1
|
Rodrigues AC, Heng YJ, Slack FJ. Extracellular vesicle-encapsulated miR-30c-5p reduces aging-related liver fibrosis. Aging Cell 2024:e14310. [PMID: 39269881 DOI: 10.1111/acel.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 09/15/2024] Open
Abstract
Aging is associated with decreased health span, and despite the recent advances made in understanding the mechanisms of aging, no antiaging drug has been approved for therapy. Therefore, strategies to promote a healthy life in aging are desirable. Previous work has shown that chronic treatment with extracellular vesicles (EVs) from young mice prolongs lifespan in old mice, but the mechanism of action of this effect on liver metabolism is not known. Here we investigated the role of treatment with EVs derived from young sedentary (EV-C) or exercised (EV-EX) mice in the metabolism of old mice and aimed to identify key youthful-associated microRNA (miRNA) cargos that could promote healthy liver function. We found that aged mice treated with either EV-C or EV-EX had higher insulin sensitivity, higher locomotor activity resulting in longer distance traveled in the cage, and a lower respiratory exchange ratio compared to mice treated with EVs from aged mice (EV-A). In the liver, treatment with young-derived EVs reduced aging-induced liver fibrosis. We identified miR-30c in the EVs as a possible youth-associated miRNA as its level was higher in circulating EVs of young mice. Treatment of aged mice with EVs transfected with miR-30c mimic reduced stellate cell activation in the liver and reduced fibrosis compared to EV-negative control by targeting Foxo3. Our results suggest that by delivering juvenile EVs to old mice, we can improve their liver health. Moreover, we identified miR-30c as a candidate for antiaging liver therapy.
Collapse
Affiliation(s)
- Alice C Rodrigues
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pharmacology, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Frank J Slack
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Han Y, Li W, zhi R, Ma G, Gao A, Wu K, Sun H, Zhao D, Yang Y, Liu F, Gu F, Guo X, Dong J, Li S, Fu L. MiR-30c suppresses the proliferation, metastasis and polarity reversal of tumor cell clusters by targeting MTDH in invasive micropapillary carcinoma of the breast. Heliyon 2024; 10:e33938. [PMID: 39071710 PMCID: PMC11279262 DOI: 10.1016/j.heliyon.2024.e33938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose Invasive micropapillary carcinoma (IMPC) of the breast has a high propensity for lymphovascular invasion and axillary lymph node metastasis and displays an 'inside-out' growth pattern, but the molecular mechanism of invasion, metastasis and cell polarity reversal in IMPC is unclear. Methods and Patients: Cell growth curves, tumor sphere formation assays, transwell assays, mouse xenograft model and immunofluorescence were evaluated to investigate the effects of miR-30c and MTDH. Dual luciferase reporter assays was performed to confirm that the MTDH (metadherin) 3'UTR bound to miR-30c. MiRNA in situ hybridization (ISH) and immunohistochemistry (IHC) were carried out on IMPC patient tissues for miR-30c and MTDH expression, respectively. Results We found miR-30c as a tumor suppressor gene in cell proliferation, metastasis and polarity reversal of IMPC. Overexpression of miR-30c inhibited cell growth and metastasis in vitro and in vivo. MiR-30c could directly target the MTDH 3'UTR. MiR-30c overexpression inhibited breast cancer cell proliferation, invasion and metastasis by targeting MTDH. Moreover, miR-30c/MTDH axis could also regulate cell polarity reversal of IMPC. By ISH and IHC analyses, miR-30c and MTDH were significantly correlated with tumor size, lymph nodule status and tumor grade, the 'inside-out' growth pattern, overall survival (OS) and disease-free survival (DFS) in IMPC patients. Conclusions Overall, miR-30c/MTDH axis was responsible for tumor proliferation, metastasis and polarity reversal. It may provide promising therapeutic targets and prognostic biomarkers for patients with IMPC.
Collapse
Affiliation(s)
- Yunwei Han
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Weidong Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Renyong zhi
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Gui Ma
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Southern University of Science and Technology, School of Medicine, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, China
- Emory Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365C Clifton Road, Atlanta, 30322, Georgia, USA
| | - Ang Gao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Southern University of Science and Technology, School of Medicine, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, China
- Emory Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365C Clifton Road, Atlanta, 30322, Georgia, USA
| | - Kailiang Wu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Hui Sun
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Dan Zhao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Southern University of Science and Technology, School of Medicine, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, China
- Emory Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365C Clifton Road, Atlanta, 30322, Georgia, USA
| | - Yiling Yang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Fangfang Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Feng Gu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Xiaojing Guo
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Jintang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Southern University of Science and Technology, School of Medicine, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, China
- Emory Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365C Clifton Road, Atlanta, 30322, Georgia, USA
| | - Shuai Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
3
|
Mohammad F, Pandith AA, Rasool SUA, Guru FR, Qasim I, Geelani S, Nisar S, Baba SM, Ganie FA, Kouser S, Rasool J. Significance and implications of FHIT gene expression and promoter hypermethylation in acute lymphoblastic leukemia (ALL). Discov Oncol 2024; 15:108. [PMID: 38587694 PMCID: PMC11001825 DOI: 10.1007/s12672-024-00971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Fragile histidine triad (FHIT) has been documented to play a vital role in various cancers including acute lymphoblastic leukemia (ALL). Keeping in view the plausible role of FHIT gene, we aimed to examine DNA promoter hypermethylation and mRNA expression in ALL cases in Kashmir (North India). METHODS A total of 66 cases of ALL were analyzed for FHIT mRNA expression and promoter methylation by qRT-PCR and Methylation Specific-PCR (MS-PCR) respectively. RESULTS FHIT mRNA expression showed significantly decreased expression in ALL cases with mean fold change of 9.24 ± 5.44 as compared to healthy controls (p = 0.01). The pattern of FHIT deregulation in ALL cases differed significantly between decreased and increased expression (p < 0.0001). A threefold decreased expression was observed in 75% of ALL cases than healthy controls (- 3.58 ± 2.32). ALL patients with FHIT gene promoter hypermethylation presented significantly higher in 80% (53/66) of cases (p = 0.0005). The association of FHIT gene hypermethylation and its subsequent expression showed FHIT mRNA expression as significantly lower in ALL cases with hypermethylation (p = 0.0008). B-ALL cases exhibited a highly significant association between the methylation pattern and its mRNA expression (p = 0.000). In low range WBC group, a significant association was found between increased expression (26%) of the cases and methylated (4%)/unmethylated group 86% (p = 0.0006). CONCLUSION The present study conclude that FHIT gene hypermethylation and its altered expression may be linked in the pathogenesis of ALL and provide an evidence for the role of FHIT in the development of ALL.
Collapse
Affiliation(s)
- Fozia Mohammad
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Arshad A Pandith
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India.
| | - Shayaq Ul Abeer Rasool
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
| | - Faisal R Guru
- Department of Medical Oncology, SKIMS, Srinagar, J&K,, 190011, India
| | - Iqbal Qasim
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
| | - Sajad Geelani
- Department of Hematology, SKIMS, Srinagar, 190011, J&K, India
| | - Syed Nisar
- Department of Medical Oncology, SKIMS, Srinagar, J&K,, 190011, India
| | - Shahid M Baba
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
- Department of Urology, SKIMS, Srinagar, 190011, J&K, India
| | | | - Safiya Kouser
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
| | - Javid Rasool
- Department of Hematology, SKIMS, Srinagar, 190011, J&K, India
| |
Collapse
|
4
|
Ma Q, Ye S, Liu H, Zhao Y, Mao Y, Zhang W. HMGA2 promotes cancer metastasis by regulating epithelial-mesenchymal transition. Front Oncol 2024; 14:1320887. [PMID: 38361784 PMCID: PMC10867147 DOI: 10.3389/fonc.2024.1320887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex physiological process that transforms polarized epithelial cells into moving mesenchymal cells. Dysfunction of EMT promotes the invasion and metastasis of cancer. The architectural transcription factor high mobility group AT-hook 2 (HMGA2) is highly overexpressed in various types of cancer (e.g., colorectal cancer, liver cancer, breast cancer, uterine leiomyomas) and significantly correlated with poor survival rates. Evidence indicated that HMGA2 overexpression markedly decreased the expression of epithelial marker E-cadherin (CDH1) and increased that of vimentin (VIM), Snail, N-cadherin (CDH2), and zinc finger E-box binding homeobox 1 (ZEB1) by targeting the transforming growth factor beta/SMAD (TGFβ/SMAD), mitogen-activated protein kinase (MAPK), and WNT/beta-catenin (WNT/β-catenin) signaling pathways. Furthermore, a new class of non-coding RNAs (miRNAs, circular RNAs, and long non-coding RNAs) plays an essential role in the process of HMGA2-induced metastasis and invasion of cancer by accelerating the EMT process. In this review, we discuss alterations in the expression of HMGA2 in various types of cancer. Furthermore, we highlight the role of HMGA2-induced EMT in promoting tumor growth, migration, and invasion. More importantly, we discuss extensively the mechanism through which HMGA2 regulates the EMT process and invasion in most cancers, including signaling pathways and the interacting RNA signaling axis. Thus, the elucidation of molecular mechanisms that underlie the effects of HMGA2 on cancer invasion and patient survival by mediating EMT may offer new therapeutic methods for preventing cancer progression.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yan Mao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Suzuki T, Sakai S, Ota K, Yoshida M, Uchida C, Niida H, Suda T, Kitagawa M, Ohhata T. Expression of Tumor Suppressor FHIT Is Regulated by the LINC00173-SNAIL Axis in Human Lung Adenocarcinoma. Int J Mol Sci 2023; 24:17011. [PMID: 38069335 PMCID: PMC10707390 DOI: 10.3390/ijms242317011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play a critical role in a variety of human diseases such as cancer. Here, to elucidate a novel function of a lncRNA called LINC00173, we investigated its binding partner, target gene, and its regulatory mechanism in lung adenocarcinoma, including the A549 cell line and patients. In the A549 cell line, RNA immunoprecipitation (RIP) assays revealed that LINC00173 efficiently binds to SNAIL. RNA-seq and RT-qPCR analyses revealed that the expression of FHIT was decreased upon LINC00173 depletion, indicating that FHIT is a target gene of LINC00173. Overexpression of SNAIL suppressed and depletion of SNAIL increased the expression of FHIT, indicating that SNAIL negatively regulates FHIT. The downregulation of FHIT expression upon LINC00173 depletion was restored by additional SNAIL depletion, revealing a LINC00173-SNAIL-FHIT axis for FHIT regulation. Data from 501 patients with lung adenocarcinoma also support the existence of a LINC00173-SNAIL-FHIT axis, as FHIT expression correlated positively with LINC00173 (p = 1.75 × 10-6) and negatively with SNAIL (p = 7.00 × 10-5). Taken together, we propose that LINC00173 positively regulates FHIT gene expression by binding to SNAIL and inhibiting its function in human lung adenocarcinoma. Thus, this study sheds light on the LINC00173-SNAIL-FHIT axis, which may be a key mechanism for carcinogenesis and progression in human lung adenocarcinoma.
Collapse
Grants
- 19H03501 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 22H02901 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 20K07569 Ministry of Education, Culture, Sports, Science and Technology of Japan
- NA Project Mirai Cancer Research Grants, the Princes Takamatsu Cancer Research Foundation
- NA The Smoking Research Foundation
- NA Hamamatsu University School of Medicine Grant-in-Aid
Collapse
Affiliation(s)
- Takahito Suzuki
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kosuke Ota
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mika Yoshida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
6
|
Ma G, Zeng Y, Zhong W, Zhao X, Wang G, Bie F, Du J. Comprehensive analysis of suppressor of cytokine signaling 2 protein in the malignant transformation of NSCLC. Exp Ther Med 2023; 26:370. [PMID: 37415839 PMCID: PMC10320659 DOI: 10.3892/etm.2023.12069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/02/2023] [Indexed: 07/08/2023] Open
Abstract
Suppressor of cytokine signaling 2 (SOCS2) plays an essential role in a number of physiological phenomena and functions as a tumor suppressor. Understanding the predictive effects of SOCS2 on non-small cell lung cancer (NSCLC) is urgently needed. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to assess SOCS2 gene expression levels in NSCLC. The clinical significance of SOCS2 was evaluated through Kaplan-Meier curve analysis and the analysis of related clinical factors. Gene Set Enrichment Analysis (GSEA) was used to identify the biological functions of SOCS2. Subsequently proliferation, wound-healing, colony formation and Transwell assays, and carboplatin drug experiments were used for verification. The results revealed that SOCS2 expression was low in the NSCLC tissues of patients in TCGA and GEO database analyses. Downregulated SOCS2 was associated with poor prognosis, as determined by Kaplan-Meier survival analysis (HR 0.61, 95% CI 0.52-0.73; P<0.001). GSEA showed that SOCS2 was involved in intracellular reactions, including epithelial-mesenchymal transition (EMT). Cell experiments indicated that knockdown of SOCS2 caused the malignant progression of NSCLC cell lines. Furthermore, the drug experiment showed that silencing of SOCS2 promoted the resistance of NSCLC cells to carboplatin. In conclusion, low expression of SOCS2 was associated with poor clinical prognosis by effecting EMT and causing drug resistance in NSCLC cell lines. Furthermore, SOCS2 could act as a predictive indicator for NSCLC.
Collapse
Affiliation(s)
- Guoyuan Ma
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yukai Zeng
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Weiqing Zhong
- Department of Radiology, The Third Affiliated Hospital of Shandong First Medical University (The Fourth People's Hospital of Jinan), Jinan, Shandong 250031, P.R. China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Guanghui Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Fenglong Bie
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
7
|
Niu Z, Jiang D, Shen J, Liu W, Tan X, Cao G. Potential Role of the Fragile Histidine Triad in Cancer Evo-Dev. Cancers (Basel) 2023; 15:cancers15041144. [PMID: 36831487 PMCID: PMC9954361 DOI: 10.3390/cancers15041144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Cancer development follows an evolutionary pattern of "mutation-selection-adaptation" detailed by Cancer Evolution and Development (Cancer Evo-Dev), a theory that represents a process of accumulating somatic mutations due to the imbalance between the mutation-promoting force and the mutation-repairing force and retro-differentiation of the mutant cells to cancer initiation cells in a chronic inflammatory microenvironment. The fragile histidine triad (FHIT) gene is a tumor suppressor gene whose expression is often reduced or inactivated in precancerous lesions during chronic inflammation or virus-induced replicative stress. Here, we summarize evidence regarding the mechanisms by which the FHIT is inactivated in cancer, including the loss of heterozygosity and the promoter methylation, and characterizes the role of the FHIT in bridging macroevolution and microevolution and in facilitating retro-differentiation during cancer evolution and development. It is suggested that decreased FHIT expression is involved in several critical steps of Cancer Evo-Dev. Future research needs to focus on the role and mechanisms of the FHIT in promoting the transformation of pre-cancerous lesions into cancer.
Collapse
Affiliation(s)
- Zheyun Niu
- Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine Tongji University, Shanghai 200120, China
| | - Dongming Jiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine Tongji University, Shanghai 200120, China
| | - Jiaying Shen
- Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine Tongji University, Shanghai 200120, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai 200433, China
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Xiaojie Tan
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai 200433, China
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Guangwen Cao
- Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine Tongji University, Shanghai 200120, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai 200433, China
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
- Correspondence: ; Tel.: +86-21-81871060
| |
Collapse
|
8
|
Brisebarre A, Ancel J, Ponchel T, Loeffler E, Germain A, Dalstein V, Dormoy V, Durlach A, Delepine G, Deslée G, Polette M, Nawrocki-Raby B. Transcriptomic FHIT low/pHER2 high signature as a predictive factor of outcome and immunotherapy response in non-small cell lung cancer. Front Immunol 2022; 13:1058531. [PMID: 36544755 PMCID: PMC9760670 DOI: 10.3389/fimmu.2022.1058531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/18/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction In recent decades, the development of immunotherapy and targeted therapies has considerably improved the outcome of non-small cell lung cancer (NSCLC) patients. Despite these impressive clinical benefits, new biomarkers are needed for an accurate stratification of NSCLC patients and a more personalized management. We recently showed that the tumor suppressor fragile histidine triad (FHIT), frequently lost in NSCLC, controls HER2 receptor activity in lung tumor cells and that tumor cells from NSCLC patients harboring a FHITlow/pHER2high phenotype are sensitive to anti-HER2 drugs. Here, we sought to identify the transcriptomic signature of this phenotype and evaluate its clinical significance. Materials and methods We performed RNA sequencing analysis on tumor cells isolated from NSCLC (n=12) according to FHIT/pHER2 status and a functional analysis of differentially regulated genes. We also investigated the FHITlow/pHER2high signature in The Cancer Genome Atlas (TCGA) lung adenocarcinoma (LUAD) (n=489) and lung squamous cell carcinoma (LUSC) (n=493) cohorts and used the tumor immune dysfunction and exclusion (TIDE) model to test the ability of this signature to predict response to immune checkpoint inhibitors (ICI). Results We showed that up-regulated genes in FHITlow/pHER2high tumors were associated with cell proliferation, metabolism and metastasis, whereas down-regulated genes were related to immune response. The FHITlow/pHER2high signature was associated with the higher size of tumors, lymph node involvement, and late TNM stages in LUAD and LUSC cohorts. It was identified as an independent predictor of overall survival (OS) in LUAD cohort. FHITlow/pHER2high tumors were also predictive of poor response to ICI in both LUAD and LUSC cohorts. Conclusion These data suggest that ICI might not be a relevant option for NSCLC patients with FHITlow/pHER2high tumors and that anti-HER2 targeted therapy could be a good therapeutic alternative for this molecular subclass with poorer prognosis.
Collapse
Affiliation(s)
- Audrey Brisebarre
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France
| | - Julien Ancel
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France,CHU Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Théophile Ponchel
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France
| | - Emma Loeffler
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France
| | - Adeline Germain
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France
| | - Véronique Dalstein
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France,CHU Reims, Pôle de Biologie Territoriale, Service de Pathologie, Reims, France
| | - Valérian Dormoy
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France
| | - Anne Durlach
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France,CHU Reims, Pôle de Biologie Territoriale, Service de Pathologie, Reims, France
| | - Gonzague Delepine
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France,CHU Reims, Hôpital Robert Debré, Service de Chirurgie cardio-vasculaire et thoracique, Reims, France
| | - Gaëtan Deslée
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France,CHU Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Myriam Polette
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France,CHU Reims, Pôle de Biologie Territoriale, Service de Pathologie, Reims, France
| | - Béatrice Nawrocki-Raby
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France,*Correspondence: Béatrice Nawrocki-Raby,
| |
Collapse
|
9
|
Chen Y, Huang S, Guo R, Chen D. Metadherin-mediated mechanisms in human malignancies. Biomark Med 2021; 15:1769-1783. [PMID: 34783585 DOI: 10.2217/bmm-2021-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metadherin (MTDH) has been recognized as a novel protein that is critical for the progression of multiple types of human malignancies. Studies have reported that MTDH enhances the metastatic potential of cancer cells by regulating multiple signaling pathways. miRNAs and various tumor-related proteins have been shown to interact with MTDH, making it a potential therapeutic target as well as a biomarker in human malignancies. MTDH plays a critical role in inflammation, angiogenesis, hypoxia, epithelial-mesenchymal transition and autophagy. In this review, we present the function and mechanisms of MTDH for cancer initiation and progression.
Collapse
Affiliation(s)
- Yuyuan Chen
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Sheng Huang
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Rong Guo
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Dedian Chen
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| |
Collapse
|
10
|
Hosseini K, Frenzel A, Fischer-Friedrich E. EMT changes actin cortex rheology in a cell-cycle-dependent manner. Biophys J 2021; 120:3516-3526. [PMID: 34022239 PMCID: PMC8391033 DOI: 10.1016/j.bpj.2021.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/29/2021] [Accepted: 05/13/2021] [Indexed: 01/06/2023] Open
Abstract
The actin cortex is a key structure for cellular mechanics and cellular migration. Accordingly, cancer cells were shown to change their actin cytoskeleton and their mechanical properties in correlation with different degrees of malignancy and metastatic potential. Epithelial-mesenchymal transition (EMT) is a cellular transformation associated with cancer progression and malignancy. To date, a detailed study of the effects of EMT on the frequency-dependent viscoelastic mechanics of the actin cortex is still lacking. In this work, we have used an established atomic force microscope-based method of cell confinement to quantify the rheology of the actin cortex of human breast, lung, and prostate epithelial cells before and after EMT in a frequency range of 0.02-2 Hz. Interestingly, we find for all cell lines opposite EMT-induced changes in interphase and mitosis; whereas the actin cortex softens upon EMT in interphase, the cortex stiffens in mitosis. Our rheological data can be accounted for by a rheological model with a characteristic timescale of slowest relaxation. In conclusion, our study discloses a consistent rheological trend induced by EMT in human cells of diverse tissue origin, reflecting major structural changes of the actin cytoskeleton upon EMT.
Collapse
Affiliation(s)
- Kamran Hosseini
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Annika Frenzel
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Elisabeth Fischer-Friedrich
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Zheng D, Xia K, Yu L, Gong C, Shi Y, Li W, Qiu Y, Yang J, Guo W. A Novel Six Metastasis-Related Prognostic Gene Signature for Patients With Osteosarcoma. Front Cell Dev Biol 2021; 9:699212. [PMID: 34368151 PMCID: PMC8343004 DOI: 10.3389/fcell.2021.699212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor, and although there has been significant progress in its management, metastases often herald incurable disease. Here we defined genes differentially expressed between primary and metastatic osteosarcoma as metastasis-related genes (MRGs) and used them to construct a novel six-MRG prognostic signature for overall survival of patients with osteosarcoma. Validation in internal and external datasets confirmed satisfactory accuracy and generalizability of the prognostic model, and a nomogram based on the signature and clinical variables was constructed to aid clinical decision-making. Of the six MRGs, FHIT is a well-documented tumor suppressor gene that is poorly defined in osteosarcoma. Consistent with tumor suppressor function, FHIT was downregulated in osteosarcoma cells and human osteosarcoma samples. FHIT overexpression inhibited osteosarcoma proliferation, migration, and invasion both in vitro and in vivo. Mechanistically, FHIT overexpression upregulate the epithelial marker E-cadherin while repressing the mesenchymal markers N-cadherin and vimentin. Our six-MRG signature represents a novel and clinically useful prognostic biomarker for patients with osteosarcoma, and FHIT might represent a therapeutic target by reversing epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Di Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kezhou Xia
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Yu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changtian Gong
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yubo Shi
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonglong Qiu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Tanshinones induce tumor cell apoptosis via directly targeting FHIT. Sci Rep 2021; 11:12217. [PMID: 34108553 PMCID: PMC8190080 DOI: 10.1038/s41598-021-91708-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/17/2021] [Indexed: 02/08/2023] Open
Abstract
The liposoluble tanshinones are bioactive components in Salvia miltiorrhiza and are widely investigated as anti-cancer agents, while the molecular mechanism is to be clarified. In the present study, we identified that the human fragile histidine triad (FHIT) protein is a direct binding protein of sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of Tanshinone IIA (TSA), with a Kd value of 268.4 ± 42.59 nM. We also found that STS inhibited the diadenosine triphosphate (Ap3A) hydrolase activity of FHIT through competing for the substrate-binding site with an IC50 value of 2.2 ± 0.05 µM. Notably, near 100 times lower binding affinities were determined between STS and other HIT proteins, including GALT, DCPS, and phosphodiesterase ENPP1, while no direct binding was detected with HINT1. Moreover, TSA, Tanshinone I (TanI), and Cryptotanshinone (CST) exhibited similar inhibitory activity as STS. Finally, we demonstrated that depletion of FHIT significantly blocked TSA's pro-apoptotic function in colorectal cancer HCT116 cells. Taken together, our study sheds new light on the molecular basis of the anti-cancer effects of the tanshinone compounds.
Collapse
|
13
|
Chae HJ, Seo JB, Kim SH, Jeon YJ, Suh SS. Fhit induces the reciprocal suppressions between Lin28/Let-7 and miR-17/92miR. Int J Med Sci 2021; 18:706-714. [PMID: 33437205 PMCID: PMC7797533 DOI: 10.7150/ijms.51429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Objective: Fhit gene is known as a genome "caretaker" and frequently inactivated by deletion or hypermethylation on the promoter in several cancers. In spite of several lines of evidence, the exact mechanism underlying Fhit-induced biology is relatively less studied. This study will focus the role of Fhit in regulating Lin28 and microRNAs (miRNAs) loop. Material and Methods: To this end, we employed Fhit overexpressing isogenic cell lines to conduct miRNA nanostring array, and differentially expressed miRNAs were identified. Using real-time PCR and Western blot analysis, expression levels of Lin28b or miRNAs were investigated in response to the overexpression of Fhit gene in H1299 lung cancer cells. Results: A series of in vitro including gene nanostring analyses revealed that Lin28B protein was induced by Fhit gene overexpression, which consequently suppressed Let-7 miRNAs. Also, we found that miRNAs in miR-17/92 clusters are redundantly increased and there is an inverse correlation between Let-7 and miR-17/92 clusters in Fhit-expressing cells. Also, a series of in vitro experiments suggests that ELF-1- and/or STAT1-dependent Lin28b regulation is responsible for Let-7 induction in Fhit-expressing cancer cells. Conclusions: Based on the same experimental system proving that Fhit gene has a robust role in suppressing tumor progression and epithelial-mesenchymal transition, our data show that Fhit mediates the negative feedback between Lin28/Let-7 axis and miR-17/-92 miRNA although the physiological relevance of current interesting observation should be further investigated.
Collapse
Affiliation(s)
- Hae-Jung Chae
- Department of Biosciences, Mokpo National University, Joennam 58554, South Korea
| | - Jong Bae Seo
- Department of Biosciences, Mokpo National University, Joennam 58554, South Korea.,Department of Biomedicine, Health & Life Convergence Science, BK21 Four, Mokpo National University, Joennam 58554, South Korea
| | - Sung-Hak Kim
- Lab of Animal Molecular Biochemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sung-Suk Suh
- Department of Biosciences, Mokpo National University, Joennam 58554, South Korea.,Department of Biomedicine, Health & Life Convergence Science, BK21 Four, Mokpo National University, Joennam 58554, South Korea
| |
Collapse
|
14
|
Kim K, Sohn YJ, Lee R, Yoo HJ, Kang JY, Choi N, Na D, Yeon JH. Cancer-Associated Fibroblasts Differentiated by Exosomes Isolated from Cancer Cells Promote Cancer Cell Invasion. Int J Mol Sci 2020; 21:ijms21218153. [PMID: 33142759 PMCID: PMC7662577 DOI: 10.3390/ijms21218153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) in the cancer microenvironment play an essential role in metastasis. Differentiation of endothelial cells into CAFs is induced by cancer cell-derived exosomes secreted from cancer cells that transfer molecular signals to surrounding cells. Differentiated CAFs facilitate migration of cancer cells to different regions through promoting extracellular matrix (ECM) modifications. However, in vitro models in which endothelial cells exposed to cancer cell-derived exosomes secreted from various cancer cell types differentiate into CAFs or a microenvironmentally controlled model for investigating cancer cell invasion by CAFs have not yet been studied. In this study, we propose a three-dimensional in vitro cancer cell invasion model for real-time monitoring of the process of forming a cancer invasion site through CAFs induced by exosomes isolated from three types of cancer cell lines. The invasiveness of cancer cells with CAFs induced by cancer cell-derived exosomes (eCAFs) was significantly higher than that of CAFs induced by cancer cells (cCAFs) through physiological and genetic manner. In addition, different genetic tendencies of the invasion process were observed in the process of invading cancer cells according to CAFs. Our 3D microfluidic platform helps to identify specific interactions among multiple factors within the cancer microenvironment and provides a model for cancer drug development.
Collapse
Affiliation(s)
- Kimin Kim
- Department of Integrative Biosciences, University of Brain Education (UBE), Cheonan 31228, Korea; (K.K.); (Y.J.S.); (R.L.); (H.J.Y.)
| | - Yeh Joo Sohn
- Department of Integrative Biosciences, University of Brain Education (UBE), Cheonan 31228, Korea; (K.K.); (Y.J.S.); (R.L.); (H.J.Y.)
| | - Ruri Lee
- Department of Integrative Biosciences, University of Brain Education (UBE), Cheonan 31228, Korea; (K.K.); (Y.J.S.); (R.L.); (H.J.Y.)
| | - Hye Ju Yoo
- Department of Integrative Biosciences, University of Brain Education (UBE), Cheonan 31228, Korea; (K.K.); (Y.J.S.); (R.L.); (H.J.Y.)
| | - Ji Yoon Kang
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.Y.K.); (N.C.)
- Division of Bio-Medical Science & Technology (Biomedical Engineering), KIST School, Korea University of Science and Technology (UST), Seoul 02792, Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.Y.K.); (N.C.)
- Division of Bio-Medical Science & Technology (Biomedical Engineering), KIST School, Korea University of Science and Technology (UST), Seoul 02792, Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Korea
- Correspondence: (D.N.); (J.H.Y.); Tel.: +82-2-820-5690 (D.N.); +82-41-529-2621 (J.H.Y.); Fax: +82-2-814-2651 (D.N.); +82-41-529-2674 (J.H.Y.)
| | - Ju Hun Yeon
- Department of Integrative Biosciences, University of Brain Education (UBE), Cheonan 31228, Korea; (K.K.); (Y.J.S.); (R.L.); (H.J.Y.)
- Correspondence: (D.N.); (J.H.Y.); Tel.: +82-2-820-5690 (D.N.); +82-41-529-2621 (J.H.Y.); Fax: +82-2-814-2651 (D.N.); +82-41-529-2674 (J.H.Y.)
| |
Collapse
|
15
|
Da Silva J, Jouida A, Ancel J, Dalstein V, Routhier J, Delepine G, Cutrona J, Jonquet A, Dewolf M, Birembaut P, Deslée G, Polette M, Nawrocki-Raby B. FHIT low /pHER2 high signature in non-small cell lung cancer is predictive of anti-HER2 molecule efficacy. J Pathol 2020; 251:187-199. [PMID: 32237123 DOI: 10.1002/path.5439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/31/2020] [Accepted: 03/24/2020] [Indexed: 01/24/2023]
Abstract
Despite its efficacy in solid tumours, in particular HER2+ breast cancer, HER2-targeted therapy has given rise to disappointing results in non-small cell lung cancer (NSCLC). With the aim of refining the target population for anti-HER2 therapies in NSCLC, we investigated the relationships between HER2 and the tumour suppressor fragile histidine triad (FHIT) in lung tumour cells. First, we observed a negative correlation between FHIT expression and the activated form of HER2 (pHER2) in NSCLC samples and in lung tumour cell lines. Moreover, the silencing or overexpression of FHIT in lung cell lines led to an increase or decrease of HER2 activity, respectively. We also demonstrated that two anti-HER2 drugs, irbinitinib and trastuzumab, restore a more epithelial phenotype and counteract cell invasiveness and growth of FHIT-silenced tumour cell lines. Finally, we showed that the FHITlow /pHER2high phenotype predicts sensitivity to an anti-HER2 therapy in primary tumour cells from NSCLC patients. Our results show that FHIT regulates the activity of HER2 in lung tumour cells and that FHIT-inactivated tumour cells are sensitive to HER2 inhibitors. A new subclass of patients with NSCLC may be eligible for an anti-HER2 therapy. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jordan Da Silva
- INSERM, Université de Reims Champagne Ardenne, P3Cell UMR-S 1250, SFR CAP SANTE, Reims, France
| | - Amina Jouida
- INSERM, Université de Reims Champagne Ardenne, P3Cell UMR-S 1250, SFR CAP SANTE, Reims, France
| | - Julien Ancel
- INSERM, Université de Reims Champagne Ardenne, P3Cell UMR-S 1250, SFR CAP SANTE, Reims, France.,CHU de Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Véronique Dalstein
- INSERM, Université de Reims Champagne Ardenne, P3Cell UMR-S 1250, SFR CAP SANTE, Reims, France.,CHU de Reims, Hôpital Maison Blanche, Laboratoire de Pathologie, Reims, France
| | - Julie Routhier
- INSERM, Université de Reims Champagne Ardenne, P3Cell UMR-S 1250, SFR CAP SANTE, Reims, France
| | - Gonzague Delepine
- INSERM, Université de Reims Champagne Ardenne, P3Cell UMR-S 1250, SFR CAP SANTE, Reims, France.,CHU de Reims, Hôpital Robert Debré, Service de Chirurgie Cardio-Vasculaire et Thoracique, Reims, France
| | - Jérôme Cutrona
- INSERM, Université de Reims Champagne Ardenne, P3Cell UMR-S 1250, SFR CAP SANTE, Reims, France
| | - Antoine Jonquet
- INSERM, Université de Reims Champagne Ardenne, P3Cell UMR-S 1250, SFR CAP SANTE, Reims, France
| | - Maxime Dewolf
- CHU de Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Philippe Birembaut
- INSERM, Université de Reims Champagne Ardenne, P3Cell UMR-S 1250, SFR CAP SANTE, Reims, France.,CHU de Reims, Hôpital Maison Blanche, Laboratoire de Pathologie, Reims, France
| | - Gaëtan Deslée
- INSERM, Université de Reims Champagne Ardenne, P3Cell UMR-S 1250, SFR CAP SANTE, Reims, France.,CHU de Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Myriam Polette
- INSERM, Université de Reims Champagne Ardenne, P3Cell UMR-S 1250, SFR CAP SANTE, Reims, France.,CHU de Reims, Hôpital Maison Blanche, Laboratoire de Pathologie, Reims, France
| | - Béatrice Nawrocki-Raby
- INSERM, Université de Reims Champagne Ardenne, P3Cell UMR-S 1250, SFR CAP SANTE, Reims, France
| |
Collapse
|
16
|
Han W, Cui H, Liang J, Su X. Role of MicroRNA-30c in cancer progression. J Cancer 2020; 11:2593-2601. [PMID: 32201529 PMCID: PMC7066027 DOI: 10.7150/jca.38449] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) is a non-coding small RNA of a type of 18~24 nucleotide-regulated gene that has been discovered in recent years. It mainly degrades the target gene mRNA or inhibits its translation process through the complete or incomplete bindings with 3'UTR of target genes, followed by the regulation of individual development, apoptosis, proliferation, differentiation and other life activities through the post-transcriptional regulation. Among many miRNAs, the microRNA family, miR-30, plays diverse roles in these key process of neoplastic transformation, metastasis, and clinical outcomes in different cancer progression. As key member of miR-30, miR-30c is regulated by oncogenic transcription factors and cancer progression related genes. Recently, numerous studies have demonstrated that the aberrant expression of miR-30c was significantly associated with the majority of human cancer progression. In this review, the diverse roles of miR-30c in different cancer progression such as the cellular and molecular mechanisms, the potential applications in clinics were summarized to speculate the benefits of miR-30c over-expression in cancer treatment and prognosis.
Collapse
Affiliation(s)
- Wenyan Han
- Laboratory of the Second Affiliated Hospital of Inner Mongolia Medical University.No.1 Yingfang Road, Huimin District, Hohhot, Inner Mongolia, China
| | - Hongwei Cui
- Clinical Medical Research Center of the Affiliated Hospital/Inner Mongolia Key Laboratory of Medical Cellular Biology, Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, P.R. China
| | - Junqing Liang
- Department of Breast Oncology, Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, 010000, Inner Mongolia, P.R. China
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated Hospital/Inner Mongolia Key Laboratory of Medical Cellular Biology, Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, P.R. China
| |
Collapse
|
17
|
Sjölander JJ, Sunnerhagen P. The fission yeast FHIT homolog affects checkpoint control of proliferation and is regulated by mitochondrial electron transport. Cell Biol Int 2019; 44:412-423. [PMID: 31538680 PMCID: PMC7003880 DOI: 10.1002/cbin.11241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/15/2019] [Indexed: 11/08/2022]
Abstract
Genetic analysis has strongly implicated human FHIT (Fragile Histidine Triad) as a tumor suppressor gene, being mutated in a large proportion of early‐stage cancers. The functions of the FHIT protein have, however, remained elusive. Here, we investigated aph1+, the fission yeast homolog of FHIT, for functions related to checkpoint control and oxidative metabolism. In sublethal concentrations of DNA damaging agents, aph1Δ mutants grew with a substantially shorter lag phase. In aph1Δ mutants carrying a hypomorphic allele of cds1 (the fission yeast homolog of Chk2), in addition, increased chromosome fragmentation and missegregation were found. We also found that under hypoxia or impaired electron transport function, the Aph1 protein level was strongly depressed. Previously, FHIT has been linked to regulation of the human 9‐1‐1 checkpoint complex constituted by Hus1, Rad1, and Rad9. In Schizosaccharomyces pombe, the levels of all three 9‐1‐1 proteins are all downregulated by hypoxia in similarity with Aph1. Moreover, deletion of the aph1+ gene reduced the Rad1 protein level, indicating a direct relationship between these two proteins. We conclude that the fission yeast FHIT homolog has a role in modulating DNA damage checkpoint function, possibly through an effect on the 9‐1‐1 complex, and that this effect may be critical under conditions of limiting oxidative metabolism and reoxygenation.
Collapse
Affiliation(s)
- Johanna J Sjölander
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, Göteborg, SE-405 30, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, Göteborg, SE-405 30, Sweden
| |
Collapse
|
18
|
Hashimoto Y, Shiina M, Dasgupta P, Kulkarni P, Kato T, Wong RK, Tanaka Y, Shahryari V, Maekawa S, Yamamura S, Saini S, Deng G, Tabatabai ZL, Majid S, Dahiya R. Upregulation of miR-130b Contributes to Risk of Poor Prognosis and Racial Disparity in African-American Prostate Cancer. Cancer Prev Res (Phila) 2019; 12:585-598. [PMID: 31266828 DOI: 10.1158/1940-6207.capr-18-0509] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/23/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022]
Abstract
Prostate cancer incidence and mortality rates are higher in African-American (AA) than in European-American (EA) men. The main objective of this study was to elucidate the role of miR-130b as a contributor to prostate cancer health disparity in AA patients. We also determined whether miR-130b is a prognostic biomarker and a new therapeutic candidate for AA prostate cancer. A comprehensive approach of using cell lines, tissue samples, and the TCGA database was employed. We performed a series of functional assays such as cell proliferation, migration, invasion, RT2-PCR array, qRT-PCR, cell cycle, luciferase reporter, immunoblot, and IHC. Various statistical approaches such as Kaplan-Meier, uni-, and multivariate analyses were utilized to determine the clinical significance of miR-130b. Our results showed that elevated levels of miR-130b correlated with race disparity and PSA levels/failure and acted as an independent prognostic biomarker for AA patients. Two tumor suppressor genes, CDKN1B and FHIT, were validated as direct functional targets of miR-130b. We also found race-specific cell-cycle pathway activation in AA patients with prostate cancer. Functionally, miR-130b inhibition reduced cell proliferation, colony formation, migration/invasion, and induced cell-cycle arrest. Inhibition of miR-130b modulated critical prostate cancer-related biological pathways in AA compared with EA prostate cancer patients. In conclusion, attenuation of miR-130b expression has tumor suppressor effects in AA prostate cancer. miR-130b is a significant contributor to prostate cancer racial disparity as its overexpression is a risk factor for poor prognosis in AA patients with prostate cancer. Thus, regulation of miR-130b may provide a novel therapeutic approach for the management of prostate cancer in AA patients.
Collapse
Affiliation(s)
- Yutaka Hashimoto
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Marisa Shiina
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Pritha Dasgupta
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Priyanka Kulkarni
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Taku Kato
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Ryan K Wong
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Yuichiro Tanaka
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Varahram Shahryari
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Shigekatsu Maekawa
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Soichiro Yamamura
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Sharanjot Saini
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Guoren Deng
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Z Laura Tabatabai
- Department of Pathology, San Francisco VA Medical Center, California.,University of California San Francisco, San Francisco, California
| | - Shahana Majid
- Department of Urology, San Francisco VA Medical Center, San Francisco, California. .,University of California San Francisco, San Francisco, California
| | - Rajvir Dahiya
- Department of Urology, San Francisco VA Medical Center, San Francisco, California. .,University of California San Francisco, San Francisco, California
| |
Collapse
|
19
|
Brunetti M, Agostini A, Staurseth J, Davidson B, Heim S, Micci F. Molecular characterization of carcinosarcomas arising in the uterus and ovaries. Oncotarget 2019; 10:3614-3624. [PMID: 31217897 PMCID: PMC6557202 DOI: 10.18632/oncotarget.26942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Gynaecological carcinosarcomas are rare biphasic tumours which are highly aggressive. We performed molecular investigations on a series of such tumours arising in the uterus (n = 16) and ovaries (n = 10) to gain more information on their mutational landscapes and the expression status of the genes HMGA1/2, FHIT, LIN28A, and MTA1, the pseudogenes HMGA1P6 and HMGA1P7, and the miRNAs known to influence expression of the above-mentioned genes. In uterine carcinosarcomas (UCS), we identified mutations in KRAS, PIK3CA, and TP53 with a frequency of 6%, 31%, and 75%, respectively, whereas in ovarian carcinosarcomas (OCS), TP53 was the only mutated gene found (30%). An inverse correlation was observed between overexpression of HMGA1/2, LIN28A, and MTA1 and downregulation of miRNAs such as let-7a, let-7d, miR26a, miR16, miR214, and miR30c in both UCS and OCS. HMGA2 was expressed in its full length in 14 UCS and 9 OCS; in the remaining tumours, it was expressed in its truncated form. Because FHIT was normally expressed while miR30c was downregulated, not both downregulated as is the case in several other carcinomas, alterations of the epithelial-mesenchymal transition through an as yet unknown mechanism seems to be a feature of carcinosarcomas.
Collapse
Affiliation(s)
- Marta Brunetti
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Antonio Agostini
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Julie Staurseth
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ben Davidson
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
20
|
Da Silva J, Dalstein V, Polette M, Nawrocki-Raby B. [Phenotypical plasticity and targeted therapies in non-small cell lung carcinomas]. Rev Mal Respir 2019; 36:438-441. [PMID: 31010761 DOI: 10.1016/j.rmr.2019.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 11/18/2022]
Abstract
Lung cancer is the most diagnosed and deathly type of cancer worldwide. It has a poor prognosis because of a late diagnosis, high metastatic potential and resistance to conventional therapies. Since the 2000s, the emergence of targeted therapies has improved patients' outcomes. However, these therapies concern only a small proportion of patients, selected by the presence of molecular biomarkers that indicate the targeting relevance. Here, we discuss the possibility that new phenotypical biomarkers could be predictive factors for targeted therapies in lung cancer.
Collapse
Affiliation(s)
- J Da Silva
- Inserm UMR-S 1250 P3Cell, Pathologies Pulmonaires et Plasticité Cellulaire, Université de Reims Champagne-Ardenne, 45, rue Cognacq-Jay, 51092 Reims cedex, France
| | - V Dalstein
- Inserm UMR-S 1250 P3Cell, Pathologies Pulmonaires et Plasticité Cellulaire, Université de Reims Champagne-Ardenne, 45, rue Cognacq-Jay, 51092 Reims cedex, France; Laboratoire de Biopathologie, CHU de Reims, 51100 Reims, France
| | - M Polette
- Inserm UMR-S 1250 P3Cell, Pathologies Pulmonaires et Plasticité Cellulaire, Université de Reims Champagne-Ardenne, 45, rue Cognacq-Jay, 51092 Reims cedex, France; Laboratoire de Biopathologie, CHU de Reims, 51100 Reims, France.
| | - B Nawrocki-Raby
- Inserm UMR-S 1250 P3Cell, Pathologies Pulmonaires et Plasticité Cellulaire, Université de Reims Champagne-Ardenne, 45, rue Cognacq-Jay, 51092 Reims cedex, France
| |
Collapse
|
21
|
Mohammed AA, Allen JT, Rogan MT. Echinococcus granulosus cyst fluid enhances epithelial-mesenchymal transition. Parasite Immunol 2019; 40:e12533. [PMID: 29719047 DOI: 10.1111/pim.12533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 04/18/2018] [Indexed: 12/17/2022]
Abstract
Cystic echinococcosis is characterized by fluid-filled hydatid cysts in the liver and lungs. The cysts are surrounded by a host fibrous layer (the pericyst) which acts to isolate the parasite from surrounding tissues. Previous studies in liver cysts have indicated that the parasite may be a stimulating fibrosis. The aim of this study was to investigate whether hydatid cyst fluid (HCF) could influence the potential for fibrosis to occur in lung tissue by stimulating epithelial to mesenchymal transition (EMT) in a human lung epithelial cell line. An adenocarcinoma-derived alveolar basal epithelial cell line (A549) was used as a model for human alveolar epithelial cells (AEC II). These were cultured in vitro with HCF (UK sheep origin). Assays to investigate cell proliferation, cell migration and expression of cytoskeletal markers showed that HCF could stimulate changes indicative of EMT, including enhanced cell proliferation and migration; increased expression of mesenchymal cytoskeletal markers (fibronectin and vimentin) accompanied by a down-regulation of an epithelial marker (E-cadherin). Molecules within hydatid cyst fluid are capable of inducing phenotypic changes in A549 cells indicating that the parasite has the potential to modify lung epithelial cells which could contribute to fibrotic reactions.
Collapse
Affiliation(s)
- A A Mohammed
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - J T Allen
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - M T Rogan
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| |
Collapse
|
22
|
Weidle UH, Birzele F, Nopora A. MicroRNAs as Potential Targets for Therapeutic Intervention With Metastasis of Non-small Cell Lung Cancer. Cancer Genomics Proteomics 2019; 16:99-119. [PMID: 30850362 PMCID: PMC6489690 DOI: 10.21873/cgp.20116] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023] Open
Abstract
The death toll of non-small cell lung cancer (NSCLC) patients is primarily due to metastases, which are poorly amenable to therapeutic intervention. In this review we focus on miRs associated with metastasis of NSCLC as potential new targets for anti-metastatic therapy. We discuss miRs validated as therapeutic targets by in vitro data, identification of target(s) and pathway(s) and in vivo efficacy data in at least one clinically-relevant metastasis-related model. A few of the discussed miRs correlate with the clinical status of NSCLC patients. Using miRs as therapeutic agents has the advantage that targeting a single miR can potentially interfere with several metastatic pathways. Depending on their mode of action, the corresponding miRs can be up- or down-regulated compared to normal matching tissues. Here, we describe therapeutic approaches for reconstitution therapy and miR inhibition, general principles of anti-metastatic therapy as well as current technical pitfalls.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hofman La Roche, Basel, Switzerland
| | - Adam Nopora
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
23
|
Pang Z, Wang Y, Ding N, Chen X, Yang Y, Wang G, Liu Q, Du J. High PKD2 predicts poor prognosis in lung adenocarcinoma via promoting Epithelial-mesenchymal Transition. Sci Rep 2019; 9:1324. [PMID: 30718593 PMCID: PMC6362154 DOI: 10.1038/s41598-018-37285-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Protein kinase D2 (PKD2) has been reported to be related with progression and invasion in various cancers. However, its prognostic value and the underlying mechanism in lung cancer remains unclear. Herein we evaluated the expression of PKD2 in lung adenocarcinoma and investigated its relationship with EMT. GSEA, TCGA and K-M plotter database were applied and revealed that high PKD2 expression predicted poor outcome and related with lymph nodes metastasis in lung cancer. IHC and qRT-PCR were performed and found PKD2 was elevated in lung adenocarcinoma and negatively related with OS (p = 0.015), PFS (p = 0.006) and the level of E-cadherin (p = 0.021). Experiment in lung adenocarcinoma cell lines demonstrated up-regulation of PKD2 led to high expression of mesenchymal markers (N-cadherin, vim, mmp9 et al.) and EMT transcription factors(zeb1, twist, snail), and the results were reversed when PKD2 was knocked down. Further investigation showed that abrogation of PKD2 inhibited A549 cell migration, invasion, proliferation and induced cell arrest in G2/M phase. We concluded that high expression of PKD2 was associated with poor prognosis and cancer progression in lung adenocarcinoma patients by promoting EMT.
Collapse
Affiliation(s)
- Zhaofei Pang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Yu Wang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Nan Ding
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Xiaowei Chen
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Yufan Yang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Guanghui Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Qi Liu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China. .,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
24
|
Khawaled S, Suh SS, Abdeen SK, Monin J, Distefano R, Nigita G, Croce CM, Aqeilan RI. WWOX Inhibits Metastasis of Triple-Negative Breast Cancer Cells via Modulation of miRNAs. Cancer Res 2019; 79:1784-1798. [PMID: 30622118 DOI: 10.1158/0008-5472.can-18-0614] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/30/2018] [Accepted: 01/03/2019] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous, highly aggressive, and difficult to treat tumor type. The tumor suppressor WWOX spans FRA16D, a common fragile site that is commonly altered in breast cancer. Despite recent progress, the role of WWOX in TNBC metastasis is unknown. Here we report that WWOX inactivation correlates with advanced stages of TNBC and that its levels are frequently altered in TNBC cells. Ectopic restoration of WWOX in WWOX-negative TNBC cells inhibited metastasis while its depletion in WWOX-positive TNBC cells promoted metastasis. WWOX was a negative regulator of c-MYC, which regulated miR-146a expression and consequently fibronectin levels, contributing to an epithelial status of the cell. Treatment of TNBC cells with anti-miR-146a rescued the WWOX antimetastatic phenotype. Moreover, overexpression of MYC in WWOX-expressing TNBC cells overrode WWOX effects on miR-146a and fibronectin levels. Altogether, our data uncover an essential role for WWOX in antagonizing TNBC progression and highlight its potential use as a biomarker for metastasis. SIGNIFICANCE: These findings highlight the mechanism by which the tumor suppressor WWOX regulates metastasis of triple-negative breast cancer.See related commentary by Sharma, p. 1746.
Collapse
Affiliation(s)
- Saleh Khawaled
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Sung Suk Suh
- Department of Bioscience, Mokpo National University, Muan, Republic of Korea
| | - Suhaib K Abdeen
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Jonathan Monin
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Rosario Distefano
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Rami I Aqeilan
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel. .,Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
25
|
Dannewitz Prosseda S, Tian X, Kuramoto K, Boehm M, Sudheendra D, Miyagawa K, Zhang F, Solow-Cordero D, Saldivar JC, Austin ED, Loyd JE, Wheeler L, Andruska A, Donato M, Wang L, Huebner K, Metzger RJ, Khatri P, Spiekerkoetter E. FHIT, a Novel Modifier Gene in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2019; 199:83-98. [PMID: 30107138 PMCID: PMC6353016 DOI: 10.1164/rccm.201712-2553oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/14/2018] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is characterized by progressive narrowing of pulmonary arteries, resulting in right heart failure and death. BMPR2 (bone morphogenetic protein receptor type 2) mutations account for most familial PAH forms whereas reduced BMPR2 is present in many idiopathic PAH forms, suggesting dysfunctional BMPR2 signaling to be a key feature of PAH. Modulating BMPR2 signaling is therapeutically promising, yet how BMPR2 is downregulated in PAH is unclear. OBJECTIVES We intended to identify and pharmaceutically target BMPR2 modifier genes to improve PAH. METHODS We combined siRNA high-throughput screening of >20,000 genes with a multicohort analysis of publicly available PAH RNA expression data to identify clinically relevant BMPR2 modifiers. After confirming gene dysregulation in tissue from patients with PAH, we determined the functional roles of BMPR2 modifiers in vitro and tested the repurposed drug enzastaurin for its propensity to improve experimental pulmonary hypertension (PH). MEASUREMENTS AND MAIN RESULTS We discovered FHIT (fragile histidine triad) as a novel BMPR2 modifier. BMPR2 and FHIT expression were reduced in patients with PAH. FHIT reductions were associated with endothelial and smooth muscle cell dysfunction, rescued by enzastaurin through a dual mechanism: upregulation of FHIT as well as miR17-5 repression. Fhit-/- mice had exaggerated hypoxic PH and failed to recover in normoxia. Enzastaurin reversed PH in the Sugen5416/hypoxia/normoxia rat model, by improving right ventricular systolic pressure, right ventricular hypertrophy, cardiac fibrosis, and vascular remodeling. CONCLUSIONS This study highlights the importance of the novel BMPR2 modifier FHIT in PH and the clinical value of the repurposed drug enzastaurin as a potential novel therapeutic strategy to improve PAH.
Collapse
Affiliation(s)
- Svenja Dannewitz Prosseda
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
| | - Xuefei Tian
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
| | - Kazuya Kuramoto
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
| | - Mario Boehm
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
| | | | - Kazuya Miyagawa
- Wall Center for Pulmonary Vascular Disease
- Cardiovascular Institute
- Department of Pediatrics
| | - Fan Zhang
- Wall Center for Pulmonary Vascular Disease
| | | | | | - Eric D. Austin
- Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - James E. Loyd
- Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Lisa Wheeler
- Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Adam Andruska
- Division of Pulmonary and Critical Care, Department of Medicine
| | - Michele Donato
- Biomedical Informatics Research–Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California
| | - Lingli Wang
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
| | - Kay Huebner
- Molecular Genetics and Cancer Biology Program, Ohio State University, Columbus, Ohio
| | | | - Purvesh Khatri
- Biomedical Informatics Research–Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care, Department of Medicine
- Wall Center for Pulmonary Vascular Disease
- Cardiovascular Institute
| |
Collapse
|
26
|
Chen X, Chen RX, Wei WS, Li YH, Feng ZH, Tan L, Chen JW, Yuan GJ, Chen SL, Guo SJ, Xiao KH, Liu ZW, Luo JH, Zhou FJ, Xie D. PRMT5 Circular RNA Promotes Metastasis of Urothelial Carcinoma of the Bladder through Sponging miR-30c to Induce Epithelial-Mesenchymal Transition. Clin Cancer Res 2018; 24:6319-6330. [PMID: 30305293 DOI: 10.1158/1078-0432.ccr-18-1270] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/22/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Circular RNAs (circRNAs), a novel class of noncoding RNAs, have recently drawn lots of attention in the pathogenesis of human cancers. However, the role of circRNAs in cancer cells epithelial-mesenchymal transition (EMT) remains unclear. In this study, we aimed to identify novel circRNAs that regulate urothelial carcinoma of the bladder (UCB) cells' EMT and explored their regulatory mechanisms and clinical significance in UCBs. EXPERIMENTAL DESIGN We first screened circRNA expression profiles using a circRNA microarray in paired UCB and normal tissues, and then studied the clinical significance of an upregulated circRNA, circPRMT5, in a large cohort of patients with UCB. We further investigated the functions and underlying mechanisms of circPRMT5 in UCB cells' EMT. Moreover, we evaluated the regulation effect of circPRMT5 on miR-30c, and its target genes, SNAIL1 and E-cadherin, in two independent cohorts from our institute and The Cancer Genome Atlas (TCGA). RESULTS We demonstrated that upregulated expression of circPRMT5 was positively associated with advanced clinical stage and worse survival in patients with UCB. We further revealed that circPRMT5 promoted UCB cell's EMT via sponging miR-30c. Clinical analysis from two independent UCB cohorts showed that the circPRMT5/miR-30c/SNAIL1/E-cadherin pathway was essential in supporting UCB progression. Importantly, we identified that circPRMT5 was upregulated in serum and urine exosomes from patients with UCB, and significantly correlated with tumor metastasis. CONCLUSIONS CircPRMT5 exerts critical roles in promoting UCB cells' EMT and/or aggressiveness and is a prognostic biomarker of the disease, suggesting that circPRMT5 may serve as an exploitable therapeutic target for patients with UCB.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ri-Xin Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wen-Su Wei
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yong-Hong Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zi-Hao Feng
- Department of Urology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lei Tan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jie-Wei Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Gang-Jun Yuan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Si-Liang Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Sheng-Jie Guo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Kang-Hua Xiao
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhuo-Wei Liu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jun-Hang Luo
- Department of Urology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fang-Jian Zhou
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China. .,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China. .,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Coebergh van den Braak RRJ, Sieuwerts AM, Lalmahomed ZS, Smid M, Wilting SM, Bril SI, Xiang S, van der Vlugt-Daane M, de Weerd V, van Galen A, Biermann K, van Krieken JHJM, Kloosterman WP, Foekens JA, Martens JWM, IJzermans JNM. Confirmation of a metastasis-specific microRNA signature in primary colon cancer. Sci Rep 2018; 8:5242. [PMID: 29588449 PMCID: PMC5869672 DOI: 10.1038/s41598-018-22532-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/21/2018] [Indexed: 12/16/2022] Open
Abstract
The identification of patients with high-risk stage II colon cancer who may benefit from adjuvant therapy may allow the clinical approach to be tailored for these patients based on an understanding of tumour biology. MicroRNAs have been proposed as markers of the prognosis or treatment response in colorectal cancer. Recently, a 2-microRNA signature (let-7i and miR-10b) was proposed to identify colorectal cancer patients at risk of developing distant metastasis. We assessed the prognostic value of this signature and additional candidate microRNAs in an independent, clinically well-defined, prospectively collected cohort of primary colon cancer patients including stage I-II colon cancer without and stage III colon cancer with adjuvant treatment. The 2-microRNA signature specifically predicted hepatic recurrence in the stage I-II group, but not the overall ability to develop distant metastasis. The addition of miR-30b to the 2-microRNA signature allowed the prediction of both distant metastasis and hepatic recurrence in patients with stage I-II colon cancer who did not receive adjuvant chemotherapy. Available gene expression data allowed us to associate miR-30b expression with axon guidance and let-7i expression with cell adhesion, migration, and motility.
Collapse
Affiliation(s)
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Cancer Genomics Center Netherlands, Amsterdam, The Netherlands
| | - Zarina S Lalmahomed
- Department of Surgery, Erasmus MC Medical Center, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Saskia M Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandra I Bril
- Department of Surgery, Erasmus MC Medical Center, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Shanshan Xiang
- Department of Surgery, Erasmus MC Medical Center, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michelle van der Vlugt-Daane
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anne van Galen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katharina Biermann
- Department of Pathology, Erasmus MC Medical Center, Rotterdam, The Netherlands
| | - J Han J M van Krieken
- Department of Pathology, Radboud UMC, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Wigard P Kloosterman
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Cancer Genomics Center Netherlands, Amsterdam, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC Medical Center, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| |
Collapse
|
28
|
Zhang L, Xu LJ, Zhu J, Li J, Xue BX, Gao J, Sun CY, Zang YC, Zhou YB, Yang DR, Shan YX. ATM‑JAK‑PD‑L1 signaling pathway inhibition decreases EMT and metastasis of androgen‑independent prostate cancer. Mol Med Rep 2018; 17:7045-7054. [PMID: 29568923 PMCID: PMC5928660 DOI: 10.3892/mmr.2018.8781] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC), also known as androgen-independent prostate cancer, frequently develops local and distant metastases, the underlying mechanisms of which remain undetermined. In the present study, surgical specimens obtained from patients with clinical prostate cancer were investigated, and it was revealed that the expression levels of ataxia telangiectasia mutated kinase (ATM) were significantly enhanced in prostate cancer tissues isolated from patients with CRPC compared with from patients with hormone-dependent prostate cancer. CRPC C4-2 and CWR22Rv1 cells lines were subsequently selected to establish prostate cancer models, and ATM knockout cells were established via lentivirus infection. The results of the present study demonstrated that the migration and epithelial-mesenchymal transition (EMT) of ATM knockout cells were significantly decreased, which suggested that ATM is closely associated with CRPC cell migration and EMT. To further investigate the mechanisms underlying this process, programmed cell death 1 ligand 1 (PD-L1) expression was investigated in ATM knockout cells. In addition, inhibitors of Janus kinase (JAK) and signal transducer and activator of transcription 3 (STAT3; Stattic) were added to C4-2-Sc and CWR22Rv1-Sc cells, and the results demonstrated that PD-L1 expression was significantly decreased following the addition of JAK inhibitor 1; however, no significant change was observed following the addition of Stattic. Furthermore, a PD-L1 antibody and JAK inhibitor 1 were added to C4-2-Sc and CWR22Rv1-Sc cells, and it was revealed that cell migration ability was significantly decreased and the expression of EMT-associated markers was effectively reversed. The results of the present study suggested that via inhibition of the ATM-JAK-PD-L1 signaling pathway, EMT, metastasis and progression of CRPC may be effectively suppressed, which may represent a novel therapeutic approach for targeted therapy for patients with CRPC.
Collapse
Affiliation(s)
- Lan Zhang
- Emergency Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Li-Jun Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jian Li
- First Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Bo-Xin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jie Gao
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Chuan-Yang Sun
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ya-Chen Zang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yi-Bin Zhou
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Dong-Rong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yu-Xi Shan
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
29
|
Li WT, Zheng H, Nguyen V, Wang-Rodriguez J, Ongkeko WM. Functional Genomics Profiling of Bladder Urothelial Carcinoma MicroRNAome as a Potential Biomarker. Neoplasia 2018; 20:364-373. [PMID: 29544183 PMCID: PMC5857480 DOI: 10.1016/j.neo.2018.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 01/15/2023] Open
Abstract
Though bladder urothelial carcinoma is the most common form of bladder cancer, advances in its diagnosis and treatment have been modest in the past few decades. To evaluate miRNAs as putative disease markers for bladder urothelial carcinoma, this study develops a process to identify dysregulated miRNAs in cancer patients and potentially stratify patients based on the association of their microRNAome phenotype to genomic alterations. Using RNA sequencing data for 409 patients from the Cancer Genome Atlas, we examined miRNA differential expression between cancer and normal tissues and associated differentially expressed miRNAs with patient survival and clinical variables. We then correlated miRNA expressions with genomic alterations using the Wilcoxon test and REVEALER. We found a panel of six miRNAs dysregulated in bladder cancer and exhibited correlations to patient survival. We also performed differential expression analysis and clinical variable correlations to identify miRNAs associated with tobacco smoking, the most important risk factor for bladder cancer. Two miRNAs, miR-323a and miR-431, were differentially expressed in smoking patients compared to nonsmoking patients and were associated with primary tumor size. Functional studies of these miRNAs and the genomic features we identified for potential stratification may reveal underlying mechanisms of bladder cancer carcinogenesis and further diagnosis and treatment methods for urothelial bladder carcinoma.
Collapse
Affiliation(s)
- Wei Tse Li
- Department of Surgery, University of California, San Diego, La Jolla, California, USA.
| | - Hao Zheng
- Department of Surgery, University of California, San Diego, La Jolla, California, USA.
| | - Vincent Nguyen
- Department of Surgery, University of California, San Diego, La Jolla, California, USA.
| | - Jessica Wang-Rodriguez
- Veterans Administration Medical Center and Department of Pathology, University of California San Diego, La Jolla, California, USA.
| | - Weg M Ongkeko
- Department of Surgery, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
30
|
Agostini A, Brunetti M, Davidson B, Trope CG, Heim S, Panagopoulos I, Micci F. Expressions of miR-30c and let-7a are inversely correlated with HMGA2 expression in squamous cell carcinoma of the vulva. Oncotarget 2018; 7:85058-85062. [PMID: 27835588 PMCID: PMC5356719 DOI: 10.18632/oncotarget.13187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/22/2016] [Indexed: 12/16/2022] Open
Abstract
Malignant tumors of the vulva, most of them squamous cell carcinomas, account for only 5% of cancers of the female genital tract. Though little is known about the genetic features of these tumors, the Fragile Histidine Triad (FHIT) and High Mobility Group AT-hook 2 (HMGA2) genes were found deregulated. We wanted to gain more knowledge about the expression of HMGA2-related miRNAs such as miR-30c and let-7a, and whether a correlation exists between the expression of FHIT and HMGA2, in this tumor type. An inverse correlation was found in-as-much as HMGA2 was highly expressed (mean fold change 8.8) whereas miR30c and let-7a were both downregulated (mean fold change -3.9 and -2.3, respectively). The consistent overexpression of HMGA2 found in all tumors adds to the likelihood that this gene is of importance in SCC pathogenesis. Moreover, we came to the conclusion that miRNAs may be the cause of the deregulation of HMGA2. Our results also show that SCC of the vulva presents a characteristic molecular pattern with FHIT being downregulated whereas HMGA2 is upregulated.
Collapse
Affiliation(s)
- Antonio Agostini
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Marta Brunetti
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Ben Davidson
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Claes G Trope
- Department of Gynecology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Casasent AK, Schalck A, Gao R, Sei E, Long A, Pangburn W, Casasent T, Meric-Bernstam F, Edgerton ME, Navin NE. Multiclonal Invasion in Breast Tumors Identified by Topographic Single Cell Sequencing. Cell 2018; 172:205-217.e12. [PMID: 29307488 PMCID: PMC5766405 DOI: 10.1016/j.cell.2017.12.007] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/15/2017] [Accepted: 12/01/2017] [Indexed: 11/17/2022]
Abstract
Ductal carcinoma in situ (DCIS) is an early-stage breast cancer that infrequently progresses to invasive ductal carcinoma (IDC). Genomic evolution has been difficult to delineate during invasion due to intratumor heterogeneity and the low number of tumor cells in the ducts. To overcome these challenges, we developed Topographic Single Cell Sequencing (TSCS) to measure genomic copy number profiles of single tumor cells while preserving their spatial context in tissue sections. We applied TSCS to 1,293 single cells from 10 synchronous patients with both DCIS and IDC regions in addition to exome sequencing. Our data reveal a direct genomic lineage between in situ and invasive tumor subpopulations and further show that most mutations and copy number aberrations evolved within the ducts prior to invasion. These results support a multiclonal invasion model, in which one or more clones escape the ducts and migrate into the adjacent tissues to establish the invasive carcinomas.
Collapse
Affiliation(s)
- Anna K Casasent
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aislyn Schalck
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruli Gao
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emi Sei
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Annalyssa Long
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Pangburn
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tod Casasent
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary E Edgerton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Nicholas E Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
32
|
Xu X, Wang Y, Deng H, Liu C, Wu J, Lai M. HMGA2 enhances 5-fluorouracil chemoresistance in colorectal cancer via the Dvl2/Wnt pathway. Oncotarget 2018. [PMID: 29515783 PMCID: PMC5839414 DOI: 10.18632/oncotarget.24133] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Drug resistance is one of the main hurdles to overcome for the improvement of cancer patient survival. However, the underlying mechanisms remain largely unknown, and therapeutic options are limited. Here, we demonstrate a strong correlation between HMGA2 expression and chemosensitivity to 5-fluorouracil (5-FU), a widely used first-line systemic chemotherapy regimen for colorectal cancer (CRC) patients. Overexpression of HMGA2 enhances chemoresistance to 5-FU of CRC both in vitro and in vivo. Further experiments indicate that HMGA2 directly binds to the promoter of Dvl2 and induces its transcription, which leads to increased activation of the Wnt/β-catenin pathway. Taken together, our data suggest that HMGA2 enhances the chemoresistance to 5-FU in CRC via activating the Dvl2/Wnt pathway. Therefore, HMGA2 may serve as a predictive biomarker and a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Xi Xu
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Yunfeng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Hong Deng
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Chungang Liu
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China.,Center of Biological Therapy, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Jingjing Wu
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Maode Lai
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
33
|
Kiss DL, Baez W, Huebner K, Bundschuh R, Schoenberg DR. Impact of FHIT loss on the translation of cancer-associated mRNAs. Mol Cancer 2017; 16:179. [PMID: 29282095 PMCID: PMC5745650 DOI: 10.1186/s12943-017-0749-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/10/2017] [Indexed: 11/30/2022] Open
Abstract
Background FHIT is a genome caretaker/tumor suppressor that is silenced in >50% of cancers. Although it was identified more than 20 years ago, questions remain as to how FHIT loss contributes to cancer, and conversely, how FHIT acts to maintain genome integrity and suppress malignancy. Fhit belongs to the histidine triad family of enzymes that catalyze the degradation of nucleoside 5′,5′-triphosphates, including the m7GpppN ‘caps’ that are generated when mRNAs undergo 3′-5′ decay. This raised the possibility that Fhit loss might affect changes in the translation of cancer-associated mRNAs, possibly as a consequence of increased intracellular concentrations of these molecules. Results Ribosome profiling identified several hundred mRNAs for which coding region ribosome occupancy changed as a function of Fhit expression. While many of these changes could be explained by changes in mRNA steady-state, a subset of these showed changes in translation efficiency as a function of Fhit expression. The onset of malignancy has been linked to changes in 5’-UTR ribosome occupancy and this analysis also identified ribosome binding to 5′-untranslated regions (UTRs) of a number of cancer-associated mRNAs. 5’-UTR ribosome occupancy of these mRNAs differed between Fhit-negative and Fhit-positive cells, and in some cases these differences correlated with differences in coding region ribosome occupancy. Conclusions In summary, these findings show Fhit expression impacts the translation of a number of cancer associated genes, and they support the hypothesis that Fhit’s genome protective/tumor suppressor function is associated with post-transcriptional changes in expression of genes whose dysregulation contributes to malignancy. Electronic supplementary material The online version of this article (10.1186/s12943-017-0749-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel L Kiss
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.,Biomarker Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - William Baez
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Kay Huebner
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physics, The Ohio State University, Columbus, OH, 43210, USA.,Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel R Schoenberg
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
34
|
Zheng HC, Liu LL. FHIT down-regulation was inversely linked to aggressive behaviors and adverse prognosis of gastric cancer: a meta- and bioinformatics analysis. Oncotarget 2017; 8:108261-108273. [PMID: 29296239 PMCID: PMC5746141 DOI: 10.18632/oncotarget.22369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022] Open
Abstract
FHIT (fragile histine triad) acts as diadenosine P1, P3-bis (5'-adenosyl)-triphosphate adenylohydrolase involved in purine metabolism, and induces apoptosis as a tumor suppressor. We performed a systematic meta- and bioinformatics analysis through multiple online databases up to March 14, 2017. The down-regulated FHIT expression was found in gastric cancer, compared with normal mucosa and dysplasia (p < 0.05). FHIT expression was negatively with depth of invasion, lymph node metastasis, distant metastasis, TNM staging and dedifferentiation of gastric cancer (p < 0.05). A positive association between FHIT expression and favorable overall survival was found in patients with gastric cancer (p < 0.05). According to Kaplan-Meier plotter, we found that a higher FHIT expression was negatively correlated with overall and progression-free survival rates of all cancer patients, even stratified by aggressive parameters (p < 0.05). These findings indicated that FHIT expression might be employed as a potential marker to indicate gastric carcinogenesis and subsequent progression, even prognosis.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Li-Li Liu
- Department of Pathology, Harbin Medical University-Daqing, Daqing 163319, China
| |
Collapse
|
35
|
Natarajan S, Begum F, Gim J, Wark L, Henderson D, Davie JR, Hombach-Klonisch S, Klonisch T. High Mobility Group A2 protects cancer cells against telomere dysfunction. Oncotarget 2017; 7:12761-82. [PMID: 26799419 PMCID: PMC4914320 DOI: 10.18632/oncotarget.6938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 11/25/2022] Open
Abstract
The non-histone chromatin binding protein High Mobility Group AT-hook protein 2 (HMGA2) plays important roles in the repair and protection of genomic DNA in embryonic stem cells and cancer cells. Here we show that HMGA2 localizes to mammalian telomeres and enhances telomere stability in cancer cells. We present a novel interaction of HMGA2 with the key shelterin protein TRF2. We found that the linker (L1) region of HMGA2 contributes to this interaction but the ATI-L1-ATII molecular region of HMGA2 is required for strong interaction with TRF2. This interaction was independent of HMGA2 DNA-binding and did not require the TRF2 interacting partner RAP1 but involved the homodimerization and hinge regions of TRF2. HMGA2 retained TRF2 at telomeres and reduced telomere-dysfunction despite induced telomere stress. Silencing of HMGA2 resulted in (i) reduced binding of TRF2 to telomere DNA as observed by ChIP, (ii) increased telomere instability and (iii) the formation of telomere dysfunction-induced foci (TIF). This resulted in increased telomere aggregation, anaphase bridges and micronuclei. HMGA2 prevented ATM-dependent pTRF2T188 phosphorylation and attenuated signaling via the telomere specific ATM-CHK2-CDC25C DNA damage signaling axis. In summary, our data demonstrate a unique and novel role of HMGA2 in telomere protection and promoting telomere stability in cancer cells. This identifies HMGA2 as a new therapeutic target for the destabilization of telomeres in HMGA2+ cancer cells.
Collapse
Affiliation(s)
- Suchitra Natarajan
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Farhana Begum
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jeonga Gim
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Landon Wark
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Dana Henderson
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - James R Davie
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.,Department of Biochemistry and Medical Genetics, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Obstetrics, Gynecology and Reproductive Medicine, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Surgery, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Medical Microbiology and Infectious Diseases, College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
36
|
Shu J, Silva BVRE, Gao T, Xu Z, Cui J. Dynamic and Modularized MicroRNA Regulation and Its Implication in Human Cancers. Sci Rep 2017; 7:13356. [PMID: 29042600 PMCID: PMC5645395 DOI: 10.1038/s41598-017-13470-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNA is responsible for the fine-tuning of fundamental cellular activities and human disease development. The altered availability of microRNAs, target mRNAs, and other types of endogenous RNAs competing for microRNA interactions reflects the dynamic and conditional property of microRNA-mediated gene regulation that remains under-investigated. Here we propose a new integrative method to study this dynamic process by considering both competing and cooperative mechanisms and identifying functional modules where different microRNAs co-regulate the same functional process. Specifically, a new pipeline was built based on a meta-Lasso regression model and the proof-of-concept study was performed using a large-scale genomic dataset from ~4,200 patients with 9 cancer types. In the analysis, 10,726 microRNA-mRNA interactions were identified to be associated with a specific stage and/or type of cancer, which demonstrated the dynamic and conditional miRNA regulation during cancer progression. On the other hands, we detected 4,134 regulatory modules that exhibit high fidelity of microRNA function through selective microRNA-mRNA binding and modulation. For example, miR-18a-3p, -320a, -193b-3p, and -92b-3p co-regulate the glycolysis/gluconeogenesis and focal adhesion in cancers of kidney, liver, lung, and uterus. Furthermore, several new insights into dynamic microRNA regulation in cancers have been discovered in this study.
Collapse
Affiliation(s)
- Jiang Shu
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, Lincoln, NE, 68588, USA
| | - Bruno Vieira Resende E Silva
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, Lincoln, NE, 68588, USA
| | - Tian Gao
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, Lincoln, NE, 68588, USA
| | - Zheng Xu
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Juan Cui
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, Lincoln, NE, 68588, USA.
| |
Collapse
|
37
|
Agostini A, Brunetti M, Davidson B, Tropé CG, Heim S, Panagopoulos I, Micci F. Genomic imbalances are involved in miR-30c and let-7a deregulation in ovarian tumors: implications for HMGA2 expression. Oncotarget 2017; 8:21554-21560. [PMID: 28423547 PMCID: PMC5400605 DOI: 10.18632/oncotarget.15795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/31/2017] [Indexed: 01/27/2023] Open
Abstract
The High-mobility group AT-hook 2 protein (HMGA2) is involved in different processes during tumorigenesis. High expression levels of HMGA2 are found in various types of cancer, with recent studies highlighting the important role of miRNAs in the regulation of HMGA2 expression. We report a study of 155 ovarian tumors (30 sex-cord stromal tumors, 22 borderline tumors, and 103 carcinomas) analyzed for HMGA2 expression as well as the expression of two miRNAs targeting this gene, let-7a and miR-30c. We also evaluated the expression of the fragile histidine triad (FHIT) and lin28 homologues (LIN28A/B) genes which are known to be an enhancer of miR-30c expression and a repressor of let-7a, respectively. HMGA2 was found expressed at high levels in most samples analyzed, with clear cell carcinomas as the only exception. let-7a and miR-30c were highly deregulated in all tumor types. LIN28A and FHIT were found overexpressed in all examined tumor types. The chromosomal imbalances that might lead to loss of the genes expressing let-7a and miR-30c could be evaluated on the basis of previously generated karyotypic and high resolution comparative genomic hybridization (CGH) data on 103 tumors. 76% of the samples with an imbalanced genome had at least one chromosomal aberration leading to a deletion of a miRNA cluster for let-7a and miR-30c. FISH using locus specific probes for these clusters validate the aberrations at the gene level. Our study shows that genomic imbalances are involved in miR-30c and let-7a deregulation. One can reasonably assume that dysregulation of these miRNAs is a cause leading to HMGA2 upregulation in ovarian tumors.
Collapse
Affiliation(s)
- Antonio Agostini
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Marta Brunetti
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Ben Davidson
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Claes G Tropé
- Department of Gynecology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| |
Collapse
|
38
|
He SJ, Xiang CQ, Zhang Y, Lu XT, Chen HW, Xiong LX. Recent progress on the effects of microRNAs and natural products on tumor epithelial-mesenchymal transition. Onco Targets Ther 2017; 10:3435-3451. [PMID: 28744148 PMCID: PMC5513877 DOI: 10.2147/ott.s139546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a biological process of phenotypic transition of epithelial cells that can promote physiological development as well as tissue healing and repair. In recent years, cancer researchers have noted that EMT is closely related to the occurrence and development of tumors. When tumor cells undergo EMT, they can develop enhanced migration and local tissue invasion abilities, which can lead to metastatic growth. Nevertheless, two researches in NATURE deny its necessity in specific tumors and that is discussed in this review. The degree of EMT and the detection of EMT-associated marker molecules can also be used to judge the risk of metastasis and to evaluate patients’ prognosis. MicroRNAs (miRNAs) are noncoding small RNAs, which can inhibit gene expression and protein translation through specific binding with the 3′ untranslated region of mRNA. In this review, we summarize the miRNAs that are reported to influence EMT through transcription factors such as ZEB, SNAIL, and TWIST, as well as some natural products that regulate EMT in tumors. Moreover, mutual inhibition occurs between some transcription factors and miRNAs, and these effects appear to occur in a complex regulatory network. Thus, understanding the role of miRNAs in EMT and tumor growth may lead to new treatments for malignancies. Natural products can also be combined with conventional chemotherapy to enhance curative effects.
Collapse
Affiliation(s)
- Shu-Jin He
- Department of Pathophysiology, Medical College, Nanchang University.,Second Clinical Medical College, Nanchang University
| | - Chu-Qi Xiang
- Department of Pathophysiology, Medical College, Nanchang University.,First Clinical Medical College, Nanchang University
| | - Yu Zhang
- First Clinical Medical College, Nanchang University
| | - Xiang-Tong Lu
- Department of Pathophysiology, Medical College, Nanchang University
| | - Hou-Wen Chen
- Department of Pathophysiology, Medical College, Nanchang University.,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, People's Republic of China
| | - Li-Xia Xiong
- Department of Pathophysiology, Medical College, Nanchang University.,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, People's Republic of China
| |
Collapse
|
39
|
Han X, Zhen S, Ye Z, Lu J, Wang L, Li P, Li J, Zheng X, Li H, Chen W, Li X, Zhao L. A Feedback Loop Between miR-30a/c-5p and DNMT1 Mediates Cisplatin Resistance in Ovarian Cancer Cells. Cell Physiol Biochem 2017; 41:973-986. [PMID: 28222434 DOI: 10.1159/000460618] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/18/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Many microRNAs (miRs) are dysregulated in cancers, and aberrant miR expression patterns have been suggested to correlate with chemo-resistance of cancer cells. We aim to study the role of miR-30 family members in cisplatin-resistance of ovarian cancer cells. METHODS qRT-PCR was used to compare differential expression levels of miR-30 family members in ovarian cancer cell line A2780 and its cisplatin-resistant derivative CP70. Changes of cisplatin-sensitivity in miR-30a-5p- and miR-30c-5p-overexpressed-CP70 cells and miR-30a-5p- and miR-30c-5p-inhibited-A2780 cells were examined by CCK8 assay and apoptosis analysis using flow cytometry; targets of miR-30a/c-5p were analyzed by western blotting and luciferase reporter assay; methylation regulation of pre-miR-30a/c-5p was examined by methylation specific PCR. RESULTS miR-30a-5p and miR-30c-5p, in contrast to other miR-30 family members, dramatically decreased in cisplatin-resistant CP70 cells due to overexpressed-DNMT1 induced aberrant methylation. miR-30a/c-5p in turn directly inhibited DNMT1 as well as Snail. Forced expression of miR-30a/c-5p or knocking down of DNMT1 and Snail promoted cisplatin susceptibility and partially reversed epithelial-mesenchymal transition (EMT) in CP70 cells, while inhibition of miR-30a/c-5p or ectopic expression of DNMT1 and Snail induced cisplatin resistance and partial EMT in cisplatin-sensitive A2780 cells. CONCLUSIONS A feedback loop between miR-30a/c-5p and DNMT1 is a potent signature for cisplatin-resistance and EMT in ovarian cancer, promising a potential target for improved anti-cancer treatment.
Collapse
|
40
|
Downregulation of microRNA-145 promotes epithelial-mesenchymal transition via regulating Snail in osteosarcoma. Cancer Gene Ther 2017; 24:83-88. [PMID: 28186090 DOI: 10.1038/cgt.2017.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/21/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022]
Abstract
Metastasis is the principal cause of cancer death and occurs through multiple, complex processes. Epithelial to mesenchymal transition (EMT) is an important process during embryonic development and has also been hypothesized to exhibit a significant role in cancer cell invasion and metastasis. MicroRNAs (miRNAs) are a class of widespread noncoding RNAs. In recent years, many studies have shown that miRNAs could influence the signaling pathways and downstream events that define EMT on a molecular level. However, the exact role and mechanisms of miR-145 in EMT of osteosarcoma (OS) was unknown. In the present study, miR-145 was downregulated in OS tissues and cell lines and it was shown that miR-145 expression was closely correlated with advanced tumor progression in patients of OS. In addition, miR-145 upregulation by miR-145 agomir significantly inhibited MG63 cells invasion and migration ability. MiR-145 was reported to be able to inhibit EMT in cancers. Following the examination of changes in cell epithelial and mesenchymal markers, it was found that upregulation of miR-145 strongly reversed EMT in MG63 cells. Meanwhile, the expression of Snail, a strong E-cadherin transcription repressor was also attenuated by miR-145 agomir. Furthermore, the decreased EMT and invasion and metastasis caused by miR-145 agomir could be restored by Snail siRNA. In conclusion, the results demonstrated that miR-145 could mediate EMT by targeting Snail and miR-145 might be a novel EMT regulating transcription factor that involved in the progression of OS. The specific drugs targeting miR-145-mediated EMT process might be new promising cancer therapies.
Collapse
|
41
|
Yamada Y, Iwata KI, Blyth BJ, Doi K, Morioka T, Daino K, Nishimura M, Kakinuma S, Shimada Y. Effect of Age at Exposure on the Incidence of Lung and Mammary Cancer after Thoracic X-Ray Irradiation in Wistar Rats. Radiat Res 2017; 187:210-220. [DOI: 10.1667/rr14478.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | - Kazutaka Doi
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Kiss DL, Waters CE, Ouda IM, Saldivar JC, Karras JR, Amin ZA, Mahrous S, Druck T, Bundschuh RA, Schoenberg DR, Huebner K. Identification of Fhit as a post-transcriptional effector of Thymidine Kinase 1 expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:374-382. [PMID: 28093273 DOI: 10.1016/j.bbagrm.2017.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 11/30/2022]
Abstract
FHIT is a genome caretaker gene that is silenced in >50% of cancers. Loss of Fhit protein expression promotes accumulation of DNA damage, affects apoptosis and epithelial-mesenchymal transition, though molecular mechanisms underlying these alterations have not been fully elucidated. Initiation of genome instability directly follows Fhit loss and the associated reduced Thymidine Kinase 1 (TK1) protein expression. The effects on TK1 of Fhit knockdown and Fhit induction in the current study confirmed the role of Fhit in regulating TK1 expression. Changes in Fhit expression did not impact TK1 protein turnover or transcription from the TK1 promoter, nor steady-state levels of TK1 mRNA or turnover. Polysome profile analysis showed that up-regulated Fhit expression resulted in decreased TK1 RNA in non-translating messenger ribonucleoproteins and increased ribosome density on TK1 mRNA. Fhit does not bind RNA but its expression increased luciferase expression from a transgene bearing the TK1 5'-UTR. Fhit has been reported to act as a scavenger decapping enzyme, and a similar result with a mutant (H96) that binds but does not cleave nucleoside 5',5'-triphosphates suggests the impact on TK1 translation is due to its ability to modulate the intracellular level of cap-like molecules. Consistent with this, cells expressing Fhit mutants with reduced activity toward cap-like dinucleotides exhibit DNA damage resulting from TK1 deficiency, whereas cells expressing wild-type Fhit or the H96N mutant do not. The results have implications for the mechanism by which Fhit regulates TK1 mRNA, and more broadly, for its modulation of multiple functions as tumor suppressor/genome caretaker.
Collapse
Affiliation(s)
- Daniel L Kiss
- Center for RNA Biology, 484 West 12th Ave., Columbus, OH 43210 USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Rd., Columbus, OH 43210 USA
| | - Catherine E Waters
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12 Ave., Columbus, OH 43210 USA
| | - Iman M Ouda
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12 Ave., Columbus, OH 43210 USA
- Department of Clinical Pathology, Faculty of Medicine, 2nd floor, Surgery Hospital, Zagazig University, Zagazig 44519, Egypt
| | - Joshua C Saldivar
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12 Ave., Columbus, OH 43210 USA
| | - Jenna R Karras
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12 Ave., Columbus, OH 43210 USA
| | - Zaynab A Amin
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12 Ave., Columbus, OH 43210 USA
| | - Seham Mahrous
- Department of Clinical Pathology, Faculty of Medicine, 2nd floor, Surgery Hospital, Zagazig University, Zagazig 44519, Egypt
| | - Teresa Druck
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12 Ave., Columbus, OH 43210 USA
| | - Ralf A Bundschuh
- Center for RNA Biology, 484 West 12th Ave., Columbus, OH 43210 USA
- Department of Physics, Department of Chemistry and Biochemistry, and Division of Hematology, Department of Internal Medicine, The Ohio State University, 191 West Woodruff Ave., Columbus, OH 43210 USA
| | - Daniel R Schoenberg
- Center for RNA Biology, 484 West 12th Ave., Columbus, OH 43210 USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Rd., Columbus, OH 43210 USA
| | - Kay Huebner
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12 Ave., Columbus, OH 43210 USA
| |
Collapse
|
43
|
Hazan I, Hofmann TG, Aqeilan RI. Tumor Suppressor Genes within Common Fragile Sites Are Active Players in the DNA Damage Response. PLoS Genet 2016; 12:e1006436. [PMID: 27977694 PMCID: PMC5157955 DOI: 10.1371/journal.pgen.1006436] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of common fragile sites (CFSs) in cancer remains controversial. Two main views dominate the discussion: one suggests that CFS loci are hotspots of genomic instability leading to inactivation of genes encoded within them, while the other view proposes that CFSs are functional units and that loss of the encoded genes confers selective pressure, leading to cancer development. The latter view is supported by emerging evidence showing that expression of a given CFS is associated with genome integrity and that inactivation of CFS-resident tumor suppressor genes leads to dysregulation of the DNA damage response (DDR) and increased genomic instability. These two viewpoints of CFS function are not mutually exclusive but rather coexist; when breaks at CFSs are not repaired accurately, this can lead to deletions by which cells acquire growth advantage because of loss of tumor suppressor activities. Here, we review recent advances linking some CFS gene products with the DDR, genomic instability, and carcinogenesis and discuss how their inactivation might represent a selective advantage for cancer cells.
Collapse
Affiliation(s)
- Idit Hazan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Thomas G. Hofmann
- Cellular Senescence Group, Department of Epigenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rami I. Aqeilan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
44
|
Tian L, Shen D, Li X, Shan X, Wang X, Yan Q, Liu J. Ginsenoside Rg3 inhibits epithelial-mesenchymal transition (EMT) and invasion of lung cancer by down-regulating FUT4. Oncotarget 2016; 7:1619-32. [PMID: 26636541 PMCID: PMC4811485 DOI: 10.18632/oncotarget.6451] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/21/2015] [Indexed: 01/17/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is an important factor in lung cancer metastasis, and targeting EMT is a potential therapeutic strategy. Fucosyltransferase IV (FUT4) and its synthetic cancer sugar antigen Lewis Y (LeY) was abnormally elevated in many cancers. In this study, a traditional Chinese medicine ginsenoside Rg3 was used to investigate whether its inhibition to EMT and invasion of lung cancer is by the glycobiology mechanism. We found that Rg3 treatment (25, 50, 100 μg/ml) inhibited cell migration and invasion by wound-healing and transwell assays. Rg3 could significantly alter EMT marker proteins with increased E-cadherin, but decreased Snail, N-cadherin and Vimentin expression. Rg3 also down-regulated FUT4 gene and protein expression in lung cancer cells by qPCR, Western blot and immunofluorescence. After FUT4 down-regulated with shFUT4, EMT was obviously inhibited. Furthermore, the activation of EGFR through decreased LeY biosynthesis was inhibited, which blocked the downstream MAPK and NF-κB signal pathways. In addition, Rg3 reduced tumor volume and weight in xenograft mouse model, and significantly decreased tumor metastasis nodules in lung tissues by tail vein injection. In conclusion, Rg3 inhibits EMT and invasion of lung cancer by down-regulating FUT4 mediated EGFR inactivation and blocking MAPK and NF-κB signal pathways. Rg3 may be a potentially effective agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Lili Tian
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Dachuan Shen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiaodong Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiu Shan
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiaoqi Wang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning Province, China
| | - Jiwei Liu
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
45
|
Karras JR, Schrock MS, Batar B, Zhang J, La Perle K, Druck T, Huebner K. Fhit loss-associated initiation and progression of neoplasia in vitro. Cancer Sci 2016; 107:1590-1598. [PMID: 27513973 PMCID: PMC5132276 DOI: 10.1111/cas.13032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022] Open
Abstract
The FHIT gene, encompassing an active common fragile site, FRA3B, is frequently silenced in preneoplasia and cancer, through gene rearrangement or methylation of regulatory sequences. Silencing of Fhit protein expression causes thymidine kinase 1 downregulation, resulting in dNTP imbalance, and spontaneous replication stress that leads to chromosomal aberrations, allele copy number variations, insertions/deletions, and single-base substitutions. Thus, Fhit, which is reduced in expression in the majority of human cancers, is a genome "caretaker" whose loss initiates genome instability in preneoplastic lesions. To follow the early genetic alterations and functional changes induced by Fhit loss that may recapitulate the neoplastic process in vitro, we established epithelial cell lines from kidney tissues of Fhit-/- and +/+ mouse pups early after weaning, and subjected cell cultures to nutritional and carcinogen stress, which +/+ cells did not survive. Through transcriptome profiling and protein expression analysis, we observed changes in the Trp53/p21 and survivin apoptotic pathways in -/- cells, and in expression of proteins involved in epithelial-mesenchymal transition. Some Fhit-deficient cell lines showed anchorage-independent colony formation and increased invasive capacity in vitro. Furthermore, cells of stressed Fhit-/- cell lines formed s.c. and metastatic tumors in nude mice. Collectively, we show that Fhit loss and subsequent thymidine kinase 1 inactivation, combined with selective pressures, leads to neoplasia-associated alterations in genes and gene expression patterns in vitro and in vivo.
Collapse
Affiliation(s)
- Jenna R. Karras
- Department of Cancer Biology and GeneticsOhio State University Wexner Medical CenterColumbusOhioUSA
| | - Morgan S. Schrock
- Department of Cancer Biology and GeneticsOhio State University Wexner Medical CenterColumbusOhioUSA
| | - Bahadir Batar
- Department of Cancer Biology and GeneticsOhio State University Wexner Medical CenterColumbusOhioUSA
| | - Jie Zhang
- Department of Biomedical InformaticsOhio State University Wexner Medical CenterColumbusOhioUSA
| | - Krista La Perle
- Department of Veterinary BiosciencesCollege of Veterinary MedicineOhio State UniversityColumbusOhioUSA
| | - Teresa Druck
- Department of Cancer Biology and GeneticsOhio State University Wexner Medical CenterColumbusOhioUSA
| | - Kay Huebner
- Department of Cancer Biology and GeneticsOhio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
46
|
Wang M, Sun Z, Huang L. [Advanced Research on MicroRNAs and EGFR-TKIs Secondary Resistance]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 18:758-63. [PMID: 26706953 PMCID: PMC6015185 DOI: 10.3779/j.issn.1009-3419.2015.12.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
肺癌是癌症致死率最高的疾病,关于这个疾病的发生机制已得到部分阐明,其中表皮生长因子受体(epidermal growth factor receptor, EGFR)信号通路研究最为深入,在肺癌的发生中起着至关重要的作用。而有效地抑制EGFR信号通路的药物已用于非小细胞肺癌(non-small cell lung cancer, NSCLC)的靶向治疗中,伴有EGFR基因突变的患者使用EGFR酪氨酸激酶抑制剂(EGFR-tyrosine kinase inhibitors, EGFR-TKIs)治疗后获得不错的临床收益,但大部分患者在使用该药治疗10个月后出现耐药现象。MiRNAs(microRNAs)是一种非编码蛋白的RNA,参与转录后水平基因的表达调控。越来越多的研究发现miRNAs与EGFR-TKIs继发性耐药有关,miRNAs可作为逆转EGFR-TKIs耐药及评估EGFR-TKIs有效性的生物指标。本文就NSCLC中miRNAs与EGFR-TKIs继发性耐药机制之间的相关性研究进展做简要的综述。
Collapse
Affiliation(s)
- Ming Wang
- Bengbu Medical College, Bengbu 233000, China;Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Zhenyu Sun
- Bengbu Medical College, Bengbu 233000, China
| | - Linian Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
47
|
Tutar Y, Özgür A, Tutar E, Tutar L, Pulliero A, Izzotti A. Regulation of oncogenic genes by MicroRNAs and pseudogenes in human lung cancer. Biomed Pharmacother 2016; 83:1182-1190. [PMID: 27551766 DOI: 10.1016/j.biopha.2016.08.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/04/2016] [Accepted: 08/16/2016] [Indexed: 01/15/2023] Open
Abstract
Lung cancer is one of the most common mortal cancer types both for men and women. Several different biomarkers have been analyzed to reveal lung cancer prognosis pathways for developing efficient therapeutics and diagnostic agents. microRNAs (miRNAs) and pseudogenes are critical biomarkers in lung cancer and alteration of their expression levels has been identified in each step of lung cancer tumorigenesis. miRNAs and pseudogenes are crucial gene regulators in normal cells as well as in lung cancer cells, and they have both oncogenic and tumor-suppressive roles in lung cancer tumorigenesis. In this study, we have determined the relationship between lung cancer related oncogenes and miRNAs along with pseudogenes in lung cancer, and the results indicate their potential as biological markers for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Yusuf Tutar
- Cumhuriyet University, Faculty of Pharmacy, Department of Basic Sciences, Division of Biochemistry, Sivas, Turkey.
| | - Aykut Özgür
- Gaziosmanpaşa University, Faculty of Natural Sciences and Engineering, Department of Bioengineering, Tokat, Turkey
| | - Esen Tutar
- Kahramanmaraş Sütçü İmam University, Graduate School of Natural and Applied Sciences, Department of Bioengineering and Sciences, Kahramanmaraş, Turkey
| | - Lütfi Tutar
- Kahramanmaraş Sütçü İmam University, Faculty of Science and Letters, Department of Biology, Kahramanmaraş, Turkey
| | | | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Italy; Mutagenesis Unit, IRCCS University Hospital San Martino-IST, National Institute for Cancer Research, Genoa, Italy
| |
Collapse
|
48
|
Czarnecka KH, Migdalska-Sęk M, Domańska D, Pastuszak-Lewandoska D, Dutkowska A, Kordiak J, Nawrot E, Kiszałkiewicz J, Antczak A, Brzeziańska-Lasota E. FHIT promoter methylation status, low protein and high mRNA levels in patients with non-small cell lung cancer. Int J Oncol 2016; 49:1175-84. [DOI: 10.3892/ijo.2016.3610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/12/2016] [Indexed: 11/06/2022] Open
|
49
|
Emdad L, Das SK, Hu B, Kegelman T, Kang DC, Lee SG, Sarkar D, Fisher PB. AEG-1/MTDH/LYRIC: A Promiscuous Protein Partner Critical in Cancer, Obesity, and CNS Diseases. Adv Cancer Res 2016; 131:97-132. [PMID: 27451125 DOI: 10.1016/bs.acr.2016.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since its original discovery in 2002, AEG-1/MTDH/LYRIC has emerged as a primary regulator of several diseases including cancer, inflammatory diseases, and neurodegenerative diseases. AEG-1/MTDH/LYRIC has emerged as a key contributory molecule in almost every aspect of cancer progression, including uncontrolled cell growth, evasion of apoptosis, increased cell migration and invasion, angiogenesis, chemoresistance, and metastasis. Additionally, recent studies highlight a seminal role of AEG-1/MTDH/LYRIC in neurodegenerative diseases and obesity. By interacting with multiple protein partners, AEG-1/MTDH/LYRIC plays multifaceted roles in the pathogenesis of a wide variety of diseases. This review discusses the current state of understanding of AEG-1/MTDH/LYRIC regulation and function in cancer and other diseases with a focus on its association/interaction with several pivotal protein partners.
Collapse
Affiliation(s)
- L Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - S K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - B Hu
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - T Kegelman
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - D-C Kang
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea
| | - S-G Lee
- Cancer Preventive Material Development Research Center, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - D Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - P B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
50
|
Wang Z, Tang ZY, Yin Z, Wei YB, Liu LF, Yan B, Zhou KQ, Nian YQ, Gao YL, Yang JR. Metadherin regulates epithelial-mesenchymal transition in carcinoma. Onco Targets Ther 2016; 9:2429-36. [PMID: 27143938 PMCID: PMC4844438 DOI: 10.2147/ott.s104556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Metadherin (MTDH) was first identified in primary human fetal astrocytes exposed to HIV-1 in 2002 and then recognized as an important oncogene mediating tumorigenesis, progression, invasiveness, and metastasis of carcinomas. Epithelial–mesenchymal transition (EMT) is a vital process in embryonic development, organ repair, and cancer progression. MTDH and EMT have also been proved to be related to the prognosis of patients with cancers. Recent studies reveal a relationship between MTDH overexpression and EMT in some malignancies. This review highlights the overexpression of MTDH and EMT in cancers and their correlations in clinical studies. Positive correlations have been established between MTDH and mesenchymal biomarkers, and negative correlations between MTDH and epithelial biomarkers have also been established. Furthermore, experiments reveal EMT regulated by MTDH, and some signal pathways have been established. Some anticancer drugs targeting MTDH and EMT are introduced in this review. Some perspectives concerning EMT regulation by MTDH are also presented in this review.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Fu Rong District, Changsha, People's Republic of China; Department of Urology, Xiangya Hospital, Central South University, Kai Fu District, People's Republic of China
| | - Zheng-Yan Tang
- Department of Urology, Xiangya Hospital, Central South University, Kai Fu District, People's Republic of China
| | - Zhuo Yin
- Department of Urology, The Second Xiangya Hospital, Central South University, Fu Rong District, Changsha, People's Republic of China
| | - Yong-Bao Wei
- Department of Urology, The Second Xiangya Hospital, Central South University, Fu Rong District, Changsha, People's Republic of China; Department of Urology, Fujian Provincial Hospital, The Teaching Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Long-Fei Liu
- Department of Urology, Xiangya Hospital, Central South University, Kai Fu District, People's Republic of China
| | - Bin Yan
- Department of Urology, The Second Xiangya Hospital, Central South University, Fu Rong District, Changsha, People's Republic of China
| | - Ke-Qin Zhou
- Department of Urology, The Second Xiangya Hospital, Central South University, Fu Rong District, Changsha, People's Republic of China
| | - Ye-Qi Nian
- Department of Urology, The Second Xiangya Hospital, Central South University, Fu Rong District, Changsha, People's Republic of China
| | - Yun-Liang Gao
- Department of Urology, The Second Xiangya Hospital, Central South University, Fu Rong District, Changsha, People's Republic of China
| | - Jin-Rui Yang
- Department of Urology, The Second Xiangya Hospital, Central South University, Fu Rong District, Changsha, People's Republic of China
| |
Collapse
|