1
|
Constable S, Ott CM, Lemire AL, White K, Xun Y, Lim A, Lippincott-Schwartz J, Mukhopadhyay S. Permanent cilia loss during cerebellar granule cell neurogenesis involves withdrawal of cilia maintenance and centriole capping. Proc Natl Acad Sci U S A 2024; 121:e2408083121. [PMID: 39705308 DOI: 10.1073/pnas.2408083121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/09/2024] [Indexed: 12/22/2024] Open
Abstract
Brain neurons utilize the primary cilium as a privileged compartment to detect and respond to extracellular ligands such as Sonic hedgehog (SHH). However, cilia in cerebellar granule cell (GC) neurons disassemble during differentiation through ultrastructurally unique intermediates, a process we refer to as cilia deconstruction. In addition, mature neurons do not reciliate despite having docked centrioles. Here, we identify molecular changes that accompany cilia deconstruction and centriole docking in GC neurons. We used single cell transcriptomic and immunocytological analyses to compare the transcript levels and subcellular localization of proteins between progenitor, differentiating, and mature GCs. Differentiating GCs lacked transcripts for key activators of premitotic cilia resorption, indicating that cilia disassembly in differentiating cells is distinct from premitotic cilia resorption. Instead, during differentiation, transcripts of many genes required for cilia maintenance-specifically those encoding components of intraflagellar transport, pericentrosomal material, and centriolar satellites-decreased. The abundance of several corresponding proteins in and around cilia and centrosomes also decreased. These changes coincided with downregulation of SHH signaling prior to differentiation, even in a mutant with excessive SHH activation. Finally, mother centrioles in maturing granule neurons recruited the cap complex protein, CEP97. These data suggest that a global, developmentally programmed decrease in cilium maintenance in differentiating GCs mediates cilia deconstruction, while capping of docked mother centrioles prevents cilia regrowth and dysregulated SHH signaling. Our study provides mechanistic insights expanding our understanding of permanent cilia loss in multiple tissue-specific contexts.
Collapse
Affiliation(s)
- Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Carolyn M Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yu Xun
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Amin Lim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
2
|
Philbrook A, O’Donnell MP, Grunenkovaite L, Sengupta P. Cilia structure and intraflagellar transport differentially regulate sensory response dynamics within and between C. elegans chemosensory neurons. PLoS Biol 2024; 22:e3002892. [PMID: 39591402 PMCID: PMC11593760 DOI: 10.1371/journal.pbio.3002892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/10/2024] [Indexed: 11/28/2024] Open
Abstract
Sensory neurons contain morphologically diverse primary cilia that are built by intraflagellar transport (IFT) and house sensory signaling molecules. Since both ciliary structural and signaling proteins are trafficked via IFT, it has been challenging to decouple the contributions of IFT and cilia structure to neuronal responses. By acutely inhibiting IFT without altering cilia structure and vice versa, here we describe the differential roles of ciliary trafficking and sensory ending morphology in shaping chemosensory responses in Caenorhabditis elegans. We show that a minimum cilium length but not continuous IFT is necessary for a subset of responses in the ASH nociceptive neurons. In contrast, neither cilia nor continuous IFT are necessary for odorant responses in the AWA olfactory neurons. Instead, continuous IFT differentially modulates response dynamics in AWA. Upon acute inhibition of IFT, cilia-destined odorant receptors are shunted to ectopic branches emanating from the AWA cilia base. Spatial segregation of receptors in these branches from a cilia-restricted regulatory kinase results in odorant desensitization defects, highlighting the importance of precise organization of signaling molecules at sensory endings in regulating response dynamics. We also find that adaptation of AWA responses upon repeated exposure to an odorant is mediated by IFT-driven removal of its cognate receptor, whereas adaptation to a second odorant is regulated via IFT-independent mechanisms. Our results reveal unexpected complexity in the contribution of IFT and cilia organization to the regulation of responses even within a single chemosensory neuron type and establish a critical role for these processes in the precise modulation of olfactory behaviors.
Collapse
Affiliation(s)
- Alison Philbrook
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael P. O’Donnell
- Department of Molecular, Cellular, and Developmental Biology, Yale University, Connecticut, United States of America
| | - Laura Grunenkovaite
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
3
|
Heiman MG, Bülow HE. Dendrite morphogenesis in Caenorhabditis elegans. Genetics 2024; 227:iyae056. [PMID: 38785371 PMCID: PMC11151937 DOI: 10.1093/genetics/iyae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Since the days of Ramón y Cajal, the vast diversity of neuronal and particularly dendrite morphology has been used to catalog neurons into different classes. Dendrite morphology varies greatly and reflects the different functions performed by different types of neurons. Significant progress has been made in our understanding of how dendrites form and the molecular factors and forces that shape these often elaborately sculpted structures. Here, we review work in the nematode Caenorhabditis elegans that has shed light on the developmental mechanisms that mediate dendrite morphogenesis with a focus on studies investigating ciliated sensory neurons and the highly elaborated dendritic trees of somatosensory neurons. These studies, which combine time-lapse imaging, genetics, and biochemistry, reveal an intricate network of factors that function both intrinsically in dendrites and extrinsically from surrounding tissues. Therefore, dendrite morphogenesis is the result of multiple tissue interactions, which ultimately determine the shape of dendritic arbors.
Collapse
Affiliation(s)
- Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Philbrook A, O'Donnell MP, Grunenkovaite L, Sengupta P. Differential modulation of sensory response dynamics by cilia structure and intraflagellar transport within and across chemosensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594529. [PMID: 38798636 PMCID: PMC11118401 DOI: 10.1101/2024.05.16.594529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Sensory neurons contain morphologically diverse primary cilia that are built by intraflagellar transport (IFT) and house sensory signaling molecules. Since both ciliary structural and signaling proteins are trafficked via IFT, it has been challenging to decouple the contributions of IFT and cilia structure to neuronal responses. By acutely inhibiting IFT without altering cilia structure and vice versa , here we describe the differential roles of ciliary trafficking and sensory ending morphology in shaping chemosensory responses in C. elegans. We show that a minimum cilium length but not continuous IFT is necessary for a subset of responses in the ASH nociceptive neurons. In contrast, neither cilia nor continuous IFT are necessary for odorant responses in the AWA olfactory neurons. Instead, continuous IFT differentially modulates response dynamics in AWA. Upon acute inhibition of IFT, cilia-destined odorant receptors are shunted to ectopic branches emanating from the cilia base. Spatial segregation of receptors in these branches from a cilia-restricted regulatory kinase results in odorant desensitization defects, highlighting the importance of precise organization of signaling molecules at sensory endings in regulating response dynamics. We also find that adaptation of AWA responses upon repeated exposure to an odorant is mediated by IFT-driven removal of its cognate receptor, whereas adaptation to a second odorant is regulated via IFT-independent mechanisms. Our results reveal unexpected complexity in the contribution of IFT and cilia organization to the regulation of responses even within a single chemosensory neuron type, and establish a critical role for these processes in the precise modulation of olfactory behaviors.
Collapse
|
5
|
Higurashi S, Tsukada S, Aleogho BM, Park JH, Al-Hebri Y, Tanaka M, Nakano S, Mori I, Noma K. Bacterial diet affects the age-dependent decline of associative learning in Caenorhabditis elegans. eLife 2023; 12:81418. [PMID: 37252859 DOI: 10.7554/elife.81418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
The causality and mechanism of dietary effects on brain aging are still unclear due to the long time scales of aging. The nematode Caenorhabditis elegans has contributed to aging research because of its short lifespan and easy genetic manipulation. When fed the standard laboratory diet, Escherichia coli, C. elegans experiences an age-dependent decline in temperature-food associative learning, called thermotaxis. To address if diet affects this decline, we screened 35 lactic acid bacteria as alternative diet and found that animals maintained high thermotaxis ability when fed a clade of Lactobacilli enriched with heterofermentative bacteria. Among them, Lactobacillus reuteri maintained the thermotaxis of aged animals without affecting their lifespan and motility. The effect of Lb. reuteri depends on the DAF-16 transcription factor functioning in neurons. Furthermore, RNA sequencing analysis revealed that differentially expressed genes between aged animals fed different bacteria were enriched with DAF-16 targets. Our results demonstrate that diet can impact brain aging in a daf-16-dependent manner without changing the lifespan.
Collapse
Affiliation(s)
- Satoshi Higurashi
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., Saitama, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Sachio Tsukada
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., Saitama, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Binta Maria Aleogho
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate school of Science, Nagoya University, Nagoya, Japan
| | - Joo Hyun Park
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yana Al-Hebri
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Masaru Tanaka
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., Saitama, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shunji Nakano
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kentaro Noma
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate school of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Khan M, Hartmann AH, O’Donnell MP, Piccione M, Pandey A, Chao PH, Dwyer ND, Bargmann CI, Sengupta P. Context-dependent reversal of odorant preference is driven by inversion of the response in a single sensory neuron type. PLoS Biol 2022; 20:e3001677. [PMID: 35696430 PMCID: PMC9232122 DOI: 10.1371/journal.pbio.3001677] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/24/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
The valence and salience of individual odorants are modulated by an animal’s innate preferences, learned associations, and internal state, as well as by the context of odorant presentation. The mechanisms underlying context-dependent flexibility in odor valence are not fully understood. Here, we show that the behavioral response of Caenorhabditis elegans to bacterially produced medium-chain alcohols switches from attraction to avoidance when presented in the background of a subset of additional attractive chemicals. This context-dependent reversal of odorant preference is driven by cell-autonomous inversion of the response to these alcohols in the single AWC olfactory neuron pair. We find that while medium-chain alcohols inhibit the AWC olfactory neurons to drive attraction, these alcohols instead activate AWC to promote avoidance when presented in the background of a second AWC-sensed odorant. We show that these opposing responses are driven via engagement of distinct odorant-directed signal transduction pathways within AWC. Our results indicate that context-dependent recruitment of alternative intracellular signaling pathways within a single sensory neuron type conveys opposite hedonic valences, thereby providing a robust mechanism for odorant encoding and discrimination at the periphery.
Collapse
Affiliation(s)
- Munzareen Khan
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Anna H. Hartmann
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael P. O’Donnell
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Madeline Piccione
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Anjali Pandey
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Pin-Hao Chao
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Noelle D. Dwyer
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | | | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Zhang X, Liu J, Pan T, Ward A, Liu J, Xu XZS. A cilia-independent function of BBSome mediated by DLK-MAPK signaling in C. elegans photosensation. Dev Cell 2022; 57:1545-1557.e4. [PMID: 35649417 DOI: 10.1016/j.devcel.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 04/03/2022] [Accepted: 05/04/2022] [Indexed: 11/03/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a genetic disorder that affects primary cilia. BBSome, a protein complex composed of eight BBS proteins, regulates the structure and function of cilia, and its malfunction causes BBS in humans. Here, we report a cilia-independent function of BBSome. To identify genes that regulate the C. elegans photoreceptor protein LITE-1 in ciliated ASH photosensory neurons, we performed a genetic screen and isolated bbs mutants. Functional analysis revealed that BBSome regulates LITE-1 protein stability independently of cilia. Through another round of genetic screening, we found that this cilia-independent function of BBSome is mediated by DLK-MAPK signaling, which acts downstream of BBSome to control LITE-1 stability via Rab5-mediated endocytosis. BBSome exerts its function by regulating the expression of DLK. BBSome also regulates the expression of LZK, a mammalian DLK in human cells. These studies identify a cilia-independent function of BBSome and uncover DLK as an evolutionarily conserved BBSome effector.
Collapse
Affiliation(s)
- Xinxing Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical, School, Ann Arbor, MI 48109, USA
| | - Jinzhi Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical, School, Ann Arbor, MI 48109, USA; College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tong Pan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical, School, Ann Arbor, MI 48109, USA
| | - Alex Ward
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianfeng Liu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - X Z Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical, School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
De-Castro ARG, Rodrigues DRM, De-Castro MJG, Vieira N, Vieira C, Carvalho AX, Gassmann R, Abreu CMC, Dantas TJ. WDR60-mediated dynein-2 loading into cilia powers retrograde IFT and transition zone crossing. J Cell Biol 2022; 221:212746. [PMID: 34739033 PMCID: PMC8576871 DOI: 10.1083/jcb.202010178] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
The dynein-2 motor complex drives retrograde intraflagellar transport (IFT), playing a pivotal role in the assembly and functions of cilia. However, the mechanisms that regulate dynein-2 motility remain poorly understood. Here, we identify the Caenorhabditis elegans WDR60 homologue, WDR-60, and dissect the roles of this intermediate chain using genome editing and live imaging of endogenous dynein-2/IFT components. We find that loss of WDR-60 impairs dynein-2 recruitment to cilia and its incorporation onto anterograde IFT trains, reducing retrograde motor availability at the ciliary tip. Consistent with this, we show that fewer dynein-2 motors power WDR-60–deficient retrograde IFT trains, which move at reduced velocities and fail to exit cilia, accumulating on the distal side of the transition zone. Remarkably, disrupting the transition zone’s NPHP module almost fully restores ciliary exit of underpowered retrograde trains in wdr-60 mutants. This work establishes WDR-60 as a major contributor to IFT, and the NPHP module as a roadblock to dynein-2 passage through the transition zone.
Collapse
Affiliation(s)
- Ana R G De-Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Diogo R M Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Maria J G De-Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cármen Vieira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana X Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Carla M C Abreu
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Tiago J Dantas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
Li X, Yang S, Han L, Mao K, Yang S. Ciliary IFT80 is essential for intervertebral disc development and maintenance. FASEB J 2020; 34:6741-6756. [PMID: 32227389 DOI: 10.1096/fj.201902838r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/19/2020] [Accepted: 03/14/2020] [Indexed: 12/24/2022]
Abstract
The intervertebral disc degeneration (IVDD)-related diseases occur in more than 90% of the population older than 50 years. Owing to the lack of understanding of the cellular mechanisms involved in IVDD formation effective treatment options are still unavailable. Primary cilia are microtubule-based organelles that play important roles in the organ development. Intraflagellar transport (IFT) proteins are essential for the assembly and bidirectional transport within the cilium. Role of cilia and IFT80 protein in intervertebral disc (IVD) development, maintenance, and degeneration are largely unknown. Using cilia-GFP mice, we found presence of cilia on growth plate (GP), cartilage endplate (EP) annulus fibrosus (AF), and nucleus pulposus (NP) with varying ciliary length. Cilia length in NP and AF during IVDD were significantly decreased. However, cilia numbers increased by 63% in AF during repair. Deletion of IFT80 in type II collagen-positive cells resulted in cilia loss in GP and EP, and disrupted IVD structure with disorganized and decreased GP, EP, and internal AF (IAF), and less compact and markedly decreased gel-like matrix in the NP. Deletion of IFT80 in type I collagen-positive cells led to a disorganized outer AF (OAF) with thinner, loosened, and disconnected fiber alignment. Mechanistic analyses showed that loss of IFT80 caused a significant increase in cell apoptosis in the IVD, and a marked decrease in expression of chondrogenic markers - type II collagen, sox9, aggrecan, and hedgehog (Hh) signaling components, including Gli1 and Patch1 in the IVD of IFT80fl/fl ; Col2-creERT mice, and Gli1 and Patch1 expression in the OAF of IFT80fl/fl ; Col1-creERT mice. Interestingly, Smoothened agonist-SAG rescued OAF cell proliferation and osteogenic differentiation. Our findings demonstrate that ciliary IFT80 is important for the maintenance of IVD cell organization and function through regulating the cell survival and Hh signaling.
Collapse
Affiliation(s)
- Xinhua Li
- Department of Basic and Translational Science, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Spinal Surgery, East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Shuting Yang
- Department of Basic and Translational Science, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Keya Mao
- Department of Orthopedics, Chinese PLA General Hospital (301 Hospital), Beijing, China
| | - Shuying Yang
- Department of Basic and Translational Science, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Maurya AK, Rogers T, Sengupta P. A CCRK and a MAK Kinase Modulate Cilia Branching and Length via Regulation of Axonemal Microtubule Dynamics in Caenorhabditis elegans. Curr Biol 2019; 29:1286-1300.e4. [PMID: 30955935 PMCID: PMC6482063 DOI: 10.1016/j.cub.2019.02.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/06/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
Abstract
The diverse morphologies of primary cilia are tightly regulated as a function of cell type and cellular state. CCRK- and MAK-related kinases have been implicated in ciliary length control in multiple species, although the underlying mechanisms are not fully understood. Here, we show that in C. elegans, DYF-18/CCRK and DYF-5/MAK act in a cascade to generate the highly arborized cilia morphologies of the AWA olfactory neurons. Loss of kinase function results in dramatically elongated AWA cilia that lack branches. Intraflagellar transport (IFT) motor protein localization, but not velocities, in AWA cilia is altered upon loss of dyf-18. We instead find that axonemal microtubules are decorated by the EBP-2 end-binding protein along their lengths and that the tubulin load is increased and tubulin turnover is reduced in AWA cilia of dyf-18 mutants. Moreover, we show that predicted microtubule-destabilizing mutations in two tubulin subunits, as well as mutations in IFT proteins predicted to disrupt tubulin transport, restore cilia branching and suppress AWA cilia elongation in dyf-18 mutants. Loss of dyf-18 is also sufficient to elongate the truncated rod-like unbranched cilia of the ASH nociceptive neurons in animals carrying a microtubule-destabilizing mutation in a tubulin subunit. We suggest that CCRK and MAK activity tunes cilia length and shape in part via modulation of axonemal microtubule stability, suggesting that similar mechanisms may underlie their roles in ciliary length control in other cell types.
Collapse
Affiliation(s)
- Ashish Kumar Maurya
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | - Travis Rogers
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
11
|
Akella JS, Silva M, Morsci NS, Nguyen KC, Rice WJ, Hall DH, Barr MM. Cell type-specific structural plasticity of the ciliary transition zone in C. elegans. Biol Cell 2019; 111:95-107. [PMID: 30681171 DOI: 10.1111/boc.201800042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION The current consensus on cilia development posits that the ciliary transition zone (TZ) is formed via extension of nine centrosomal microtubules. In this model, TZ structure remains unchanged in microtubule number throughout the cilium life cycle. This model does not however explain structural variations of TZ structure seen in nature and could also lend itself to the misinterpretation that deviations from nine-doublet microtubule ultrastructure represent an abnormal phenotype. Thus, a better understanding of events that occur at the TZ in vivo during metazoan development is required. RESULTS To address this issue, we characterized ultrastructure of two types of sensory cilia in developing Caenorhabditis elegans. We discovered that, in cephalic male (CEM) and inner labial quadrant (IL2Q) sensory neurons, ciliary TZs are structurally plastic and remodel from one structure to another during animal development. The number of microtubule doublets forming the TZ can be increased or decreased over time, depending on cilia type. Both cases result in structural TZ intermediates different from TZ in cilia of adult animals. In CEM cilia, axonemal extension and maturation occurs concurrently with TZ structural maturation. CONCLUSIONS AND SIGNIFICANCE Our work extends the current model to include the structural plasticity of metazoan transition zone, which can be structurally delayed, maintained or remodelled in cell type-specific manner.
Collapse
Affiliation(s)
- Jyothi S Akella
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, 08854, USA
| | - Malan Silva
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, 08854, USA.,Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Ken C Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - William J Rice
- Simons Electron Microscopy Center, New York Structural Biology Center, NY, 10027, USA
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, 08854, USA
| |
Collapse
|
12
|
Imtiaz A, Belyantseva IA, Beirl AJ, Fenollar-Ferrer C, Bashir R, Bukhari I, Bouzid A, Shaukat U, Azaiez H, Booth KT, Kahrizi K, Najmabadi H, Maqsood A, Wilson EA, Fitzgerald TS, Tlili A, Olszewski R, Lund M, Chaudhry T, Rehman AU, Starost MF, Waryah AM, Hoa M, Dong L, Morell RJ, Smith RJH, Riazuddin S, Masmoudi S, Kindt KS, Naz S, Friedman TB. CDC14A phosphatase is essential for hearing and male fertility in mouse and human. Hum Mol Genet 2019; 27:780-798. [PMID: 29293958 DOI: 10.1093/hmg/ddx440] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022] Open
Abstract
The Cell Division-Cycle-14 gene encodes a dual-specificity phosphatase necessary in yeast for exit from mitosis. Numerous disparate roles of vertebrate Cell Division-Cycle-14 (CDC14A) have been proposed largely based on studies of cultured cancer cells in vitro. The in vivo functions of vertebrate CDC14A are largely unknown. We generated and analyzed mutations of zebrafish and mouse CDC14A, developed a computational structural model of human CDC14A protein and report four novel truncating and three missense alleles of CDC14A in human families segregating progressive, moderate-to-profound deafness. In five of these families segregating pathogenic variants of CDC14A, deaf males are infertile, while deaf females are fertile. Several recessive mutations of mouse Cdc14a, including a CRISPR/Cas9-edited phosphatase-dead p.C278S substitution, result in substantial perinatal lethality, but survivors recapitulate the human phenotype of deafness and male infertility. CDC14A protein localizes to inner ear hair cell kinocilia, basal bodies and sound-transducing stereocilia. Auditory hair cells of postnatal Cdc14a mutants develop normally, but subsequently degenerate causing deafness. Kinocilia of germ-line mutants of mouse and zebrafish have normal lengths, which does not recapitulate the published cdc14aa knockdown morphant phenotype of short kinocilia. In mutant male mice, degeneration of seminiferous tubules and spermiation defects result in low sperm count, and abnormal sperm motility and morphology. These findings for the first time define a new monogenic syndrome of deafness and male infertility revealing an absolute requirement in vivo of vertebrate CDC14A phosphatase activity for hearing and male fertility.
Collapse
Affiliation(s)
- Ayesha Imtiaz
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA.,School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Alisha J Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular and Cellular Neurobiology, Section on Molecular and Cellular Signaling, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Rasheeda Bashir
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Ihtisham Bukhari
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Amal Bouzid
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax 3451, Tunisia
| | - Uzma Shaukat
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, 52242, IA, USA
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, 52242, IA, USA.,The Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran 1987513834, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran 1987513834, Iran
| | - Azra Maqsood
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA.,School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Elizabeth A Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | | | - Abdelaziz Tlili
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax 3451, Tunisia
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Merete Lund
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Taimur Chaudhry
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Atteeq U Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Matthew F Starost
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ali M Waryah
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, 52242, IA, USA.,The Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Sheikh Riazuddin
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54590, Pakistan.,Pakistan Institute of Medical Sciences, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan.,Laboratory for Research in Genetic Diseases, Burn Centre, Allama Iqbal Medical College, University of Health Sciences, Lahore 54590, Pakistan
| | - Saber Masmoudi
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax 3451, Tunisia
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Jensen VL, Lambacher NJ, Li C, Mohan S, Williams CL, Inglis PN, Yoder BK, Blacque OE, Leroux MR. Role for intraflagellar transport in building a functional transition zone. EMBO Rep 2018; 19:e45862. [PMID: 30429209 PMCID: PMC6280794 DOI: 10.15252/embr.201845862] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Genetic disorders caused by cilia dysfunction, termed ciliopathies, frequently involve the intraflagellar transport (IFT) system. Mutations in IFT subunits-including IFT-dynein motor DYNC2H1-impair ciliary structures and Hedgehog signalling, typically leading to "skeletal" ciliopathies such as Jeune asphyxiating thoracic dystrophy. Intriguingly, IFT gene mutations also cause eye, kidney and brain ciliopathies often linked to defects in the transition zone (TZ), a ciliary gate implicated in Hedgehog signalling. Here, we identify a C. elegans temperature-sensitive (ts) IFT-dynein mutant (che-3; human DYNC2H1) and use it to show a role for retrograde IFT in anterograde transport and ciliary maintenance. Unexpectedly, correct TZ assembly and gating function for periciliary proteins also require IFT-dynein. Using the reversibility of the novel ts-IFT-dynein, we show that restoring IFT in adults (post-developmentally) reverses defects in ciliary structure, TZ protein localisation and ciliary gating. Notably, this ability to reverse TZ defects declines as animals age. Together, our findings reveal a previously unknown role for IFT in TZ assembly in metazoans, providing new insights into the pathomechanism and potential phenotypic overlap between IFT- and TZ-associated ciliopathies.
Collapse
Affiliation(s)
- Victor L Jensen
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Nils J Lambacher
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Swetha Mohan
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Corey L Williams
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, AL, USA
| | - Peter N Inglis
- Department of Biology, Kwantlen Polytechnic University, Surrey, BC, Canada
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, AL, USA
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
14
|
Werner S, Pimenta-Marques A, Bettencourt-Dias M. Maintaining centrosomes and cilia. J Cell Sci 2017; 130:3789-3800. [DOI: 10.1242/jcs.203505] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Centrosomes and cilia are present in organisms from all branches of the eukaryotic tree of life. These structures are composed of microtubules and various other proteins, and are required for a plethora of cell processes such as structuring the cytoskeleton, sensing the environment, and motility. Deregulation of centrosome and cilium components leads to a wide range of diseases, some of which are incompatible with life. Centrosomes and cilia are thought to be very stable and can persist over long periods of time. However, these structures can disappear in certain developmental stages and diseases. Moreover, some centrosome and cilia components are quite dynamic. While a large body of knowledge has been produced regarding the biogenesis of these structures, little is known about how they are maintained. In this Review, we propose the existence of specific centrosome and cilia maintenance programs, which are regulated during development and homeostasis, and when deregulated can lead to disease.
Collapse
Affiliation(s)
- Sascha Werner
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Ana Pimenta-Marques
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
15
|
Hou Y, Witman GB. The N-terminus of IFT46 mediates intraflagellar transport of outer arm dynein and its cargo-adaptor ODA16. Mol Biol Cell 2017; 28:2420-2433. [PMID: 28701346 PMCID: PMC5576905 DOI: 10.1091/mbc.e17-03-0172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 01/23/2023] Open
Abstract
A transposon event, resulting in partial suppression of a Chlamydomonas IFT46 null mutant, allowed the function of the N-terminus of IFT46 in flagellar assembly to be explored. The IFT46 N-terminus is not required for IFT complex assembly but is required for transport of outer arm dynein and its adaptor, ODA16, into the flagellum. Cilia are assembled via intraflagellar transport (IFT). The IFT machinery is composed of motors and multisubunit particles, termed IFT-A and IFT-B, that carry cargo into the cilium. Knowledge of how the IFT subunits interact with their cargo is of critical importance for understanding how the unique ciliary domain is established. We previously reported a Chlamydomonas mutant, ift46-1, that fails to express the IFT-B protein IFT46, has greatly reduced levels of other IFT-B proteins, and assembles only very short flagella. A spontaneous suppression of ift46-1 restored IFT-B levels and enabled growth of longer flagella, but the flagella lacked outer dynein arms. Here we show that the suppression is due to insertion of the transposon MRC1 into the ift46-1 allele, causing the expression of a fusion protein including the IFT46 C-terminal 240 amino acids. The IFT46 C-terminus can assemble into and stabilize IFT-B but does not support transport of outer arm dynein into flagella. ODA16, a cargo adaptor specific for outer arm dynein, also fails to be imported into the flagella in the absence of the IFT46 N-terminus. We conclude that the IFT46 N-terminus, ODA16, and outer arm dynein interact for IFT of the latter.
Collapse
Affiliation(s)
- Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
16
|
Abstract
Nearly all cell types in mammals contain cilia, small rod-like or more elaborate structures that extend from the cell surface. Cilia house signaling proteins that allow the cell to sample their environment and respond appropriately. Mutations in ciliary genes alter the functions of a broad range of cell and tissue types, including sensory and central neurons, and underlie a collection of heterogeneous human disorders called ciliopathies. Here, I highlight the critical contributions of nearly three centuries of research in diverse organisms to our current knowledge of cilia function in sensory signaling and human disease.
Collapse
Affiliation(s)
- Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Affiliation(s)
- Maureen M. Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|