1
|
Jang JH, Kim JY, Lee TJ. Recent advances in anticancer mechanisms of molecular glue degraders: focus on RBM39-dgrading synthetic sulfonamide such as indisulam, E7820, tasisulam, and chloroquinoxaline sulfonamide. Genes Genomics 2024:10.1007/s13258-024-01565-z. [PMID: 39271535 DOI: 10.1007/s13258-024-01565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Synthetic sulfonamide anticancer drugs, including E7820, indisulam, tasisulam, and chloroquinoxaline sulfonamide, exhibit diverse mechanisms of action and therapeutic potential, functioning as molecular glue degraders. E7820 targets RBM39, affecting RNA splicing and angiogenesis by suppressing integrin α2. Phase I studies have demonstrated some stability in advanced solid malignancies; however, further efficacy studies are required. Indisulam causes G1 cell cycle arrest and delays the G1/S transition by modulating splicing through RBM39 degradation via DCAF15. Despite its limited initial efficacy, it shows promise in combination therapies, particularly for hematopoietic malignancies and gliomas. Tasisulam inhibits VEGF signaling, suppresses angiogenesis, and induces apoptosis. Although early trials indicated broad activity, safety concerns have halted its development. Chloroquinoxaline sulfonamide, initially investigated for cell cycle arrest and topoisomerase II inhibition, was discontinued owing to its limited efficacy and toxicity, despite promising initial results. Recent studies revealed the structural interaction of E7820 with DCAF15 and RBM39, although phase II trials on myeloid malignancies have shown limited efficacy. Indisulam is effective against glioblastoma and neuroblastoma, with potential synergy in combination therapies and metabolic disruption. Recent research on tasisulam reveals its potential in cancer therapy by targeting RBM39 degradation through DCAF15-mediated pathways. Understanding these mechanisms could lead to new treatments that affect alternative splicing and improve cancer therapies Overall, although these drugs exhibit promising mechanisms of action, further research is required to optimize their clinical efficacy and safety.
Collapse
Affiliation(s)
- Ji Hoon Jang
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea
| | - Joo-Young Kim
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea.
| |
Collapse
|
2
|
Pomella S, Melaiu O, Cifaldi L, Bei R, Gargari M, Campanella V, Barillari G. Biomarkers Identification in the Microenvironment of Oral Squamous Cell Carcinoma: A Systematic Review of Proteomic Studies. Int J Mol Sci 2024; 25:8929. [PMID: 39201614 PMCID: PMC11354375 DOI: 10.3390/ijms25168929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
An important determinant for oral squamous cell carcinoma (OSCC) onset and outcome is the composition of the tumor microenvironment (TME). Thus, the study of the interactions occurring among cancer cells, immune cells, and cancer-associated fibroblasts within the TME could facilitate the understanding of the mechanisms underlying OSCC development and progression, as well as of its sensitivity or resistance to the therapy. In this context, it must be highlighted that the characterization of TME proteins is enabled by proteomic methodologies, particularly mass spectrometry (MS). Aiming to identify TME protein markers employable for diagnosing and prognosticating OSCC, we have retrieved a total of 119 articles spanning 2001 to 2023, of which 17 have passed the selection process, satisfying all its criteria. We have found a total of 570 proteins detected by MS-based proteomics in the TME of OSCC; among them, 542 are identified by a single study, while 28 are cited by two or more studies. These 28 proteins participate in extracellular matrix remodeling and/or energy metabolism. Here, we propose them as markers that could be used to characterize the TME of OSCC for diagnostic/prognostic purposes. Noteworthy, most of the 28 individuated proteins share one feature: being modulated by the hypoxia that is present in the proliferating OSCC mass.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (L.C.); (R.B.); (M.G.); (V.C.)
| |
Collapse
|
3
|
Ji T, Yang Y, Yu J, Yin H, Chu X, Yang P, Xu L, Wang X, Hu S, Li Y, Wu X, Liu W, Zhou B, Wang W, Zhang S, Cheng W, Chen Y, Shi L, Li Z, Zhuo R, Zhang Y, Tao Y, Wu D, Li X, Zhang Z, Fan JJ, Pan J, Lu J. Targeting RBM39 through indisulam induced mis-splicing of mRNA to exert anti-cancer effects in T-cell acute lymphoblastic leukemia. J Exp Clin Cancer Res 2024; 43:205. [PMID: 39044280 PMCID: PMC11267830 DOI: 10.1186/s13046-024-03130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Despite the use of targeted therapeutic approaches, T-cell acute lymphoblastic leukemia (T-ALL) is still associated with a high incidence of complications and a poor prognosis. Indisulam (also known as E7070), a newly identified molecular glue compound, has demonstrated increased therapeutic efficacy in several types of cancer through the rapid degradation of RBM39. This study aimed to evaluate the therapeutic potential of indisulam in T-ALL, elucidate its underlying mechanisms and explore the role of the RBM39 gene. METHODS We verified the anticancer effects of indisulam in both in vivo and in vitro models. Additionally, the construction of RBM39-knockdown cell lines using shRNA confirmed that the malignant phenotype of T-ALL cells was dependent on RBM39. Through RNA sequencing, we identified indisulam-induced splicing anomalies, and proteomic analysis helped pinpoint protein changes caused by the drug. Comprehensive cross-analysis of these findings facilitated the identification of downstream effectors and subsequent validation of their functional roles. RESULTS Indisulam has significant antineoplastic effects on T-ALL. It attenuates cell proliferation, promotes apoptosis and interferes with cell cycle progression in vitro while facilitating tumor remission in T-ALL in vivo models. This investigation provides evidence that the downregulation of RBM39 results in the restricted proliferation of T-ALL cells both in vitro and in vivo, suggesting that RBM39 is a potential target for T-ALL treatment. Indisulam's efficacy is attributed to its ability to induce RBM39 degradation, causing widespread aberrant splicing and abnormal translation of the critical downstream effector protein, THOC1, ultimately leading to protein depletion. Moreover, the presence of DCAF15 is regarded as critical for the effectiveness of indisulam, and its absence negates the ability of indisulam to induce the desired functional alterations. CONCLUSION Our study revealed that indisulam, which targets RBM39 to induce tumor cell apoptosis, is an effective drug for treating T-ALL. Targeting RBM39 through indisulam leads to mis-splicing of pre-mRNAs, resulting in the loss of key effectors such as THOC1.
Collapse
Affiliation(s)
- Tongting Ji
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yang Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Juanjuan Yu
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Hongli Yin
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xinran Chu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, Jiangsu, 215003, China
| | - Pengju Yang
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Ling Xu
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatric, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Xiaodong Wang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, Jiangsu, 215003, China
| | - Yizhen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xiaochen Wu
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Wengyuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei City, 230601, China
| | - Bi Zhou
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatric, Suzhou Hospital of AnHui Medical University, Suzhou, 234000, China
| | - Wenjuan Wang
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Shuqi Zhang
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatrics, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241002, China
| | - Wei Cheng
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatrics, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241002, China
| | - Yanling Chen
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Ran Zhuo
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yongping Zhang
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, Jiangsu, 215003, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Jun-Jie Fan
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, Jiangsu, 215003, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| | - Jun Lu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, Jiangsu, 215003, China.
| |
Collapse
|
4
|
Zhang X, Yang L, Liu X, Nie Z, Liu M, Wang T, Lu Y, Pan Y, Zhan Y, Wang Z, Luo J. Regulatory role of RBM39 in acute myeloid leukemia: Mediation through the PI3K/AKT pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119607. [PMID: 37852323 DOI: 10.1016/j.bbamcr.2023.119607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) presents ongoing therapeutic challenges due to its intricate molecular pathogenesis. This study aimed to elucidate the role of RNA binding motif protein 39 (RBM39) in AML cell proliferation, apoptosis, and chemosensitivity, and its potential modulation of the PI3K/AKT pathway. METHODS In vitro and in vivo experiments were conducted using AML cell lines (K562 and U937) and bone marrow mononuclear cells (BM-MNCs) from AML patients and healthy donors. RBM39 mRNA and protein levels were measured using qRT-PCR and Western blotting. Cells were transfected with sh-RBM39 or sh-control, and then treated with daunorubicin (DNR) or homoharringtonine (HHT) at varied concentrations. Cell proliferation, chemosensitivity, and apoptosis were assessed through CCK-8 assay and Annexin V-APC/PI staining. RNA sequencing identified differentially expressed genes (DEGs) post RBM39 knockdown. An in vivo xenograft AML model using E7070, a selective RBM39 inhibitor, was employed to evaluate RBM39 modulation effects. RESULTS Elevated RBM39 levels were found in AML patients and cell lines compared to controls. RBM39 knockdown promoted apoptosis, curtailed cell proliferation, and enhanced chemosensitivity to DNR and HHT in vitro. Drug-resistant or relapsed AML patients displayed higher RBM39 levels. RNA sequencing after RBM39 knockdown revealed downregulated PI3K/AKT signaling. The xenograft model validated in vitro results, as E7070 treatment suppressed AML xenograft growth via RBM39-mediated PI3K/AKT pathway suppression. CONCLUSION RBM39 plays a pivotal role in AML progression through the PI3K/AKT signaling pathway. Targeting RBM39, potentially with E7070, could inhibit proliferation and induce apoptosis in AML cells, offering a promising avenue for future AML research and treatment.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Lin Yang
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaojun Liu
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ziyuan Nie
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Menghan Liu
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tianyang Wang
- Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaqiong Lu
- Department of Hematology Oncology, Hebei Children's Hospital, Shijiazhuang, China
| | - Yuxia Pan
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Zhan
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenzhen Wang
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianmin Luo
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
5
|
Keun HC, Nijhuis A. RBM39: A druggable metabolic sensor linking RNA splicing, transcriptional regulation, and metabolic reprogramming in cancer. Mol Cell 2023; 83:4202-4204. [PMID: 38065060 DOI: 10.1016/j.molcel.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
In a recent issue of Cell, Mossmann et al.1 describe a novel role for an emerging cancer target, RNA-binding motif protein 39, as a metabolic sensor of the conditionally essential amino acid arginine.
Collapse
Affiliation(s)
- Hector C Keun
- Department of Surgery & Cancer, Imperial College London, London, UK.
| | - Anke Nijhuis
- Department of Surgery & Cancer, Imperial College London, London, UK
| |
Collapse
|
6
|
Eléouët M, Lu C, Zhou Y, Yang P, Ma J, Xu G. Insights on the biological functions and diverse regulation of RNA-binding protein 39 and their implication in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194902. [PMID: 36535628 DOI: 10.1016/j.bbagrm.2022.194902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding protein 39 (RBM39) involves in pre-mRNA splicing and transcriptional regulation. RBM39 is dysregulated in many cancers and its upregulation enhances cancer cell proliferation. Recently, it has been discovered that aryl sulfonamides act as molecular glues to recruit RBM39 to the CRL4DCAF15 E3 ubiquitin ligase complex for its ubiquitination and proteasomal degradation. Therefore, various studies have focused on the degradation of RBM39 by aryl sulfonamides in the aim of finding new cancer therapeutics. These discoveries also attracted focus for thorough study on the biological functions of RBM39. RBM39 was found to regulate the splicing and transcription of genes mainly involved in pre-mRNA splicing, cell cycle regulation, DNA damage response, and metabolism, but the understanding of these regulations is still in its infancy. This article reviews the advances of the current literature and discusses the remaining key issues on the biological function and dynamic regulation of RBM39 at the post-translational level.
Collapse
Affiliation(s)
- Morgane Eléouët
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yijia Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ping Yang
- Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
7
|
Nijhuis A, Sikka A, Yogev O, Herendi L, Balcells C, Ma Y, Poon E, Eckold C, Valbuena GN, Xu Y, Liu Y, da Costa BM, Gruet M, Wickremesinghe C, Benito A, Kramer H, Montoya A, Carling D, Want EJ, Jamin Y, Chesler L, Keun HC. Indisulam targets RNA splicing and metabolism to serve as a therapeutic strategy for high-risk neuroblastoma. Nat Commun 2022; 13:1380. [PMID: 35296644 PMCID: PMC8927615 DOI: 10.1038/s41467-022-28907-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/11/2022] [Indexed: 01/25/2023] Open
Abstract
Neuroblastoma is the most common paediatric solid tumour and prognosis remains poor for high-risk cases despite the use of multimodal treatment. Analysis of public drug sensitivity data showed neuroblastoma lines to be sensitive to indisulam, a molecular glue that selectively targets RNA splicing factor RBM39 for proteosomal degradation via DCAF15-E3-ubiquitin ligase. In neuroblastoma models, indisulam induces rapid loss of RBM39, accumulation of splicing errors and growth inhibition in a DCAF15-dependent manner. Integrative analysis of RNAseq and proteomics data highlight a distinct disruption to cell cycle and metabolism. Metabolic profiling demonstrates metabolome perturbations and mitochondrial dysfunction resulting from indisulam. Complete tumour regression without relapse was observed in both xenograft and the Th-MYCN transgenic model of neuroblastoma after indisulam treatment, with RBM39 loss, RNA splicing and metabolic changes confirmed in vivo. Our data show that dual-targeting of metabolism and RNA splicing with anticancer indisulam is a promising therapeutic approach for high-risk neuroblastoma.
Collapse
Affiliation(s)
- Anke Nijhuis
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Arti Sikka
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Orli Yogev
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Lili Herendi
- Department of Surgery & Cancer, Imperial College London, London, UK
| | | | - Yurui Ma
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Clare Eckold
- Department of Surgery & Cancer, Imperial College London, London, UK
| | | | - Yuewei Xu
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Yusong Liu
- Department of Surgery & Cancer, Imperial College London, London, UK
| | | | - Michael Gruet
- Department of Surgery & Cancer, Imperial College London, London, UK
| | | | - Adrian Benito
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Holger Kramer
- Medical Research Council London Institute of Medical Science, London, UK
| | - Alex Montoya
- Medical Research Council London Institute of Medical Science, London, UK
| | - David Carling
- Medical Research Council London Institute of Medical Science, London, UK
| | - Elizabeth J Want
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and Royal Marsden NHS Trust, London, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Hector C Keun
- Department of Surgery & Cancer, Imperial College London, London, UK.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
8
|
Yin B, Dong B, Guo X, Wang C, Huo H. GABPA protects against gastric cancer deterioration via negatively regulating GPX1. J Med Biochem 2022; 41:355-362. [PMID: 36042907 PMCID: PMC9375539 DOI: 10.5937/jomb0-35445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background To explore the anti-cancer role of GABPA in the progression of gastric cancer (GC), and the underlying mechanism. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the expression pattern of GABPA in 45 pairs of GC and non-tumoral tissues. The relationship between GABPA expression and clinic pathological indicators of GC patients was analyzed. In AGS and SGC-7901 cells overexpressing GABPA, their migratory ability was determined by trans well and wound healing assay. The interaction between GABPA and its downstream target GPX1 was explored by dual-luciferase reporter assay, and their synergistical regulation on GC cell migration was finally elucidated. Results GABPA was downregulated in GC tissues in comparison to normal ones. Low level of GABPA predicted high incidences of lymphatic and distant metastasis in GC. Overexpression of GABPA blocked AGS and SGC-7901 cells to migrate. GABPA could target GPX1 via the predicted binding site. GPX1 was upregulated in clinical samples of GC, and negatively correlated to GABPA level. The anticancer effect of GABPA on GC relied on the involvement of GPX1. Conclusions GABPA is downregulated in GC samples, which can be utilized to predict GC metastasis. Serving as a tumor suppressor, GABPA blocks GC cells to migrate by targeting GPX1.
Collapse
Affiliation(s)
- Binghua Yin
- Handan Central Hospital, CT Room, Handan, China
| | - Bing Dong
- Handan Central Hospital, Department of Gastroenterology, Handan, China
| | - Xiaohui Guo
- Handan Central Hospital, Department of General Surgery, Handan, China
| | - Can Wang
- Handan Central Hospital, Department of General Surgery, Handan, China
| | - Huazhi Huo
- Handan Central Hospital, Department of General Surgery, Handan, China
| |
Collapse
|
9
|
Zheng Y, Xu B, Zhao Y, Yang S, Wang S, Ma L, Dong L. DEAD-Box Helicase 3 X-Linked Promotes Metastasis by Inducing Epithelial-Mesenchymal Transition via p62/Sequestosome-1. Dig Dis Sci 2021; 66:3893-3902. [PMID: 33386519 DOI: 10.1007/s10620-020-06735-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND DEAD-Box Helicase 3 X-Linked (DDX3X) is a member of the DEAD-box helicases that play a crucial role in RNA metabolism. Although DDX3X has been shown to contribute to tumorigenesis, the detailed mechanisms by which DDX3X functions in pancreatic ductal adenocarcinoma (PDAC) biogenesis remain poorly understood. AIMS The goal of the present study was to elucidate the molecular mechanisms by which DDX3X contributes to tumorigenesis in PDAC. METHODS Kaplan-Meier curves, the log-rank test, t test and Cox regression were used to analyze the relationship between DDX3X expression and the clinicopathological features of PDAC patients. DDX3X and p62 expression in human PDAC tissues was analyzed by immunohistochemistry. Monolayer scratch healing assays, cell migration assays and nude mouse lung metastasis models were used to evaluate the effect of DDX3X on metastasis in vitro and in vivo. Western blot analysis was used to assess the expression of proteins in the signaling pathway. RESULTS We authenticated high DDX3X expression was associated with a poor prognosis in PDAC. The loss of DDX3X attenuated the migratory capacity of PDAC cells in vitro and in vivo. DDX3X was shown to facilitate epithelial-mesenchymal transition (EMT) and the phosphorylation of p65 and eIF2α. Moreover, DDX3X displayed oncogenic activity by promoting p62 accumulation. CONCLUSIONS Our results demonstrated that DDX3X activates NF-κB and promotes metastasis by inducing EMT via p62.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, MI, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, MI, China
| | - Yitong Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, MI, China
| | - Suzhen Yang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, MI, China
| | - Shuhui Wang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, MI, China
| | - Lin Ma
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, MI, China
| | - Lei Dong
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, MI, China.
| |
Collapse
|
10
|
Lin X, Tago K, Okazaki N, So T, Takahashi K, Mashino T, Tamura H, Funakoshi-Tago M. The indole-hydantoin derivative exhibits anti-inflammatory activity by preventing the transactivation of NF-κB through the inhibition of NF-κB p65 phosphorylation at Ser276. Int Immunopharmacol 2021; 100:108092. [PMID: 34474272 DOI: 10.1016/j.intimp.2021.108092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 01/17/2023]
Abstract
Indole- and hydantoin-based derivatives both exhibit anti-inflammatory activity, suggesting that the structures of indole and hydantoin are functional for this activity. In the present study, we synthesized two types of indole-hydantoin derivatives, IH-1 (5-(1H-indole-3-ylmethylene) imidazolidine-2,4-dione) and IH-2 (5-(1H-indole-3-ylmethyl) imidazolidine-2,4-dione) and examined their effects on LPS-induced inflammatory responses in murine macrophage-like RAW264.7 cells. LPS-induced inflammatory responses were not affected by indole, hydantoin, or IH-2. In contrast, IH-1 significantly inhibited the LPS-induced production of nitric oxide (NO) and secretion of CCL2 and CXCL1 by suppressing the mRNA expression of inducible NO synthase (iNOS), CCL2, and CXCL1. IH-1 markedly inhibited the LPS-induced activation of NF-κB without affecting the degradation of IκBα or nuclear translocation of NF-κB. IH-1 markedly attenuated the transcriptional activity of NF-κB by suppressing the LPS-induced phosphorylation of the NF-κB p65 subunit at Ser276. Furthermore, IH-1 prevented the LPS-induced interaction of NF-κB p65 subunit with a transcriptional coactivator, cAMP response element-binding protein (CBP). Collectively, these results revealed the potential of the novel indole-hydantoin derivative, IH-1 as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Xin Lin
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken 329-0498, Japan.
| | - Nozomi Okazaki
- Division of Bio-organic and Medicinal Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Takanori So
- Division of Bio-organic and Medicinal Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kyoko Takahashi
- Division of Bio-organic and Medicinal Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Tadahiko Mashino
- Division of Bio-organic and Medicinal Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Hiroomi Tamura
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
11
|
RNA-binding protein 39: a promising therapeutic target for cancer. Cell Death Discov 2021; 7:214. [PMID: 34389703 PMCID: PMC8363639 DOI: 10.1038/s41420-021-00598-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/04/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022] Open
Abstract
RNA-binding motif protein 39 (RBM39), as a key factor in tumor-targeted mRNA and protein expression, not only plays a vital role in tumorigenesis, but also has broad development prospects in clinical treatment and drug research. Moreover, since RBM39 was identified as a target of sulfonamides, it has played a key role in the emerging field of molecule drug development. Hence, it is of great significance to study the interaction between RBM39 and tumors and the clinical application of drug-targeted therapy. In this paper, we describe the possible multi-level regulation of RBM39, including gene transcription, protein translation, and alternative splicing. Importantly, the molecular function of RBM39 as an important splicing factor in most common tumors is systematically outlined. Furthermore, we briefly introduce RBM39’s tumor-targeted drug research and its clinical application, hoping to give reference significance for the molecular mechanism of RBM39 in tumors, and provide reliable ideas for in-depth research for future therapeutic strategies.
Collapse
|
12
|
Titus MB, Wright EG, Bono JM, Poliakon AK, Goldstein BR, Super MK, Young LA, Manaj M, Litchford M, Reist NE, Killian DJ, Olesnicky EC. The conserved alternative splicing factor caper regulates neuromuscular phenotypes during development and aging. Dev Biol 2021; 473:15-32. [PMID: 33508255 PMCID: PMC7987824 DOI: 10.1016/j.ydbio.2021.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
RNA-binding proteins play an important role in the regulation of post-transcriptional gene expression throughout the nervous system. This is underscored by the prevalence of mutations in genes encoding RNA splicing factors and other RNA-binding proteins in a number of neurodegenerative and neurodevelopmental disorders. The highly conserved alternative splicing factor Caper is widely expressed throughout the developing embryo and functions in the development of various sensory neural subtypes in the Drosophila peripheral nervous system. Here we find that caper dysfunction leads to aberrant neuromuscular junction morphogenesis, as well as aberrant locomotor behavior during larval and adult stages. Despite its widespread expression, our results indicate that caper function is required to a greater extent within the nervous system, as opposed to muscle, for neuromuscular junction development and for the regulation of adult locomotor behavior. Moreover, we find that Caper interacts with the RNA-binding protein Fmrp to regulate adult locomotor behavior. Finally, we show that caper dysfunction leads to various phenotypes that have both a sex and age bias, both of which are commonly seen in neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- M Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Ethan G Wright
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Jeremy M Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Andrea K Poliakon
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Brandon R Goldstein
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Meg K Super
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Lauren A Young
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Melpomeni Manaj
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Morgan Litchford
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Noreen E Reist
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, 80903, USA
| | - Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
| |
Collapse
|
13
|
Kim SA, Jo SH, Cho JH, Yu MY, Shin HC, Kim JA, Park SG, Park BC, Kim S, Kim JH. Aryl Sulfonamides Induce Degradation of Aryl Hydrocarbon Receptor Nuclear Translocator through CRL4 DCAF15 E3 Ligase. Mol Cells 2020; 43:935-944. [PMID: 33168788 PMCID: PMC7700843 DOI: 10.14348/molcells.2020.0122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Aryl hydrocarbon receptor nuclear translocator (ARNT) plays an essential role in maintaining cellular homeostasis in response to environmental stress. Under conditions of hypoxia or xenobiotic exposure, ARNT regulates the subset of genes involved in adaptive responses, by forming heterodimers with hypoxia-inducible transcription factors (HIF1α and HIF2α) or aryl hydrocarbon receptor (AhR). Here, we have shown that ARNT interacts with DDB1 and CUL4-associated factor 15 (DCAF15), and the aryl sulfonamides, indisulam and E7820, induce its proteasomal degradation through Cullin-RING finger ligase 4 containing DCAF15 (CRL4DCAF15) E3 ligase. Moreover, the two known neo-substrates of aryl sulfonamide, RNA-binding motif protein 39 (RBM39) and RNA-binding motif protein 23 (RBM23), are not required for ARNT degradation. In line with this finding, aryl sulfonamides inhibited the transcriptional activities of HIFs and AhR associated with ARNT. Our results collectively support novel regulatory roles of aryl sulfonamides in both hypoxic and xenobiotic responses.
Collapse
Affiliation(s)
- Sung Ah Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Seung-Hyun Jo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Jin Hwa Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Min Yeong Yu
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jung-Ae Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Byoung Chul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Korea
| | - Sunhong Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea
- Present address: Drug Discovery Center, LG Chem, Ltd., Seoul 07336, Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
14
|
Xu Y, Nijhuis A, Keun HC. RNA-binding motif protein 39 (RBM39): An emerging cancer target. Br J Pharmacol 2020; 179:2795-2812. [PMID: 33238031 DOI: 10.1111/bph.15331] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/13/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
RNA-binding motif protein 39 (RBM39) is an RNA-binding protein involved in transcriptional co-regulation and alternative RNA splicing. Recent studies have revealed that RBM39 is the unexpected target of aryl sulphonamides, which act as molecular glues between RBM39 and the DCAF15-associated E3 ubiquitin ligase complex leading to selective degradation of the target. Loss of RBM39 leads to aberrant splicing events and differential gene expression, thereby inhibiting cell cycle progression and causing tumour regression in a number of preclinical models. Many clinical studies have shown that aryl sulphonamides were well tolerated, but their clinical performance was limited due to an insufficient understanding of the target, RBM39 biology and a lack of predictive biomarkers. This review summarises the current knowledge of RBM39 function and discusses the therapeutic potential of this spliceosome target in cancer therapy.
Collapse
Affiliation(s)
- Yuewei Xu
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Anke Nijhuis
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Hector C Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
15
|
Tago K, Funakoshi-Tago M, Ohta S, Kawata H, Saitoh H, Horie H, Aoki-Ohmura C, Yamauchi J, Tanaka A, Matsugi J, Yanagisawa K. Oncogenic Ras mutant causes the hyperactivation of NF-κB via acceleration of its transcriptional activation. Mol Oncol 2019; 13:2493-2510. [PMID: 31580526 PMCID: PMC6822247 DOI: 10.1002/1878-0261.12580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023] Open
Abstract
It is well established that nuclear factor κB (NF-κB) acts as one of the most important transcription factors for tumor initiation and progression, as it both protects cells from apoptotic/necrotic signals and accelerates angiogenesis and tumor metastasis, which is mediated via the expression of target genes. However, it has not yet been clarified how oncogenic signals accelerate the activation of NF-κB. In the current study, we utilized untransformed NIH-3T3 cells stably harboring a κB-driven luciferase gene to show that an oncogenic mutant of Ras GTPase augmented TNFα-induced NF-κB activation. Notably, enforced expression of cyclin-dependent kinase inhibitors, such as p27Kip1 and p21Cip1 , effectively canceled the accelerated activation of NF-κB, suggesting that oncogenic Ras-induced cell cycle progression is essential for the hyperactivation of NF-κB. Furthermore, we found that Ras (G12V) augmented the transcriptional activation of NF-κB, and this activation required the p38 MAP kinase. We observed that a downstream kinase of p38 MAP kinase, MSK1, was activated by Ras (G12V) and catalyzed the phosphorylation of p65/RelA at Ser-276, which is critical for its transcriptional activation. Significantly, phosphorylation of the p65/RelA subunit at Ser-276 was elevated in patient samples of colorectal cancer harboring oncogenic mutations of the K-Ras gene, and the expression levels of NF-κB target genes were drastically enhanced in several cancer tissues. These observations strongly suggest that oncogenic signal-induced acceleration of NF-κB activation is caused by activation of the p38 MAP kinase-MSK1 signaling axis and by cell cycle progression in cancer cells.
Collapse
Affiliation(s)
- Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Shimotsuke, Japan
| | - Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, Minato-ku, Japan
| | - Satoshi Ohta
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Shimotsuke, Japan
| | - Hirotoshi Kawata
- Department of Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Hiroshi Saitoh
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Shimotsuke, Japan
| | - Hisanaga Horie
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Chihiro Aoki-Ohmura
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Shimotsuke, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Akira Tanaka
- Department of Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Jitsuhiro Matsugi
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Shimotsuke, Japan
| | - Ken Yanagisawa
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
16
|
Tong J, Xu X, Zhang Z, Ma C, Xiang R, Liu J, Xu W, Wu C, Li J, Zhan F, Wu Y, Yan H. Hypoxia-induced long non-coding RNA DARS-AS1 regulates RBM39 stability to promote myeloma malignancy. Haematologica 2019; 105:1630-1640. [PMID: 31289203 PMCID: PMC7271587 DOI: 10.3324/haematol.2019.218289] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma is a malignant plasma-cell disease, which is highly dependent on the hypoxic bone marrow microenvironment. However, the underlying mechanisms of hypoxia contributing to myeloma genesis are not fully understood. Here, we show that long non-coding RNA DARS-AS1 in myeloma is directly upregulated by hypoxia inducible factor (HIF)-1. Importantly, DARS-AS1 is required for the survival and tumorigenesis of myeloma cells both in vitro and in vivo. DARS-AS1 exerts its function by binding RNA-binding motif protein 39 (RBM39), which impedes the interaction between RBM39 and its E3 ubiquitin ligase RNF147, and prevents RBM39 from degradation. The overexpression of RBM39 observed in myeloma cells is associated with poor prognosis. Furthermore, knockdown of DARS-AS1 inhibits the mammalian target of rapamycin signaling pathway, an effect that is reversed by RBM39 overexpression. We reveal that a novel HIF-1/DARS-AS1/RBM39 pathway is implicated in the pathogenesis of myeloma. Targeting DARS-AS1/RBM39 may, therefore, represent a novel strategy to combat myeloma.
Collapse
Affiliation(s)
- Jia Tong
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoguang Xu
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilu Zhang
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengning Ma
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rufang Xiang
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Liu
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Xu
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Wu
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junmin Li
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fenghuang Zhan
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Yan
- Department of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Yao D, Dong Q, Tian Y, Dai C, Wu S. Lipopolysaccharide stimulates endogenous β-glucuronidase via PKC/NF-κB/c-myc signaling cascade: a possible factor in hepatolithiasis formation. Mol Cell Biochem 2017; 444:93-102. [PMID: 29188532 DOI: 10.1007/s11010-017-3234-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
Hepatolithiasis is commonly encountered in Southeastern and Eastern Asian countries, but the pathogenesis mechanism of stone formation is still not well understood. Now, the role of endogenous β-glucuronidase in pigment stones formation is being gradually recognized. In this study, the mechanism of increased expression and secretion of endogenous β-glucuronidase during hepatolithiasis formation was investigated. We assessed the endogenous β-glucuronidase, c-myc, p-p65, and p-PKC expression in liver specimens with hepatolithiasis by immunohistochemical staining, and found that compared with that in normal liver samples, the expression of endogenous β-glucuronidase, c-myc, p-p65, and p-PKC in liver specimens with hepatolithiasis significantly increased, and their expressions were positively correlated with each other. Lipopolysaccharide (LPS) induced increased expression of endogenous β-glucuronidase and c-myc in hepatocytes and intrahepatic biliary epithelial cells in a dose- and time-dependent manner, and endogenous β-glucuronidase secretion increased, correspondingly. C-myc siRNA transfection effectively inhibited the LPS-induced expression of endogenous β-glucuronidase. Furthermore, NF-κB inhibitor pyrrolidine dithiocarbamate or PKC inhibitor chelerythrine could effectively inhibit the LPS-induced expression of c-myc and endogenous β-glucuronidase, and the expression of p-p65 was also partly inhibited by chelerythrine. Our clinical observations and experimental data indicate that LPS could induce the increased expression and secretion of endogenous β-glucuronidase via a signaling cascade of PKC/NF-κB/c-myc in hepatocytes and intrahepatic biliary epithelial cells, and endogenous β-glucuronidase might play a possible role in the formation of hepatolithiasis.
Collapse
Affiliation(s)
- Dianbo Yao
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Qianze Dong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.
- Department of General Surgery, Shengjing Hospital, China Medical University, No. 36, San Hao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
18
|
Pharmacological inhibition of CaMKK2 with the selective antagonist STO-609 regresses NAFLD. Sci Rep 2017; 7:11793. [PMID: 28924233 PMCID: PMC5603587 DOI: 10.1038/s41598-017-12139-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022] Open
Abstract
Binding of calcium to its intracellular receptor calmodulin (CaM) activates a family of Ca2+/CaM-dependent protein kinases. CaMKK2 (Ca2+/CaM-dependent protein kinase kinase 2) is a central member of this kinase family as it controls the actions of a CaMK cascade involving CaMKI, CaMKIV or AMPK. CaMKK2 controls insulin signaling, metabolic homeostasis, inflammation and cancer cell growth highlighting its potential as a therapeutic target for a variety of diseases. STO-609 is a selective, small molecule inhibitor of CaMKK2. Although STO-609 has been used extensively in vitro and in cells to characterize and define new mechanistic functions of CaMKK2, only a few studies have reported the in vivo use of STO-609. We synthesized functional STO-609 and assessed its pharmacological properties through in vitro (kinase assay), ex vivo (human liver microsomes) and in vivo (mouse) model systems. We describe the metabolic processing of STO-609, its toxicity, pharmacokinetics and bioavailability in a variety of mouse tissues. Utilizing these data, we show STO-609 treatment to inhibit CaMKK2 function confers protection against non-alcoholic fatty liver disease. These data provide a valuable resource by establishing criteria for use of STO-609 to inhibit the in vivo functions of CaMKK2 and demonstrate its utility for treating metabolically-related hepatic disease.
Collapse
|
19
|
Olesnicky EC, Bono JM, Bell L, Schachtner LT, Lybecker MC. The RNA-binding protein caper is required for sensory neuron development in Drosophila melanogaster. Dev Dyn 2017; 246:610-624. [PMID: 28543982 DOI: 10.1002/dvdy.24523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/18/2017] [Accepted: 05/16/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Alternative splicing mediated by RNA-binding proteins (RBPs) is emerging as a fundamental mechanism for the regulation of gene expression. Alternative splicing has been shown to be a widespread phenomenon that facilitates the diversification of gene products in a tissue-specific manner. Although defects in alternative splicing are rooted in many neurological disorders, only a small fraction of splicing factors have been investigated in detail. RESULTS We find that the splicing factor Caper is required for the development of multiple different mechanosensory neuron subtypes at multiple life stages in Drosophila melanogaster. Disruption of Caper function causes defects in dendrite morphogenesis of larval dendrite arborization neurons and neuronal positioning of embryonic proprioceptors, as well as the development and maintenance of adult mechanosensory bristles. Additionally, we find that Caper dysfunction results in aberrant locomotor behavior in adult flies. Transcriptome-wide analyses further support a role for Caper in alternative isoform regulation of genes that function in neurogenesis. CONCLUSIONS Our results provide the first evidence for a fundamental and broad requirement for the highly conserved splicing factor Caper in the development and maintenance of the nervous system and provide a framework for future studies on the detailed mechanism of Caper-mediated RNA regulation. Developmental Dynamics 246:610-624, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado
| | - Jeremy M Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado
| | - Laura Bell
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado
| | - Logan T Schachtner
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado
| | - Meghan C Lybecker
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado
| |
Collapse
|
20
|
Selective degradation of splicing factor CAPERα by anticancer sulfonamides. Nat Chem Biol 2017; 13:675-680. [DOI: 10.1038/nchembio.2363] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
|
21
|
Ligand-Bound GeneSwitch Causes Developmental Aberrations in Drosophila that Are Alleviated by the Alternative Oxidase. G3-GENES GENOMES GENETICS 2016; 6:2839-46. [PMID: 27412986 PMCID: PMC5015941 DOI: 10.1534/g3.116.030882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Culture of Drosophila expressing the steroid-dependent GeneSwitch transcriptional activator under the control of the ubiquitous α-tubulin promoter was found to produce extensive pupal lethality, as well as a range of dysmorphic adult phenotypes, in the presence of high concentrations of the inducing drug RU486. Prominent among these was cleft thorax, seen previously in flies bearing mutant alleles of the nuclear receptor Ultraspiracle and many other mutants, as well as notched wings, leg malformations, and bristle abnormalities. Neither the α-tubulin-GeneSwitch driver nor the inducing drug on their own produced any of these effects. A second GeneSwitch driver, under the control of the daughterless promoter, which gave much lower and more tissue-restricted transgene expression, exhibited only mild bristle abnormalities in the presence of high levels of RU486. Coexpression of the alternative oxidase (AOX) from Ciona intestinalis produced a substantial shift in the developmental outcome toward a wild-type phenotype, which was dependent on the AOX expression level. Neither an enzymatically inactivated variant of AOX, nor GFP, or the alternative NADH dehydrogenase Ndi1 from yeast gave any such rescue. Users of the GeneSwitch system should be aware of the potential confounding effects of its application in developmental studies.
Collapse
|
22
|
Negative autoregulation of BMP dependent transcription by SIN3B splicing reveals a role for RBM39. Sci Rep 2016; 6:28210. [PMID: 27324164 PMCID: PMC4914931 DOI: 10.1038/srep28210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/23/2016] [Indexed: 12/01/2022] Open
Abstract
BMP signalling is negatively autoregulated by several genes including SMAD6, Noggin and Gremlin, and autoregulators are possible targets for enhancing BMP signalling in disorders such as fibrosis and pulmonary hypertension. To identify novel negative regulators of BMP signalling, we used siRNA screening in mouse C2C12 cells with a BMP-responsive luciferase reporter. Knockdown of several splicing factors increased BMP4-dependent transcription and target gene expression. Knockdown of RBM39 produced the greatest enhancement in BMP activity. Transcriptome-wide RNA sequencing identified a change in Sin3b exon usage after RBM39 knockdown. SIN3B targets histone deacetylases to chromatin to repress transcription. In mouse, Sin3b produces long and short isoforms, with the short isoform lacking the ability to recruit HDACs. BMP4 induced a shift in SIN3B expression to the long isoform, and this change in isoform ratio was prevented by RBM39 knockdown. Knockdown of long isoform SIN3B enhanced BMP4-dependent transcription, whereas knockdown of the short isoform did not. We propose that BMP4-dependent transcription is negatively autoregulated in part by SIN3B alternative splicing, and that RBM39 plays a role in this process.
Collapse
|