1
|
Hanson C, Blumenthal J, Clasen L, Guma E, Raznahan A. Influences of sex chromosome aneuploidy on height, weight, and body mass index in human childhood and adolescence. Am J Med Genet A 2024; 194:150-159. [PMID: 37768018 DOI: 10.1002/ajmg.a.63398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Sex chromosome aneuploidies (SCAs) are collectively common conditions caused by carriage of a sex chromosome dosage other than XX for females and XY for males. Increases in sex chromosome dosage (SCD) have been shown to have an inverted-U association with height, but we lack combined studies of SCA effects on height and weight, and it is not known if any such effects vary with age. Here, we study norm-derived height and weight z-scores in 177 youth spanning 8 SCA karyotypes (XXX, XXY, XYY, XXXX, XXXY, XXYY, XXXXX, and XXXXY). We replicate a previously described inverted-U association between mounting SCD and height, and further show that there is also a muted version of this effect for weight: both phenotypes are elevated until SCD reaches 4 for females and 5 for males but decrease thereafter. We next use 266 longitudinal measures available from a subset of karyotypes (XXX, XXY, XYY, and XXYY) to show that mean height in these SCAs diverges further from norms with increasing age. As weight does not diverge from norms with increasing age, BMI decreases with increasing age. These findings extend our understanding of growth as an important clinical outcome in SCA, and as a key context for known effects of SCA on diverse organ systems that scale with body size.
Collapse
Affiliation(s)
- Claire Hanson
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Jonathan Blumenthal
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Liv Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Rayner JG, Hitchcock TJ, Bailey NW. Variable dosage compensation is associated with female consequences of an X-linked, male-beneficial mutation. Proc Biol Sci 2021; 288:20210355. [PMID: 33757350 PMCID: PMC8059673 DOI: 10.1098/rspb.2021.0355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Recent theory has suggested that dosage compensation mediates sexual antagonism over X-linked genes. This process relies on the assumption that dosage compensation scales phenotypic effects between the sexes, which is largely untested. We evaluated this by quantifying transcriptome variation associated with a recently arisen, male-beneficial, X-linked mutation across tissues of the field cricket Teleogryllus oceanicus, and testing the relationship between the completeness of dosage compensation and female phenotypic effects at the level of gene expression. Dosage compensation in T. oceanicus was variable across tissues but usually incomplete, such that relative expression of X-linked genes was typically greater in females. Supporting the assumption that dosage compensation scales phenotypic effects between the sexes, we found tissues with incomplete dosage compensation tended to show female-skewed effects of the X-linked allele. In gonads, where expression of X-linked genes was most strongly female-biased, ovaries-limited genes were much more likely to be X-linked than were testes-limited genes, supporting the view that incomplete dosage compensation favours feminization of the X. Our results support the expectation that sex chromosome dosage compensation scales phenotypic effects of X-linked genes between sexes, substantiating a key assumption underlying the theoretical role of dosage compensation in determining the dynamics of sexual antagonism on the X.
Collapse
Affiliation(s)
- Jack G. Rayner
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| | - Thomas J. Hitchcock
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| | - Nathan W. Bailey
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| |
Collapse
|
3
|
Sánchez-Ramírez S, Weiss JG, Thomas CG, Cutter AD. Widespread misregulation of inter-species hybrid transcriptomes due to sex-specific and sex-chromosome regulatory evolution. PLoS Genet 2021; 17:e1009409. [PMID: 33667233 PMCID: PMC7968742 DOI: 10.1371/journal.pgen.1009409] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/17/2021] [Accepted: 02/09/2021] [Indexed: 01/04/2023] Open
Abstract
When gene regulatory networks diverge between species, their dysfunctional expression in inter-species hybrid individuals can create genetic incompatibilities that generate the developmental defects responsible for intrinsic post-zygotic reproductive isolation. Both cis- and trans-acting regulatory divergence can be hastened by directional selection through adaptation, sexual selection, and inter-sexual conflict, in addition to cryptic evolution under stabilizing selection. Dysfunctional sex-biased gene expression, in particular, may provide an important source of sexually-dimorphic genetic incompatibilities. Here, we characterize and compare male and female/hermaphrodite transcriptome profiles for sibling nematode species Caenorhabditis briggsae and C. nigoni, along with allele-specific expression in their F1 hybrids, to deconvolve features of expression divergence and regulatory dysfunction. Despite evidence of widespread stabilizing selection on gene expression, misexpression of sex-biased genes pervades F1 hybrids of both sexes. This finding implicates greater fragility of male genetic networks to produce dysfunctional organismal phenotypes. Spermatogenesis genes are especially prone to high divergence in both expression and coding sequences, consistent with a "faster male" model for Haldane's rule and elevated sterility of hybrid males. Moreover, underdominant expression pervades male-biased genes compared to female-biased and sex-neutral genes and an excess of cis-trans compensatory regulatory divergence for X-linked genes underscores a "large-X effect" for hybrid male expression dysfunction. Extensive regulatory divergence in sex determination pathway genes likely contributes to demasculinization of XX hybrids. The evolution of genetic incompatibilities due to regulatory versus coding sequence divergence, however, are expected to arise in an uncorrelated fashion. This study identifies important differences between the sexes in how regulatory networks diverge to contribute to sex-biases in how genetic incompatibilities manifest during the speciation process.
Collapse
Affiliation(s)
- Santiago Sánchez-Ramírez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- * E-mail: (SSR); (ADC)
| | - Jörg G. Weiss
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Cristel G. Thomas
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- * E-mail: (SSR); (ADC)
| |
Collapse
|
4
|
Abstract
Females and males may face different selection pressures. Accordingly, alleles that confer a benefit for one sex often incur a cost for the other. Classic evolutionary theory holds that the X chromosome, whose sex-biased transmission sees it spending more time in females, should value females more than males, whereas autosomes, whose transmission is unbiased, should value both sexes equally. However, recent mathematical and empirical studies indicate that male-beneficial alleles may be more favoured by the X chromosome than by autosomes. Here we develop a gene's-eye-view approach that reconciles the classic view with these recent discordant results, by separating a gene's valuation of female versus male fitness from its ability to induce fitness effects in either sex. We use this framework to generate new comparative predictions for sexually antagonistic evolution in relation to dosage compensation, sex-specific mortality and assortative mating, revealing how molecular mechanisms, ecology and demography drive variation in masculinization versus feminization across the genome.
Collapse
Affiliation(s)
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| |
Collapse
|
5
|
Abbott JK, Chippindale AK, Morrow EH. The microevolutionary response to male-limited X-chromosome evolution in Drosophila melanogaster reflects macroevolutionary patterns. J Evol Biol 2020; 33:738-750. [PMID: 32176391 DOI: 10.1111/jeb.13618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/23/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022]
Abstract
Due to its hemizygous inheritance and role in sex determination, the X-chromosome is expected to play an important role in the evolution of sexual dimorphism and to be enriched for sexually antagonistic genetic variation. By forcing the X-chromosome to only be expressed in males over >40 generations, we changed the selection pressures on the X to become similar to those experienced by the Y. This releases the X from any constraints arising from selection in females and should lead to specialization for male fitness, which could occur either via direct effects of X-linked loci or trans-regulation of autosomal loci by the X. We found evidence of masculinization via up-regulation of male-benefit sexually antagonistic genes and down-regulation of X-linked female-benefit genes. Potential artefacts of the experimental evolution protocol are discussed and cannot be wholly discounted, leading to several caveats. Interestingly, we could detect evidence of microevolutionary changes consistent with previously documented macroevolutionary patterns, such as changes in expression consistent with previously established patterns of sexual dimorphism, an increase in the expression of metabolic genes related to mito-nuclear conflict and evidence that dosage compensation effects can be rapidly altered. These results confirm the importance of the X in the evolution of sexual dimorphism and as a source for sexually antagonistic genetic variation and demonstrate that experimental evolution can be a fruitful method for testing theories of sex chromosome evolution.
Collapse
Affiliation(s)
- Jessica K Abbott
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | | | - Edward H Morrow
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
6
|
Cox RM, Cox CL, McGlothlin JW, Card DC, Andrew AL, Castoe TA. Hormonally Mediated Increases in Sex-Biased Gene Expression Accompany the Breakdown of Between-Sex Genetic Correlations in a Sexually Dimorphic Lizard. Am Nat 2017; 189:315-332. [PMID: 28221827 DOI: 10.1086/690105] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evolution of sexual dimorphism is predicted to occur through reductions in between-sex genetic correlations (rmf) for shared traits, but the physiological and genetic mechanisms that facilitate these reductions remain largely speculative. Here, we use a paternal half-sibling breeding design in captive brown anole lizards (Anolis sagrei) to show that the development of sexual size dimorphism is mirrored by the ontogenetic breakdown of rmf for body size and growth rate. Using transcriptome data from the liver (which integrates growth and metabolism), we show that sex-biased gene expression also increases dramatically between ontogenetic stages bracketing this breakdown of rmf. Ontogenetic increases in sex-biased expression are particularly evident for genes involved in growth, metabolism, and cell proliferation, suggesting that they contribute to both the development of sexual dimorphism and the breakdown of rmf. Mechanistically, we show that treatment of females with testosterone stimulates the expression of male-biased genes while inhibiting the expression of female-biased genes, thereby inducing male-like phenotypes at both organismal and transcriptomic levels. Collectively, our results suggest that sex-specific modifiers such as testosterone can orchestrate sex-biased gene expression to facilitate the phenotypic development of sexual dimorphism while simultaneously reducing genetic correlations that would otherwise constrain the independent evolution of the sexes.
Collapse
|
7
|
Autosomal and X-Linked Additive Genetic Variation for Lifespan and Aging: Comparisons Within and Between the Sexes in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2016; 6:3903-3911. [PMID: 27678519 PMCID: PMC5144961 DOI: 10.1534/g3.116.028308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Theory makes several predictions concerning differences in genetic variation between the X chromosome and the autosomes due to male X hemizygosity. The X chromosome should: (i) typically show relatively less standing genetic variation than the autosomes, (ii) exhibit more variation in males compared to females because of dosage compensation, and (iii) potentially be enriched with sex-specific genetic variation. Here, we address each of these predictions for lifespan and aging in Drosophila melanogaster. To achieve unbiased estimates of X and autosomal additive genetic variance, we use 80 chromosome substitution lines; 40 for the X chromosome and 40 combining the two major autosomes, which we assay for sex-specific and cross-sex genetic (co)variation. We find significant X and autosomal additive genetic variance for both traits in both sexes (with reservation for X-linked variation of aging in females), but no conclusive evidence for depletion of X-linked variation (measured through females). Males display more X-linked variation for lifespan than females, but it is unclear if this is due to dosage compensation since also autosomal variation is larger in males. Finally, our results suggest that the X chromosome is enriched for sex-specific genetic variation in lifespan but results were less conclusive for aging overall. Collectively, these results suggest that the X chromosome has reduced capacity to respond to sexually concordant selection on lifespan from standing genetic variation, while its ability to respond to sexually antagonistic selection may be augmented.
Collapse
|
8
|
Dean R, Mank JE. Tissue Specificity and Sex-Specific Regulatory Variation Permit the Evolution of Sex-Biased Gene Expression. Am Nat 2016; 188:E74-84. [PMID: 27501094 DOI: 10.1086/687526] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genetic correlations between males and females are often thought to constrain the evolution of sexual dimorphism. However, sexually dimorphic traits and the underlying sexually dimorphic gene expression patterns are often rapidly evolving. We explore this apparent paradox by measuring the genetic correlation in gene expression between males and females (Cmf) across broad evolutionary timescales, using two RNA-sequencing data sets spanning multiple populations and multiple species. We find that unbiased genes have higher Cmf than sex-biased genes, consistent with intersexual genetic correlations constraining the evolution of sexual dimorphism. However, we found that highly sex-biased genes (both male and female biased) also had higher tissue specificity, and unbiased genes had greater expression breadth, suggesting that pleiotropy may constrain the breakdown of intersexual genetic correlations. Finally, we show that genes with high Cmf showed some degree of sex-specific changes in gene expression in males and females. Together, our results suggest that genetic correlations between males and females may be less important in constraining the evolution of sex-biased gene expression than pleiotropy. Sex-specific regulatory variation and tissue specificity may resolve the paradox of widespread sex bias within a largely shared genome.
Collapse
|
9
|
Coolon JD, Stevenson KR, McManus CJ, Yang B, Graveley BR, Wittkopp PJ. Molecular Mechanisms and Evolutionary Processes Contributing to Accelerated Divergence of Gene Expression on the Drosophila X Chromosome. Mol Biol Evol 2015; 32:2605-15. [PMID: 26041937 DOI: 10.1093/molbev/msv135] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In species with a heterogametic sex, population genetics theory predicts that DNA sequences on the X chromosome can evolve faster than comparable sequences on autosomes. Both neutral and nonneutral evolutionary processes can generate this pattern. Complex traits like gene expression are not predicted to have accelerated evolution by these theories, yet a "faster-X" pattern of gene expression divergence has recently been reported for both Drosophila and mammals. Here, we test the hypothesis that accelerated adaptive evolution of cis-regulatory sequences on the X chromosome is responsible for this pattern by comparing the relative contributions of cis- and trans-regulatory changes to patterns of faster-X expression divergence observed between strains and species of Drosophila with a range of divergence times. We find support for this hypothesis, especially among male-biased genes, when comparing different species. However, we also find evidence that trans-regulatory differences contribute to a faster-X pattern of expression divergence both within and between species. This contribution is surprising because trans-acting regulators of X-linked genes are generally assumed to be randomly distributed throughout the genome. We found, however, that X-linked transcription factors appear to preferentially regulate expression of X-linked genes, providing a potential mechanistic explanation for this result. The contribution of trans-regulatory variation to faster-X expression divergence was larger within than between species, suggesting that it is more likely to result from neutral processes than positive selection. These data show how accelerated evolution of both coding and noncoding sequences on the X chromosome can lead to accelerated expression divergence on the X chromosome relative to autosomes.
Collapse
Affiliation(s)
- Joseph D Coolon
- Department of Ecology and Evolutionary Biology, University of Michigan
| | - Kraig R Stevenson
- Department of Computational Medicine and Bioinformatics, University of Michigan
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center
| | - Bing Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan
| | - Brenton R Graveley
- Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan Department of Computational Medicine and Bioinformatics, University of Michigan Department of Molecular, Cellular, and Developmental Biology, University of Michigan
| |
Collapse
|