1
|
Rosello-Diez A, Menchero S. In preprints: oxygen and NFκB signals shift the timing of hindlimb formation. Development 2024; 151:DEV204578. [PMID: 39705658 DOI: 10.1242/dev.204578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Affiliation(s)
- Alberto Rosello-Diez
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
2
|
Huang L, Guo Q, Sun J, Wang Z, Jiang Y, Chang G, Bai H. New findings on the genetic basis of feathered legs in chickens: association of CUBN gene mutations with feathered-leg phenotype. J Anim Sci 2024; 102:skae252. [PMID: 39187978 PMCID: PMC11457056 DOI: 10.1093/jas/skae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/24/2024] [Indexed: 08/28/2024] Open
Abstract
Chickens are the most thoroughly domesticated vertebrate species, and after long-continued natural and artificial selection, they now show rich phenotypic diversity. In particular, feathered legs present in domestic chickens are a characteristic that is carefully selected by advanced breeders. Previous studies have identified the key mutations responsible for feathered legs on chromosomes 13 and 15; however, not all chickens can be easily distinguished based on these two markers. In this study, whole-genome resequencing of 29 Bamaxiaogu chickens (BXCs) yielded 12,201,978 valid single-nucleotide polymorphisms (SNPs) and 2,792,426 valid insertions and deletions (InDels). Population structure analysis based on SNPs revealed that the test samples came from the same natural population. Based on these findings, we used an SNP- and InDel-based genome-wide association study (GWAS) to investigate the genetic basis of feathered legs in chickens. GWAS results revealed that 2 SNPs located in the introns of cubilin (CUBN; SNP1, chr2:19885382T>A) and recombinant Ras suppressor protein 1 (RSU1) genes (SNP2, chr2:20002551G>A), as well as an InDel (InDel1, chr2:19884383TG>T) on CUBN, were all significantly associated with the presence of feathered legs. Diagnostic testing demonstrated that SNP1 effectively differentiated between chickens with feathered legs and those with clean legs (leg without feathers) within the BXC population and may thus be considered an effective marker of feathered legs in BXC. In contrast, other loci did not show the same discriminatory power. This study not only presents a new variant of feathered legs but also provides valuable novel insights into the underlying mechanisms of variation in the feathered-legs trait among chickens.
Collapse
Affiliation(s)
- Lan Huang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Colfeete of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qixin Guo
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Colfeete of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jialuo Sun
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Colfeete of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Colfeete of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Colfeete of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Colfeete of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Colfeete of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Al-Khindi T, Sherman MB, Kodama T, Gopal P, Pan Z, Kiraly JK, Zhang H, Goff LA, du Lac S, Kolodkin AL. The transcription factor Tbx5 regulates direction-selective retinal ganglion cell development and image stabilization. Curr Biol 2022; 32:4286-4298.e5. [PMID: 35998637 PMCID: PMC9560999 DOI: 10.1016/j.cub.2022.07.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022]
Abstract
The diversity of visual input processed by the mammalian visual system requires the generation of many distinct retinal ganglion cell (RGC) types, each tuned to a particular feature. The molecular code needed to generate this cell-type diversity is poorly understood. Here, we focus on the molecules needed to specify one type of retinal cell: the upward-preferring ON direction-selective ganglion cell (up-oDSGC) of the mouse visual system. Single-cell transcriptomic profiling of up- and down-oDSGCs shows that the transcription factor Tbx5 is selectively expressed in up-oDSGCs. The loss of Tbx5 in up-oDSGCs results in a selective defect in the formation of up-oDSGCs and a corresponding inability to detect vertical motion. A downstream effector of Tbx5, Sfrp1, is also critical for vertical motion detection but not up-oDSGC formation. These results advance our understanding of the molecular mechanisms that specify a rare retinal cell type and show how disrupting this specification leads to a corresponding defect in neural circuitry and behavior.
Collapse
Affiliation(s)
- Timour Al-Khindi
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael B Sherman
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Takashi Kodama
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Otolaryngology & Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Preethi Gopal
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhiwei Pan
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James K Kiraly
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hao Zhang
- Department of Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Loyal A Goff
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sascha du Lac
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Otolaryngology & Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Duboc V, Sulaiman FA, Feneck E, Kucharska A, Bell D, Holder-Espinasse M, Logan MPO. Tbx4 function during hindlimb development reveals a mechanism that explains the origins of proximal limb defects. Development 2021; 148:271903. [PMID: 34423345 PMCID: PMC8497778 DOI: 10.1242/dev.199580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
We dissect genetically a gene regulatory network that involves the transcription factors Tbx4, Pitx1 and Isl1 acting cooperatively to establish the hindlimb bud, and identify key differences in the pathways that initiate formation of the hindlimb and forelimb. Using live image analysis of murine limb mesenchyme cells undergoing chondrogenesis in micromass culture, we distinguish a series of changes in cellular behaviours and cohesiveness that are required for chondrogenic precursors to undergo differentiation. Furthermore, we provide evidence that the proximal hindlimb defects observed in Tbx4 mutant mice result from a failure in the early differentiation step of chondroprogenitors into chondrocytes, providing an explanation for the origins of proximally biased limb defects.
Collapse
Affiliation(s)
- Veronique Duboc
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Fatima A Sulaiman
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Eleanor Feneck
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Anna Kucharska
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Donald Bell
- Light Microscopy, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Malcolm P O Logan
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
5
|
Xu H, Xiang M, Qin Y, Cheng H, Chen D, Fu Q, Zhang KK, Xie L. Tbx5 inhibits hedgehog signaling in determination of digit identity. Hum Mol Genet 2021; 29:1405-1416. [PMID: 31373354 DOI: 10.1093/hmg/ddz185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 01/27/2023] Open
Abstract
Dominant TBX5 mutation causes Holt-Oram syndrome (HOS), which is characterized by limb defects in humans, but the underlying mechanistic basis is unclear. We used a mouse model with Tbx5 conditional knockdown in Hh-receiving cells (marked by Gli1+) during E8 to E10.5, a previously established model to study atrial septum defects, which displayed polydactyly or hypodactyly. The results suggested that Tbx5 is required for digit identity in a subset of limb mesenchymal cells. Specifically, Tbx5 deletion in this cell population decreased cell apoptosis and increased the proliferation of handplate mesenchymal cells. Furthermore, Tbx5 was found to negatively regulate the Hh-signaling activity through transcriptional regulation of Ptch1, a known Hh-signaling repressor. Repression of Hh-signaling through Smo co-mutation in Tbx5 heterozygotes rescued the limb defects, thus placing Tbx5 upstream of Hh-signaling in limb defects. This work reveals an important missing component necessary for understanding not only limb development but also the molecular and genetic mechanisms underlying HOS.
Collapse
Affiliation(s)
- Huiting Xu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA.,Hubei Cancer Hospital, Wuhan, Hubei 430079, China
| | - Menglan Xiang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Yushu Qin
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Henghui Cheng
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA.,Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Duohua Chen
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA.,Department of Food Science, Changsha University, Changsha, Hunan 410078, China
| | - Qiang Fu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA.,Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke K Zhang
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA.,Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Linglin Xie
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA.,Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Anterior lateral plate mesoderm gives rise to multiple tissues and requires tbx5a function in left-right asymmetry, migration dynamics, and cell specification of late-addition cardiac cells. Dev Biol 2021; 472:52-66. [PMID: 33482174 DOI: 10.1016/j.ydbio.2021.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 01/23/2023]
Abstract
In this study, we elucidate a single cell resolution fate map in the zebrafish in a sub-section of the anterior Lateral Plate Mesoderm (aLPM) at 18 hpf. Our results show that this tissue is not organized into segregated regions but gives rise to intermingled pericardial sac, peritoneum, pharyngeal arch and cardiac precursors. We further report upon asymmetrical contributions of lateral aLPM-derived heart precursors-specifically that twice as many heart precursors arise from the right side versus the left side of the embryo. Cell tracking analyses and large-scale cell labeling of the lateral aLPM corroborate these differences and show that the observed asymmetries are dependent upon Tbx5a expression. Previously, it was shown that cardiac looping was affected in Tbx5a knock-down and knock-out zebrafish (Garrity et al., 2002; Parrie et al., 2013); our present data also implicate tbx5a function in cell specification, establishment and maintenance of cardiac left-right asymmetry.
Collapse
|
7
|
Bernheim S, Meilhac SM. Mesoderm patterning by a dynamic gradient of retinoic acid signalling. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190556. [PMID: 32829679 PMCID: PMC7482219 DOI: 10.1098/rstb.2019.0556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Retinoic acid (RA), derived from vitamin A, is a major teratogen, clinically recognized in 1983. Identification of its natural presence in the embryo and dissection of its molecular mechanism of action became possible in the animal model with the advent of molecular biology, starting with the cloning of its nuclear receptor. In normal development, the dose of RA is tightly controlled to regulate organ formation. Its production depends on enzymes, which have a dynamic expression profile during embryonic development. As a small molecule, it diffuses rapidly and acts as a morphogen. Here, we review advances in deciphering how endogenously produced RA provides positional information to cells. We compare three mesodermal tissues, the limb, the somites and the heart, and discuss how RA signalling regulates antero-posterior and left-right patterning. A common principle is the establishment of its spatio-temporal dynamics by positive and negative feedback mechanisms and by antagonistic signalling by FGF. However, the response is cell-specific, pointing to the existence of cofactors and effectors, which are as yet incompletely characterized. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Ségolène Bernheim
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France
- INSERM UMR1163, 75015 Paris, France
- Université de Paris, Paris, France
| | - Sigolène M. Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France
- INSERM UMR1163, 75015 Paris, France
- Université de Paris, Paris, France
| |
Collapse
|
8
|
Skuplik I, Cobb J. Animal Models for Understanding Human Skeletal Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:157-188. [DOI: 10.1007/978-981-15-2389-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Abstract
Consistent asymmetries between the left and right sides of animal bodies are common. For example, the internal organs of vertebrates are left-right (L-R) asymmetric in a stereotyped fashion. Other structures, such as the skeleton and muscles, are largely symmetric. This Review considers how symmetries and asymmetries form alongside each other within the embryo, and how they are then maintained during growth. I describe how asymmetric signals are generated in the embryo. Using the limbs and somites as major examples, I then address mechanisms for protecting symmetrically forming tissues from asymmetrically acting signals. These examples reveal that symmetry should not be considered as an inherent background state, but instead must be actively maintained throughout multiple phases of embryonic patterning and organismal growth.
Collapse
Affiliation(s)
- Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
10
|
Shi Z, Xin H, Tian D, Lian J, Wang J, Liu G, Ran R, Shi S, Zhang Z, Shi Y, Deng Y, Hou C, Chen Y. Modeling human point mutation diseases in
Xenopus tropicalis
with a modified CRISPR/Cas9 system. FASEB J 2019; 33:6962-6968. [DOI: 10.1096/fj.201802661r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhaoying Shi
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Key Laboratory of Cell MicroenvironmentDepartment of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Huhu Xin
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Key Laboratory of Cell MicroenvironmentDepartment of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Dandan Tian
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Key Laboratory of Cell MicroenvironmentDepartment of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Jingru Lian
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Key Laboratory of Cell MicroenvironmentDepartment of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Jianhui Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Key Laboratory of Cell MicroenvironmentDepartment of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Guanghui Liu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Key Laboratory of Cell MicroenvironmentDepartment of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Rensen Ran
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Key Laboratory of Cell MicroenvironmentDepartment of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Songyuan Shi
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Key Laboratory of Cell MicroenvironmentDepartment of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Zixuan Zhang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Key Laboratory of Cell MicroenvironmentDepartment of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Yu Shi
- Department of Clinical LaboratoryChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Ministry of Education Key Laboratory of Child Development and DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of PediatricsChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Translational Medical Research in Cognitive DevelopmentLearning and Memory DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Yi Deng
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Chunhui Hou
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Key Laboratory of Cell MicroenvironmentDepartment of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Yonglong Chen
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Key Laboratory of Cell MicroenvironmentDepartment of BiologySouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
11
|
Grimes DT, Burdine RD. Left-Right Patterning: Breaking Symmetry to Asymmetric Morphogenesis. Trends Genet 2017; 33:616-628. [PMID: 28720483 DOI: 10.1016/j.tig.2017.06.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Vertebrates exhibit striking left-right (L-R) asymmetries in the structure and position of the internal organs. Symmetry is broken by motile cilia-generated asymmetric fluid flow, resulting in a signaling cascade - the Nodal-Pitx2 pathway - being robustly established within mesodermal tissue on the left side only. This pathway impinges upon various organ primordia to instruct their side-specific development. Recently, progress has been made in understanding both the breaking of embryonic L-R symmetry and how the Nodal-Pitx2 pathway controls lateralized cell differentiation, migration, and other aspects of cell behavior, as well as tissue-level mechanisms, that drive asymmetries in organ formation. Proper execution of asymmetric organogenesis is critical to health, making furthering our understanding of L-R development an important concern.
Collapse
Affiliation(s)
- Daniel T Grimes
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|