin-resistance-determining region (RRDR) are strongly associated with rifampicin resistance, the comprehensive characterisation of RRDR polymorphisms that confer this resistance remains challenging. By incorporating I-SceI sites for I-SceI-based integrant removal and utilizing an L5 swap strategy, we efficiently replaced the integrated plasmid with alternative alleles, making mass allelic exchange feasible in mycobacteria. Using this method to establish a fitness-related gain-of function screen, we generated a mutant library that included all single-amino-acid mutations in the RRDR, and identified the important positions corresponding to some well-known rifampicin-resistance mutations (Q513, D516, S522, H525, R529, S531). We also detected a novel two-point mutation located in the RRDR confers a fitness advantage to M. smegmatis in the presence or absence of rifampicin. Our method provides a comprehensive insight into the growth phenotypes of RRDR mutants and should facilitate the development of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Hui Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Jiachen Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Siyuan Feng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Lin Xu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Bin Yan
- Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou 510080, China
| | - Chengjuan Li
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, 712082, China
| | - Meisong Li
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yaxuan Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Yaxin Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Lujie Liang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Dianrong Zhou
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jia Wan
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Wenli Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Guo-Bao Tian
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China.
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
3
|
Berisio R, Barra G, Napolitano V, Privitera M, Romano M, Squeglia F, Ruggiero A. HtpG-A Major Virulence Factor and a Promising Vaccine Antigen against Mycobacterium tuberculosis. Biomolecules 2024; 14:471. [PMID: 38672487 PMCID: PMC11048413 DOI: 10.3390/biom14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Tuberculosis (TB) is the leading global cause of death f rom an infectious bacterial agent. Therefore, limiting its epidemic spread is a pressing global health priority. The chaperone-like protein HtpG of M. tuberculosis (Mtb) is a large dimeric and multi-domain protein with a key role in Mtb pathogenesis and promising antigenic properties. This dual role, likely associated with the ability of Heat Shock proteins to act both intra- and extra-cellularly, makes HtpG highly exploitable both for drug and vaccine development. This review aims to gather the latest updates in HtpG structure and biological function, with HtpG operating in conjunction with a large number of chaperone molecules of Mtb. Altogether, these molecules help Mtb recovery after exposure to host-like stress by assisting the whole path of protein folding rescue, from the solubilisation of aggregated proteins to their refolding. Also, we highlight the role of structural biology in the development of safer and more effective subunit antigens. The larger availability of structural information on Mtb antigens and a better understanding of the host immune response to TB infection will aid the acceleration of TB vaccine development.
Collapse
Affiliation(s)
- Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy; (G.B.); (V.N.); (M.P.); (M.R.); (F.S.)
| | | | | | | | | | | | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy; (G.B.); (V.N.); (M.P.); (M.R.); (F.S.)
| |
Collapse
|
4
|
Xiao X, Fay A, Molina PS, Kovach A, Glickman MS, Li H. Structure of the M. tuberculosis DnaK-GrpE complex reveals how key DnaK roles are controlled. Nat Commun 2024; 15:660. [PMID: 38253530 PMCID: PMC10803776 DOI: 10.1038/s41467-024-44933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The molecular chaperone DnaK is essential for viability of Mycobacterium tuberculosis (Mtb). DnaK hydrolyzes ATP to fold substrates, and the resulting ADP is exchanged for ATP by the nucleotide exchange factor GrpE. It has been unclear how GrpE couples DnaK's nucleotide exchange with substrate release. Here we report a cryo-EM analysis of GrpE bound to an intact Mtb DnaK, revealing an asymmetric 1:2 DnaK-GrpE complex. The GrpE dimer ratchets to modulate both DnaK nucleotide-binding domain and the substrate-binding domain. We further show that the disordered GrpE N-terminus is critical for substrate release, and that the DnaK-GrpE interface is essential for protein folding activity both in vitro and in vivo. Therefore, the Mtb GrpE dimer allosterically regulates DnaK to concomitantly release ADP in the nucleotide-binding domain and substrate peptide in the substrate-binding domain.
Collapse
Affiliation(s)
- Xiansha Xiao
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | | | - Amanda Kovach
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
5
|
Nelson B, Soper N, Lupoli TJ. Bacterial J-Domains with C-Terminal Tags Contact the Substrate Binding Domain of DnaK and Sequester Chaperone Activity. Chembiochem 2023; 24:e202300261. [PMID: 37556312 DOI: 10.1002/cbic.202300261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
Functional interactions between the molecular chaperone DnaK and cofactor J-proteins (DnaJs), as well as their homologs, are crucial to the maintenance of proteostasis across cell types. In the bacterial pathogen Mycobacterium tuberculosis, DnaK-DnaJ interactions are essential for cell growth and represent potential targets for antibiotic or adjuvant development. While the N-terminal J-domains of J-proteins are known to form important contacts with DnaK, C-terminal domains have varied roles. Here, we have studied the effect of adding C-terminal tags to N-terminal J-domain truncations of mycobacterial DnaJ1 and DnaJ2 to promote additional interactions with DnaK. We found that His6 tags uniquely promote binding to additional sites in the substrate binding domain at the C-terminus of DnaK. Other C-terminal tags attached to J-domains, even peptides known to interact with DnaK, do not produce the same effects. Expression of C-terminally modified DnaJ1 or DnaJ2 J-domains in mycobacterial cells suppresses chaperone activity following proteotoxic stress, which is exaggerated in the presence of a small-molecule DnaK inhibitor. Hence, this work uncovers genetically encodable J-protein variants that may be used to study chaperone-cofactor interactions in other organisms.
Collapse
Affiliation(s)
- Brock Nelson
- Department of Chemistry, New York University, New York, 10003, USA
| | - Nathan Soper
- Department of Chemistry, New York University, New York, 10003, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, 10003, USA
| |
Collapse
|
6
|
Richards A, Lupoli TJ. Peptide-based molecules for the disruption of bacterial Hsp70 chaperones. Curr Opin Chem Biol 2023; 76:102373. [PMID: 37516006 PMCID: PMC11217992 DOI: 10.1016/j.cbpa.2023.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/31/2023]
Abstract
DnaK is a chaperone that aids in nascent protein folding and the maintenance of proteome stability across bacteria. Due to the importance of DnaK in cellular proteostasis, there have been efforts to generate molecules that modulate its function. In nature, both protein substrates and antimicrobial peptides interact with DnaK. However, many of these ligands interact with other cellular machinery as well. Recent work has sought to modify these peptide scaffolds to create DnaK-selective and species-specific probes. Others have reported protein domain mimics of interaction partners to disrupt cellular DnaK function and high-throughput screening approaches to discover clinically-relevant peptidomimetics that inhibit DnaK. The described work provides a foundation for the design of new assays and molecules to regulate DnaK activity.
Collapse
Affiliation(s)
- Aweon Richards
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
7
|
Tonui R, John RO, Edkins AL. Optimized Microscale Protein Aggregation Suppression Assay: A Method for Evaluating the Holdase Activity of Chaperones. Methods Mol Biol 2023; 2693:113-123. [PMID: 37540431 DOI: 10.1007/978-1-0716-3342-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Many molecular chaperones act as holdases by binding hydrophobic regions of substrates to prevent aggregation. Therefore, measuring holdase activity is an amenable method to determine chaperone activity. The holdase function is reliably and easily achieved by monitoring the suppression of heat-induced aggregation of well-characterized model protein substrates. However, the standard assay format requires large amounts of protein and hence is not applicable to all proteins. Using DnaK from Escherichia coli and heat-induced aggregation of malate dehydrogenase, we describe a protocol for absorbance and fluorescence-based miniaturized versions of the standard aggregation suppression assay that are affordable and have wide application for low abundance holdases. The assay can be used for both fundamental characterization of holdase function in proteins and screening of inhibitors of holdase activity.
Collapse
Affiliation(s)
- Ronald Tonui
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Ruth O John
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa.
| |
Collapse
|
8
|
Nguyen PP, Kado T, Prithviraj M, Siegrist MS, Morita YS. Inositol acylation of phosphatidylinositol mannosides: a rapid mass response to membrane fluidization in mycobacteria. J Lipid Res 2022; 63:100262. [PMID: 35952902 PMCID: PMC9490103 DOI: 10.1016/j.jlr.2022.100262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacteria share an unusually complex, multilayered cell envelope, which contributes to adaptation to changing environments. The plasma membrane is the deepest layer of the cell envelope and acts as the final permeability barrier against outside molecules. There is an obvious need to maintain the plasma membrane integrity, but the adaptive responses of the plasma membrane to stress exposure remain poorly understood. Using chemical treatment and heat stress to fluidize the membrane, we show here that phosphatidylinositol (PI)-anchored plasma membrane glycolipids known as PI mannosides (PIMs) are rapidly remodeled upon membrane fluidization in Mycobacterium smegmatis. Without membrane stress, PIMs are predominantly in a triacylated form: two acyl chains of the PI moiety plus one acyl chain modified at one of the mannose residues. Upon membrane fluidization, we determined the fourth fatty acid is added to the inositol moiety of PIMs, making them tetra-acylated variants. Additionally, we show that PIM inositol acylation is a rapid response independent of de novo protein synthesis, representing one of the fastest mass conversions of lipid molecules found in nature. Strikingly, we found that M. smegmatis is more resistant to the bactericidal effect of a cationic detergent after benzyl alcohol pre-exposure. We further demonstrate that fluidization-induced PIM inositol acylation is conserved in pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. Our results demonstrate that mycobacteria possess a mechanism to sense plasma membrane fluidity change. We suggest that inositol acylation of PIMs is a novel membrane stress response that enables mycobacterial cells to resist membrane fluidization.
Collapse
Affiliation(s)
- Peter P Nguyen
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Takehiro Kado
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | | | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
9
|
Akimova NI, Bekker OB, Danilenko VN. Functional Significance of Mycolicibacterium smegmatis Toxin–Antitoxin Module in Resistance to Antibiotics and Oxidative Stress. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422050027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Nelson B, Hong SH, Lupoli TJ. Protein Cofactor Mimics Disrupt Essential Chaperone Function in Stressed Mycobacteria. ACS Infect Dis 2022; 8:901-910. [PMID: 35412813 DOI: 10.1021/acsinfecdis.1c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial DnaK is an ATP-dependent molecular chaperone important for maintaining cellular proteostasis in concert with cofactor proteins. The cofactor DnaJ delivers non-native client proteins to DnaK and activates its ATPase activity, which is required for protein folding. In the bacterial pathogen Mycobacterium tuberculosis, DnaK is assisted by two DnaJs, DnaJ1 and DnaJ2. Functional protein-protein interactions (PPIs) between DnaK and at least one DnaJ are essential for survival of mycobacteria; hence, these PPIs represent untapped antibacterial targets. Here, we synthesize peptide-based mimetics of DnaJ1 and DnaJ2 N-terminal domains as rational inhibitors of DnaK-cofactor interactions. We find that covalently stabilized DnaJ mimetics are capable of disrupting DnaK-cofactor activity in vitro and prevent mycobacterial recovery from proteotoxic stress in vivo, leading to cell death. Since chaperones and cofactors are highly conserved, we anticipate these results will inform the design of other mimetics to modulate chaperone function across cell types.
Collapse
Affiliation(s)
- Brock Nelson
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Seong Ho Hong
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
11
|
Nachappa SA, Neelambike SM, Ramachandra NB. Differential expression of the Mycobacterium tuberculosis heat shock protein genes in response to drug-induced stress. Tuberculosis (Edinb) 2022; 134:102201. [PMID: 35344917 DOI: 10.1016/j.tube.2022.102201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 02/23/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Heat shock proteins are essential in maintaining cellular protein function, especially during stress. Their influence in managing drug-induced stress in Tuberculosis is not clearly understood. AIMS Study the expression of select genes of the DnaK/ClpB chaperone network to evaluate their role in stress response in Mycobacterium tuberculosis clinical isolates during exposure to Isoniazid (INH) and Rifampicin (RIF). METHODS Sanger sequencing to detect drug-resistant mutations followed by Drug Susceptibility Testing and Minimum Inhibitory Concentration determination. Culturing the bacilli in vitro, exposed to 1/4, 1/2 and 1 × MIC, and RNA quantification of dnaK, dnaJ1, grpE and clpB genes by using Real-time PCR. RESULTS Susceptible isolates showed marginal down-regulation of two genes for INH, whereas all genes under-expressed against RIF. INH-resistant isolates had distinct expression profiles for inhA-15 and katG315 mutants. RIF-resistant bacilli did not have significant differential expression. MDR isolate showed up-regulation of all the four genes, with two genes over-expressing (≥4-fold). CONCLUSIONS We observed characteristic gene expression profiles for each isolate in response to lethal and sub-lethal doses of INH and RIF. This provides insight into the role of DnaK/ClpB chaperone network in managing drug-induced stress and facilitating resistance. Further, the knowledge could provide targets for new drugs and augmenters.
Collapse
Affiliation(s)
- Somanna Ajjamada Nachappa
- Genetics and Genomics Lab, Department of Studies in Genetics and Genomics, University of Mysore, Mysuru, India
| | | | - Nallur B Ramachandra
- Genetics and Genomics Lab, Department of Studies in Genetics and Genomics, University of Mysore, Mysuru, India.
| |
Collapse
|
12
|
Transcriptomic Analysis of the Dual Response of Rhodococcus aetherivorans BCP1 to Inorganic Arsenic Oxyanions. Appl Environ Microbiol 2022; 88:e0220921. [PMID: 35311511 DOI: 10.1128/aem.02209-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial strains belonging to the genus Rhodococcus are able to degrade various toxic organic compounds and tolerate high concentrations of metal(loid)s. We have previously shown that Rhodococcus aetherivorans BCP1 is resistant to various levels of the two arsenic inorganic species, arsenite [As(III)] and arsenate [As(V)]. However, while arsenite showed toxic effects at concentrations as low as 5 mM, arsenate at 30 mM boosted the growth rate of BCP1 cells and was toxic only at concentrations of >100 mM. Since such behavior could be linked to peculiar aspects of its metabolism, the transcriptomic analysis of BCP1 cells exposed to 5 mM As(III) and 30 mM As(V) was performed in this work. The aim was to clarify the mechanisms underlying the arsenic stress response of the two growth phenotypes in the presence of the two different oxyanions. The results revealed that As(III) induced higher activity of reactive oxygen species (ROS)-scavenging enzymes than As(V) in relation to the expression of enzymes involved in cellular damage recovery and redox buffers/cofactors (ergothioneine, mycofactocin, and mycothiol). Further, As(III) downregulated pathways related to cell division, while both oxyanions downregulated genes involved in glycolysis. Notably, As(V) induced the expression of enzymes participating in the synthesis of metallophores and rearranged the central and energetic metabolism, also inducing alternative pathways for ATP synthesis and glucose consumption. This study, in providing transcriptomic data on R. aetherivorans exposed to arsenic oxyanions, sheds some light on the plasticity of the rhodococcal response to arsenic stress, which may be important for the improvement of biotechnological applications. IMPORTANCE Members of the genus Rhodococcus show high metabolic versatility and the ability to tolerate/resist numerous stress conditions, including toxic metals. R. aetherivorans BCP1 is able to tolerate high concentrations of the two inorganic arsenic oxyanions, arsenite [As(III)] and arsenate [As(V)]. Despite the fact that BCP1 intracellularly converts As(V) into As(III), this strain responds very differently to the presence of these two oxyanions in terms of cell growth and toxic effects. Indeed, while As(III) is highly toxic, exposure to specific concentrations of As(V) seems to boost cell growth. In this work, we investigated the transcriptomic response, ATP synthesis, glucose consumption, and H2O2 degradation in BCP1 cells exposed to As(III) and As(V), inducing two different growth phenotypes. Our results give an overview of the transcriptional rearrangements associated with the dual response of BCP1 to the two oxyanions and provide novel insights into the energetic metabolism of Rhodococcus under arsenic stress.
Collapse
|
13
|
Dow A, Burger A, Marcantonio E, Prisic S. Multi-Omics Profiling Specifies Involvement of Alternative Ribosomal Proteins in Response to Zinc Limitation in Mycobacterium smegmatis. Front Microbiol 2022; 13:811774. [PMID: 35222334 PMCID: PMC8866557 DOI: 10.3389/fmicb.2022.811774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Zinc ion (Zn2+) is an essential micronutrient and a potent antioxidant. However, Zn2+ is often limited in the environment. Upon Zn2+ limitation, Mycolicibacterium (basonym: Mycobacterium) smegmatis (Msm) undergoes a morphogenesis, which relies on alternative ribosomal proteins (AltRPs); i.e., Zn2+-independent paralogues of Zn2+-dependent ribosomal proteins. However, the underlying physiological changes triggered by Zn2+ limitation and how AltRPs contribute to these changes were not known. In this study, we expand the knowledge of mechanisms utilized by Msm to endure Zn2+ limitation, by comparing the transcriptomes and proteomes of Zn2+-limited and Zn2+-replete Msm. We further compare, corroborate and contrast our results to those reported for the pathogenic mycobacterium, M. tuberculosis, which highlighted conservation of the upregulated oxidative stress response when Zn2+ is limited in both mycobacteria. By comparing the multi-omics analysis of a knockout mutant lacking AltRPs (ΔaltRP) to the Msm wild type strain, we specify the involvement of AltRPs in the response to Zn2+ limitation. Our results show that AltRP expression in Msm does not affect the conserved oxidative stress response during Zn2+ limitation observed in mycobacteria, but AltRPs do significantly impact expression patterns of numerous genes that may be involved in morphogenesis or other adaptive responses. We conclude that AltRPs are not only important as functional replacements for their Zn2+-dependent paralogues; they are also involved in the transcriptomic response to the Zn2+-limited environment.
Collapse
Affiliation(s)
- Allexa Dow
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Andrew Burger
- School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Endrei Marcantonio
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Sladjana Prisic
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
- *Correspondence: Sladjana Prisic,
| |
Collapse
|
14
|
Hakiem OR, Batra JK. Role of HrcA in stress management in Mycobacterium tuberculosis. J Appl Microbiol 2021; 132:3315-3326. [PMID: 34953162 DOI: 10.1111/jam.15428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022]
Abstract
AIM The current study aims to understand the role of HrcA in stress response of M. tuberculosis. METHODS AND RESULTS In this study, using an hrcA knock out mutant of M. tuberculosis it is demonstrated that the heat shock repressor, HrcA is important for countering environmental stresses pathogen faces within the host during the infection process. Also, with scanning electron microscopy it has been shown that HrcA plays a role in maintaining the morphology and cell size of the pathogen as disruption of the hrcA gene resulted in significantly elongated bacilli. Further, heat shock proteins like ClpC1, ClpB, DnaK, GroEL2, GroEL1, DnaJ2 and GroES were detected in the secretome of M. tuberculosis by mass spectrometric analysis. The study also demonstrates a strong humoral response against M. tuberculosis heat shock proteins in H37 Rv infected mice sera. CONCLUSION The study establishes that though hrcA is not an essential gene for M. tuberculosis, it regulates the expression of heat shock proteins during infection, and disruption of hrcA gives a survival advantage to the pathogen during stress conditions. SIGNIFICANCE and Impact of the Study: HrcA plays an important role in maintaining a fine balance of heat shock proteins during infection to give adequate survival advantage and also evade immune detection.
Collapse
Affiliation(s)
- Owais R Hakiem
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.,Current address: Microbiology and Molecular Genetics, University of California, Irvine, 92697, USA
| | - Janendra K Batra
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.,Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New, Delhi, 110062, India
| |
Collapse
|
15
|
Saito K, Mishra S, Warrier T, Cicchetti N, Mi J, Weber E, Jiang X, Roberts J, Gouzy A, Kaplan E, Brown CD, Gold B, Nathan C. Oxidative damage and delayed replication allow viable Mycobacterium tuberculosis to go undetected. Sci Transl Med 2021; 13:eabg2612. [PMID: 34818059 DOI: 10.1126/scitranslmed.abg2612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kohta Saito
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Saurabh Mishra
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Thulasi Warrier
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nico Cicchetti
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jianjie Mi
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Elaina Weber
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexandre Gouzy
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ellen Kaplan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher D Brown
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
16
|
Hosfelt J, Richards A, Zheng M, Adura C, Nelson B, Yang A, Fay A, Resager W, Ueberheide B, Glickman JF, Lupoli TJ. An allosteric inhibitor of bacterial Hsp70 chaperone potentiates antibiotics and mitigates resistance. Cell Chem Biol 2021; 29:854-869.e9. [PMID: 34818532 DOI: 10.1016/j.chembiol.2021.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/20/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022]
Abstract
DnaK is the bacterial homolog of Hsp70, an ATP-dependent chaperone that helps cofactor proteins to catalyze nascent protein folding and salvage misfolded proteins. In the pathogen Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), DnaK and its cofactors are proposed antimycobacterial targets, yet few small-molecule inhibitors or probes exist for these families of proteins. Here, we describe the repurposing of a drug called telaprevir that is able to allosterically inhibit the ATPase activity of DnaK and to prevent chaperone function by mimicking peptide substrates. In mycobacterial cells, telaprevir disrupts DnaK- and cofactor-mediated cellular proteostasis, resulting in enhanced efficacy of aminoglycoside antibiotics and reduced resistance to the frontline TB drug rifampin. Hence, this work contributes to a small but growing collection of protein chaperone inhibitors, and it demonstrates that these molecules disrupt bacterial mechanisms of survival in the presence of different antibiotic classes.
Collapse
Affiliation(s)
- Jordan Hosfelt
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Aweon Richards
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Meng Zheng
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Carolina Adura
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Brock Nelson
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Amy Yang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Insitute, New York, NY 10065, USA
| | - William Resager
- Departments of Biochemistry and Molecular Pharmacology, Neurology and Director Proteomics Lab, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Departments of Biochemistry and Molecular Pharmacology, Neurology and Director Proteomics Lab, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - J Fraser Glickman
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
17
|
Yan S, Zhen J, Li Y, Huang Y, Ai X, Li Y, Stojkoska A, Huang X, Ruan C, Li J, Fan L, Xie J. Mycobacterium Lrp/AsnC family transcriptional factor modulates the arginase pathway as both a sensor and a transcriptional repressor. J Genet Genomics 2021; 48:1020-1031. [PMID: 34696992 DOI: 10.1016/j.jgg.2021.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022]
Abstract
L-Arginine is the precursor of nitric oxide (NO), a host immune effector against intracellular pathogens including Mycobacterium tuberculosis (M. tb). Pathogens including M. tb have evolved various strategies targeting arginine to block the production of NO for better survival and proliferation. However, L-arginine metabolism and regulation in Mycobacterium are poorly understood. Here, we report the identification of M. smegmatis MSMEG_1415 (homolog of M. tb Rv2324) as an arginine-responsive transcriptional factor regulating the arginase pathway. In the absence of L-arginine, MSMEG_1415 acts as a repressor to inhibit the transcription of the roc (for arginine, ornithine catabolism) gene cluster, thereby switching off the arginase pathway. Treatment with L-arginine relieves the transcriptional inhibition of MSMEG_1415 on the roc gene cluster to activate the arginase pathway. Moreover, the L-arginine-MSMEG_1415 complex activates the transcription of the roc gene cluster by recognizing and binding a 15-bp palindrome motif, thereby preventing the excess accumulation of L-arginine in M. smegmatis. Physiologically, MSMEG_1415 confers mycobacteria resistance to starvation and fluoroquinolones exposure, suggestive of its important role in M. smegmatis persistence. The results uncover a unique regulatory mechanism of arginine metabolism in mycobacteria and identify M. tb Rv2324 as an attractive candidate target for the design of drugs against tuberculosis.
Collapse
Affiliation(s)
- Shuangquan Yan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Junfeng Zhen
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuzhu Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yu Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuefeng Ai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yue Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Andrea Stojkoska
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xue Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Cao Ruan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiang Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lin Fan
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai Key Laboratory of Tuberculosis, Shanghai 200433, China.
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
18
|
Krishnamoorthy G, Kaiser P, Constant P, Abu Abed U, Schmid M, Frese CK, Brinkmann V, Daffé M, Kaufmann SHE. Role of Premycofactocin Synthase in Growth, Microaerophilic Adaptation, and Metabolism of Mycobacterium tuberculosis. mBio 2021; 12:e0166521. [PMID: 34311585 PMCID: PMC8406134 DOI: 10.1128/mbio.01665-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/25/2021] [Indexed: 01/14/2023] Open
Abstract
Mycofactocin is a new class of peptide-derived redox cofactors present in a selected group of bacteria including Mycobacterium tuberculosis. Mycofactocin biosynthesis requires at least six genes, including mftD, encoding putative lactate dehydrogenase, which catalyzes the penultimate biosynthetic step. Cellular functions remained unknown until recent reports on the significance of mycofactocin in primary alcohol metabolism. Here, we show that mftD transcript levels were increased in hypoxia-adapted M. tuberculosis; however, mftD functionality was found likely dispensable for l-lactate metabolism. Targeted deletion of mftD reduced the survival of M. tuberculosis in in vitro and in vivo hypoxia models but increased the bacterial growth in glucose-containing broth as well as in the lungs and spleens, albeit modestly, of aerosol-infected C57BL/6J mice. The cause of this growth advantage remains unestablished; however, the mftD-deficient M. tuberculosis strain had reduced NAD(H)/NADP(H) levels and glucose-6-phosphate dehydrogenase activity with no impairment in phthiocerol dimycocerosate lipid synthesis. An ultrastructural examination of parental and mycofactocin biosynthesis gene mutants in M. tuberculosis, M. marinum, and M. smegmatis showed no altered cell morphology and size except the presence of outer membrane-bound fibril-like features only in a mutant subpopulation. A cell surface-protein analysis of M. smegmatis mycofactocin biosynthesis mutants with trypsin revealed differential abundances of a subset of proteins that are known to interact with mycofactocin and their homologs that can enhance protein aggregation or amyloid-like fibrils in riboflavin-starved eukaryotic cells. In sum, phenotypic analyses of the mutant strain implicate the significance of MftD/mycofactocin in M. tuberculosis growth and persistence in its host. IMPORTANCE Characterization of proteins with unknown functions is a critical research priority as the intracellular growth and metabolic state of Mycobacterium tuberculosis, the causative agent of tuberculosis, remain poorly understood. Mycofactocin is a peptide-derived redox cofactor present in almost all mycobacterial species; however, its functional relevance in M. tuberculosis pathogenesis and host survival has never been studied experimentally. In this study, we examine the phenotypes of an M. tuberculosis mutant strain lacking a key mycofactocin biosynthesis gene in in vitro and disease-relevant mouse models. Our results pinpoint the multifaceted role of mycofactocin in M. tuberculosis growth, hypoxia adaptation, glucose metabolism, and redox homeostasis. This evidence strongly implies that mycofactocin could fulfill specialized biochemical functions that increase the survival fitness of mycobacteria within their specific niche.
Collapse
Affiliation(s)
| | - Peggy Kaiser
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Patricia Constant
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ulrike Abu Abed
- Core Facility Microscopy, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Monika Schmid
- Core Facility Proteomics, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Volker Brinkmann
- Core Facility Microscopy, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mamadou Daffé
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
- Hagler Institute for Advanced Study at Texas A&M University, College Station, Texas, USA
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
19
|
Mitochondrial HSP70 Chaperone System-The Influence of Post-Translational Modifications and Involvement in Human Diseases. Int J Mol Sci 2021; 22:ijms22158077. [PMID: 34360841 PMCID: PMC8347752 DOI: 10.3390/ijms22158077] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/25/2023] Open
Abstract
Since their discovery, heat shock proteins (HSPs) have been identified in all domains of life, which demonstrates their importance and conserved functional role in maintaining protein homeostasis. Mitochondria possess several members of the major HSP sub-families that perform essential tasks for keeping the organelle in a fully functional and healthy state. In humans, the mitochondrial HSP70 chaperone system comprises a central molecular chaperone, mtHSP70 or mortalin (HSPA9), which is actively involved in stabilizing and importing nuclear gene products and in refolding mitochondrial precursor proteins, and three co-chaperones (HSP70-escort protein 1-HEP1, tumorous imaginal disc protein 1-TID-1, and Gro-P like protein E-GRPE), which regulate and accelerate its protein folding functions. In this review, we summarize the roles of mitochondrial molecular chaperones with particular focus on the human mtHsp70 and its co-chaperones, whose deregulated expression, mutations, and post-translational modifications are often considered to be the main cause of neurological disorders, genetic diseases, and malignant growth.
Collapse
|
20
|
Khodaparast L, Wu G, Khodaparast L, Schmidt BZ, Rousseau F, Schymkowitz J. Bacterial Protein Homeostasis Disruption as a Therapeutic Intervention. Front Mol Biosci 2021; 8:681855. [PMID: 34150852 PMCID: PMC8206779 DOI: 10.3389/fmolb.2021.681855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cells have evolved a complex molecular network, collectively called the protein homeostasis (proteostasis) network, to produce and maintain proteins in the appropriate conformation, concentration and subcellular localization. Loss of proteostasis leads to a reduction in cell viability, which occurs to some degree during healthy ageing, but is also the root cause of a group of diverse human pathologies. The accumulation of proteins in aberrant conformations and their aggregation into specific beta-rich assemblies are particularly detrimental to cell viability and challenging to the protein homeostasis network. This is especially true for bacteria; it can be argued that the need to adapt to their changing environments and their high protein turnover rates render bacteria particularly vulnerable to the disruption of protein homeostasis in general, as well as protein misfolding and aggregation. Targeting bacterial proteostasis could therefore be an attractive strategy for the development of novel antibacterial therapeutics. This review highlights advances with an antibacterial strategy that is based on deliberately inducing aggregation of target proteins in bacterial cells aiming to induce a lethal collapse of protein homeostasis. The approach exploits the intrinsic aggregation propensity of regions residing in the hydrophobic core regions of the polypeptide sequence of proteins, which are genetically conserved because of their essential role in protein folding and stability. Moreover, the molecules were designed to target multiple proteins, to slow down the build-up of resistance. Although more research is required, results thus far allow the hope that this strategy may one day contribute to the arsenal to combat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Laleh Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Ladan Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Béla Z Schmidt
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| |
Collapse
|
21
|
Abstract
Hsp70 proteins are among the most ubiquitous chaperones and play important roles in maintaining proteostasis and resisting environmental stress. Multiple copies of Hsp70s are widely present in eukaryotic cells with redundant and divergent functions, but they have been less well investigated in prokaryotes. Myxococcus xanthus DK1622 is annotated as having many hsp70 genes. In this study, we performed a bioinformatic analysis of Hsp70 proteins and investigated the functions of six hsp70 genes in DK1622, including two genes that encode proteins with the conserved PRK00290 domain (MXAN_3192 and MXAN_6671) and four genes that encode proteins with the cl35085 or cd10170 domain. We found that only MXAN_3192 is essential for cell survival and heat shock induction. MXAN_3192, compared with the other hsp70 genes, has a high transcriptional level, far exceeding that of any other hsp70 gene, which, however, is not the reason for its essentiality. Deletion of MXAN_6671 (sglK) led to multiple deficiencies in development, social motility, and oxidative resistance, while deletion of each of the other four hsp70 genes decreased sporulation and oxidative resistance. MXAN_3192 or sglK, but not the other genes, restored the growth deficiency of the E. colidnaK mutant. Our results demonstrated that the PRK00290 proteins play a central role in the complex cellular functions of M. xanthus, while the other diverse Hsp70 superfamily homologues probably evolved as helpers with some unknown specific functions. IMPORTANCE Hsp70 proteins are highly conserved chaperones that occur in all kingdoms of life. Multiple copies of Hsp70s are often present in genome-sequenced prokaryotes, especially taxa with complex life cycles, such as myxobacteria. We investigated the functions of six hsp70 genes in Myxococcus xanthus DK1622 and demonstrated that the two Hsp70 proteins with the PRK00290 domain play a central role in complex cellular functions in M. xanthus, while other Hsp70 proteins probably evolved as helpers with some unknown specific functions.
Collapse
|
22
|
Yin Y, Feng X, Yu H, Fay A, Kovach A, Glickman MS, Li H. Structural basis for aggregate dissolution and refolding by the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system. Cell Rep 2021; 35:109166. [PMID: 34038719 PMCID: PMC8209680 DOI: 10.1016/j.celrep.2021.109166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/30/2020] [Accepted: 05/03/2021] [Indexed: 11/30/2022] Open
Abstract
The M. tuberculosis (Mtb) ClpB is a protein disaggregase that helps to rejuvenate the bacterial cell. DnaK is a protein foldase that can function alone, but it can also bind to the ClpB hexamer to physically couple protein disaggregation with protein refolding, although the molecular mechanism is not well understood. Here, we report the cryo-EM analysis of the Mtb ClpB-DnaK bi-chaperone in the presence of ATPγS and a protein substrate. We observe three ClpB conformations in the presence of DnaK, identify a conserved TGIP loop linking the oligonucleotide/oligosaccharide-binding domain and the nucleotide-binding domain that is important for ClpB function, derive the interface between the regulatory middle domain of the ClpB and the DnaK nucleotide-binding domain, and find that DnaK binding stabilizes, but does not bend or tilt, the ClpB middle domain. We propose a model for the synergistic actions of aggregate dissolution and refolding by the Mtb ClpB-DnaK bi-chaperone system. Yin et al. use cryo-EM to analyze the structure of the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system. They find that the Mtb ClpB middle domain does not bend or tilt when interacting with DnaK. They therefore propose that the Mtb DnaK facilitates protein folding following protein disaggregation by ClpB.
Collapse
Affiliation(s)
- Yanting Yin
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Xiang Feng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Hongjun Yu
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Amanda Kovach
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
23
|
The DnaK Chaperone System Buffers the Fitness Cost of Antibiotic Resistance Mutations in Mycobacteria. mBio 2021; 12:mBio.00123-21. [PMID: 33785614 PMCID: PMC8092207 DOI: 10.1128/mbio.00123-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chaperones aid in protein folding and maintenance of protein integrity. In doing so, they have the unique ability to directly stabilize resistance-conferring amino acid substitutions in drug targets and to counter the stress imparted by these substitutions, thus supporting heritable antimicrobial resistance (AMR). We asked whether chaperones support AMR in Mycobacterium smegmatis, a saprophytic model of Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). We show that DnaK associates with many drug targets and that DnaK associates more with AMR-conferring mutant RNA polymerase (RNAP) than with wild-type RNAP. In addition, frequency-of-resistance (FOR) and fitness studies reveal that the DnaK system of chaperones supports AMR in antimicrobial targets in mycobacteria, including RNAP and the ribosome. These findings highlight chaperones as potential targets for drugs to overcome AMR in mycobacteria, including M. tuberculosis, as well as in other pathogens.IMPORTANCE AMR is a global problem, especially for TB. Here, we show that mycobacterial chaperones support AMR in M. smegmatis, a nonpathogenic model of M. tuberculosis, the causative agent of TB. In particular, the mycobacterial DnaK system of chaperones supports AMR in the antimicrobial targets RNA polymerase and the ribosome. This is the first report showing a role for protein chaperones in mediating AMR in mycobacteria. Given the widespread role of protein chaperones in enabling genomic diversity, we anticipate that our findings can be extended to other microbes.
Collapse
|
24
|
Harnagel A, Lopez Quezada L, Park SW, Baranowski C, Kieser K, Jiang X, Roberts J, Vaubourgeix J, Yang A, Nelson B, Fay A, Rubin E, Ehrt S, Nathan C, Lupoli TJ. Nonredundant functions of Mycobacterium tuberculosis chaperones promote survival under stress. Mol Microbiol 2020; 115:272-289. [PMID: 32996193 DOI: 10.1111/mmi.14615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Bacterial chaperones ClpB and DnaK, homologs of the respective eukaryotic heat shock proteins Hsp104 and Hsp70, are essential in the reactivation of toxic protein aggregates that occur during translation or periods of stress. In the pathogen Mycobacterium tuberculosis (Mtb), the protective effect of chaperones extends to survival in the presence of host stresses, such as protein-damaging oxidants. However, we lack a full understanding of the interplay of Hsps and other stress response genes in mycobacteria. Here, we employ genome-wide transposon mutagenesis to identify the genes that support clpB function in Mtb. In addition to validating the role of ClpB in Mtb's response to oxidants, we show that HtpG, a homolog of Hsp90, plays a distinct role from ClpB in the proteotoxic stress response. While loss of neither clpB nor htpG is lethal to the cell, loss of both through genetic depletion or small molecule inhibition impairs recovery after exposure to host-like stresses, especially reactive nitrogen species. Moreover, defects in cells lacking clpB can be complemented by overexpression of other chaperones, demonstrating that Mtb's stress response network depends upon finely tuned chaperone expression levels. These results suggest that inhibition of multiple chaperones could work in concert with host immunity to disable Mtb.
Collapse
Affiliation(s)
- Alexa Harnagel
- Department of Chemistry, New York University, New York, NY, USA
| | - Landys Lopez Quezada
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Catherine Baranowski
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karen Kieser
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Yang
- Department of Chemistry, New York University, New York, NY, USA
| | - Brock Nelson
- Department of Chemistry, New York University, New York, NY, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric Rubin
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
25
|
Abstract
M. tuberculosis infections are responsible for more than 1 million deaths per year. Developing effective strategies to combat this disease requires a greater understanding of M. tuberculosis biology. As in all cells, protein quality control is essential for the viability of M. tuberculosis, which likely faces proteotoxic stress within a host. Here, we identify an M. tuberculosis protein, Ruc, that gains chaperone activity upon oxidation. Ruc represents a previously unrecognized family of redox-regulated chaperones found throughout the bacterial superkingdom. Additionally, we found that oxidized Ruc promotes the protein-folding activity of the essential M. tuberculosis Hsp70 chaperone system. This work contributes to a growing body of evidence that oxidative stress provides a particular strain on cellular protein stability. The bacterial pathogen Mycobacterium tuberculosis is the leading cause of death by an infectious disease among humans. Here, we describe a previously uncharacterized M. tuberculosis protein, Rv0991c, as a molecular chaperone that is activated by oxidation. Rv0991c has homologs in most bacterial lineages and appears to function analogously to the well-characterized Escherichia coli redox-regulated chaperone Hsp33, despite a dissimilar protein sequence. Rv0991c is transcriptionally coregulated with hsp60 and hsp70 chaperone genes in M. tuberculosis, suggesting that Rv0991c functions with these chaperones in maintaining protein quality control. Supporting this hypothesis, we found that, like oxidized Hsp33, oxidized Rv0991c prevents the aggregation of a model unfolded protein in vitro and promotes its refolding by the M. tuberculosis Hsp70 chaperone system. Furthermore, Rv0991c interacts with DnaK and can associate with many other M. tuberculosis proteins. We therefore propose that Rv0991c, which we named “Ruc” (redox-regulated protein with unstructured C terminus), represents a founding member of a new chaperone family that protects M. tuberculosis and other species from proteotoxicity during oxidative stress.
Collapse
|
26
|
Whitaker M, Ruecker N, Hartman T, Klevorn T, Andres J, Kim J, Rhee K, Ehrt S. Two interacting ATPases protect Mycobacterium tuberculosis from glycerol and nitric oxide toxicity. J Bacteriol 2020; 202:JB.00202-20. [PMID: 32482725 PMCID: PMC8404711 DOI: 10.1128/jb.00202-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/28/2020] [Indexed: 01/29/2023] Open
Abstract
The Mycobacterium tuberculosis H37Rv genome has been sequenced and annotated over 20 years ago, yet roughly half of the protein-coding genes still lack a predicted function. We characterized two genes of unknown function, rv3679 and rv3680, for which inconsistent findings regarding their importance for virulence in mice have been reported. We confirmed that a rv3679-80 deletion mutant (Δrv3679-80) was virulent in mice and discovered that Δrv3679-80 suffered from a glycerol-dependent recovery defect on agar plates following mouse infection. Glycerol also exacerbated killing of Δrv3679-80 by nitric oxide. Rv3679-Rv3680 have previously been shown to form a complex with ATPase activity and we demonstrate that the ability of M. tuberculosis to cope with elevated levels of glycerol and nitric oxide requires intact ATP-binding motifs in both Rv3679 and Rv3680. Inactivation of glycerol kinase or Rv2370c, a protein of unknown function, suppressed glycerol mediated toxicity in Δrv3679-80 Glycerol catabolism led to increased intracellular methylglyoxal pools and Δrv3679-80 was hypersusceptible to extracellular methylglyoxal suggesting that glycerol toxicity in Δrv3679-80 is caused by methylglyoxal. Rv3679 and Rv3680 interacted with Rv1509, and Rv3679 had numerous additional interactors including proteins of the type II fatty acid synthase (FASII) pathway and mycolic acid modifying enzymes linking Rv3679 to fatty acid or lipid synthesis. This work provides experimentally determined roles for Rv3679 and Rv3680 and stimulates future research on these and other proteins of unknown function.Importance A better understanding of the pathogenesis of tuberculosis requires a better understanding of gene function in M. tuberculosis This work provides the first functional insight into the Rv3679/Rv3680 ATPase complex. We demonstrate that M. tuberculosis requires this complex and specifically its ATPase activity to resist glycerol and nitric oxide toxicity. We provide evidence that the glycerol-derived metabolite methylglyoxal causes toxicity in the absence of Rv3679/Rv3680. We further show that glycerol-dependent toxicity is reversed when glycerol kinase (GlpK) is inactivated. Our work uncovered other genes of unknown function that interact with Rv3679 and/or Rv3680 genetically or physically, underscoring the importance of understanding uncharacterized genes.
Collapse
Affiliation(s)
- Meredith Whitaker
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Nadine Ruecker
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Travis Hartman
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Thais Klevorn
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Jaclynn Andres
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Jia Kim
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| |
Collapse
|
27
|
Conditional down-regulation of GreA impacts expression of rRNA and transcription factors, affecting Mycobacterium smegmatis survival. Sci Rep 2020; 10:5802. [PMID: 32242064 PMCID: PMC7118132 DOI: 10.1038/s41598-020-62703-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/24/2020] [Indexed: 12/26/2022] Open
Abstract
Gre, one of the conserved transcription factors in bacteria, modulates RNA polymerase (RNAP) activity to ensure processivity and fidelity of RNA synthesis. Gre factors regulate transcription by inducing the intrinsic-endonucleolytic activity of RNAP, allowing the enzyme to resume transcription from the paused and arrested sites. While Escherichia coli and a number of eubacteria harbor GreA and GreB, genus mycobacteria has a single Gre (GreA). To address the importance of the GreA in growth, physiology and gene expression of Mycobacterium smegmatis, we have constructed a conditional knock-down strain of GreA. The GreA depleted strain exhibited slow growth, drastic changes in cell surface phenotype, cell death, and increased susceptibility to front-line anti-tubercular drugs. Transcripts and 2D-gel electrophoresis (2D-PAGE) analysis of the GreA conditional knock-down strain showed altered expression of the genes involved in transcription regulation. Among the genes analysed, expression of RNAP subunits (β, β’ and ω), carD, hupB, lsr2, and nusA were affected to a large extent. Severe reduction in the expression of genes of rRNA operon in the knock-down strain reveal a role for GreA in regulating the core components of the translation process.
Collapse
|
28
|
Heat-shock proteases promote survival of Pseudomonas aeruginosa during growth arrest. Proc Natl Acad Sci U S A 2020; 117:4358-4367. [PMID: 32029587 DOI: 10.1073/pnas.1912082117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
When nutrients in their environment are exhausted, bacterial cells become arrested for growth. During these periods, a primary challenge is maintaining cellular integrity with a reduced capacity for renewal or repair. Here, we show that the heat-shock protease FtsH is generally required for growth arrest survival of Pseudomonas aeruginosa, and that this requirement is independent of a role in regulating lipopolysaccharide synthesis, as has been suggested for Escherichia coli We find that ftsH interacts with diverse genes during growth and overlaps functionally with the other heat-shock protease-encoding genes hslVU, lon, and clpXP to promote survival during growth arrest. Systematic deletion of the heat-shock protease-encoding genes reveals that the proteases function hierarchically during growth arrest, with FtsH and ClpXP having primary, nonredundant roles, and HslVU and Lon deploying a secondary response to aging stress. This hierarchy is partially conserved during growth at high temperature and alkaline pH, suggesting that heat, pH, and growth arrest effectively impose a similar type of proteostatic stress at the cellular level. In support of this inference, heat and growth arrest act synergistically to kill cells, and protein aggregation appears to occur more rapidly in protease mutants during growth arrest and correlates with the onset of cell death. Our findings suggest that protein aggregation is a major driver of aging and cell death during growth arrest, and that coordinated activity of the heat-shock response is required to ensure ongoing protein quality control in the absence of growth.
Collapse
|
29
|
Schramm FD, Schroeder K, Jonas K. Protein aggregation in bacteria. FEMS Microbiol Rev 2020; 44:54-72. [PMID: 31633151 PMCID: PMC7053576 DOI: 10.1093/femsre/fuz026] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Protein aggregation occurs as a consequence of perturbations in protein homeostasis that can be triggered by environmental and cellular stresses. The accumulation of protein aggregates has been associated with aging and other pathologies in eukaryotes, and in bacteria with changes in growth rate, stress resistance and virulence. Numerous past studies, mostly performed in Escherichia coli, have led to a detailed understanding of the functions of the bacterial protein quality control machinery in preventing and reversing protein aggregation. However, more recent research points toward unexpected diversity in how phylogenetically different bacteria utilize components of this machinery to cope with protein aggregation. Furthermore, how persistent protein aggregates localize and are passed on to progeny during cell division and how their presence impacts reproduction and the fitness of bacterial populations remains a controversial field of research. Finally, although protein aggregation is generally seen as a symptom of stress, recent work suggests that aggregation of specific proteins under certain conditions can regulate gene expression and cellular resource allocation. This review discusses recent advances in understanding the consequences of protein aggregation and how this process is dealt with in bacteria, with focus on highlighting the differences and similarities observed between phylogenetically different groups of bacteria.
Collapse
Affiliation(s)
- Frederic D Schramm
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| | - Kristen Schroeder
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| |
Collapse
|
30
|
Kleinwort KJ, Hauck SM, Degroote RL, Scholz AM, Hölzel C, Maertlbauer EP, Deeg C. Peripheral blood bovine lymphocytes and MAP show distinctly different proteome changes and immune pathways in host-pathogen interaction. PeerJ 2019; 7:e8130. [PMID: 31788366 PMCID: PMC6882418 DOI: 10.7717/peerj.8130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is a pathogen causing paratuberculosis in cattle and small ruminants. During the long asymptomatic subclinical stage, high numbers of MAP are excreted and can be transmitted to food for human consumption, where they survive many of the standard techniques of food decontamination. Whether MAP is a human pathogen is currently under debate. The aim of this study was a better understanding of the host-pathogen response by analyzing the interaction of peripheral blood lymphocytes (PBL) from cattle with MAP in their exoproteomes/secretomes to gain more information about the pathogenic mechanisms of MAP. Because in other mycobacterial infections, the immune phenotype correlates with susceptibility, we additionally tested the interaction of MAP with recently detected cattle with a different immune capacity referred as immune deviant (ID) cows. In PBL, different biological pathways were enhanced in response to MAP dependent on the immune phenotype of the host. PBL of control cows activated members of cell activation and chemotaxis of leukocytes pathway as well as IL-12 mediated signaling. In contrast, in ID cows CNOT1 was detected as highly abundant protein, pointing to a different immune response, which could be favorable for MAP. Additionally, MAP exoproteomes differed in either GroEL1 or DnaK abundance, depending on the interacting host immune response. These finding point to an interdependent, tightly regulated response of the bovine immune system to MAP and vise versa.
Collapse
Affiliation(s)
| | - Stefanie M. Hauck
- Research Unit for Protein Science, Helmholtz Zentrum Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Roxane L. Degroote
- Chair of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Armin M. Scholz
- Livestock Center of the Faculty of Veterinary Medicine, LMU Munich, Oberschleissheim, Germany
| | - Christina Hölzel
- Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, CAU Kiel, Kiel, Germany
- Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, LMU Munich, Oberschleissheim, Germany
| | - Erwin P. Maertlbauer
- Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, LMU Munich, Oberschleissheim, Germany
| | - Cornelia Deeg
- Chair of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
31
|
Zhang YW, Zhu JH, Wang ZQ, Wu Y, Meng X, Zheng X, Javid B. HspX promotes the polar localization of mycobacterial protein aggregates. Sci Rep 2019; 9:14571. [PMID: 31601950 PMCID: PMC6787098 DOI: 10.1038/s41598-019-51132-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Misfolding of translated proteins occurs in all domains of life. In most cells, misfolded proteins coalesce in discrete aggregates at distinct cellular locations. In many bacteria, including mycobacteria, protein aggregates are located at the cellular pole. Yet the mechanism by which aggregates are sorted to the mycobacterial pole is not known. Here, we show that in Mycobacterium smegmatis, the small heat shock protein HspX plays a critical role in the polar localization of aggregates of a model fluorescent misfolded protein, GLR103. HspX itself has a polar localization, which is dependent on its N-terminal domain. In a strain deleted for hspX, GLR103 is less liable to aggregation and no longer localizes to the pole, and redirecting HspX to the septum radically disrupts the normal polar localization of GLR103 aggregates. To further investigate the role of HspX in native protein aggregation, we performed semi-quantitative mass-spectrometry of mycobacterial protein aggregates in wild-type, hspX-deleted and hspX-overexpressing strains. We identified a subset of proteins that appeared to be HspX-dependent for aggregate formation. Furthermore, we demonstrate that for validated native protein aggregates, sorting to the cellular pole following proteotoxic stress required HspX. In summary, we have identified the cellular function of HspX in Mycobacterium smegmatis as both a pro-aggregase and polar sortase.
Collapse
|
32
|
Abstract
Mycolic acids are the signature lipid of mycobacteria and constitute an important physical component of the cell wall, a target of mycobacterium-specific antibiotics and a mediator of Mycobacterium tuberculosis pathogenesis. Mycolic acids are synthesized in the cytoplasm and are thought to be transported to the cell wall as a trehalose ester by the MmpL3 transporter, an antibiotic target for M. tuberculosis However, the mechanism by which mycolate synthesis is coupled to transport, and the full MmpL3 transport machinery, is unknown. Here, we identify two new components of the MmpL3 transport machinery in mycobacteria. The protein encoded by MSMEG_0736/Rv0383c is essential for growth of Mycobacterium smegmatis and M. tuberculosis and is anchored to the cytoplasmic membrane, physically interacts with and colocalizes with MmpL3 in growing cells, and is required for trehalose monomycolate (TMM) transport to the cell wall. In light of these findings, we propose MSMEG_0736/Rv0383c be named "TMM transport factor A", TtfA. The protein encoded by MSMEG_5308 also interacts with the MmpL3 complex but is nonessential for growth or TMM transport. However, MSMEG_5308 accumulates with inhibition of MmpL3-mediated TMM transport and stabilizes the MmpL3/TtfA complex, indicating that it may stabilize the transport system during stress. These studies identify two new components of the mycobacterial mycolate transport machinery, an emerging antibiotic target in M. tuberculosis IMPORTANCE The cell envelope of Mycobacterium tuberculosis, the bacterium that causes the disease tuberculosis, is a complex structure composed of abundant lipids and glycolipids, including the signature lipid of these bacteria, mycolic acids. In this study, we identified two new components of the transport machinery that constructs this complex cell wall. These two accessory proteins are in a complex with the MmpL3 transporter. One of these proteins, TtfA, is required for mycolic acid transport and cell viability, whereas the other stabilizes the MmpL3 complex. These studies identify two new components of the essential cell envelope biosynthetic machinery in mycobacteria.
Collapse
|
33
|
Schramm FD, Schroeder K, Alvelid J, Testa I, Jonas K. Growth-driven displacement of protein aggregates along the cell length ensures partitioning to both daughter cells in Caulobacter crescentus. Mol Microbiol 2019; 111:1430-1448. [PMID: 30779464 PMCID: PMC6850343 DOI: 10.1111/mmi.14228] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2019] [Indexed: 12/30/2022]
Abstract
All living cells must cope with protein aggregation, which occurs as a result of experiencing stress. In previously studied bacteria, aggregated protein is collected at the cell poles and is retained throughout consecutive cell divisions only in old pole-inheriting daughter cells, resulting in aggregation-free progeny within a few generations. In this study, we describe the in vivo kinetics of aggregate formation and elimination following heat and antibiotic stress in the asymmetrically dividing bacterium Caulobacter crescentus. Unexpectedly, in this bacterium, protein aggregates form as multiple distributed foci located throughout the cell volume. Time-lapse microscopy revealed that under moderate stress, the majority of these protein aggregates are short-lived and rapidly dissolved by the major chaperone DnaK and the disaggregase ClpB. Severe stress or genetic perturbation of the protein quality control machinery induces the formation of long-lived aggregates. Importantly, the majority of persistent aggregates neither collect at the cell poles nor are they partitioned to only one daughter cell type. Instead, we show that aggregates are distributed to both daughter cells in the same ratio at each division, which is driven by the continuous elongation of the growing mother cell. Therefore, our study has revealed a new pattern of protein aggregate inheritance in bacteria.
Collapse
Affiliation(s)
- Frederic D. Schramm
- Science for Life Laboratory, Department of Molecular BiosciencesThe Wenner‐Gren Institute, Stockholm UniversityStockholm10691Sweden
| | - Kristen Schroeder
- Science for Life Laboratory, Department of Molecular BiosciencesThe Wenner‐Gren Institute, Stockholm UniversityStockholm10691Sweden
| | - Jonatan Alvelid
- Science for Life Laboratory, Department of Applied PhysicsKTH Royal Institute of TechnologyStockholm10044Sweden
| | - Ilaria Testa
- Science for Life Laboratory, Department of Applied PhysicsKTH Royal Institute of TechnologyStockholm10044Sweden
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular BiosciencesThe Wenner‐Gren Institute, Stockholm UniversityStockholm10691Sweden
| |
Collapse
|
34
|
Kim WS, Kim JS, Kim HM, Kwon KW, Eum SY, Shin SJ. Comparison of immunogenicity and vaccine efficacy between heat-shock proteins, HSP70 and GrpE, in the DnaK operon of Mycobacterium tuberculosis. Sci Rep 2018; 8:14411. [PMID: 30258084 PMCID: PMC6158166 DOI: 10.1038/s41598-018-32799-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
Antigens (Ags) in Mycobacterium tuberculosis (Mtb) that are constitutively expressed, overexpressed during growth, essential for survival, and highly conserved may be good vaccine targets if they induce the appropriate anti-Mtb Th1 immune response. In this context, stress response-related antigens of Mtb might serve as attractive targets for vaccine development as they are rapidly expressed and are up-regulated during Mtb infection in vivo. Our group recently demonstrated that GrpE, encoded by rv0351 as a cofactor of heat-shock protein 70 (HSP70) in the DnaK operon, is a novel immune activator that interacts with DCs to generate Th1-biased memory T cells in an antigen-specific manner. In this study, GrpE was evaluated as a subunit vaccine in comparison with the well-known HSP70 against the hyper-virulent Mtb Beijing K-strain. Both HSP70- and GrpE-specific effector/memory T cells expanded to a similar extent as those stimulated with ESAT-6 in the lung and spleen of Mtb-infected mice, but GrpE only produced a similar level of IFN-γ to that produced by ESAT-6 stimulation during the late phase and the early phase of Mtb K infection, indicating that GrpE is highly-well recognised by the host immune system as a T cell antigen. Mice immunised with the GrpE subunit vaccine displayed enhanced antigen-specific IFN-γ and serum IgG2c responses along with antigen-specific effector/memory T cell expansion in the lungs. In addition, GrpE-immunisation markedly induced multifunctional Th1-type CD4+ T cells co-expressing IFN-γ, TNF-α, and IL-2 in the lungs of Mtb K-infected mice, whereas HSP70-immunisation induced mixed Th1/Th2 immune responses. GrpE-immunisation conferred a more significant protective effect than that of HSP70-immunisation in terms of bacterial reduction and improved inflammation, accompanied by the remarkable persistence of GrpE-specific multifunctional CD4+ T cells. These results suggest that GrpE is an excellent vaccine antigen component for the development of a multi-antigenic Mtb subunit vaccine by generating Th1-biased memory T cells with multifunctional capacity, and confers durable protection against the highly virulent Mtb K.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Hong Min Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Yong Eum
- Division of Immunopathology and Cellular Immunology, International Tuberculosis Research Center, Changwon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
35
|
Fluorescence-Based Detection of Natural Transformation in Drug-Resistant Acinetobacter baumannii. J Bacteriol 2018; 200:JB.00181-18. [PMID: 30012729 PMCID: PMC6148472 DOI: 10.1128/jb.00181-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/27/2018] [Indexed: 01/05/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial agent with a high propensity for developing resistance to antibiotics. This ability relies on horizontal gene transfer mechanisms occurring in the Acinetobacter genus, including natural transformation. To study natural transformation in bacteria, the most prevalent method uses selection for the acquisition of an antibiotic resistance marker in a target chromosomal locus by the recipient cell. Most clinical isolates of A. baumannii are resistant to multiple antibiotics, limiting the use of such selection-based methods. Here, we report the development of a phenotypic and selection-free method based on flow cytometry to detect transformation events in multidrug-resistant (MDR) clinical A. baumannii isolates. To this end, we engineered a translational fusion between the abundant and conserved A. baumannii nucleoprotein (HU) and the superfolder green fluorescent protein (sfGFP). The new method was benchmarked against the conventional antibiotic selection-based method. Using this new method, we investigated several parameters affecting transformation efficiencies and identified conditions of transformability one hundred times higher than those previously reported. Using optimized transformation conditions, we probed natural transformation in a set of MDR clinical and nonclinical animal A. baumannii isolates. Regardless of their origin, the majority of the isolates displayed natural transformability, indicative of a conserved trait in the species. Overall, this new method and optimized protocol will greatly facilitate the study of natural transformation in the opportunistic pathogen A. baumannii IMPORTANCE Antibiotic resistance is a pressing global health concern with the rise of multiple and panresistant pathogens. The rapid and unfailing resistance to multiple antibiotics of the nosocomial agent Acinetobacter baumannii, notably to carbapenems, prompt to understand the mechanisms behind acquisition of new antibiotic resistance genes. Natural transformation, one of the horizontal gene transfer mechanisms in bacteria, was only recently described in A. baumannii and could explain its ability to acquire resistance genes. We developed a reliable method to probe and study natural transformation mechanism in A. baumannii More broadly, this new method based on flow cytometry will allow experimental detection and quantification of horizontal gene transfer events in multidrug-resistant A. baumannii.
Collapse
|
36
|
Lupoli TJ, Vaubourgeix J, Burns-Huang K, Gold B. Targeting the Proteostasis Network for Mycobacterial Drug Discovery. ACS Infect Dis 2018; 4:478-498. [PMID: 29465983 PMCID: PMC5902792 DOI: 10.1021/acsinfecdis.7b00231] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the world's deadliest infectious diseases and urgently requires new antibiotics to treat drug-resistant strains and to decrease the duration of therapy. During infection, Mtb encounters numerous stresses associated with host immunity, including hypoxia, reactive oxygen and nitrogen species, mild acidity, nutrient starvation, and metal sequestration and intoxication. The Mtb proteostasis network, composed of chaperones, proteases, and a eukaryotic-like proteasome, provides protection from stresses and chemistries of host immunity by maintaining the integrity of the mycobacterial proteome. In this Review, we explore the proteostasis network as a noncanonical target for antibacterial drug discovery.
Collapse
Affiliation(s)
- Tania J. Lupoli
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Kristin Burns-Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| |
Collapse
|
37
|
Puffal J, García-Heredia A, Rahlwes KC, Siegrist MS, Morita YS. Spatial control of cell envelope biosynthesis in mycobacteria. Pathog Dis 2018; 76:4953754. [DOI: 10.1093/femspd/fty027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/25/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Julia Puffal
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Alam García-Heredia
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
38
|
Chuang YM, Pinn ML, Karakousis PC, Hung CF. Intranasal Immunization with DnaK Protein Induces Protective Mucosal Immunity against Tuberculosis in CD4-Depleted Mice. Front Cell Infect Microbiol 2018; 8:31. [PMID: 29473022 PMCID: PMC5809501 DOI: 10.3389/fcimb.2018.00031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/23/2018] [Indexed: 01/21/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) remains a global health challenge due to the limited efficacy of the Mtb vaccine in current use, Bacillus Calmette-Guérin (BCG). To date, there is no available vaccine for immunocompromised individuals. Thus, there is an urgent need to develop a new vaccine candidate which can induce mucosal immunity in hosts with different immune statuses. DnaK (HSP70) has been shown to induce protective immunity against Mtb infection when administered by DNA vaccine; however, the protection is inferior to that induced by the BCG vaccine. In our study, we vaccinated C57BL/6J mice with DnaK protein alone. Subcutaneous or intranasal vaccination with DnaK generated IFNγ-secreting CD4+ T cells in the spleen, but only intranasal vaccination generated IL-17-releasing CD4+ T cells in the lungs, even when circulating CD4+ T cells were diminished. Furthermore, intranasal vaccination with DnaK generated tissue resident CD4+ T cells in the lungs. Vaccination with DnaK alone resulted in protective immunity comparable to BCG vaccination against tuberculosis in mice. Our results demonstrate that intranasal vaccination with DnaK can generate mucosal immunity in immunocompromised or immunocompetent mice and DnaK vaccination can generate protection against Mtb similar to BCG, underscoring its potential utility as an Mtb vaccine candidate in humans.
Collapse
Affiliation(s)
- Yu-Min Chuang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael L Pinn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
39
|
Uhl L, Dumont A, Dukan S. A passive physical model for DnaK chaperoning. Phys Biol 2018; 15:026003. [PMID: 28980528 DOI: 10.1088/1478-3975/aa9130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Almost all living organisms use protein chaperones with a view to preventing proteins from misfolding or aggregation either spontaneously or during cellular stress. This work uses a reaction-diffusion stochastic model to describe the dynamic localization of the Hsp70 chaperone DnaK in Escherichia coli cells during transient proteotoxic collapse characterized by the accumulation of insoluble proteins. In the model, misfolded ('abnormal') proteins are produced during alcoholic stress and have the propensity to aggregate with a polymerization-like kinetics. When aggregates diffuse more slowly they grow larger. According to Michaelis-Menten-type kinetics, DnaK has the propensity to bind with misfolded proteins or aggregates in order to catalyse refolding. To match experimental fluorescence microscopy data showing clusters of DnaK-GFP localized in multiple foci, the model includes spatial zones with local reduced diffusion rates to generate spontaneous assemblies of DnaK called 'foci'. Numerical simulations of our model succeed in reproducing the kinetics of DnaK localization experimentally observed. DnaK starts from foci, moves to large aggregates during acute stress, resolves those aggregates during recovery and finally returns to its initial punctate localization pattern. Finally, we compare real biological events with hypothetical repartitions of the protein aggregates or DnaK. We then notice that DnaK action is more efficient on protein aggregates than on protein homogeneously distributed.
Collapse
Affiliation(s)
- Lionel Uhl
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS, UMR 7283, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | | | | |
Collapse
|
40
|
Schramm FD, Heinrich K, Thüring M, Bernhardt J, Jonas K. An essential regulatory function of the DnaK chaperone dictates the decision between proliferation and maintenance in Caulobacter crescentus. PLoS Genet 2017; 13:e1007148. [PMID: 29281627 PMCID: PMC5760092 DOI: 10.1371/journal.pgen.1007148] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/09/2018] [Accepted: 12/11/2017] [Indexed: 11/19/2022] Open
Abstract
Hsp70 chaperones are well known for their important functions in maintaining protein homeostasis during thermal stress conditions. In many bacteria the Hsp70 homolog DnaK is also required for growth in the absence of stress. The molecular reasons underlying Hsp70 essentiality remain in most cases unclear. Here, we demonstrate that DnaK is essential in the α-proteobacterium Caulobacter crescentus due to its regulatory function in gene expression. Using a suppressor screen we identified mutations that allow growth in the absence of DnaK. All mutations reduced the activity of the heat shock sigma factor σ32, demonstrating that the DnaK-dependent inactivation of σ32 is a growth requirement. While most mutations occurred in the rpoH gene encoding σ32, we also identified mutations affecting σ32 activity or stability in trans, providing important new insight into the regulatory mechanisms controlling σ32 activity. Most notably, we describe a mutation in the ATP dependent protease HslUV that induces rapid degradation of σ32, and a mutation leading to increased levels of the house keeping σ70 that outcompete σ32 for binding to the RNA polymerase. We demonstrate that σ32 inhibits growth and that its unrestrained activity leads to an extensive reprogramming of global gene expression, resulting in upregulation of repair and maintenance functions and downregulation of the growth-promoting functions of protein translation, DNA replication and certain metabolic processes. While this re-allocation from proliferative to maintenance functions could provide an advantage during heat stress, it leads to growth defects under favorable conditions. We conclude that Caulobacter has co-opted the DnaK chaperone system as an essential regulator of gene expression under conditions when its folding activity is dispensable. Molecular chaperones of the Hsp70 family belong to the most conserved cellular machineries throughout the tree of life. These proteins play key roles in maintaining protein homeostasis, especially under heat stress conditions. In diverse bacteria the Hsp70 homolog DnaK is essential for growth even in the absence of stress. However, the molecular mechanisms underlying the essential nature of DnaK have in most cases not been studied. We found in the α-proteobacterium Caulobacter crescentus that the function of DnaK as a folding catalyst is dispensable in the absence of stress. Instead, its sole essential function under such conditions is to inhibit the activity of the heat shock sigma factor σ32. Our findings highlight that some bacteria have co-opted chaperones as essential regulators of gene expression under conditions when their folding activity is not required. Furthermore, our work illustrates that essential genes can perform different essential functions in discrete growth conditions.
Collapse
Affiliation(s)
- Frederic D. Schramm
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Kristina Heinrich
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Marietta Thüring
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Jörg Bernhardt
- Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
41
|
Abstract
The interaction between the host and the pathogen is extremely complex and is affected by anatomical, physiological, and immunological diversity in the microenvironments, leading to phenotypic diversity of the pathogen. Phenotypic heterogeneity, defined as nongenetic variation observed in individual members of a clonal population, can have beneficial consequences especially in fluctuating stressful environmental conditions. This is all the more relevant in infections caused by Mycobacterium tuberculosis wherein the pathogen is able to survive and often establish a lifelong persistent infection in the host. Recent studies in tuberculosis patients and in animal models have documented the heterogeneous and diverging trajectories of individual lesions within a single host. Since the fate of the individual lesions appears to be determined by the local tissue environment rather than systemic response of the host, studying this heterogeneity is very relevant to ensure better control and complete eradication of the pathogen from individual lesions. The heterogeneous microenvironments greatly enhance M. tuberculosis heterogeneity influencing the growth rates, metabolic potential, stress responses, drug susceptibility, and eventual lesion resolution. Single-cell approaches such as time-lapse microscopy using microfluidic devices allow us to address cell-to-cell variations that are often lost in population-average measurements. In this review, we focus on some of the factors that could be considered as drivers of phenotypic heterogeneity in M. tuberculosis as well as highlight some of the techniques that are useful in addressing this issue.
Collapse
|
42
|
Zheng J, Chen L, Liu L, Li H, Liu B, Zheng D, Liu T, Dong J, Sun L, Zhu Y, Yang J, Zhang X, Jin Q. Proteogenomic Analysis and Discovery of Immune Antigens in Mycobacterium vaccae. Mol Cell Proteomics 2017; 16:1578-1590. [PMID: 28733429 DOI: 10.1074/mcp.m116.065813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 07/05/2017] [Indexed: 11/06/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide, especially in developing countries. Neonatal BCG vaccination occurs in various regions, but the level of protection varies in different populations. Recently, Mycobacterium vaccae is found to be an immunomodulating therapeutic agent that could confer a significant level of protection against TB. It is the only vaccine in a phase III trial from WHO to assess its efficacy and safety in preventing TB disease in people with latent TB infection. However, the mechanism of immunotherapy of M. vaccae remains poorly understood. In this study, the full genome of M. vaccae was obtained by next-generation sequencing technology, and a proteogenomic approach was successfully applied to further perform genome annotation using high resolution and high accuracy MS data. A total of 3,387 proteins (22,508 unique peptides) were identified, and 581 proteins annotated as hypothetical proteins in the genome database were confirmed. Furthermore, 38 novel protein products not annotated at the genome level were detected and validated. Additionally, the translational start sites of 445 proteins were confirmed, and 98 proteins were validated through extension of their translational start sites based on N terminus-derived peptides. The physicochemical characteristics of the identified proteins were determined. Thirty-five immunogenic proteins of M. vaccae were identified by immunoproteomic analysis, and 20 of them were selected to be expressed and validated by Western blot for immunoreactivity to serum from patients infected with M. tuberculosis The results revealed that eight of them showed strong specific reactive signals on the immunoblots. Furthermore, cellular immune response was further examined and one protein displayed a higher cellular immune level in pulmonary TB patients. Twelve identified immunogenic proteins have orthologous in H37Rv and BCG. This is the first study to obtain the full genome and annotation of M. vaccae using a proteogenomic approach, and some immunogenic proteins that were validated by immunoproteomic analysis could contribute to the understanding of the mechanism of M. vaccae immunotherapy.
Collapse
Affiliation(s)
- Jianhua Zheng
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lihong Chen
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liguo Liu
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haifeng Li
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dandan Zheng
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Liu
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Dong
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lilian Sun
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yafang Zhu
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Yang
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaobing Zhang
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Jin
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Mishra S, Shukla P, Bhaskar A, Anand K, Baloni P, Jha RK, Mohan A, Rajmani RS, Nagaraja V, Chandra N, Singh A. Efficacy of β-lactam/β-lactamase inhibitor combination is linked to WhiB4-mediated changes in redox physiology of Mycobacterium tuberculosis. eLife 2017; 6:e25624. [PMID: 28548640 PMCID: PMC5473688 DOI: 10.7554/elife.25624] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/24/2017] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) expresses a broad-spectrum β-lactamase (BlaC) that mediates resistance to one of the highly effective antibacterials, β-lactams. Nonetheless, β-lactams showed mycobactericidal activity in combination with β-lactamase inhibitor, clavulanate (Clav). However, the mechanistic aspects of how Mtb responds to β-lactams such as Amoxicillin in combination with Clav (referred as Augmentin [AG]) are not clear. Here, we identified cytoplasmic redox potential and intracellular redox sensor, WhiB4, as key determinants of mycobacterial resistance against AG. Using computer-based, biochemical, redox-biosensor, and genetic strategies, we uncovered a functional linkage between specific determinants of β-lactam resistance (e.g. β-lactamase) and redox potential in Mtb. We also describe the role of WhiB4 in coordinating the activity of β-lactamase in a redox-dependent manner to tolerate AG. Disruption of WhiB4 enhances AG tolerance, whereas overexpression potentiates AG activity against drug-resistant Mtb. Our findings suggest that AG can be exploited to diminish drug-resistance in Mtb through redox-based interventions.
Collapse
Affiliation(s)
- Saurabh Mishra
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Prashant Shukla
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Kushi Anand
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Priyanka Baloni
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rajiv Kumar Jha
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Abhilash Mohan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Raju S Rajmani
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Valakunja Nagaraja
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amit Singh
- Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
44
|
Loss-of-Function Mutations in HspR Rescue the Growth Defect of a Mycobacterium tuberculosis Proteasome Accessory Factor E ( pafE) Mutant. J Bacteriol 2017; 199:JB.00850-16. [PMID: 28096448 DOI: 10.1128/jb.00850-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/12/2017] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis uses a proteasome to degrade proteins by both ATP-dependent and -independent pathways. While much has been learned about ATP-dependent degradation, relatively little is understood about the ATP-independent pathway, which is controlled by Mycobacterium tuberculosisproteasome accessory factor E (PafE). Recently, we found that a Mycobacterium tuberculosispafE mutant has slowed growth in vitro and is sensitive to killing by heat stress. However, we did not know if these phenotypes were caused by an inability to degrade the PafE-proteasome substrate HspR (heat shock protein repressor), an inability to degrade any damaged or misfolded proteins, or a defect in another protein quality control pathway. To address this question, we characterized pafE suppressor mutants that grew similarly to pafE+ bacteria under normal culture conditions. All but one suppressor mutant analyzed contained mutations that inactivated HspR function, demonstrating that the slowed growth and heat shock sensitivity of a pafE mutant were caused primarily by the inability of the proteasome to degrade HspR.IMPORTANCEMycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required for virulence. We recently discovered a proteasome cofactor, PafE, which is required for the normal growth, heat shock resistance, and full virulence of M. tuberculosis In this study, we demonstrate that PafE influences this phenotype primarily by promoting the expression of protein chaperone genes that are necessary for surviving proteotoxic stress.
Collapse
|
45
|
Gold B, Nathan C. Targeting Phenotypically Tolerant Mycobacterium tuberculosis. Microbiol Spectr 2017; 5:10.1128/microbiolspec.TBTB2-0031-2016. [PMID: 28233509 PMCID: PMC5367488 DOI: 10.1128/microbiolspec.tbtb2-0031-2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/08/2023] Open
Abstract
While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in clinical settings. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of posttreatment relapse. Some promising drugs to treat tuberculosis, such as rifampin and bedaquiline, only kill nonreplicating M. tuberculosisin vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high-throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores.
Collapse
Affiliation(s)
- Ben Gold
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, 10065
| | - Carl Nathan
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, 10065
| |
Collapse
|
46
|
Bajaj RA, Arbing MA, Shin A, Cascio D, Miallau L. Crystal structure of the toxin Msmeg_6760, the structural homolog of Mycobacterium tuberculosis Rv2035, a novel type II toxin involved in the hypoxic response. Acta Crystallogr F Struct Biol Commun 2016; 72:863-869. [PMID: 27917833 PMCID: PMC5137462 DOI: 10.1107/s2053230x16017957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/08/2016] [Indexed: 11/10/2022] Open
Abstract
The structure of Msmeg_6760, a protein of unknown function, has been determined. Biochemical and bioinformatics analyses determined that Msmeg_6760 interacts with a protein encoded in the same operon, Msmeg_6762, and predicted that the operon is a toxin-antitoxin (TA) system. Structural comparison of Msmeg_6760 with proteins of known function suggests that Msmeg_6760 binds a hydrophobic ligand in a buried cavity lined by large hydrophobic residues. Access to this cavity could be controlled by a gate-latch mechanism. The function of the Msmeg_6760 toxin is unknown, but structure-based predictions revealed that Msmeg_6760 and Msmeg_6762 are homologous to Rv2034 and Rv2035, a predicted novel TA system involved in Mycobacterium tuberculosis latency during macrophage infection. The Msmeg_6760 toxin fold has not been previously described for bacterial toxins and its unique structural features suggest that toxin activation is likely to be mediated by a novel mechanism.
Collapse
Affiliation(s)
- R. Alexandra Bajaj
- UCLA–DOE Institute and Departments of Biological Chemistry and Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, USA
| | - Mark A. Arbing
- UCLA–DOE Institute and Departments of Biological Chemistry and Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, USA
| | - Annie Shin
- UCLA–DOE Institute and Departments of Biological Chemistry and Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, USA
| | - Duilio Cascio
- UCLA–DOE Institute and Departments of Biological Chemistry and Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, USA
| | - Linda Miallau
- UCLA–DOE Institute and Departments of Biological Chemistry and Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, USA
| |
Collapse
|
47
|
Reconstitution of a Mycobacterium tuberculosis proteostasis network highlights essential cofactor interactions with chaperone DnaK. Proc Natl Acad Sci U S A 2016; 113:E7947-E7956. [PMID: 27872278 DOI: 10.1073/pnas.1617644113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During host infection, Mycobacterium tuberculosis (Mtb) encounters several types of stress that impair protein integrity, including reactive oxygen and nitrogen species and chemotherapy. The resulting protein aggregates can be resolved or degraded by molecular machinery conserved from bacteria to eukaryotes. Eukaryotic Hsp104/Hsp70 and their bacterial homologs ClpB/DnaK are ATP-powered chaperones that restore toxic protein aggregates to a native folded state. DnaK is essential in Mycobacterium smegmatis, and ClpB is involved in asymmetrically distributing damaged proteins during cell division as a mechanism of survival in Mtb, commending both proteins as potential drug targets. However, their molecular partners in protein reactivation have not been characterized in mycobacteria. Here, we reconstituted the activities of the Mtb ClpB/DnaK bichaperone system with the cofactors DnaJ1, DnaJ2, and GrpE and the small heat shock protein Hsp20. We found that DnaJ1 and DnaJ2 activate the ATPase activity of DnaK differently. A point mutation in the highly conserved HPD motif of the DnaJ proteins abrogates their ability to activate DnaK, although the DnaJ2 mutant still binds to DnaK. The purified Mtb ClpB/DnaK system reactivated a heat-denatured model substrate, but the DnaJ HPD mutants inhibited the reaction. Finally, either DnaJ1 or DnaJ2 is required for mycobacterial viability, as is the DnaK-activating activity of a DnaJ protein. These studies lay the groundwork for strategies to target essential chaperone-protein interactions in Mtb, the leading cause of death from a bacterial infection.
Collapse
|
48
|
Sharma AK, Arora D, Singh LK, Gangwal A, Sajid A, Molle V, Singh Y, Nandicoori VK. Serine/Threonine Protein Phosphatase PstP of Mycobacterium tuberculosis Is Necessary for Accurate Cell Division and Survival of Pathogen. J Biol Chem 2016; 291:24215-24230. [PMID: 27758870 DOI: 10.1074/jbc.m116.754531] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 02/06/2023] Open
Abstract
Protein phosphatases play vital roles in phosphorylation-mediated cellular signaling. Although there are 11 serine/threonine protein kinases in Mycobacterium tuberculosis, only one serine/threonine phosphatase, PstP, has been identified. Although PstP has been biochemically characterized and multiple in vitro substrates have been identified, its physiological role has not yet been elucidated. In this study, we have investigated the impact of PstP on cell growth and survival of the pathogen in the host. Overexpression of PstP led to elongated cells and partially compromised survival. We find that depletion of PstP is detrimental to cell survival, eventually leading to cell death. PstP depletion results in elongated multiseptate cells, suggesting a role for PstP in regulating cell division events. Complementation experiments performed with PstP deletion mutants revealed marginally compromised survival, suggesting that all of the domains, including the extracellular domain, are necessary for complete rescue. On the other hand, the catalytic activity of PstP is absolutely essential for the in vitro growth. Mice infection experiments establish a definitive role for PstP in pathogen survival within the host. Depletion of PstP from established infections causes pathogen clearance, indicating that the continued presence of PstP is necessary for pathogen survival. Taken together, our data suggest an important role for PstP in establishing and maintaining infection, possibly via the modulation of cell division events.
Collapse
Affiliation(s)
- Aditya K Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India.,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB, Delhi-110025, India
| | - Divya Arora
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Lalit K Singh
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Aakriti Gangwal
- the Department of Zoology, University of Delhi Delhi-110007, India
| | - Andaleeb Sajid
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Virginie Molle
- the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, CNRS, UMR 5235, Montpellier, France, and
| | - Yogendra Singh
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India, .,the Department of Zoology, University of Delhi Delhi-110007, India
| | - Vinay Kumar Nandicoori
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India,
| |
Collapse
|
49
|
Stressed mycobacteria use the chaperone ClpB to sequester irreversibly oxidized proteins asymmetrically within and between cells. Cell Host Microbe 2015; 17:178-90. [PMID: 25620549 DOI: 10.1016/j.chom.2014.12.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/10/2014] [Accepted: 12/04/2014] [Indexed: 11/23/2022]
Abstract
Mycobacterium tuberculosis (Mtb) defends itself against host immunity and chemotherapy at several levels, including the repair or degradation of irreversibly oxidized proteins (IOPs). To investigate how Mtb deals with IOPs that can neither be repaired nor degraded, we used new chemical and biochemical probes and improved image analysis algorithms for time-lapse microscopy to reveal a defense against stationary phase stress, oxidants, and antibiotics--the sequestration of IOPs into aggregates in association with the chaperone ClpB, followed by the asymmetric distribution of aggregates within bacteria and between their progeny. Progeny born with minimal IOPs grew faster and better survived a subsequent antibiotic stress than their IOP-burdened sibs. ClpB-deficient Mtb had a marked recovery defect from stationary phase or antibiotic exposure and survived poorly in mice. Treatment of tuberculosis might be assisted by drugs that cripple the pathway by which Mtb buffers, sequesters, and asymmetrically distributes IOPs.
Collapse
|