1
|
Chen X, Chowdhury MN, Jin H. An Intrinsically Disordered RNA Binding Protein Modulates mRNA Translation and Storage. J Mol Biol 2024; 437:168884. [PMID: 39617253 DOI: 10.1016/j.jmb.2024.168884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024]
Abstract
Proteins with intrinsically disordered regions (IDR) play diverse functions in regulating gene expression in the cell. Many of these proteins interact with cytoplasmic ribosomes. However, the molecular functions related to the interactions are largely unclear. In this study, using an abundant RNA-binding protein, Sbp1, with a structurally well-defined RNA recognition motif and an intrinsically disordered RGG domain as a model system, we investigated how an RNA binding protein with IDR modulates mRNA storage and translation. Using genomic and molecular approaches, we show that Sbp1 slows ribosome movement on cellular mRNAs and promotes polysome stacking or aggregation. Sbp1-associated polysomes display a ring-shaped structure in addition to a beads-on-string morphology visualized under the electron microscope, likely to be an intermediate slow translation state between actively translating polysomes and the translation-sequestered RNA granule. Moreover, the binding of Sbp1 to the 5'UTRs of mRNAs represses both cap-dependent and cap-independent translation initiation of proteins, many are functionally important for general protein synthesis in the cell. Finally, post-translational modifications at the arginine in the RGG motif change the Sbp1 protein interactome and play important roles in directing cellular mRNAs to either translation or storage. Taken together, our study demonstrates that under physiological conditions, intrinsically disordered RNA binding proteins promote polysome aggregation and regulate mRNA translation and storage using multiple distinctive mechanisms. This research also establishes a framework with which functions of other IDR-containing proteins can be investigated and defined.
Collapse
Affiliation(s)
- Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States
| | - Mashiat N Chowdhury
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States
| | - Hong Jin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States.
| |
Collapse
|
2
|
Winden KD, Ruiz JF, Sahin M. Construction destruction: Contribution of dyregulated proteostasis to neurodevelopmental disorders. Curr Opin Neurobiol 2024; 90:102934. [PMID: 39612590 DOI: 10.1016/j.conb.2024.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Genetic causes of neurodevelopmental disorders (NDDs) such as epilepsy and autism spectrum disorder are rapidly being uncovered. The genetic risk factors that are responsible for various NDDs fall into many categories, and while some genes such as those involved in synaptic transmission are expected, there are several other classes of genes whose involvement in these disorders is not intuitive. One such group of genes is involved in protein synthesis and degradation, and the balance between these opposing pathways is termed proteostasis. Here, we review these pathways, the genetics of the related neurological disorders, and some potential disease mechanisms. Improved understanding of this collection of genetic disorders will be informative for the pathogenesis of these disorders and imply novel therapeutic strategies.
Collapse
Affiliation(s)
- Kellen D Winden
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Juan F Ruiz
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Tarannum R, Mun G, Quddos F, Swanger SA, Steward O, Farris S. Dendritically localized RNAs are packaged as diversely composed ribonucleoprotein particles with heterogeneous copy number states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603387. [PMID: 39071419 PMCID: PMC11275876 DOI: 10.1101/2024.07.13.603387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Localization of mRNAs to dendrites is a fundamental mechanism by which neurons achieve spatiotemporal control of gene expression. Translationally repressed neuronal mRNA transport granules, also referred to as ribonucleoprotein particles (RNPs), have been shown to be trafficked as single or low copy number RNPs and as larger complexes with multiple copies and/or species of mRNAs. However, there is little evidence of either population in intact neuronal circuits. Using single molecule fluorescence in situ hybridization studies in the dendrites of adult rat and mouse hippocampus, we provide evidence that supports the existence of multi-transcript RNPs with the constituents varying in amounts for each RNA species. By competing-off fluorescently labeled probe with serial increases of unlabeled probe, we detected stepwise decreases in Arc RNP number and fluorescence intensity, suggesting Arc RNAs localize to dendrites in both low- and multiple-copy number RNPs. When probing for multiple mRNAs, we find that localized RNPs are heterogeneous in size and colocalization patterns that vary per RNA. Further, localized RNAs that are targeted by the same trans-acting element (FMRP) display greater levels of colocalization compared to an RNA not targeted by FMRP. Simultaneous visualization of a dozen FMRP-targeted mRNA species using highly multiplexed imaging demonstrates that dendritic RNAs are mostly trafficked as heteromeric cargoes of multiple types of RNAs (at least one or more RNAs). Moreover, the composition of these RNA cargoes, as assessed by colocalization, correlates with the abundance of the transcripts even after accounting for the expected differences in colocalization based on expression. Collectively, these results suggest that dendritic RNPs are packaged as heterogeneous co-assemblies of different mRNAs and that RNP contents may be driven, at least partially, by highly abundant dendritic RNAs; a model that favors efficiency over fine-tuned control for sustaining long-distance trafficking of thousands of messenger molecules.
Collapse
Affiliation(s)
- Renesa Tarannum
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Translational Biology, Medicine & Health Graduate Program, Virginia Tech, Blacksburg, Virginia
| | - Grace Mun
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
| | - Fatima Quddos
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Translational Biology, Medicine & Health Graduate Program, Virginia Tech, Blacksburg, Virginia
| | - Sharon A. Swanger
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | | | - Shannon Farris
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| |
Collapse
|
4
|
Scott-Hewitt N, Mahoney M, Huang Y, Korte N, Yvanka de Soysa T, Wilton DK, Knorr E, Mastro K, Chang A, Zhang A, Melville D, Schenone M, Hartigan C, Stevens B. Microglial-derived C1q integrates into neuronal ribonucleoprotein complexes and impacts protein homeostasis in the aging brain. Cell 2024; 187:4193-4212.e24. [PMID: 38942014 DOI: 10.1016/j.cell.2024.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/08/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024]
Abstract
Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.
Collapse
Affiliation(s)
- Nicole Scott-Hewitt
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Matthew Mahoney
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Youtong Huang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nils Korte
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - T Yvanka de Soysa
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel K Wilton
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Emily Knorr
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kevin Mastro
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Allison Chang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Allison Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - David Melville
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Monica Schenone
- The Broad Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christina Hartigan
- The Broad Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Investigator, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Gao M. Me31B: a key repressor in germline regulation and beyond. Biosci Rep 2024; 44:BSR20231769. [PMID: 38606619 PMCID: PMC11065648 DOI: 10.1042/bsr20231769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024] Open
Abstract
Maternally Expressed at 31B (Me31B), an evolutionarily conserved ATP-dependent RNA helicase, plays an important role in the development of the germline across diverse animal species. Its cellular functionality has been posited as a translational repressor, participating in various RNA metabolism pathways to intricately regulate the spatiotemporal expression of RNAs. Despite its evident significance, the precise role and mechanistic underpinnings of Me31B remain insufficiently understood. This article endeavors to comprehensively review historic and recent research on Me31B, distill the major findings, discern generalizable patterns in Me31B's functions across different research contexts, and provide insights into its fundamental role and mechanism of action. The primary focus of this article centers on elucidating the role of Drosophila Me31B within the germline, while concurrently delving into pertinent research on its orthologs within other species and cellular systems.
Collapse
Affiliation(s)
- Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, U.S.A
| |
Collapse
|
6
|
Alfano C, Fichou Y, Huber K, Weiss M, Spruijt E, Ebbinghaus S, De Luca G, Morando MA, Vetri V, Temussi PA, Pastore A. Molecular Crowding: The History and Development of a Scientific Paradigm. Chem Rev 2024; 124:3186-3219. [PMID: 38466779 PMCID: PMC10979406 DOI: 10.1021/acs.chemrev.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
It is now generally accepted that macromolecules do not act in isolation but "live" in a crowded environment, that is, an environment populated by numerous different molecules. The field of molecular crowding has its origins in the far 80s but became accepted only by the end of the 90s. In the present issue, we discuss various aspects that are influenced by crowding and need to consider its effects. This Review is meant as an introduction to the theme and an analysis of the evolution of the crowding concept through time from colloidal and polymer physics to a more biological perspective. We introduce themes that will be more thoroughly treated in other Reviews of the present issue. In our intentions, each Review may stand by itself, but the complete collection has the aspiration to provide different but complementary perspectives to propose a more holistic view of molecular crowding.
Collapse
Affiliation(s)
- Caterina Alfano
- Structural
Biology and Biophysics Unit, Fondazione
Ri.MED, 90100 Palermo, Italy
| | - Yann Fichou
- CNRS,
Bordeaux INP, CBMN UMR 5248, IECB, University
of Bordeaux, F-33600 Pessac, France
| | - Klaus Huber
- Department
of Chemistry, University of Paderborn, 33098 Paderborn, Germany
| | - Matthias Weiss
- Experimental
Physics I, Physics of Living Matter, University
of Bayreuth, 95440 Bayreuth, Germany
| | - Evan Spruijt
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Simon Ebbinghaus
- Lehrstuhl
für Biophysikalische Chemie and Research Center Chemical Sciences
and Sustainability, Research Alliance Ruhr, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Giuseppe De Luca
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Valeria Vetri
- Dipartimento
di Fisica e Chimica − Emilio Segrè, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Annalisa Pastore
- King’s
College London, Denmark
Hill Campus, SE5 9RT London, United Kingdom
| |
Collapse
|
7
|
Taha MS, Ahmadian MR. Fragile X Messenger Ribonucleoprotein Protein and Its Multifunctionality: From Cytosol to Nucleolus and Back. Biomolecules 2024; 14:399. [PMID: 38672417 PMCID: PMC11047961 DOI: 10.3390/biom14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene and a consequent lack of FMR protein (FMRP) synthesis are associated with fragile X syndrome, one of the most common inherited intellectual disabilities. FMRP is a multifunctional protein that is involved in many cellular functions in almost all subcellular compartments under both normal and cellular stress conditions in neuronal and non-neuronal cell types. This is achieved through its trafficking signals, nuclear localization signal (NLS), nuclear export signal (NES), and nucleolar localization signal (NoLS), as well as its RNA and protein binding domains, and it is modulated by various post-translational modifications such as phosphorylation, ubiquitination, sumoylation, and methylation. This review summarizes the recent advances in understanding the interaction networks of FMRP with a special focus on FMRP stress-related functions, including stress granule formation, mitochondrion and endoplasmic reticulum plasticity, ribosome biogenesis, cell cycle control, and DNA damage response.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Research on Children with Special Needs Department, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo 12622, Egypt
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
8
|
Fok AHK, Huang Y, So BWL, Zheng Q, Tse CSC, Li X, Wong KKY, Huang J, Lai KO, Lai CSW. KIF5B plays important roles in dendritic spine plasticity and dendritic localization of PSD95 and FMRP in the mouse cortex in vivo. Cell Rep 2024; 43:113906. [PMID: 38451812 DOI: 10.1016/j.celrep.2024.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Kinesin 1 (KIF5) is one major type of motor protein in neurons, but its members' function in the intact brain remains less studied. Using in vivo two-photon imaging, we find that conditional knockout of Kif5b (KIF5B cKO) in CaMKIIα-Cre-expressing neurons shows heightened turnover and lower stability of dendritic spines in layer 2/3 pyramidal neurons with reduced spine postsynaptic density protein 95 acquisition in the mouse cortex. Furthermore, the RNA-binding protein fragile X mental retardation protein (FMRP) is translocated to the proximity of newly formed spines several hours before the spine formation events in vivo in control mice, but this preceding transport of FMRP is abolished in KIF5B cKO mice. We further find that FMRP is localized closer to newly formed spines after fear extinction, but this learning-dependent localization is disrupted in KIF5B cKO mice. Our findings provide the crucial in vivo evidence that KIF5B is involved in the dendritic targeting of synaptic proteins that underlies dendritic spine plasticity.
Collapse
Affiliation(s)
- Albert Hiu Ka Fok
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yuhua Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Beth Wing Lam So
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Qiyu Zheng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chun Sing Carlos Tse
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoyang Li
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Kin-Yip Wong
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Jiandong Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, China; State Key Laboratory of Cognitive and Brain Research, The University of Hong Kong, Hong Kong SAR, China
| | - Kwok-On Lai
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China; Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong SAR, China.
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Cognitive and Brain Research, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Anadolu MN, Sun J, Li JTY, Graber TE, Ortega J, Sossin WS. Puromycin reveals a distinct conformation of neuronal ribosomes. Proc Natl Acad Sci U S A 2024; 121:e2306993121. [PMID: 38315848 PMCID: PMC10873636 DOI: 10.1073/pnas.2306993121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Puromycin is covalently added to the nascent chain of proteins by the peptidyl transferase activity of the ribosome and the dissociation of the puromycylated peptide typically follows this event. It was postulated that blocking the translocation of the ribosome with emetine could retain the puromycylated peptide on the ribosome, but evidence against this has recently been published [Hobson et al., Elife 9, e60048 (2020); and Enam et al., Elife 9, e60303 (2020)]. In neurons, puromycylated nascent chains remain in the ribosome even in the absence of emetine, yet direct evidence for this has been lacking. Using biochemistry and cryoelectron microscopy, we show that the puromycylated peptides remain in the ribosome exit channel in the large subunit in a subset of neuronal ribosomes stalled in the hybrid state. These results validate previous experiments to localize stalled polysomes in neurons and provide insight into how neuronal ribosomes are stalled. Moreover, in these hybrid-state neuronal ribosomes, anisomycin, which usually blocks puromycylation, competes poorly with puromycin in the puromycylation reaction, allowing a simple assay to determine the proportion of nascent chains that are stalled in this state. In early hippocampal neuronal cultures, over 50% of all nascent peptides are found in these stalled polysomes. These results provide insights into the stalling mechanisms of neuronal ribosomes and suggest that puromycylated peptides can be used to reveal subcellular sites of hybrid-state stalled ribosomes in neurons.
Collapse
Affiliation(s)
- Mina N. Anadolu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Jingyu Sun
- Department of Anatomy and Cell Biology, McGill University, Montreal, QCH3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, QCH3G 0B1, Canada
| | - Jewel T.-Y. Li
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Tyson E. Graber
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, QCH3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, QCH3G 0B1, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QCH3A 0C7, Canada
| |
Collapse
|
10
|
Popper B, Bürkle M, Ciccopiedi G, Marchioretto M, Forné I, Imhof A, Straub T, Viero G, Götz M, Schieweck R. Ribosome inactivation regulates translation elongation in neurons. J Biol Chem 2024; 300:105648. [PMID: 38219816 PMCID: PMC10869266 DOI: 10.1016/j.jbc.2024.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.
Collapse
Affiliation(s)
- Bastian Popper
- Core Facility Animal Models, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Martina Bürkle
- Department of Physiological Genomics, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Giuliana Ciccopiedi
- Department for Cell Biology & Anatomy, Biomedical Center (BMC), LMU Munich, Munich, Germany; Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Marta Marchioretto
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, Povo, Italy
| | - Ignasi Forné
- Protein Analysis Unit, Department for Molecular Biology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Axel Imhof
- Protein Analysis Unit, Department for Molecular Biology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Tobias Straub
- Bioinformatics Core Facility, Department of Molecular Biology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Gabriella Viero
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, Povo, Italy
| | - Magdalena Götz
- Department of Physiological Genomics, Biomedical Center (BMC), LMU Munich, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Rico Schieweck
- Department of Physiological Genomics, Biomedical Center (BMC), LMU Munich, Munich, Germany; Department for Cell Biology & Anatomy, Biomedical Center (BMC), LMU Munich, Munich, Germany; Institute of Biophysics, National Research Council (CNR) Unit at Trento, Povo, Italy.
| |
Collapse
|
11
|
Goldberg AR, Dovas A, Torres D, Sharma SD, Mela A, Merricks EM, Olabarria M, Shokooh LA, Zhao HT, Kotidis C, Calvaresi P, Viswanathan A, Banu MA, Razavilar A, Sudhakar TD, Saxena A, Chokran C, Humala N, Mahajan A, Xu W, Metz JB, Chen C, Bushong EA, Boassa D, Ellisman MH, Hillman EM, McKhann GM, Gill BJA, Rosenfeld SS, Schevon CA, Bruce JN, Sims PA, Peterka DS, Canoll P. Glioma-Induced Alterations in Excitatory Neurons are Reversed by mTOR Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575092. [PMID: 38293120 PMCID: PMC10827113 DOI: 10.1101/2024.01.10.575092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gliomas are highly aggressive brain tumors characterized by poor prognosis and composed of diffusely infiltrating tumor cells that intermingle with non-neoplastic cells in the tumor microenvironment, including neurons. Neurons are increasingly appreciated as important reactive components of the glioma microenvironment, due to their role in causing hallmark glioma symptoms, such as cognitive deficits and seizures, as well as their potential ability to drive glioma progression. Separately, mTOR signaling has been shown to have pleiotropic effects in the brain tumor microenvironment, including regulation of neuronal hyperexcitability. However, the local cellular-level effects of mTOR inhibition on glioma-induced neuronal alterations are not well understood. Here we employed neuron-specific profiling of ribosome-bound mRNA via 'RiboTag,' morphometric analysis of dendritic spines, and in vivo calcium imaging, along with pharmacological mTOR inhibition to investigate the impact of glioma burden and mTOR inhibition on these neuronal alterations. The RiboTag analysis of tumor-associated excitatory neurons showed a downregulation of transcripts encoding excitatory and inhibitory postsynaptic proteins and dendritic spine development, and an upregulation of transcripts encoding cytoskeletal proteins involved in dendritic spine turnover. Light and electron microscopy of tumor-associated excitatory neurons demonstrated marked decreases in dendritic spine density. In vivo two-photon calcium imaging in tumor-associated excitatory neurons revealed progressive alterations in neuronal activity, both at the population and single-neuron level, throughout tumor growth. This in vivo calcium imaging also revealed altered stimulus-evoked somatic calcium events, with changes in event rate, size, and temporal alignment to stimulus, which was most pronounced in neurons with high-tumor burden. A single acute dose of AZD8055, a combined mTORC1/2 inhibitor, reversed the glioma-induced alterations on the excitatory neurons, including the alterations in ribosome-bound transcripts, dendritic spine density, and stimulus evoked responses seen by calcium imaging. These results point to mTOR-driven pathological plasticity in neurons at the infiltrative margin of glioma - manifested by alterations in ribosome-bound mRNA, dendritic spine density, and stimulus-evoked neuronal activity. Collectively, our work identifies the pathological changes that tumor-associated excitatory neurons experience as both hyperlocal and reversible under the influence of mTOR inhibition, providing a foundation for developing therapies targeting neuronal signaling in glioma.
Collapse
Affiliation(s)
- Alexander R. Goldberg
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniela Torres
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sohani Das Sharma
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Edward M. Merricks
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Markel Olabarria
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Hanzhi T. Zhao
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Corina Kotidis
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Calvaresi
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ashwin Viswanathan
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matei A. Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aida Razavilar
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tejaswi D. Sudhakar
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ankita Saxena
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cole Chokran
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Weihao Xu
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Jordan B. Metz
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Cady Chen
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eric A. Bushong
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth M.C. Hillman
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Guy M. McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian J. A. Gill
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Catherine A. Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, 10032
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032
| | - Darcy S. Peterka
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
12
|
Jung S, Shah S, Han G, Richter JD. FMRP deficiency leads to multifactorial dysregulation of splicing and mislocalization of MBNL1 to the cytoplasm. PLoS Biol 2023; 21:e3002417. [PMID: 38048343 PMCID: PMC10721184 DOI: 10.1371/journal.pbio.3002417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 12/14/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder that is often modeled in Fmr1 knockout mice where the RNA-binding protein FMRP is absent. Here, we show that in Fmr1-deficient mice, RNA mis-splicing occurs in several brain regions and peripheral tissues. To assess molecular mechanisms of splicing mis-regulation, we employed N2A cells depleted of Fmr1. In the absence of FMRP, RNA-specific exon skipping events are linked to the splicing factors hnRNPF, PTBP1, and MBNL1. FMRP regulates the translation of Mbnl1 mRNA as well as Mbnl1 RNA auto-splicing. Elevated Mbnl1 auto-splicing in FMRP-deficient cells results in the loss of a nuclear localization signal (NLS)-containing exon. This in turn alters the nucleus-to-cytoplasm ratio of MBNL1. This redistribution of MBNL1 isoforms in Fmr1-deficient cells could result in downstream splicing changes in other RNAs. Indeed, further investigation revealed that splicing disruptions resulting from Fmr1 depletion could be rescued by overexpression of nuclear MBNL1. Altered Mbnl1 auto-splicing also occurs in human FXS postmortem brain. These data suggest that FMRP-controlled translation and RNA processing may cascade into a general dys-regulation of splicing in Fmr1-deficient cells.
Collapse
Affiliation(s)
- Suna Jung
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sneha Shah
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Geongoo Han
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Joel D. Richter
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
13
|
Kharod SC, Hwang DW, Choi H, Yoon KJ, Castillo PE, Singer RH, Yoon YJ. Phosphorylation alters FMRP granules and determines their transport or protein synthesis abilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532613. [PMID: 37781583 PMCID: PMC10541110 DOI: 10.1101/2023.03.15.532613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Fragile X messenger ribonucleoprotein (FMRP) is an RNA-binding protein implicated in autism that suppresses translation and forms granules. While FMRP function has been well-studied, how phosphorylation regulates granule binding and function remains limited. Here, we found that Fragile X patient-derived I304N mutant FMRP could not stably bind granules, underscoring the essential nature of FMRP granule association for function. Next, phosphorylation on serine 499 (S499) led to differences in puncta size, intensity, contrast, and transport as shown by phospho-deficient (S499A) and phospho-mimic (S499D) mutant FMRP granules. Additionally, S499D exchanged slowly on granules relative to S499A, suggesting that phosphorylated FMRP can attenuate translation. Furthermore, the S499A mutant enhanced translation in presynaptic boutons of the mouse hippocampus. Thus, the phospho-state of FMRP altered the structure of individual granules with changes in transport and translation to achieve spatiotemporal regulation of local protein synthesis. Teaser The phosphorylation-state of S499 on FMRP can change FMRP granule structure and function to facilitate processive transport or local protein synthesis.
Collapse
|
14
|
El-Agamy SE, Guillaud L, Kono K, Wu Y, Terenzio M. FMRP Long-Range Transport and Degradation Are Mediated by Dynlrb1 in Sensory Neurons. Mol Cell Proteomics 2023; 22:100653. [PMID: 37739344 PMCID: PMC10625159 DOI: 10.1016/j.mcpro.2023.100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
The fragile X messenger ribonucleoprotein 1 (FMRP) is a multifunctional RNA-binding protein implicated in human neurodevelopmental and neurodegenerative disorders. FMRP mediates the localization and activity-dependent translation of its associated mRNAs through the formation of phase-separated condensates that are trafficked by microtubule-based motors in axons. Axonal transport and localized mRNA translation are critical processes for long-term neuronal survival and are closely linked to the pathogenesis of neurological diseases. FMRP dynein-mediated axonal trafficking is still largely unexplored but likely to constitute a key process underlying FMRP spatiotemporal translational regulation. Here, we show that dynein light chain roadblock 1 (Dynlrb1), a subunit of the dynein complex, is a critical regulator of FMRP function. In sensory axons, FMRP associates with endolysosomal organelles, likely through annexin A11, and is retrogradely trafficked by the dynein complex in a Dynlrb1-dependent manner. Moreover, Dynlrb1 silencing induced FMRP granule accumulation and repressed the translation of microtubule-associated protein 1b, one of its primary mRNA targets. Our findings suggest that Dynlrb1 regulates FMRP function through the control of its transport and targeted degradation.
Collapse
Affiliation(s)
- Sara Emad El-Agamy
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Laurent Guillaud
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Keiko Kono
- Membranology Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center of Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Chemical Biology Mass Spectrometry Platform (ChemBioMS), Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan.
| |
Collapse
|
15
|
Ripin N, Parker R. Formation, function, and pathology of RNP granules. Cell 2023; 186:4737-4756. [PMID: 37890457 PMCID: PMC10617657 DOI: 10.1016/j.cell.2023.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/28/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023]
Abstract
Ribonucleoprotein (RNP) granules are diverse membrane-less organelles that form through multivalent RNA-RNA, RNA-protein, and protein-protein interactions between RNPs. RNP granules are implicated in many aspects of RNA physiology, but in most cases their functions are poorly understood. RNP granules can be described through four key principles. First, RNP granules often arise because of the large size, high localized concentrations, and multivalent interactions of RNPs. Second, cells regulate RNP granule formation by multiple mechanisms including posttranslational modifications, protein chaperones, and RNA chaperones. Third, RNP granules impact cell physiology in multiple manners. Finally, dysregulation of RNP granules contributes to human diseases. Outstanding issues in the field remain, including determining the scale and molecular mechanisms of RNP granule function and how granule dysfunction contributes to human disease.
Collapse
Affiliation(s)
- Nina Ripin
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
16
|
Winden KD, Pham TT, Teaney NA, Ruiz J, Chen R, Chen C, Sahin M. Increased degradation of FMRP contributes to neuronal hyperexcitability in tuberous sclerosis complex. Cell Rep 2023; 42:112838. [PMID: 37494191 PMCID: PMC10529098 DOI: 10.1016/j.celrep.2023.112838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder, but new therapies have been impeded by a lack of understanding of the pathological mechanisms. Tuberous sclerosis complex (TSC) and fragile X syndrome are associated with alterations in the mechanistic target of rapamycin (mTOR) and fragile X messenger ribonucleoprotein 1 (FMRP), which have been implicated in the development of ASD. Previously, we observed that transcripts associated with FMRP were down-regulated in TSC2-deficient neurons. In this study, we find that FMRP turnover is dysregulated in TSC2-deficient rodent primary neurons and human induced pluripotent stem cell (iPSC)-derived neurons and is dependent on the E3 ubiquitin ligase anaphase-promoting complex. We also demonstrate that overexpression of FMRP can partially rescue hyperexcitability in TSC2-deficient iPSC-derived neurons. These data indicate that FMRP dysregulation represents an important pathological mechanism in the development of abnormal neuronal activity in TSC and illustrate a molecular convergence between these two neurogenetic disorders.
Collapse
Affiliation(s)
- Kellen D Winden
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Truc T Pham
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole A Teaney
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Juan Ruiz
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan Chen
- Human Neuron Core, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Cidi Chen
- Human Neuron Core, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Wilkerson JR, Ifrim MF, Valdez-Sinon AN, Hahn P, Bowles JE, Molinaro G, Janusz-Kaminska A, Bassell GJ, Huber KM. FMRP phosphorylation and interactions with Cdh1 regulate association with dendritic RNA granules and MEF2-triggered synapse elimination. Neurobiol Dis 2023; 182:106136. [PMID: 37120096 PMCID: PMC10370323 DOI: 10.1016/j.nbd.2023.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
Fragile X Messenger Ribonucleoprotein (FMRP) is necessary for experience-dependent, developmental synapse elimination and the loss of this process may underlie the excess dendritic spines and hyperconnectivity of cortical neurons in Fragile X Syndrome, a common inherited form of intellectual disability and autism. Little is known of the signaling pathways that regulate synapse elimination and if or how FMRP is regulated during this process. We have characterized a model of synapse elimination in CA1 neurons of organotypic hippocampal slice cultures that is induced by expression of the active transcription factor Myocyte Enhancer Factor 2 (MEF2) and relies on postsynaptic FMRP. MEF2-induced synapse elimination is deficient in Fmr1 KO CA1 neurons, and is rescued by acute (24 h), postsynaptic and cell autonomous reexpression of FMRP in CA1 neurons. FMRP is an RNA binding protein that suppresses mRNA translation. Derepression is induced by posttranslational mechanisms downstream of metabotropic glutamate receptor signaling. Dephosphorylation of FMRP at S499 triggers ubiquitination and degradation of FMRP which then relieves translation suppression and promotes synthesis of proteins encoded by target mRNAs. Whether this mechanism functions in synapse elimination is not known. Here we demonstrate that phosphorylation and dephosphorylation of FMRP at S499 are both necessary for synapse elimination as well as interaction of FMRP with its E3 ligase for FMRP, APC/Cdh1. Using a bimolecular ubiquitin-mediated fluorescence complementation (UbFC) assay, we demonstrate that MEF2 promotes ubiquitination of FMRP in CA1 neurons that relies on activity and interaction with APC/Cdh1. Our results suggest a model where MEF2 regulates posttranslational modifications of FMRP via APC/Cdh1 to regulate translation of proteins necessary for synapse elimination.
Collapse
Affiliation(s)
- Julia R Wilkerson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marius F Ifrim
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Patricia Hahn
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacob E Bowles
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
De Luca C, Gupta A, Bortvin A. Retrotransposon LINE-1 bodies in the cytoplasm of piRNA-deficient mouse spermatocytes: Ribonucleoproteins overcoming the integrated stress response. PLoS Genet 2023; 19:e1010797. [PMID: 37307272 DOI: 10.1371/journal.pgen.1010797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023] Open
Abstract
Transposable elements (TE) are mobile DNA sequences whose excessive proliferation endangers the host. Although animals have evolved robust TE-targeting defenses, including Piwi-interacting (pi)RNAs, retrotransposon LINE-1 (L1) still thrives in humans and mice. To gain insights into L1 endurance, we characterized L1 Bodies (LBs) and ORF1p complexes in germ cells of piRNA-deficient Maelstrom null mice. We report that ORF1p interacts with TE RNAs, genic mRNAs, and stress granule proteins, consistent with earlier studies. We also show that ORF1p associates with the CCR4-NOT deadenylation complex and PRKRA, a Protein Kinase R factor. Despite ORF1p interactions with these negative regulators of RNA expression, the stability and translation of LB-localized mRNAs remain unchanged. To scrutinize these findings, we studied the effects of PRKRA on L1 in cultured cells and showed that it elevates ORF1p levels and L1 retrotransposition. These results suggest that ORF1p-driven condensates promote L1 propagation, without affecting the metabolism of endogenous RNAs.
Collapse
Affiliation(s)
- Chiara De Luca
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of Americ
| | - Anuj Gupta
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of Americ
| |
Collapse
|
19
|
Chowdhury MN, Chen X, Jin H. An intrinsically Disordered RNA Binding Protein Modulates mRNA Translation and Storage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541713. [PMID: 37293096 PMCID: PMC10245857 DOI: 10.1101/2023.05.22.541713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many proteins with intrinsically disordered regions interact with cytoplasmic ribosomes. However, many of the molecular functions related to these interactions are unclear. In this study, using an abundant RNA-binding protein with a structurally well-defined RNA recognition motif and an intrinsically disordered RGG domain as a model system, we investigated how this protein modulates mRNA storage and translation. Using genomic and molecular approaches, we show that the presence of Sbp1 slows ribosome movement on cellular mRNAs and promotes polysome stalling. Sbp1-associated polysomes display a ring-shaped structure in addition to a beads-on-string morphology visualized under electron microscope. Moreover, post-translational modifications at the RGG motif play important roles in directing cellular mRNAs to either translation or storage. Finally, binding of Sbp1 to the 5'UTRs of mRNAs represses both cap-dependent and cap-independent translation initiation of proteins functionally important for general protein synthesis in the cell. Taken together, our study demonstrates an intrinsically disordered RNA binding protein regulates mRNA translation and storage via distinctive mechanisms under physiological conditions and establishes a framework with which functions of important RGG-proteins can be investigated and defined.
Collapse
Affiliation(s)
- Mashiat N. Chowdhury
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| | - Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| |
Collapse
|
20
|
Bauer KE, de Queiroz BR, Kiebler MA, Besse F. RNA granules in neuronal plasticity and disease. Trends Neurosci 2023:S0166-2236(23)00104-2. [PMID: 37202301 DOI: 10.1016/j.tins.2023.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 05/20/2023]
Abstract
RNA granules are dynamic entities controlling the spatiotemporal distribution and translation of RNA molecules. In neurons, a variety of RNA granules exist both in the soma and in cellular processes. They contain transcripts encoding signaling and synaptic proteins as well as RNA-binding proteins causally linked to several neurological disorders. In this review, we highlight that neuronal RNA granules exhibit properties of biomolecular condensates that are regulated upon maturation and physiological aging and how they are reversibly remodeled in response to neuronal activity to control local protein synthesis and ultimately synaptic plasticity. Moreover, we propose a framework of how neuronal RNA granules mature over time in healthy conditions and how they transition into pathological inclusions in the context of late-onset neurodegenerative diseases.
Collapse
Affiliation(s)
- Karl E Bauer
- Biomedical Center (BMC), Department of Anatomy and Cell Biology, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Bruna R de Queiroz
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Michael A Kiebler
- Biomedical Center (BMC), Department of Anatomy and Cell Biology, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany.
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
21
|
Dubuc K, Marchais M, Gilbert I, Bastien A, Nenonene KE, Khandjian EW, Viger RS, Delbes G, Robert C. Epitranscriptome marks detection and localization of RNA modifying proteins in mammalian ovarian follicles. J Ovarian Res 2023; 16:90. [PMID: 37165445 PMCID: PMC10170753 DOI: 10.1186/s13048-023-01172-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Most of the resources that support the early development of the embryo are stored in the oocyte. Clearing of maternal resources and activation of the embryonic genome to produce its own mRNA transcripts marks the maternal-to-embryo transition. Dependence on stored mRNA can last from a few hours to several days, depending on animal species. The mechanisms regulating stabilization and recruitment of stored maternal transcripts have not yet been described in full detail but are known to involve reversible polyadenylation and modulation of 3'UTR-mediated elements. RNA epigenetic modifications, new players in this field, have an important role in RNA regulation and stabilization. RESULTS The objectives of this study were first to determine if some of post-transcriptional methylation of stored mRNA is greater in oocytes than in somatic cells. We found that m6A, known to be the most prevalent and involved in various aspects of RNA metabolism and physiological functions, is particularly abundant in porcine oocyte mRNA compared to liver used as a somatic tissue reference. The second objective was to compare the epitranscriptome machinery, such as methyltransferases ("writers"), binding proteins ("readers") and demethylases ("erasers") catalyzing the different process, in follicles and oocytes of different mammalian species by immunofluorescence and confocal microscopy. The expression and localization patterns of these proteins differ between mice, pigs and cows ovaries and oocytes. m5C-associated proteins were generally less abundant. In contrast, m6A-associated proteins were expressed strongly during the early and late stages of folliculogenesis. Transzonal projections were found to contain more granules bearing the m5C mark in mice but both m5C and m6A methylation marks in association with mature oocytes of pigs and cows. Eraser proteins showed the greatest interspecies diversity in terms of distribution in the germinal tissues. CONCLUSIONS So far, few studies have looked at the oocyte and ovarian epitranscriptomic profile. Our findings indicate that a hitherto unrecognized species-specific layer of transcript regulation occurs at the RNA level and might be consequential during the oocyte transcriptional silencing period.
Collapse
Affiliation(s)
- Karine Dubuc
- Centre de Recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, Canada
- Département des sciences animales, Université Laval, Québec, QC, Canada
| | - Mathilde Marchais
- Centre de Recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, Canada
- Département des sciences animales, Université Laval, Québec, QC, Canada
| | - Isabelle Gilbert
- Centre de Recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, Canada
- Département des sciences animales, Université Laval, Québec, QC, Canada
| | - Alexandre Bastien
- Centre de Recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, Canada
- Département des sciences animales, Université Laval, Québec, QC, Canada
| | - Karen E Nenonene
- Centre de Recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, Canada
- Département des sciences animales, Université Laval, Québec, QC, Canada
| | - Edward W Khandjian
- Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Robert S Viger
- Centre de Recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, Canada
- Département d'obstétrique, gynécologie et reproduction, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Géraldine Delbes
- Centre de Recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, Canada
- INRS- Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Claude Robert
- Centre de Recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, Canada.
- Département des sciences animales, Université Laval, Québec, QC, Canada.
| |
Collapse
|
22
|
Anadolu MN, Sun J, Kailasam S, Chalkiadaki K, Krimbacher K, Li JTY, Markova T, Jafarnejad SM, Lefebvre F, Ortega J, Gkogkas CG, Sossin WS. Ribosomes in RNA Granules Are Stalled on mRNA Sequences That Are Consensus Sites for FMRP Association. J Neurosci 2023; 43:2440-2459. [PMID: 36849416 PMCID: PMC10082463 DOI: 10.1523/jneurosci.1002-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Local translation in neurons is partly mediated by the reactivation of stalled polysomes. Stalled polysomes may be enriched within the granule fraction, defined as the pellet of sucrose gradients used to separate polysomes from monosomes. The mechanism of how elongating ribosomes are reversibly stalled and unstalled on mRNAs is still unclear. In the present study, we characterize the ribosomes in the granule fraction using immunoblotting, cryogenic electron microscopy (cryo-EM), and ribosome profiling. We find that this fraction, isolated from 5-d-old rat brains of both sexes, is enriched in proteins implicated in stalled polysome function, such as the fragile X mental retardation protein (FMRP) and Up-frameshift mutation 1 homologue. Cryo-EM analysis of ribosomes in this fraction indicates they are stalled, mainly in the hybrid state. Ribosome profiling of this fraction reveals (1) an enrichment for footprint reads of mRNAs that interact with FMRPs and are associated with stalled polysomes, (2) an abundance of footprint reads derived from mRNAs of cytoskeletal proteins implicated in neuronal development, and (3) increased ribosome occupancy on mRNAs encoding RNA binding proteins. Compared with those usually found in ribosome profiling studies, the footprint reads were longer and were mapped to reproducible peaks in the mRNAs. These peaks were enriched in motifs previously associated with mRNAs cross-linked to FMRP in vivo, independently linking the ribosomes in the granule fraction to the ribosomes associated with FMRP in the cell. The data supports a model in which specific sequences in mRNAs act to stall ribosomes during translation elongation in neurons.SIGNIFICANCE STATEMENT Neurons send mRNAs to synapses in RNA granules, where they are not translated until an appropriate stimulus is given. Here, we characterize a granule fraction obtained from sucrose gradients and show that polysomes in this fraction are stalled on consensus sequences in a specific state of translational arrest with extended ribosome-protected fragments. This finding greatly increases our understanding of how neurons use specialized mechanisms to regulate translation and suggests that many studies on neuronal translation may need to be re-evaluated to include the large fraction of neuronal polysomes found in the pellet of sucrose gradients used to isolate polysomes.
Collapse
Affiliation(s)
- Mina N Anadolu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jingyu Sun
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Senthilkumar Kailasam
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Kleanthi Chalkiadaki
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Konstanze Krimbacher
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck Austria Division of Biomedical Research, A-6020 Innsbruck, Austria
| | - Jewel T-Y Li
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Teodora Markova
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Seyed M Jafarnejad
- Patrick G, Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Francois Lefebvre
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Christos G Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
23
|
Mueller S, Decker L, Menge S, Ludolph AC, Freischmidt A. The Fragile X Protein Family in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2023; 60:3898-3910. [PMID: 36991279 DOI: 10.1007/s12035-023-03330-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
The fragile X protein (FXP) family comprises the multifunctional RNA-binding proteins FMR1, FXR1, and FXR2 that play an important role in RNA metabolism and regulation of translation, but also in DNA damage and cellular stress responses, mitochondrial organization, and more. FMR1 is well known for its implication in neurodevelopmental diseases. Recent evidence suggests substantial contribution of this protein family to amyotrophic lateral sclerosis (ALS) pathogenesis. ALS is a highly heterogeneous neurodegenerative disease with multiple genetic and unclear environmental causes and very limited treatment options. The loss of motoneurons in ALS is still poorly understood, especially because pathogenic mechanisms are often restricted to patients with mutations in specific causative genes. Identification of converging disease mechanisms evident in most patients and suitable for therapeutic intervention is therefore of high importance. Recently, deregulation of the FXPs has been linked to pathogenic processes in different types of ALS. Strikingly, in many cases, available data points towards loss of expression and/or function of the FXPs early in the disease, or even at the presymptomatic state. In this review, we briefly introduce the FXPs and summarize available data about these proteins in ALS. This includes their relation to TDP-43, FUS, and ALS-related miRNAs, as well as their possible contribution to pathogenic protein aggregation and defective RNA editing. Furthermore, open questions that need to be addressed before definitively judging suitability of these proteins as novel therapeutic targets are discussed.
Collapse
Affiliation(s)
- Sarah Mueller
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Lorena Decker
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sonja Menge
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- German Center For Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - Axel Freischmidt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
24
|
Ainani H, Bouchmaa N, Ben Mrid R, El Fatimy R. Liquid-liquid phase separation of protein tau: An emerging process in Alzheimer's disease pathogenesis. Neurobiol Dis 2023; 178:106011. [PMID: 36702317 DOI: 10.1016/j.nbd.2023.106011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/04/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Metabolic reactions within cells occur in various isolated compartments with or without borders, the latter being known as membrane-less organelles (MLOs). The MLOs show liquid-like properties and are formed by a process known as liquid-liquid phase separation (LLPS). MLOs contribute to different molecules interactions such as protein-protein, protein-RNA, and RNA-RNA driven by various factors, such as multivalency of intrinsic disorders. MLOs are involved in several cell signaling pathways such as transcription, immune response, and cellular organization. However, disruption of these processes has been found in different pathologies. Recently, it has been demonstrated that protein aggregates, a characteristic of some neurodegenerative diseases, undergo similar phase separation. Tau protein is known as a major neurofibrillary tangles component in Alzheimer's disease (AD). This protein can undergo phase separation to form a MLO known as tau droplet in vitro and in vivo, and this process can be facilitated by several factors, including crowding agents, RNA, and phosphorylation. Tau droplet has been shown to mature into insoluble aggregates suggesting that this process may precede and induce neurodegeneration in AD. Here we review major factors involved in liquid droplet formation within a cell. Additionally, we highlight recent findings concerning tau aggregation following phase separation in AD, along with the potential therapeutic strategies that could be explored in this process against the progression of this pathology.
Collapse
Affiliation(s)
- Hassan Ainani
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Reda Ben Mrid
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco.
| |
Collapse
|
25
|
Molitor L, Klostermann M, Bacher S, Merl-Pham J, Spranger N, Burczyk S, Ketteler C, Rusha E, Tews D, Pertek A, Proske M, Busch A, Reschke S, Feederle R, Hauck S, Blum H, Drukker M, Fischer-Posovszky P, König J, Zarnack K, Niessing D. Depletion of the RNA-binding protein PURA triggers changes in posttranscriptional gene regulation and loss of P-bodies. Nucleic Acids Res 2023; 51:1297-1316. [PMID: 36651277 PMCID: PMC9943675 DOI: 10.1093/nar/gkac1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
The RNA-binding protein PURA has been implicated in the rare, monogenetic, neurodevelopmental disorder PURA Syndrome. PURA binds both DNA and RNA and has been associated with various cellular functions. Only little is known about its main cellular roles and the molecular pathways affected upon PURA depletion. Here, we show that PURA is predominantly located in the cytoplasm, where it binds to thousands of mRNAs. Many of these transcripts change abundance in response to PURA depletion. The encoded proteins suggest a role for PURA in immune responses, mitochondrial function, autophagy and processing (P)-body activity. Intriguingly, reduced PURA levels decrease the expression of the integral P-body components LSM14A and DDX6 and strongly affect P-body formation in human cells. Furthermore, PURA knockdown results in stabilization of P-body-enriched transcripts, whereas other mRNAs are not affected. Hence, reduced PURA levels, as reported in patients with PURA Syndrome, influence the formation and composition of this phase-separated RNA processing machinery. Our study proposes PURA Syndrome as a new model to study the tight connection between P-body-associated RNA regulation and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lena Molitor
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Melina Klostermann
- Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany
| | - Sabrina Bacher
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Juliane Merl-Pham
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Nadine Spranger
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Sandra Burczyk
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Carolin Ketteler
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Ejona Rusha
- Induced Pluripotent Stem Cell Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Daniel Tews
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89070 Ulm, Germany
| | - Anna Pertek
- Induced Pluripotent Stem Cell Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Marcel Proske
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Sarah Reschke
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89070 Ulm, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
26
|
Bourke AM, Schwarz A, Schuman EM. De-centralizing the Central Dogma: mRNA translation in space and time. Mol Cell 2023; 83:452-468. [PMID: 36669490 DOI: 10.1016/j.molcel.2022.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023]
Abstract
As our understanding of the cell interior has grown, we have come to appreciate that most cellular operations are localized, that is, they occur at discrete and identifiable locations or domains. These cellular domains contain enzymes, machines, and other components necessary to carry out and regulate these localized operations. Here, we review these features of one such operation: the localization and translation of mRNAs within subcellular compartments observed across cell types and organisms. We describe the conceptual advantages and the "ingredients" and mechanisms of local translation. We focus on the nature and features of localized mRNAs, how they travel and get localized, and how this process is regulated. We also evaluate our current understanding of protein synthesis machines (ribosomes) and their cadre of regulatory elements, that is, the translation factors.
Collapse
Affiliation(s)
- Ashley M Bourke
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Andre Schwarz
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
27
|
Luca CD, Gupta A, Bortvin A. Ribonucleoprotein condensation driven by retrotransposon LINE-1 sustains RNA integrity and translation in mouse spermatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523313. [PMID: 36712121 PMCID: PMC9882024 DOI: 10.1101/2023.01.09.523313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transposable elements (TE) are mobile DNA sequences whose excessive proliferation endangers the host. Although animals have evolved robust TE-targeting defenses, including Piwi-interacting (pi)RNAs, retrotransposon LINE-1 (L1) still thrives in humans and mice. To gain insights into L1 endurance, we characterized L1 Bodies (LBs) and ORF1p complexes in germ cells of piRNA-deficient Maelstrom null mice. We report that ORF1p interacts with TE RNAs, genic mRNAs, and stress granule proteins, consistent with earlier studies. We also show that ORF1p associates with the CCR4-NOT deadenylation complex and PRKRA, a Protein Kinase R factor. Despite ORF1p interactions with these negative regulators of RNA expression, the stability and translation of LB-localized mRNAs remain unchanged. To scrutinize these findings, we studied the effects of PRKRA on L1 in cultured cells and showed that it elevates ORF1p levels and L1 retrotransposition. These results suggest that ORF1p-driven condensates promote L1 propagation, without affecting the metabolism of endogenous RNAs.
Collapse
|
28
|
Biomolecular condensate assembly of nArgBP2 tunes its functionality to manifest the structural plasticity of dendritic spines. Exp Mol Med 2023; 55:108-119. [PMID: 36599935 PMCID: PMC9898538 DOI: 10.1038/s12276-022-00918-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 01/05/2023] Open
Abstract
nArgBP2, a candidate gene for intellectual disability, is a postsynaptic protein critical for dendritic spine development and morphogenesis, and its knockdown (KD) in developing neurons severely impairs spine-bearing excitatory synapse formation. Surprisingly, nArgBP2 KD in mature neurons did not cause morphological defects in the existing spines at rest, raising questions of how it functions in mature neurons. We found that unlike its inaction at rest, nArgBP2 KD completely inhibited the enlargement of dendritic spines during chemically induced long-term potentiation (cLTP) in mature neurons. We further found that nArgBP2 forms condensates in dendritic spines and that these condensates are dispersed by cLTP, which spatiotemporally coincides with spine head enlargement. Condensates with CaMKII phosphorylation-deficient mutant or CaMKII inhibition are neither dispersed nor accompanied by spine enlargement during cLTP. We found that nArgBP2 condensates in spines exhibited liquid-like properties, and in heterologous and in vitro expression systems, nArgBP2 undergoes liquid-liquid phase separation via multivalent intermolecular interactions between SH3 domains and proline-rich domains. It also forms coacervates with CaMKIIα, which is rapidly dissembled by calcium/CaMKIIα-dependent phosphorylation. We further showed that the interaction between nArgBP2 and WAVE1 competes with nArgBP2 phase separation and that blocking the nArgBP2-WAVE1 interaction prevents spine enlargement during cLTP. Together, our results suggest that nArgBP2 at rest is confined to the condensates but is released by CaMKIIα-mediated phosphorylation during synaptic plasticity, which regulates its timely interaction with WAVE1 to induce spine head enlargement in mature neurons.
Collapse
|
29
|
Zhang Y, Kang JY, Liu M, Huang Y. Diverse roles of biomolecular condensation in eukaryotic translational regulation. RNA Biol 2023; 20:893-907. [PMID: 37906632 PMCID: PMC10730148 DOI: 10.1080/15476286.2023.2275108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
Biomolecular condensates, forming membrane-less organelles, orchestrate the sub-cellular compartment to execute designated biological processes. An increasing body of evidence demonstrates the involvement of these biomolecular condensates in translational regulation. This review summarizes recent discoveries concerning biomolecular condensates associated with translational regulation, including their composition, assembly, and functions. Furthermore, we discussed the common features among these biomolecular condensates and the critical questions in the translational regulation areas. These emerging discoveries shed light on the enigmatic translational machinery, refine our understanding of translational regulation, and put forth potential therapeutic targets for diseases born out of translation dysregulation.
Collapse
Grants
- 32171186 AND 91940302 National Natural Science Foundation of China
- 91940305, 31830109, 31821004, 31961133022, 91640201, 32170815, AND 32101037 TO M.L., AND 32201058 National Natural Science Foundation of China
- 2022YFC2702600 National Key R&D Program of China
- 17JC1420100, 2017SHZDZX01, 19JC1410200, 21ZR1470200, 21PJ1413800, 21YF1452700, AND 21ZR1470500 Science and Technology Commission of Shanghai Municipality
- 2022YFC2702600 National Key R&D Program of China
- 2022T150425 China Postdoctoral Science Foundation
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Yan Kang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mofang Liu
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Nabariya DK, Heinz A, Derksen S, Krauß S. Intracellular and intercellular transport of RNA organelles in CXG repeat disorders: The strength of weak ties. Front Mol Biosci 2022; 9:1000932. [PMID: 36589236 PMCID: PMC9800848 DOI: 10.3389/fmolb.2022.1000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
RNA is a vital biomolecule, the function of which is tightly spatiotemporally regulated. RNA organelles are biological structures that either membrane-less or surrounded by membrane. They are produced by the all the cells and indulge in vital cellular mechanisms. They include the intracellular RNA granules and the extracellular exosomes. RNA granules play an essential role in intracellular regulation of RNA localization, stability and translation. Aberrant regulation of RNA is connected to disease development. For example, in microsatellite diseases such as CXG repeat expansion disorders, the mutant CXG repeat RNA's localization and function are affected. RNA is not only transported intracellularly but can also be transported between cells via exosomes. The loading of the exosomes is regulated by RNA-protein complexes, and recent studies show that cytosolic RNA granules and exosomes share common content. Intracellular RNA granules and exosome loading may therefore be related. Exosomes can also transfer pathogenic molecules of CXG diseases from cell to cell, thereby driving disease progression. Both intracellular RNA granules and extracellular RNA vesicles may serve as a source for diagnostic and treatment strategies. In therapeutic approaches, pharmaceutical agents may be loaded into exosomes which then transport them to the desired cells/tissues. This is a promising target specific treatment strategy with few side effects. With respect to diagnostics, disease-specific content of exosomes, e.g., RNA-signatures, can serve as attractive biomarker of central nervous system diseases detecting early physiological disturbances, even before symptoms of neurodegeneration appear and irreparable damage to the nervous system occurs. In this review, we summarize the known function of cytoplasmic RNA granules and extracellular vesicles, as well as their role and dysfunction in CXG repeat expansion disorders. We also provide a summary of established protocols for the isolation and characterization of both cytoplasmic and extracellular RNA organelles.
Collapse
Affiliation(s)
| | | | | | - Sybille Krauß
- Human Biology/Neurobiology, Institute of Biology, Faculty IV, School of Science and Technology, University of Siegen, Siegen, Germany
| |
Collapse
|
31
|
Kurosaki T, Mitsutomi S, Hewko A, Akimitsu N, Maquat LE. Integrative omics indicate FMRP sequesters mRNA from translation and deadenylation in human neuronal cells. Mol Cell 2022; 82:4564-4581.e11. [PMID: 36356584 PMCID: PMC9753132 DOI: 10.1016/j.molcel.2022.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022]
Abstract
How fragile X syndrome protein (FMRP) binds mRNAs and regulates mRNA metabolism remains unclear. Our previous work using human neuronal cells focused on mRNAs targeted for nonsense-mediated mRNA decay (NMD), which we showed are generally bound by FMRP and destabilized upon FMRP loss. Here, we identify >400 high-confidence FMRP-bound mRNAs, only ∼35% of which are NMD targets. Integrative transcriptomics together with SILAC-LC-MS/MS reveal that FMRP loss generally results in mRNA destabilization and more protein produced per FMRP target. We use our established RIP-seq technology to show that FMRP footprints are independent of protein-coding potential, target GC-rich and structured sequences, and are densest in 5' UTRs. Regardless of where within an mRNA FMRP binds, we find that FMRP protects mRNAs from deadenylation and directly binds the cytoplasmic poly(A)-binding protein. Our results reveal how FMRP sequesters polyadenylated mRNAs into stabilized and translationally repressed complexes, whose regulation is critical for neurogenesis and synaptic plasticity.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| | - Shuhei Mitsutomi
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA; Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Alexander Hewko
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
32
|
van Tartwijk FW, Kaminski CF. Protein Condensation, Cellular Organization, and Spatiotemporal Regulation of Cytoplasmic Properties. Adv Biol (Weinh) 2022; 6:e2101328. [PMID: 35796197 DOI: 10.1002/adbi.202101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/15/2022] [Indexed: 01/28/2023]
Abstract
The cytoplasm is an aqueous, highly crowded solution of active macromolecules. Its properties influence the behavior of proteins, including their folding, motion, and interactions. In particular, proteins in the cytoplasm can interact to form phase-separated assemblies, so-called biomolecular condensates. The interplay between cytoplasmic properties and protein condensation is critical in a number of functional contexts and is the subject of this review. The authors first describe how cytoplasmic properties can affect protein behavior, in particular condensate formation, and then describe the functional implications of this interplay in three cellular contexts, which exemplify how protein self-organization can be adapted to support certain physiological phenotypes. The authors then describe the formation of RNA-protein condensates in highly polarized cells such as neurons, where condensates play a critical role in the regulation of local protein synthesis, and describe how different stressors trigger extensive reorganization of the cytoplasm, both through signaling pathways and through direct stress-induced changes in cytoplasmic properties. Finally, the authors describe changes in protein behavior and cytoplasmic properties that may occur in extremophiles, in particular organisms that have adapted to inhabit environments of extreme temperature, and discuss the implications and functional importance of these changes.
Collapse
Affiliation(s)
- Francesca W van Tartwijk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
33
|
Kipper K, Mansour A, Pulk A. Neuronal RNA granules are ribosome complexes stalled at the pre-translocation state. J Mol Biol 2022; 434:167801. [PMID: 36038000 DOI: 10.1016/j.jmb.2022.167801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
The polarized cell morphology of neurons dictates many neuronal processes, including the axodendridic transport of specific mRNAs and subsequent translation. mRNAs together with ribosomes and RNA-binding proteins form RNA granules that are targeted to axodendrites for localized translation in neurons. It has been established that localized protein synthesis in neurons is essential for long-term memory formation, synaptic plasticity, and neurodegeneration. We have used proteomics and electron microscopy to characterize neuronal RNA granules (nRNAg) isolated from rat brain tissues or human neuroblastoma. We show that ribosome containing RNA granules are morula-like structures when visualized by electron microscopy. Crosslinking-coupled mass-spectrometry identified potential G3BP2 binding site on the ribosome near the eIF3d-binding site on the 40S ribosomal subunit. We used cryo-EM to resolve the structure of the ribosome-component of nRNAg. The cryo-EM reveals that predominant particles in nRNAg are 80S ribosomes, resembling the pre-translocation state where tRNA's are in the hybrid A/P and P/E site. We also describe a new kind of principal motion of the ribosome, which we call the rocking motion.
Collapse
Affiliation(s)
- Kalle Kipper
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Abbas Mansour
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Arto Pulk
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia.
| |
Collapse
|
34
|
Khandjian EW, Robert C, Davidovic L. FMRP, a multifunctional RNA-binding protein in quest of a new identity. Front Genet 2022; 13:976480. [PMID: 36035132 PMCID: PMC9399724 DOI: 10.3389/fgene.2022.976480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Edouard W. Khandjian
- Centre de Recherche CERVO, Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec City, QC, Canada
- *Correspondence: Edouard W. Khandjian,
| | - Claude Robert
- Département des Sciences Animales, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec City, QC, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Université Laval, Québec City, QC, Canada
| | - Laetitia Davidovic
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
35
|
Pushpalatha KV, Solyga M, Nakamura A, Besse F. RNP components condense into repressive RNP granules in the aging brain. Nat Commun 2022; 13:2782. [PMID: 35589695 PMCID: PMC9120078 DOI: 10.1038/s41467-022-30066-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic RNP condensates enriched in mRNAs and proteins are found in various cell types and associated with both buffering and regulatory functions. While a clear link has been established between accumulation of aberrant RNP aggregates and progression of aging-related neurodegenerative diseases, the impact of physiological aging on neuronal RNP condensates has never been explored. Through high-resolution imaging, we uncover that RNP components progressively cluster into large yet dynamic granules in the aging Drosophila brain. We further show that age-dependent clustering is caused by an increase in the stoichiometry of the conserved helicase Me31B/DDX6, and requires PKA kinase activity. Finally, our functional analysis reveals that mRNA species recruited to RNP condensates upon aging exhibit age-dependent translational repression, indicating that co-clustering of selected mRNAs and translation regulators into repressive condensates may contribute to the specific post-transcriptional changes in gene expression observed in the course of aging. Aberrant RNA condensates are a hallmark of age-related neurodegenerative diseases. Here, the authors show that RNA condensation increases in aging Drosophila brains, triggering translation repression.
Collapse
Affiliation(s)
| | - Mathilde Solyga
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
36
|
Marchais M, Gilbert I, Bastien A, Macaulay A, Robert C. Mammalian cumulus-oocyte complex communication: a dialog through long and short distance messaging. J Assist Reprod Genet 2022; 39:1011-1025. [PMID: 35499777 PMCID: PMC9107539 DOI: 10.1007/s10815-022-02438-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
Communications are crucial to ovarian follicle development and to ovulation, and while both folliculogenesis and oogenesis are distinct processes, they share highly interdependent signaling pathways. Signals from distant organs such as the brain must be processed and compartments within the follicle have to be synchronized. The hypothalamic–pituitary–gonadal (HPG) axis relies on long-distance signalling analogous to wireless communication by which data is disseminated in the environment and cells equipped with the appropriate receptors receive and interpret the messages. In contrast, direct cell-to-cell transfer of molecules is a very targeted, short distance messaging system. Numerous signalling pathways have been identified and proven to be essential for the production of a developmentally competent egg. The development of the cumulus-oocyte complex relies largely on short distance communications or direct transfer type via extensions of corona radiata cells through the zona pellucida. The type of information transmitted through these transzonal projections is still largely uncharacterized. This review provides an overview of current understanding of the mechanisms by which the gamete receives and transmits information within the follicle. Moreover, it highlights the fact that in addition to the well-known systemic long-distance based communications from the HPG axis, these mechanisms acting more locally should also be considered as important targets for controlling/optimizing oocyte quality.
Collapse
Affiliation(s)
- Mathilde Marchais
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Alexandre Bastien
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Angus Macaulay
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Claude Robert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada.
| |
Collapse
|
37
|
Starke EL, Zius K, Barbee SA. FXS causing missense mutations disrupt FMRP granule formation, dynamics, and function. PLoS Genet 2022; 18:e1010084. [PMID: 35202393 PMCID: PMC8903291 DOI: 10.1371/journal.pgen.1010084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/08/2022] [Accepted: 02/08/2022] [Indexed: 01/01/2023] Open
Abstract
Fragile X Syndrome (FXS) is the most prevalent cause of inherited mental deficiency and is the most common monogenetic cause of autism spectral disorder (ASD). Here, we demonstrate that disease-causing missense mutations in the conserved K homology (KH) RNA binding domains (RBDs) of FMRP cause defects in its ability to form RNA transport granules in neurons. Using molecular, genetic, and imaging approaches in the Drosophila FXS model system, we show that the KH1 and KH2 domains of FMRP regulate distinct aspects of neuronal FMRP granule formation, dynamics, and transport. Furthermore, mutations in the KH domains disrupt translational repression in cells and the localization of known FMRP target mRNAs in neurons. These results suggest that the KH domains play an essential role in neuronal FMRP granule formation and function which may be linked to the molecular pathogenesis of FXS. Fragile X Syndrome (FXS) is the most common inherited neurodevelopmental disorder in humans and single gene cause of autism. Most cases of FXS are caused by the complete loss of a single protein (called FMRP). This has made it particularly difficult to understand which of the normal functions of FMRP are disrupted in cases of FXS. Recently, advances in high-throughput sequencing technologies have led to the discovery of patients with severe FXS caused by single mutations in important regions of the FMRP protein. Using a well-characterized FXS model system, we have found that two disease-causing mutations in FMRP disrupt the formation, dynamics, and function of RNA- and protein-containing granules in neurons. These granules have been shown to be involved in the transport of mRNA cargos in axons and dendrites. Disruption of these granules is linked to defects in synaptic development and plasticity. Our results show that two regions of the FMRP protein play a critical role in the control of FMRP granules. These findings suggest the disruption of these processes may be linked to FXS pathogenesis.
Collapse
Affiliation(s)
- Emily L. Starke
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Keelan Zius
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Scott A. Barbee
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
- Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
38
|
Robert C. Nurturing the egg: the essential connection between cumulus cells and the oocyte. Reprod Fertil Dev 2021; 34:149-159. [PMID: 35231386 DOI: 10.1071/rd21282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The determinants of oocyte quality remain uncertain. Under suitable conditions, which have yet to be defined, the gamete grows and acquires the competence to resume meiosis, be fertilised and undergo embryonic development at least beyond genome activation, after which the blastomere is autonomous enough to adapt to the specificity of its environment. This review describes the central role played by the oocyte in reproductive success and how communication between cumulus cells and the oocyte are essential to proper oogenesis and the quality of the resulting gamete. While most attempts to improve oocyte quality have been directed at gonadotrophin-based systemic endocrine signalling, it is proposed that parallel control of fertility may act locally within ovarian follicles through intimate cooperation between somatic cells and the oocyte via the network of transzonal projections. This intercellular communication may prove to be more sensitive to environmental conditions than systemic endocrine signalling, which is essential for many non-reproductive tissues.
Collapse
Affiliation(s)
- Claude Robert
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
| |
Collapse
|
39
|
Rajgor D, Welle TM, Smith KR. The Coordination of Local Translation, Membranous Organelle Trafficking, and Synaptic Plasticity in Neurons. Front Cell Dev Biol 2021; 9:711446. [PMID: 34336865 PMCID: PMC8317219 DOI: 10.3389/fcell.2021.711446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Neurons are highly complex polarized cells, displaying an extraordinary degree of spatial compartmentalization. At presynaptic and postsynaptic sites, far from the cell body, local protein synthesis is utilized to continually modify the synaptic proteome, enabling rapid changes in protein production to support synaptic function. Synapses undergo diverse forms of plasticity, resulting in long-term, persistent changes in synapse strength, which are paramount for learning, memory, and cognition. It is now well-established that local translation of numerous synaptic proteins is essential for many forms of synaptic plasticity, and much work has gone into deciphering the strategies that neurons use to regulate activity-dependent protein synthesis. Recent studies have pointed to a coordination of the local mRNA translation required for synaptic plasticity and the trafficking of membranous organelles in neurons. This includes the co-trafficking of RNAs to their site of action using endosome/lysosome “transports,” the regulation of activity-dependent translation at synapses, and the role of mitochondria in fueling synaptic translation. Here, we review our current understanding of these mechanisms that impact local translation during synaptic plasticity, providing an overview of these novel and nuanced regulatory processes involving membranous organelles in neurons.
Collapse
Affiliation(s)
- Dipen Rajgor
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Theresa M Welle
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
40
|
Wiatr K, Marczak Ł, Pérot JB, Brouillet E, Flament J, Figiel M. Broad Influence of Mutant Ataxin-3 on the Proteome of the Adult Brain, Young Neurons, and Axons Reveals Central Molecular Processes and Biomarkers in SCA3/MJD Using Knock-In Mouse Model. Front Mol Neurosci 2021; 14:658339. [PMID: 34220448 PMCID: PMC8248683 DOI: 10.3389/fnmol.2021.658339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/01/2021] [Indexed: 01/11/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3/MJD) is caused by CAG expansion mutation resulting in a long polyQ domain in mutant ataxin-3. The mutant protein is a special type of protease, deubiquitinase, which may indicate its prominent impact on the regulation of cellular proteins levels and activity. Yet, the global model picture of SCA3 disease progression on the protein level, molecular pathways in the brain, and neurons, is largely unknown. Here, we investigated the molecular SCA3 mechanism using an interdisciplinary research paradigm combining behavioral and molecular aspects of SCA3 in the knock-in ki91 model. We used the behavior, brain magnetic resonance imaging (MRI) and brain tissue examination to correlate the disease stages with brain proteomics, precise axonal proteomics, neuronal energy recordings, and labeling of vesicles. We have demonstrated that altered metabolic and mitochondrial proteins in the brain and the lack of weight gain in Ki91 SCA3/MJD mice is reflected by the failure of energy metabolism recorded in neonatal SCA3 cerebellar neurons. We have determined that further, during disease progression, proteins responsible for metabolism, cytoskeletal architecture, vesicular, and axonal transport are disturbed, revealing axons as one of the essential cell compartments in SCA3 pathogenesis. Therefore we focus on SCA3 pathogenesis in axonal and somatodendritic compartments revealing highly increased axonal localization of protein synthesis machinery, including ribosomes, translation factors, and RNA binding proteins, while the level of proteins responsible for cellular transport and mitochondria was decreased. We demonstrate the accumulation of axonal vesicles in neonatal SCA3 cerebellar neurons and increased phosphorylation of SMI-312 positive adult cerebellar axons, which indicate axonal dysfunction in SCA3. In summary, the SCA3 disease mechanism is based on the broad influence of mutant ataxin-3 on the neuronal proteome. Processes central in our SCA3 model include disturbed localization of proteins between axonal and somatodendritic compartment, early neuronal energy deficit, altered neuronal cytoskeletal structure, an overabundance of various components of protein synthesis machinery in axons.
Collapse
Affiliation(s)
- Kalina Wiatr
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Jean-Baptiste Pérot
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Julien Flament
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
41
|
Formicola N, Heim M, Dufourt J, Lancelot AS, Nakamura A, Lagha M, Besse F. Tyramine induces dynamic RNP granule remodeling and translation activation in the Drosophila brain. eLife 2021; 10:65742. [PMID: 33890854 PMCID: PMC8064753 DOI: 10.7554/elife.65742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/04/2021] [Indexed: 02/06/2023] Open
Abstract
Ribonucleoprotein (RNP) granules are dynamic condensates enriched in regulatory RNA binding proteins (RBPs) and RNAs under tight spatiotemporal control. Extensive recent work has investigated the molecular principles underlying RNP granule assembly, unraveling that they form through the self-association of RNP components into dynamic networks of interactions. How endogenous RNP granules respond to external stimuli to regulate RNA fate is still largely unknown. Here, we demonstrate through high-resolution imaging of intact Drosophila brains that Tyramine induces a reversible remodeling of somatic RNP granules characterized by the decondensation of granule-enriched RBPs (e.g. Imp/ZBP1/IGF2BP) and helicases (e.g. Me31B/DDX-6/Rck). Furthermore, our functional analysis reveals that Tyramine signals both through its receptor TyrR and through the calcium-activated kinase CamkII to trigger RNP component decondensation. Finally, we uncover that RNP granule remodeling is accompanied by the rapid and specific translational activation of associated mRNAs. Thus, this work sheds new light on the mechanisms controlling cue-induced rearrangement of physiological RNP condensates.
Collapse
Affiliation(s)
- Nadia Formicola
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Marjorie Heim
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Jérémy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
| | - Anne-Sophie Lancelot
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| |
Collapse
|
42
|
Dalla Costa I, Buchanan CN, Zdradzinski MD, Sahoo PK, Smith TP, Thames E, Kar AN, Twiss JL. The functional organization of axonal mRNA transport and translation. Nat Rev Neurosci 2021; 22:77-91. [PMID: 33288912 PMCID: PMC8161363 DOI: 10.1038/s41583-020-00407-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Axons extend for tremendously long distances from the neuronal soma and make use of localized mRNA translation to rapidly respond to different extracellular stimuli and physiological states. The locally synthesized proteins support many different functions in both developing and mature axons, raising questions about the mechanisms by which local translation is organized to ensure the appropriate responses to specific stimuli. Publications over the past few years have uncovered new mechanisms for regulating the axonal transport and localized translation of mRNAs, with several of these pathways converging on the regulation of cohorts of functionally related mRNAs - known as RNA regulons - that drive axon growth, axon guidance, injury responses, axon survival and even axonal mitochondrial function. Recent advances point to these different regulatory pathways as organizing platforms that allow the axon's proteome to be modulated to meet its physiological needs.
Collapse
Affiliation(s)
- Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Courtney N Buchanan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | | | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Terika P Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
43
|
Broix L, Turchetto S, Nguyen L. Coordination between Transport and Local Translation in Neurons. Trends Cell Biol 2021; 31:372-386. [PMID: 33526339 DOI: 10.1016/j.tcb.2021.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/15/2022]
Abstract
The axonal microtubules (MTs) support long-distance transport of cargoes that are dispatched to distinct cellular subcompartments. Among them, mRNAs are directly transported in membraneless ribonucleoprotein (RNP) granules that, together with ribosomes, can also hitchhike on fast-moving membrane-bound organelles for accurate transport along MTs. These organelles serve as platforms for mRNA translation, thus generating axonal foci of newly synthesized proteins. Local translation along axons not only supports MT network integrity but also modulates the processivity and function of molecular motors to allow proper trafficking of cargoes along MTs. Thus, identifying the mechanisms that coordinate axonal transport with local protein synthesis will shed new light on the processes underlying axon development and maintenance, whose deregulation often contribute to neurological disorders.
Collapse
Affiliation(s)
- Loïc Broix
- GIGA Stem Cells, GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Silvia Turchetto
- GIGA Stem Cells, GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Laurent Nguyen
- GIGA Stem Cells, GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium.
| |
Collapse
|
44
|
Khlghatyan J, Evstratova A, Bozoyan L, Chamberland S, Chatterjee D, Marakhovskaia A, Soares Silva T, Toth K, Mongrain V, Beaulieu J. Fxr1 regulates sleep and synaptic homeostasis. EMBO J 2020; 39:e103864. [PMID: 32893934 PMCID: PMC7604579 DOI: 10.15252/embj.2019103864] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
The fragile X autosomal homolog 1 (Fxr1) is regulated by lithium and has been GWAS-associated with schizophrenia and insomnia. Homeostatic regulation of synaptic strength is essential for the maintenance of brain functions and involves both cell-autonomous and system-level processes such as sleep. We examined the contribution of Fxr1 to cell-autonomous homeostatic synaptic scaling and neuronal responses to sleep loss, using a combination of gene overexpression and Crispr/Cas9-mediated somatic knockouts to modulate gene expression. Our findings indicate that Fxr1 is downregulated during both scaling and sleep deprivation via a glycogen synthase kinase 3 beta (GSK3β)-dependent mechanism. In both conditions, downregulation of Fxr1 is essential for the homeostatic modulation of surface AMPA receptors and synaptic strength. Preventing the downregulation of Fxr1 during sleep deprivation results in altered EEG signatures. Furthermore, sequencing of neuronal translatomes revealed the contribution of Fxr1 to changes induced by sleep deprivation. These findings uncover a role of Fxr1 as a shared signaling hub between cell-autonomous homeostatic plasticity and system-level responses to sleep loss, with potential implications for neuropsychiatric illnesses and treatments.
Collapse
Affiliation(s)
- Jivan Khlghatyan
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoONCanada
- Department of Psychiatry and NeuroscienceFaculty of MedicineUniversité LavalQuébec‐CityQCCanada
- Present address:
Department of NeuroscienceNovartis Institutes for Biomedical ResearchCambridgeMAUSA
| | - Alesya Evstratova
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoONCanada
| | - Lusine Bozoyan
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoONCanada
| | - Simon Chamberland
- Department of Psychiatry and NeuroscienceFaculty of MedicineUniversité LavalQuébec‐CityQCCanada
- Present address:
NYU Neuroscience InstituteLangone Medical CenterNew York UniversityNew YorkNYUSA
| | | | | | - Tiago Soares Silva
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoONCanada
| | - Katalin Toth
- Department of Cellular and Molecular MedicineFaculty of MedicineUniversity of OttawaOttawaONCanada
| | - Valerie Mongrain
- Department of NeuroscienceUniversité de Montréal and Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal (CIUSSS‐NIM)MontrealQCCanada
| | | |
Collapse
|
45
|
Oliveira NCM, Lins ÉM, Massirer KB, Bengtson MH. Translational Control during Mammalian Neocortex Development and Postembryonic Neuronal Function. Semin Cell Dev Biol 2020; 114:36-46. [PMID: 33020045 DOI: 10.1016/j.semcdb.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
The control of mRNA translation has key roles in the regulation of gene expression and biological processes such as mammalian cellular differentiation and identity. Methodological advances in the last decade have resulted in considerable progress towards understanding how translational control contributes to the regulation of diverse biological phenomena. In this review, we discuss recent findings in the involvement of translational control in the mammalian neocortex development and neuronal biology. We focus on regulatory mechanisms that modulate translational efficiency during neural stem cells self-renewal and differentiation, as well as in neuronal-related processes such as synapse, plasticity, and memory.
Collapse
Affiliation(s)
- Natássia Cristina Martins Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; Center for Molecular Biology and Genetic Engineering - CBMEG, University of Campinas - UNICAMP, 13083-875, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil
| | - Érico Moreto Lins
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; PhD Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas, SP 13083-862, Brazil
| | - Katlin Brauer Massirer
- Center for Molecular Biology and Genetic Engineering - CBMEG, University of Campinas - UNICAMP, 13083-875, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil
| | - Mário Henrique Bengtson
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil.
| |
Collapse
|
46
|
Chu JF, Majumder P, Chatterjee B, Huang SL, Shen CKJ. TDP-43 Regulates Coupled Dendritic mRNA Transport-Translation Processes in Co-operation with FMRP and Staufen1. Cell Rep 2020; 29:3118-3133.e6. [PMID: 31801077 DOI: 10.1016/j.celrep.2019.10.061] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 07/12/2019] [Accepted: 10/14/2019] [Indexed: 01/24/2023] Open
Abstract
Tightly regulated transport of messenger ribonucleoprotein (mRNP) granules to diverse locations of dendrites and axons is essential for appropriately timed protein synthesis within distinct sub-neuronal compartments. Perturbations of this regulation lead to various neurological disorders. Using imaging and molecular approaches, we demonstrate how TDP-43 co-operates with two other RNA-binding proteins, FMRP and Staufen1, to regulate the anterograde and retrograde transport, respectively, of Rac1 mRNPs in mouse neuronal dendrites. We also analyze the mechanisms by which TDP-43 mediates coupled mRNA transport-translation processes in dendritic sub-compartments by following in real-time the co-movement of RNA and endogenous fluorescence-tagged protein in neurons and by simultaneous examination of transport/translation dynamics by using an RNA biosensor. This study establishes the pivotal roles of TDP-43 in transporting mRNP granules in dendrites, inhibiting translation inside those granules, and reactivating it once the granules reach the dendritic spines.
Collapse
Affiliation(s)
- Jen-Fei Chu
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Pritha Majumder
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.
| | | | - Shih-Ling Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | |
Collapse
|
47
|
Taha MS, Haghighi F, Stefanski A, Nakhaei-Rad S, Kazemein Jasemi NS, Al Kabbani MA, Görg B, Fujii M, Lang PA, Häussinger D, Piekorz RP, Stühler K, Ahmadian MR. Novel FMRP interaction networks linked to cellular stress. FEBS J 2020; 288:837-860. [PMID: 32525608 DOI: 10.1111/febs.15443] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Silencing of the fragile X mental retardation 1 (FMR1) gene and consequently lack of synthesis of FMR protein (FMRP) are associated with fragile X syndrome, which is one of the most prevalent inherited intellectual disabilities, with additional roles in increased viral infection, liver disease, and reduced cancer risk. FMRP plays critical roles in chromatin dynamics, RNA binding, mRNA transport, and mRNA translation. However, the underlying molecular mechanisms, including the (sub)cellular FMRP protein networks, remain elusive. Here, we employed affinity pull-down and quantitative LC-MS/MS analyses with FMRP. We identified known and novel candidate FMRP-binding proteins as well as protein complexes. FMRP interacted with 180 proteins, 28 of which interacted with its N terminus. Interaction with the C terminus of FMRP was observed for 102 proteins, and 48 proteins interacted with both termini. This FMRP interactome comprises known FMRP-binding proteins, including the ribosomal proteins FXR1P, NUFIP2, Caprin-1, and numerous novel FMRP candidate interacting proteins that localize to different subcellular compartments, including CARF, LARP1, LEO1, NOG2, G3BP1, NONO, NPM1, SKIP, SND1, SQSTM1, and TRIM28. Our data considerably expand the protein and RNA interaction networks of FMRP, which thereby suggest that, in addition to its known functions, FMRP participates in transcription, RNA metabolism, ribonucleoprotein stress granule formation, translation, DNA damage response, chromatin dynamics, cell cycle regulation, ribosome biogenesis, miRNA biogenesis, and mitochondrial organization. Thus, FMRP seems associated with multiple cellular processes both under normal and cell stress conditions in neuronal as well as non-neuronal cell types, as exemplified by its role in the formation of stress granules.
Collapse
Affiliation(s)
- Mohamed S Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany.,Research on Children with Special Needs Department, Medical Research Branch, National Research Centre, Cairo, Egypt
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Boris Görg
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Phillip A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
48
|
Yang WJ, Yan AZ, Xu YJ, Guo XY, Fu XG, Li D, Liao J, Zhang D, Lan FH. Further identification of a 140bp sequence from amid intron 9 of human FMR1 gene as a new exon. BMC Genet 2020; 21:63. [PMID: 32552710 PMCID: PMC7301526 DOI: 10.1186/s12863-020-00870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022] Open
Abstract
Background The disease gene of fragile X syndrome, FMR1 gene, encodes fragile X mental retardation protein (FMRP). The alternative splicing (AS) of FMR1 can affect the structure and function of FMRP. However, the biological functions of alternatively spliced isoforms remain elusive. In a previous study, we identified a new 140bp exon from the intron 9 of human FMR1 gene. In this study, we further examined the biological functions of this new exon and its underlying signaling pathways. Results qRT-PCR results showed that this novel exon is commonly expressed in the peripheral blood of normal individuals. Comparative genomics showed that sequences paralogous to the 140 bp sequence only exist in the genomes of primates. To explore the biological functions of the new transcript, we constructed recombinant eukaryotic expression vectors and lentiviral overexpression vectors. Results showed that the spliced transcript encoded a truncated protein which was expressed mainly in the cell nucleus. Additionally, several genes, including the BEX1 gene involved in mGluR-LTP or mGluR-LTD signaling pathways were significantly influenced when the truncated FMRP was overexpressed. Conclusions our work identified a new exon from amid intron 9 of human FMR1 gene with wide expression in normal healthy individuals, which emphasizes the notion that the AS of FMR1 gene is complex and may in a large part account for the multiple functions of FMRP.
Collapse
Affiliation(s)
- Wen-Jing Yang
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China.,Present addresses: Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ai-Zhen Yan
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China
| | - Yong-Jun Xu
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China
| | - Xiao-Yan Guo
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China.,Present addresses: Department of Laboratory Medicine, Fuzhou No. 2 Hospital Affiliated Xiamen University, Fuzhou, Fujian, 350007, People's Republic of China
| | - Xian-Guo Fu
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China.,Present addresses: Department of Laboratory Medicine, Ningde Municipal Hospital, Fujian Medical University, Ningde City, 352100, Fujian Province, China
| | - Dan Li
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China
| | - Juan Liao
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China.,Present addresses: Department of Laboratory Medicine, Fujian University of Traditional Chinese Medicine Affiliated People's Hospital, Fuzhou, 350001, Fujian, China
| | - Duo Zhang
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China
| | - Feng-Hua Lan
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Xiamen University School of Medicine, 156 Xi'erhuanbei Road, Fuzhou City, Fujian Province, 350025, People's Republic of China.
| |
Collapse
|
49
|
Shah S, Molinaro G, Liu B, Wang R, Huber KM, Richter JD. FMRP Control of Ribosome Translocation Promotes Chromatin Modifications and Alternative Splicing of Neuronal Genes Linked to Autism. Cell Rep 2020; 30:4459-4472.e6. [PMID: 32234480 PMCID: PMC7179797 DOI: 10.1016/j.celrep.2020.02.076] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/24/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
Silencing of FMR1 and loss of its gene product, FMRP, results in fragile X syndrome (FXS). FMRP binds brain mRNAs and inhibits polypeptide elongation. Using ribosome profiling of the hippocampus, we find that ribosome footprint levels in Fmr1-deficient tissue mostly reflect changes in RNA abundance. Profiling over a time course of ribosome runoff in wild-type tissue reveals a wide range of ribosome translocation rates; on many mRNAs, the ribosomes are stalled. Sucrose gradient ultracentrifugation of hippocampal slices after ribosome runoff reveals that FMRP co-sediments with stalled ribosomes, and its loss results in decline of ribosome stalling on specific mRNAs. One such mRNA encodes SETD2, a lysine methyltransferase that catalyzes H3K36me3. Chromatin immunoprecipitation sequencing (ChIP-seq) demonstrates that loss of FMRP alters the deployment of this histone mark. H3K36me3 is associated with alternative pre-RNA processing, which we find occurs in an FMRP-dependent manner on transcripts linked to neural function and autism spectrum disorders.
Collapse
Affiliation(s)
- Sneha Shah
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Botao Liu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ruijia Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical School, Dallas, TX 75390, USA.
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
50
|
Suardi GAM, Haddad LA. FMRP ribonucleoprotein complexes and RNA homeostasis. ADVANCES IN GENETICS 2020; 105:95-136. [PMID: 32560791 DOI: 10.1016/bs.adgen.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Fragile Mental Retardation 1 gene (FMR1), at Xq27.3, encodes the fragile mental retardation protein (FMRP), and displays in its 5'-untranslated region a series of polymorphic CGG triplet repeats that may undergo dynamic mutation. Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability among men, and is most frequently due to FMR1 full mutation and consequent transcription repression. FMR1 premutations may associate with at least two other clinical conditions, named fragile X-associated primary ovarian insufficiency (FXPOI) and tremor and ataxia syndrome (FXTAS). While FXPOI and FXTAS appear to be mediated by FMR1 mRNA accumulation, relative reduction of FMRP, and triplet repeat translation, FXS is due to the lack of the RNA-binding protein FMRP. Besides its function as mRNA translation repressor in neuronal and stem/progenitor cells, RNA editing roles have been assigned to FMRP. In this review, we provide a brief description of FMR1 transcribed microsatellite and associated clinical disorders, and discuss FMRP molecular roles in ribonucleoprotein complex assembly and trafficking, as well as aspects of RNA homeostasis affected in FXS cells.
Collapse
Affiliation(s)
- Gabriela Aparecida Marcondes Suardi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Amaral Haddad
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|