1
|
Camp D, Venkatesh B, Solianova V, Varela L, Goult BT, Tanentzapf G. The actin binding sites of talin have both distinct and complementary roles in cell-ECM adhesion. PLoS Genet 2024; 20:e1011224. [PMID: 38662776 PMCID: PMC11075885 DOI: 10.1371/journal.pgen.1011224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/07/2024] [Accepted: 03/12/2024] [Indexed: 05/08/2024] Open
Abstract
Cell adhesion requires linkage of transmembrane receptors to the cytoskeleton through intermediary linker proteins. Integrin-based adhesion to the extracellular matrix (ECM) involves large adhesion complexes that contain multiple cytoskeletal adapters that connect to the actin cytoskeleton. Many of these adapters, including the essential cytoskeletal linker Talin, have been shown to contain multiple actin-binding sites (ABSs) within a single protein. To investigate the possible role of having such a variety of ways of linking integrins to the cytoskeleton, we generated mutations in multiple actin binding sites in Drosophila talin. Using this approach, we have been able to show that different actin-binding sites in talin have both unique and complementary roles in integrin-mediated adhesion. Specifically, mutations in either the C-terminal ABS3 or the centrally located ABS2 result in lethality showing that they have unique and non-redundant function in some contexts. On the other hand, flies simultaneously expressing both the ABS2 and ABS3 mutants exhibit a milder phenotype than either mutant by itself, suggesting overlap in function in other contexts. Detailed phenotypic analysis of ABS mutants elucidated the unique roles of the talin ABSs during embryonic development as well as provided support for the hypothesis that talin acts as a dimer in in vivo contexts. Overall, our work highlights how the ability of adhesion complexes to link to the cytoskeleton in multiple ways provides redundancy, and consequently robustness, but also allows a capacity for functional specialization.
Collapse
Affiliation(s)
- Darius Camp
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bhavya Venkatesh
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Veronika Solianova
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lorena Varela
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Honasoge KS, Karagöz Z, Goult BT, Wolfenson H, LaPointe VLS, Carlier A. Force-dependent focal adhesion assembly and disassembly: A computational study. PLoS Comput Biol 2023; 19:e1011500. [PMID: 37801464 PMCID: PMC10584152 DOI: 10.1371/journal.pcbi.1011500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/18/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023] Open
Abstract
Cells interact with the extracellular matrix (ECM) via cell-ECM adhesions. These physical interactions are transduced into biochemical signals inside the cell which influence cell behaviour. Although cell-ECM interactions have been studied extensively, it is not completely understood how immature (nascent) adhesions develop into mature (focal) adhesions and how mechanical forces influence this process. Given the small size, dynamic nature and short lifetimes of nascent adhesions, studying them using conventional microscopic and experimental techniques is challenging. Computational modelling provides a valuable resource for simulating and exploring various "what if?" scenarios in silico and identifying key molecular components and mechanisms for further investigation. Here, we present a simplified mechano-chemical model based on ordinary differential equations with three major proteins involved in adhesions: integrins, talin and vinculin. Additionally, we incorporate a hypothetical signal molecule that influences adhesion (dis)assembly rates. We find that assembly and disassembly rates need to vary dynamically to limit maturation of nascent adhesions. The model predicts biphasic variation of actin retrograde velocity and maturation fraction with substrate stiffness, with maturation fractions between 18-35%, optimal stiffness of ∼1 pN/nm, and a mechanosensitive range of 1-100 pN/nm, all corresponding to key experimental findings. Sensitivity analyses show robustness of outcomes to small changes in parameter values, allowing model tuning to reflect specific cell types and signaling cascades. The model proposes that signal-dependent disassembly rate variations play an underappreciated role in maturation fraction regulation, which should be investigated further. We also provide predictions on the changes in traction force generation under increased/decreased vinculin concentrations, complementing previous vinculin overexpression/knockout experiments in different cell types. In summary, this work proposes a model framework to robustly simulate the mechanochemical processes underlying adhesion maturation and maintenance, thereby enhancing our fundamental knowledge of cell-ECM interactions.
Collapse
Affiliation(s)
- Kailas Shankar Honasoge
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Zeynep Karagöz
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Vanessa L. S. LaPointe
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Aurélie Carlier
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
3
|
Huang W, Fu C, Yan J. Single-Cell Quantification of the Mechanical Stability of Cell-Cell Adherens Junction Using Glass Micropipettes. Methods Mol Biol 2023; 2600:267-280. [PMID: 36587103 DOI: 10.1007/978-1-0716-2851-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Micropipette-based methods have been widely used for the manipulation of cells and characterization of the mechanical properties at the cell or tissue level. Here, we introduce the glass micropipette-based mechanical assays for the stability of cell-cell adhesion. A probing microbead coated with specific adhesion ligands, captured by a glass micropipette, is manipulated to form the adhesion complexes with the corresponding receptors on a single cell. Once the cell is moving away from the micropipette, forces are generated from 20 pN to 100 nN to the adhesion complexes, which are quantified in real-time based on the bending of the glass micropipette. We specifically emphasize the principle and method to probe the rupturing forces of the adhesion complexes at controlled force loading rates, the ligand coating on the probe microbeads, the force calibration of the glass micropipette, and the applications of the method to probe the E-cadherin-based cell-cell adhesions. The principles can be broadly applied to other cell adhesions such as cell-matrix adhesions, neuronal synapses, and bacterial-cell adhesions.
Collapse
Affiliation(s)
- Wenmao Huang
- Department of Physics, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Chaoyu Fu
- Department of Physics, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Azizi L, Varela L, Turkki P, Mykuliak VV, Korpela S, Ihalainen TO, Church J, Hytönen VP, Goult BT. Talin variant P229S compromises integrin activation and associates with multifaceted clinical symptoms. Hum Mol Genet 2022; 31:4159-4172. [PMID: 35861643 PMCID: PMC9759328 DOI: 10.1093/hmg/ddac163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 01/21/2023] Open
Abstract
Adhesion of cells to the extracellular matrix (ECM) must be exquisitely coordinated to enable development and tissue homeostasis. Cell-ECM interactions are regulated by multiple signalling pathways that coordinate the activation state of the integrin family of ECM receptors. The protein talin is pivotal in this process, and talin's simultaneous interactions with the cytoplasmic tails of the integrins and the plasma membrane are essential to enable robust, dynamic control of integrin activation and cell-ECM adhesion. Here, we report the identification of a de novo heterozygous c.685C>T (p.Pro229Ser) variant in the TLN1 gene from a patient with a complex phenotype. The mutation is located in the talin head region at the interface between the F2 and F3 domains. The characterization of this novel p.P229S talin variant reveals the disruption of adhesion dynamics that result from disturbance of the F2-F3 domain interface in the talin head. Using biophysical, computational and cell biological techniques, we find that the variant perturbs the synergy between the integrin-binding F3 and the membrane-binding F2 domains, compromising integrin activation, adhesion and cell migration. Whilst this remains a variant of uncertain significance, it is probable that the dysregulation of adhesion dynamics we observe in cells contributes to the multifaceted clinical symptoms of the patient and may provide insight into the multitude of cellular processes dependent on talin-mediated adhesion dynamics.
Collapse
Affiliation(s)
| | | | | | - Vasyl V Mykuliak
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna Korpela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Teemu O Ihalainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joseph Church
- To whom correspondence should be addressed. (Benjamin T. Goult), (Vesa P. Hytönen), (Joe Church)
| | - Vesa P Hytönen
- To whom correspondence should be addressed. (Benjamin T. Goult), (Vesa P. Hytönen), (Joe Church)
| | - Benjamin T Goult
- To whom correspondence should be addressed. (Benjamin T. Goult), (Vesa P. Hytönen), (Joe Church)
| |
Collapse
|
5
|
Benk LT, Benk AS, Lira RB, Cavalcanti-Adam EA, Dimova R, Lipowsky R, Geiger B, Spatz JP. Integrin α
IIb
β
3
Activation and Clustering in Minimal Synthetic Cells. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lucia T. Benk
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
| | - Amelie S. Benk
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
| | - Rafael B. Lira
- Theory & Bio-Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
- Faculty of Science and Engineering Molecular Biophysics Zernike Institute for Advanced Materials 9747 AG Groningen The Netherlands
| | - Elisabetta Ada Cavalcanti-Adam
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
- Max Planck School Matter to Life Jahnstr. 29 69120 Heidelberg Germany
| | - Rumiana Dimova
- Theory & Bio-Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Reinhard Lipowsky
- Theory & Bio-Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
- Max Planck School Matter to Life Jahnstr. 29 69120 Heidelberg Germany
| | - Benjamin Geiger
- Department of Molecular Cell Biology Weizmann Institute of Science Rehovot 76100 Israel
| | - Joachim P. Spatz
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
- Max Planck School Matter to Life Jahnstr. 29 69120 Heidelberg Germany
- Institute for Molecular Systems Engineering (IMSE) Heidelberg University 69120 Heidelberg Germany
| |
Collapse
|
6
|
Azizi L, Cowell AR, Mykuliak VV, Goult BT, Turkki P, Hytönen VP. Cancer associated talin point mutations disorganise cell adhesion and migration. Sci Rep 2021; 11:347. [PMID: 33431906 PMCID: PMC7801617 DOI: 10.1038/s41598-020-77911-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Talin-1 is a key component of the multiprotein adhesion complexes which mediate cell migration, adhesion and integrin signalling and has been linked to cancer in several studies. We analysed talin-1 mutations reported in the Catalogue of Somatic Mutations in Cancer database and developed a bioinformatics pipeline to predict the severity of each mutation. These predictions were then assessed using biochemistry and cell biology experiments. With this approach we were able to identify several talin-1 mutations affecting integrin activity, actin recruitment and Deleted in Liver Cancer 1 localization. We explored potential changes in talin-1 signalling responses by assessing impact on migration, invasion and proliferation. Altogether, this study describes a pipeline approach of experiments for crude characterization of talin-1 mutants in order to evaluate their functional effects and potential pathogenicity. Our findings suggest that cancer related point mutations in talin-1 can affect cell behaviour and so may contribute to cancer progression.
Collapse
Affiliation(s)
- Latifeh Azizi
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alana R Cowell
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
| | - Vasyl V Mykuliak
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK.
| | - Paula Turkki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Fimlab Laboratories, Tampere, Finland.
| | - Vesa P Hytönen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Fimlab Laboratories, Tampere, Finland.
| |
Collapse
|
7
|
Mezu-Ndubuisi OJ, Maheshwari A. The role of integrins in inflammation and angiogenesis. Pediatr Res 2021; 89:1619-1626. [PMID: 33027803 PMCID: PMC8249239 DOI: 10.1038/s41390-020-01177-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Integrins are heterodimeric transmembrane cell adhesion molecules made up of alpha (α) and beta (β) subunits arranged in numerous dimeric pairings. These complexes have varying affinities to extracellular ligands. Integrins regulate cellular growth, proliferation, migration, signaling, and cytokine activation and release and thereby play important roles in cell proliferation and migration, apoptosis, tissue repair, as well as in all processes critical to inflammation, infection, and angiogenesis. This review presents current evidence from human and animal studies on integrin structure and molecular signaling, with particular emphasis on signal transduction in infants. We have included evidence from our own laboratory studies and from an extensive literature search in databases PubMed, EMBASE, Scopus, and the electronic archives of abstracts presented at the annual meetings of the Pediatric Academic Societies. To avoid bias in identification of existing studies, key words were short-listed prior to the actual search both from anecdotal experience and from PubMed's Medical Subject Heading (MeSH) thesaurus. IMPACT: Integrins are a family of ubiquitous αβ heterodimeric receptors that interact with numerous ligands in physiology and disease. Integrins play a key role in cell proliferation, tissue repair, inflammation, infection, and angiogenesis. This review summarizes current evidence from human and animal studies on integrin structure and molecular signaling and promising role in diseases of inflammation, infection, and angiogenesis in infants. This review shows that integrin receptors and ligands are novel therapeutic targets of clinical interest and hold promise as novel therapeutic targets in the management of several neonatal diseases.
Collapse
Affiliation(s)
- Olachi J. Mezu-Ndubuisi
- grid.14003.360000 0001 2167 3675Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Akhil Maheshwari
- grid.21107.350000 0001 2171 9311Department of Pediatrics, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
8
|
Henning Stumpf B, Ambriović-Ristov A, Radenovic A, Smith AS. Recent Advances and Prospects in the Research of Nascent Adhesions. Front Physiol 2020; 11:574371. [PMID: 33343382 PMCID: PMC7746844 DOI: 10.3389/fphys.2020.574371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023] Open
Abstract
Nascent adhesions are submicron transient structures promoting the early adhesion of cells to the extracellular matrix. Nascent adhesions typically consist of several tens of integrins, and serve as platforms for the recruitment and activation of proteins to build mature focal adhesions. They are also associated with early stage signaling and the mechanoresponse. Despite their crucial role in sampling the local extracellular matrix, very little is known about the mechanism of their formation. Consequently, there is a strong scientific activity focused on elucidating the physical and biochemical foundation of their development and function. Precisely the results of this effort will be summarized in this article.
Collapse
Affiliation(s)
- Bernd Henning Stumpf
- PULS Group, Institute for Theoretical Physics, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ana-Sunčana Smith
- PULS Group, Institute for Theoretical Physics, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
9
|
Katzemich A, Long JY, Panneton V, Fisher LAB, Hipfner D, Schöck F. Slik phosphorylation of Talin T152 is crucial for proper Talin recruitment and maintenance of muscle attachment in Drosophila. Development 2019; 146:dev.176339. [PMID: 31511253 DOI: 10.1242/dev.176339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/04/2019] [Indexed: 01/12/2023]
Abstract
Talin is the major scaffold protein linking integrin receptors with the actin cytoskeleton. In Drosophila, extended Talin generates a stable link between the sarcomeric cytoskeleton and the tendon matrix at muscle attachment sites. Here, we identify phosphorylation sites on Drosophila Talin by mass spectrometry. Talin is phosphorylated in late embryogenesis when muscles differentiate, especially on T152 in the exposed loop of the F1 domain of the Talin head. Localization of a mutated version of Talin (Talin-T150/T152A) is reduced at muscle attachment sites and can only partially rescue muscle attachment compared with wild-type Talin. We also identify Slik as the kinase phosphorylating Talin at T152. Slik localizes to muscle attachment sites, and the absence of Slik reduces the localization of Talin at muscle attachment sites causing phenotypes similar to Talin-T150/T152A. Thus, our results demonstrate that Talin phosphorylation by Slik plays an important role in fine-tuning Talin recruitment to integrin adhesion sites and maintaining muscle attachment.
Collapse
Affiliation(s)
- Anja Katzemich
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1, Canada
| | - Jenny Yanyan Long
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1, Canada
| | - Vincent Panneton
- Institut de Recherches Cliniques de Montréal, Québec H2W 1R7, Canada.,Département de Médecine, Université de Montréal, Québec H3C 3J7, Canada
| | - Lucas A B Fisher
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1, Canada
| | - David Hipfner
- Institut de Recherches Cliniques de Montréal, Québec H2W 1R7, Canada.,Département de Médecine, Université de Montréal, Québec H3C 3J7, Canada
| | - Frieder Schöck
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1, Canada
| |
Collapse
|
10
|
Fang H, Gao B, Zhao Y, Fang X, Bian M, Xia Q. Curdione inhibits thrombin-induced platelet aggregation via regulating the AMP-activated protein kinase-vinculin/talin-integrin αIIbβ3 sign pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152859. [PMID: 31039534 DOI: 10.1016/j.phymed.2019.152859] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Curdione, a sesquiterpene compound isolated from the essential oil of Curcuma aromatica Salisb. inhibits platelet aggregation, suggesting its significant anticoagulant and antithrombotic effects. However, the mechanisms have not been fully elucidated. HYPOTHESIS We hypothesized that curdione inhibits thrombin-induced platelet aggregation via regulating the AMP-activated protein kinase-vinculin/talin-integrin αIIbβ3 signaling pathway. STUDY DESIGN We performed in vitro assays to evaluate the effect of curdione on thrombin-induced expression levels of the AMPK signaling molecule and integrin αIIbβ3 signaling pathway components. METHODS Platelet proteins were extracted from washed human platelets, and the effects of curdione on thrombin-induced platelet aggregation were evaluated. The expression levels of the AMPK signaling molecule and integrin αIIbβ3 signaling pathway-related proteins were examined using western blot and RT-PCR. The binding of vinculin and talin were studied using immunoprecipitation, double immunofluorescence staining and microscale thermophoresis. RESULTS Platelet aggregation analysis showed that 0.02 U/ml thrombin significantly induces platelet aggregation. Western blot and RT-PCR analysis revealed that AMPK inhibits the vinculin/talin-mediated integrin αIIbβ3 signaling pathway, and curdione downregulates the thrombin-induced expression of phosphorylated AMPK (P-AMPK) and P-integrin at both the protein and mRNA levels and downregulates vinculin and talin at the protein level. Furthermore, microscale thermophoresis experiments showed that curdione inhibits the binding of vinculin and talin. The results from the immunoprecipitation and double immunofluorescence staining were consistent with the results of the microscale thermophoresis experiments. CONCLUSION Curdione inhibits thrombin-induced platelet aggregation via regulating the AMP-activated protein kinase-vinculin/talin-integrin αIIbβ3 signaling pathway, which suggests its therapeutic potential in ethnomedicinal applications as an anti-platelet and anti-thrombotic compound to prevent thrombotic diseases.
Collapse
Affiliation(s)
- Hui Fang
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Beibei Gao
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yingli Zhao
- Department of Pharmacy, the Second People's Hospital of Hefei, Hefei, China
| | - Xing Fang
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Maohong Bian
- Department of Blood Transfusion, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Quan Xia
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, China.
| |
Collapse
|
11
|
Wang Y, Zhang X, Tian J, Shan J, Hu Y, Zhai Y, Guo J. Talin promotes integrin activation accompanied by generation of tension in talin and an increase in osmotic pressure in neurite outgrowth. FASEB J 2019; 33:6311-6326. [PMID: 30768370 DOI: 10.1096/fj.201801949rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuronal polarization depends on the interaction of intracellular chemical and mechanical activities in which the cytoplasmic protein, talin, plays a pivotal role during neurite growth. To better understand the mechanism underlying talin function in neuronal polarization, we overexpressed several truncated forms of talin and found that the presence of the rod domain within the overexpressed talin is required for its positive effect on neurite elongation because the neurite number only increased when the talin head region was overexpressed. The tension in the talin rod was recognized using a Förster resonance energy transfer-based tension probe. Nerve growth factor treatment resulted in inward tension of talin elicited by microfilament force and outward osmotic pressure. By contrast, the glial scar-inhibitor aggrecan weakened these forces, suggesting that interactions between inward pull forces in the talin rod and outward osmotic pressure participate in neuronal polarization. Integrin activation is also involved in up-regulation of talin tension and osmotic pressure. Aggrecan stimuli resulted in up-regulation of docking protein 1 (DOK1), leading to the down-regulation of integrin activity and attenuation of the intracellular mechanical force. Our study suggests interactions between the intracellular inward tension in talin and the outward osmotic pressure as the effective channel for promoting neurite outgrowth, which can be up-regulated by integrin activation and down-regulated by DOK1.-Wang, Y., Zhang, X., Tian, J., Shan, J., Hu, Y., Zhai, Y., Guo, J. Talin promotes integrin activation accompanied by generation of tension in talin and an increase in osmotic pressure in neurite outgrowth.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaolong Zhang
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jilai Tian
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunfeng Hu
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqian Zhai
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Guo
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Camp D, Haage A, Solianova V, Castle WM, Xu QA, Lostchuck E, Goult BT, Tanentzapf G. Direct binding of Talin to Rap1 is required for cell-ECM adhesion in Drosophila. J Cell Sci 2018; 131:jcs.225144. [PMID: 30446511 DOI: 10.1242/jcs.225144] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022] Open
Abstract
Attachment of cells to the extracellular matrix (ECM) via integrins is essential for animal development and tissue maintenance. The cytoplasmic protein Talin (encoded by rhea in flies) is necessary for linking integrins to the cytoskeleton, and its recruitment is a key step in the assembly of the adhesion complex. However, the mechanisms that regulate Talin recruitment to sites of adhesion in vivo are still not well understood. Here, we show that Talin recruitment to, and maintenance at, sites of integrin-mediated adhesion requires a direct interaction between Talin and the GTPase Rap1. A mutation that blocks the direct binding of Talin to Rap1 abolished Talin recruitment to sites of adhesion and the resulting phenotype phenocopies that seen with null alleles of Talin. Moreover, we show that Rap1 activity modulates Talin recruitment to sites of adhesion via its direct binding to Talin. These results identify the direct Talin-Rap1 interaction as a key in vivo mechanism for controlling integrin-mediated cell-ECM adhesion.
Collapse
Affiliation(s)
- Darius Camp
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Amanda Haage
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Veronika Solianova
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - William M Castle
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Qinyuan A Xu
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Emily Lostchuck
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| |
Collapse
|
13
|
Ratheesh A, Biebl J, Vesela J, Smutny M, Papusheva E, Krens SG, Kaufmann W, Gyoergy A, Casano AM, Siekhaus DE. Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration. Dev Cell 2018; 45:331-346.e7. [DOI: 10.1016/j.devcel.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 01/12/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
|
14
|
Saxena M, Changede R, Hone J, Wolfenson H, Sheetz MP. Force-Induced Calpain Cleavage of Talin Is Critical for Growth, Adhesion Development, and Rigidity Sensing. NANO LETTERS 2017; 17:7242-7251. [PMID: 29052994 PMCID: PMC7490970 DOI: 10.1021/acs.nanolett.7b02476] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cell growth depends upon formation of cell-matrix adhesions, but mechanisms detailing the transmission of signals from adhesions to control proliferation are still lacking. Here, we find that the scaffold protein talin undergoes force-induced cleavage in early adhesions to produce the talin rod fragment that is needed for cell cycle progression. Expression of noncleavable talin blocks cell growth, adhesion maturation, proper mechanosensing, and the related property of EGF activation of motility. Further, the expression of talin rod in the presence of noncleavable full-length talin rescues cell growth and other functions. The cleavage of talin is found in early adhesions where there is also rapid turnover of talin that depends upon calpain and TRPM4 activity as well as the generation of force on talin. Thus, we suggest that an important function of talin is its control over cell cycle progression through its cleavage in early adhesions.
Collapse
Affiliation(s)
- Mayur Saxena
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Rishita Changede
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion − Israel Institute of Technology, Haifa 31096, Israel
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Michael P. Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| |
Collapse
|
15
|
Chang CH, Lee HH, Lee CH. Substrate properties modulate cell membrane roughness by way of actin filaments. Sci Rep 2017; 7:9068. [PMID: 28831175 PMCID: PMC5567215 DOI: 10.1038/s41598-017-09618-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023] Open
Abstract
Cell membrane roughness has been proposed as a sensitive feature to reflect cellular physiological conditions. In order to know whether membrane roughness is associated with the substrate properties, we employed the non-interferometric wide-field optical profilometry (NIWOP) technique to measure the membrane roughness of living mouse embryonic fibroblasts with different conditions of the culture substrate. By controlling the surface density of fibronectin (FN) coated on the substrate, we found that cells exhibited higher membrane roughness as the FN density increased in company with larger focal adhesion (FA) sizes. The examination of membrane roughness was also confirmed with atomic force microscopy. Using reagents altering actin or microtubule cytoskeletons, we provided evidence that the dynamics of actin filaments rather than that of microtubules plays a crucial role for the regulation of membrane roughness. By changing the substrate rigidity, we further demonstrated that the cells seeded on compliant gels exhibited significantly lower membrane roughness and smaller FAs than the cells on rigid substrate. Taken together, our data suggest that the magnitude of membrane roughness is modulated by way of actin dynamics in cells responding to substrate properties.
Collapse
Affiliation(s)
- Chao-Hung Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsiao-Hui Lee
- Department of Life Sciences & Institute of Genome Sciences, National Yang-Ming University, Taipei, 11221, Taiwan.
| | - Chau-Hwang Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan. .,Institute of Biophotonics, National Yang-Ming University, Taipei, 11221, Taiwan. .,Department of Physics, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
16
|
Abstract
Talin has emerged as the key cytoplasmic protein that mediates integrin adhesion to the extracellular matrix. In this Review, we draw on experiments performed in mammalian cells in culture and Drosophila to present evidence that talin is the most important component of integrin adhesion complexes. We describe how the properties of this adaptor protein enable it to orchestrate integrin adhesions. Talin forms the core of integrin adhesion complexes by linking integrins directly to actin, increasing the affinity of integrin for ligands (integrin activation) and recruiting numerous proteins. It regulates the strength of integrin adhesion, senses matrix rigidity, increases focal adhesion size in response to force and serves as a platform for the building of the adhesion structure. Finally, the mechano-sensitive structure of talin provides a paradigm for how proteins transduce mechanical signals to chemical signals.
Collapse
Affiliation(s)
- Benjamin Klapholz
- Dept of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Nicholas H Brown
- Dept of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
17
|
Yu J, Huang J, Jansen JA, Xiong C, Walboomers XF. Mechanochemical mechanism of integrin clustering modulated by nanoscale ligand spacing and rigidity of extracellular substrates. J Mech Behav Biomed Mater 2017; 72:29-37. [PMID: 28448919 DOI: 10.1016/j.jmbbm.2017.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 11/25/2022]
Abstract
Experimental findings indicate that cell function and behavior such as cell growth, division, migration and differentiation, are subtly regulated via integrin-dependent cell adhesion. Cell adhesion is influenced by nanoscale ligand spacing and rigidity of extracellular substrates, as cell adhesion drops greatly when the ligand spacing is larger than ~60nm, and cell adhesion is stronger on stiff than soft substrates. However, how nanoscale ligand spacing and substrate stiffness jointly affect integrin clustering and hence nascent cell adhesion remains to be elucidated. To quantitatively investigate the phenomena and the underlying mechanochemical mechanism of integrin clustering modulated by ligand spacing and substrate stiffness, we introduced Monte Carlo simulations varying the values of ligand spacing and substrate stiffness. Moreover, the effects of integrin number, integrin binding free energy, integrin association free energy, and local ligand spacing were investigated. The simulation results showed that integrin clustering decreased sharply, when ligand spacing was relatively large such as dL>60nm in the current simulations, regardless of substrate rigidities, though with close spacing, the clustering increased with the substrate stiffness. The investigation contributes to the goals of understanding and predicting experimental phenomena, directing and optimizing biomaterial design, and manipulating integrin-dependent cell-substrate adhesion in tissue engineering.
Collapse
Affiliation(s)
- Jing Yu
- Center for BioMed-X Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China; Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China.
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chunyang Xiong
- Center for BioMed-X Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China; Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China.
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
López-Ceballos P, Herrera-Reyes AD, Coombs D, Tanentzapf G. In vivo regulation of integrin turnover by outside-in activation. J Cell Sci 2016; 129:2912-24. [PMID: 27311483 DOI: 10.1242/jcs.190256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/12/2016] [Indexed: 01/01/2023] Open
Abstract
The development of three-dimensional tissue architecture requires precise control over the attachment of cells to the extracellular matrix (ECM). Integrins, the main ECM-binding receptors in animals, are regulated in multiple ways to modulate cell-ECM adhesion. One example is the conformational activation of integrins by extracellular signals ('outside-in activation') or by intracellular signals ('inside-out activation'), whereas another is the modulation of integrin turnover. We demonstrate that outside-in activation regulates integrin turnover to stabilize tissue architecture in vivo Treating Drosophila embryos with Mg(2+) and Mn(2+), known to induce outside-in activation, resulted in decreased integrin turnover. Mathematical modeling combined with mutational analysis provides mechanistic insight into the stabilization of integrins at the membrane. We show that as tissues mature, outside-in activation is crucial for regulating the stabilization of integrin-mediated adhesions. This data identifies a new in vivo role for outside-in activation and sheds light on the key transition between tissue morphogenesis and maintenance.
Collapse
Affiliation(s)
- Pablo López-Ceballos
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Science Institute, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Alejandra Donají Herrera-Reyes
- Department of Mathematics and Institute of Applied Mathematics, 1984 Mathematics Road, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
| | - Daniel Coombs
- Department of Mathematics and Institute of Applied Mathematics, 1984 Mathematics Road, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Science Institute, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
19
|
Zhang H, Chang YC, Huang Q, Brennan ML, Wu J. Structural and Functional Analysis of a Talin Triple-Domain Module Suggests an Alternative Talin Autoinhibitory Configuration. Structure 2016; 24:721-729. [PMID: 27150043 DOI: 10.1016/j.str.2016.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 11/17/2022]
Abstract
Talin plays an important role in regulating integrin-mediated signaling. Talin function is autoinhibited by intramolecular interactions between the integrin-binding F3 domain and the autoinhibitory domain (R9). We determined the crystal structure of a triple-domain fragment, R7R8R9, which contains R9 and the RIAM (Rap1-interacting adaptor molecule) binding domain (R8). The structure reveals a crystallographic contact between R9 and a symmetrically related R8 domain, representing a homodimeric interaction in talin. Strikingly, we demonstrated that the α5 helix of R9 also interacts with the F3 domain, despite no interdomain contact involving the α5 helix in the crystal structure of an F2F3:R9 autoinhibitory complex reported previously. Mutations on the α5 helix significantly diminish the F3:R9 association and lead to elevated talin activity. Our results offer biochemical and functional evidence of the existence of a new talin autoinhibitory configuration, thus providing a more comprehensive understanding of talin autoinhibition, regulation, and quaternary structure assembly.
Collapse
Affiliation(s)
- Hao Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Yu-Chung Chang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - Mark L Brennan
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jinhua Wu
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
20
|
IPP Complex Reinforces Adhesion by Relaying Tension-Dependent Signals to Inhibit Integrin Turnover. Cell Rep 2016; 14:2668-82. [DOI: 10.1016/j.celrep.2016.02.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/05/2016] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
|
21
|
Hákonardóttir GK, López-Ceballos P, Herrera-Reyes AD, Das R, Coombs D, Tanentzapf G. In vivo quantitative analysis of Talin turnover in response to force. Mol Biol Cell 2015; 26:4149-62. [PMID: 26446844 PMCID: PMC4710244 DOI: 10.1091/mbc.e15-05-0304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Cell–ECM adhesion is regulated by mechanical force. Quantitative imaging and mathematical modeling are used to elucidate how the intracellular adhesion complex of integrin-based adhesions responds to force, revealing the molecular mechanisms that allow the adhesion complex to respond to force to stabilize cell–ECM adhesion over development. Cell adhesion to the extracellular matrix (ECM) allows cells to form and maintain three-dimensional tissue architecture. Cell–ECM adhesions are stabilized upon exposure to mechanical force. In this study, we used quantitative imaging and mathematical modeling to gain mechanistic insight into how integrin-based adhesions respond to increased and decreased mechanical forces. A critical means of regulating integrin-based adhesion is provided by modulating the turnover of integrin and its adhesion complex (integrin adhesion complex [IAC]). The turnover of the IAC component Talin, a known mechanosensor, was analyzed using fluorescence recovery after photobleaching. Experiments were carried out in live, intact flies in genetic backgrounds that increased or decreased the force applied on sites of adhesion. This analysis showed that when force is elevated, the rate of assembly of new adhesions increases such that cell–ECM adhesion is stabilized. Moreover, under conditions of decreased force, the overall rate of turnover, but not the proportion of adhesion complex components undergoing turnover, increases. Using point mutations, we identify the key functional domains of Talin that mediate its response to force. Finally, by fitting a mathematical model to the data, we uncover the mechanisms that mediate the stabilization of ECM-based adhesion during development.
Collapse
Affiliation(s)
- Guðlaug Katrín Hákonardóttir
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Pablo López-Ceballos
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alejandra Donají Herrera-Reyes
- Department of Mathematics and Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Raibatak Das
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204
| | - Daniel Coombs
- Department of Mathematics and Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
22
|
Wu Q, Zhang J, Koh W, Yu Q, Zhu X, Amsterdam A, Davis GE, Arnaout MA, Xiong JW. Talin1 is required for cardiac Z-disk stabilization and endothelial integrity in zebrafish. FASEB J 2015; 29:4989-5005. [PMID: 26310270 DOI: 10.1096/fj.15-273409] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/13/2015] [Indexed: 01/20/2023]
Abstract
Talin (tln) binds and activates integrins to couple extracellular matrix-bound integrins to the cytoskeleton; however, its role in heart development is not well characterized. We identified the defective gene and the resulting cardiovascular phenotypes in zebrafish tln1(fl02k) mutants. The ethylnitrosourea-induced fl02k mutant showed heart failure, brain hemorrhage, and diminished cardiac and vessel lumens at 52 h post fertilization. Positional cloning revealed a nonsense mutation of tln1 in this mutant. tln1, but neither tln2 nor -2a, was dominantly expressed in the heart and vessels. Unlike tln1 and -2 in the mouse heart, the unique tln1 expression in the heart enabled us, for the first time, to determine the critical roles of Tln1 in the maintenance of cardiac sarcomeric Z-disks and endothelial/endocardial cell integrity, partly through regulating F-actin networks in zebrafish. The similar expression profiles of tln1 and integrin β1b (itgb1b) and synergistic function of the 2 genes revealed that itgb1b is a potential partner for tln1 in the stabilization of cardiac Z-disks and vessel lumens. Taken together, the results of this work suggest that Tln1-mediated Itgβ1b plays a crucial role in maintaining cardiac sarcomeric Z-disks and endothelial/endocardial cell integrity in zebrafish and may also help to gain molecular insights into congenital heart diseases.
Collapse
Affiliation(s)
- Qing Wu
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jiaojiao Zhang
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wonshill Koh
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Qingming Yu
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Xiaojun Zhu
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adam Amsterdam
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - George E Davis
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - M Amin Arnaout
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jing-Wei Xiong
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Iwamoto DV, Calderwood DA. Regulation of integrin-mediated adhesions. Curr Opin Cell Biol 2015; 36:41-7. [PMID: 26189062 DOI: 10.1016/j.ceb.2015.06.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/01/2015] [Accepted: 06/30/2015] [Indexed: 11/18/2022]
Abstract
Integrins are heterodimeric transmembrane adhesion receptors that couple the actin cytoskeleton to the extracellular environment and bidirectionally relay signals across the cell membrane. These processes are critical for cell attachment, migration, differentiation, and survival, and therefore play essential roles in metazoan development, physiology, and pathology. Integrin-mediated adhesions are regulated by diverse factors, including the conformation-specific affinities of integrin receptors for their extracellular ligands, the clustering of integrins and their intracellular binding partners into discrete adhesive structures, mechanical forces exerted on the adhesion, and the intracellular trafficking of integrins themselves. Recent advances shed light onto how the interaction of specific intracellular proteins with the short cytoplasmic tails of integrins controls each of these activities.
Collapse
Affiliation(s)
- Daniel V Iwamoto
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA; Department of Cell Biology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA.
| |
Collapse
|
24
|
Klapholz B, Herbert SL, Wellmann J, Johnson R, Parsons M, Brown NH. Alternative mechanisms for talin to mediate integrin function. Curr Biol 2015; 25:847-57. [PMID: 25754646 PMCID: PMC4386027 DOI: 10.1016/j.cub.2015.01.043] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 02/06/2023]
Abstract
Cell-matrix adhesion is essential for building animals, promoting tissue cohesion, and enabling cells to migrate and resist mechanical force. Talin is an intracellular protein that is critical for linking integrin extracellular-matrix receptors to the actin cytoskeleton. A key question raised by structure-function studies is whether talin, which is critical for all integrin-mediated adhesion, acts in the same way in every context. We show that distinct combinations of talin domains are required for each of three different integrin functions during Drosophila development. The partial function of some mutant talins requires vinculin, indicating that recruitment of vinculin allows talin to duplicate its own activities. The different requirements are best explained by alternative mechanisms of talin function, with talin using one or both of its integrin-binding sites. We confirmed these alternatives by showing that the proximity between the second integrin-binding site and integrins differs, suggesting that talin adopts different orientations relative to integrins. Finally, we show that vinculin and actomyosin activity help change talin’s orientation. These findings demonstrate that the mechanism of talin function differs in each developmental context examined. The different arrangements of the talin molecule relative to integrins suggest that talin is able to sense different force vectors, either parallel or perpendicular to the membrane. This provides a paradigm for proteins whose apparent uniform function is in fact achieved by a variety of distinct mechanisms involving different molecular architectures. Integrin function requires distinct sets of talin domains in three different tissues Vinculin helps talin retain function when domains are removed Talin IBS2 is separated from integrins in muscle but not wing adhesion sites Vinculin and actomyosin contribute to separating IBS2 from integrins
Collapse
Affiliation(s)
- Benjamin Klapholz
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Samantha L Herbert
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Jutta Wellmann
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Robert Johnson
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Nicholas H Brown
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|