1
|
Shen A, Ektefaie Y, Jain L, Farhat M, Zitnik M. Phyla: Towards a Foundation Model for Phylogenetic Inference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633626. [PMID: 39896621 PMCID: PMC11785049 DOI: 10.1101/2025.01.17.633626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Deep learning has made strides in modeling protein sequences but often struggles to generalize beyond its training distribution. Current models focus on learning individual sequences through masked language modeling, but effective protein sequence analysis demands the ability to reason across sequences, a critical step in phylogenetic analysis. Training biological foundation models explicitly for intersequence reasoning could enhance their generalizability and performance for phylogenetic inference and other tasks in computational biology. Here, we report an ongoing development of PHYLA, an architecture that operates on an explicit, higher-level semantic representation of phylogenetic trees. PHYLA employs a hybrid state-space transformer architecture and a novel tree loss function to achieve state-of-the-art performance on sequence reasoning benchmarks and phylogenetic tree reconstruction. To validate PHYLA's capabilities, we applied it to reconstruct the tree of life, where PHYLA accurately reclassified archaeal organisms, such as Lokiarchaeota, as more closely related to bacteria-aligning with recent phylogenetic insights. PHYLA represents a step toward molecular sequence reasoning, emphasizing structured reasoning over memorization and advancing protein sequence analysis and phylogenetic inference.
Collapse
|
2
|
Di Giulio M. The existence of the two domains of life, Bacteria and Archaea, would in itself imply that LUCA and the ancestors of these domains were progenotes. Biosystems 2025; 247:105375. [PMID: 39577734 DOI: 10.1016/j.biosystems.2024.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
The length of the deepest branches of the tree of life would tend to support the hypothesis that the distance of the branch that separates the sequences of archaea from those of bacteria, i.e. the interdomain one, is longer than the intradomain ones, i.e. those that separate the sequences of archaea and those of bacteria within them. Why should interdomain distance be larger than intradomain distances? The fact that the rate of amino acid substitutions was slowed as the domains of life appeared would seem to imply an evolutionary transition. The slowdown in the speed of evolution that occurred during the formation of the two domains of life would be the consequence of the progenote- > cell evolutionary transition. Indeed, the evolutionary stage of the progenote being characterized by an accelerated tempo and mode of evolution might explain the considerable interdomain distance because the accumulation of many amino acid substitutions on this branch would indicate the progenote stage that is also characterized by a high rate of amino acid substitutions. Furthermore, the fact that intradomain distances are smaller than interdomain distances would corroborate the hypothesis of the achievement of cellularity at the appearance of the main phyletic lineages. Indeed, the cell stage, unlike the progenotic one, definitively establishes the relationship between the genotype and phenotype, lowering the rate of evolution. Therefore, the arguments presented lead to the conclusion that LUCA was a progenote.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Early Evolution of Life Department, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena, L'Aquila, Italy.
| |
Collapse
|
3
|
Deryusheva EI, Machulin AV, Surin AA, Kravchenko SV, Surin AK, Galzitskaya OV. RNA-Binding S1 Domain in Bacterial, Archaeal and Eukaryotic Proteins as One of the Evolutionary Markers of Symbiogenesis. Int J Mol Sci 2024; 25:13057. [PMID: 39684768 DOI: 10.3390/ijms252313057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The RNA-binding S1 domain is a β-barrel with a highly conserved RNA-binding site on its surface. This domain is an important part of the structures of different bacterial, archaeal, and eukaryotic proteins. A distinctive feature of the S1 domain is multiple presences (structural repeats) in proteins and protein complexes. Here, we have analyzed all available protein sequences in the UniProt database to obtain data on the distribution of bacterial, eukaryotic and archaeal proteins containing the S1 domain. Mainly, the S1 domain is found in bacterial proteins with the number of domains varying from one to eight. Eukaryotic proteins contain from one to fifteen S1 domains, while in archaeal proteins, only one S1 domain is identified. Analysis of eukaryotic proteins containing S1 domains revealed a group of chloroplast S1 ribosomal proteins (ChRpS1) with characteristic properties of bacterial S1 ribosomal proteins (RpS1) from the Cyanobacteria. Also, in a separate group, chloroplast and mitochondrial elongation factor Ts containing two S1 structural domains were assigned. For mitochondrial elongation factor Ts, the features of S1 in comparison with the RpS1 from Cyanobacteria phylum and the Alphaproteobacteria class were revealed. The data obtained allow us to consider the S1 domain as one of the evolutionary markers of the symbiogenesis of bacterial and eukaryotic organisms.
Collapse
Affiliation(s)
- Evgenia I Deryusheva
- Institute for Biological Instrumentation, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Science", Russian Academy of Science, 142290 Pushchino, Russia
| | - Andrey V Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Science", Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey A Surin
- Faculty of Informatics and Computer Engineering, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Sergey V Kravchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Alexey K Surin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Oxana V Galzitskaya
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia
| |
Collapse
|
4
|
Forterre P. The Last Universal Common Ancestor of Ribosome-Encoding Organisms: Portrait of LUCA. J Mol Evol 2024; 92:550-583. [PMID: 39158619 DOI: 10.1007/s00239-024-10186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024]
Abstract
The existence of LUCA in the distant past is the logical consequence of the binary mechanism of cell division. The biosphere in which LUCA and contemporaries were living was the product of a long cellular evolution from the origin of life to the second age of the RNA world. A parsimonious scenario suggests that the molecular fabric of LUCA was much simpler than those of modern organisms, explaining why the evolutionary tempo was faster at the time of LUCA than it was during the diversification of the three domains. Although LUCA was possibly equipped with a RNA genome and most likely lacked an ATP synthase, it was already able to perform basic metabolic functions and to produce efficient proteins. However, the proteome of LUCA and its inferred metabolism remains to be correctly explored by in-depth phylogenomic analyses and updated datasets. LUCA was probably a mesophile or a moderate thermophile since phylogenetic analyses indicate that it lacked reverse gyrase, an enzyme systematically present in all hyperthermophiles. The debate about the position of Eukarya in the tree of life, either sister group to Archaea or descendants of Archaea, has important implications to draw the portrait of LUCA. In the second alternative, one can a priori exclude the presence of specific eukaryotic features in LUCA. In contrast, if Archaea and Eukarya are sister group, some eukaryotic features, such as the spliceosome, might have been present in LUCA and later lost in Archaea and Bacteria. The nature of the LUCA virome is another matter of debate. I suggest here that DNA viruses only originated during the diversification of the three domains from an RNA-based LUCA to explain the odd distribution pattern of DNA viruses in the tree of life.
Collapse
|
5
|
Pallen MJ. The dynamic history of prokaryotic phyla: discovery, diversity and division. Int J Syst Evol Microbiol 2024; 74:006508. [PMID: 39250184 PMCID: PMC11382960 DOI: 10.1099/ijsem.0.006508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Here, I review the dynamic history of prokaryotic phyla. Following leads set by Darwin, Haeckel and Woese, the concept of phylum has evolved from a group sharing common phenotypes to a set of organisms sharing a common ancestry, with modern taxonomy based on phylogenetic classifications drawn from macromolecular sequences. Phyla came as surprising latecomers to the formalities of prokaryotic nomenclature in 2021. Since then names have been validly published for 46 prokaryotic phyla, replacing some established names with neologisms, prompting criticism and debate within the scientific community. Molecular barcoding enabled phylogenetic analysis of microbial ecosystems without cultivation, leading to the identification of candidate divisions (or phyla) from diverse environments. The introduction of metagenome-assembled genomes marked a significant advance in identifying and classifying uncultured microbial phyla. The lumper-splitter dichotomy has led to disagreements, with experts cautioning against the pressure to create a profusion of new phyla and prominent databases adopting a conservative stance. The Candidatus designation has been widely used to provide provisional status to uncultured prokaryotic taxa, with phyla named under this convention now clearly surpassing those with validly published names. The Genome Taxonomy Database (GTDB) has offered a stable, standardized prokaryotic taxonomy with normalized taxonomic ranks, which has led to both lumping and splitting of pre-existing phyla. The GTDB framework introduced unwieldy alphanumeric placeholder labels, prompting recent publication of over 100 user-friendly Latinate names for unnamed prokaryotic phyla. Most candidate phyla remain 'known unknowns', with limited knowledge of their genomic diversity, ecological roles, or environments. Whether phyla still reflect significant evolutionary and ecological partitions across prokaryotic life remains an area of active debate. However, phyla remain of practical importance for microbiome analyses, particularly in clinical research. Despite potential diminishing returns in discovery of biodiversity, prokaryotic phyla offer extensive research opportunities for microbiologists for the foreseeable future.
Collapse
Affiliation(s)
- Mark J. Pallen
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
| |
Collapse
|
6
|
Vosseberg J, van Hooff JJE, Köstlbacher S, Panagiotou K, Tamarit D, Ettema TJG. The emerging view on the origin and early evolution of eukaryotic cells. Nature 2024; 633:295-305. [PMID: 39261613 DOI: 10.1038/s41586-024-07677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/05/2024] [Indexed: 09/13/2024]
Abstract
The origin of the eukaryotic cell, with its compartmentalized nature and generally large size compared with bacterial and archaeal cells, represents a cornerstone event in the evolution of complex life on Earth. In a process referred to as eukaryogenesis, the eukaryotic cell is believed to have evolved between approximately 1.8 and 2.7 billion years ago from its archaeal ancestors, with a symbiosis with a bacterial (proto-mitochondrial) partner being a key event. In the tree of life, the branch separating the first from the last common ancestor of all eukaryotes is long and lacks evolutionary intermediates. As a result, the timing and driving forces of the emergence of complex eukaryotic features remain poorly understood. During the past decade, environmental and comparative genomic studies have revealed vital details about the identity and nature of the host cell and the proto-mitochondrial endosymbiont, enabling a critical reappraisal of hypotheses underlying the symbiotic origin of the eukaryotic cell. Here we outline our current understanding of the key players and events underlying the emergence of cellular complexity during the prokaryote-to-eukaryote transition and discuss potential avenues of future research that might provide new insights into the enigmatic origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Julian Vosseberg
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jolien J E van Hooff
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kassiani Panagiotou
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Daniel Tamarit
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
7
|
Harish A. Protein structures unravel the signatures and patterns of deep time evolution. QRB DISCOVERY 2024; 5:e3. [PMID: 38616890 PMCID: PMC11016368 DOI: 10.1017/qrd.2024.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 04/16/2024] Open
Abstract
The formulation and testing of hypotheses using 'big biology data' often lie at the interface of computational biology and structural biology. The Protein Data Bank (PDB), which was established about 50 years ago, catalogs three-dimensional (3D) shapes of organic macromolecules and showcases a structural view of biology. The comparative analysis of the structures of homologs, particularly of proteins, from different species has significantly improved the in-depth analyses of molecular and cell biological questions. In addition, computational tools that were developed to analyze the 'protein universe' are providing the means for efficient resolution of longstanding debates in cell and molecular evolution. In celebrating the golden jubilee of the PDB, much has been written about the transformative impact of PDB on a broad range of fields of scientific inquiry and how structural biology transformed the study of the fundamental processes of life. Yet, the transforming influence of PDB on one field of inquiry of fundamental interest-the reconstruction of the distant biological past-has gone almost unnoticed. Here, I discuss the recent advances to highlight how insights and tools of structural biology are bearing on the data required for the empirical resolution of vigorously debated and apparently contradicting hypotheses in evolutionary biology. Specifically, I show that evolutionary characters defined by protein structure are superior compared to conventional sequence characters for reliable, data-driven resolution of competing hypotheses about the origins of the major clades of life and evolutionary relationship among those clades. Since the better quality data unequivocally support two primary domains of life, it is imperative that the primary classification of life be revised accordingly.
Collapse
|
8
|
Göker M, Oren A. Valid publication of names of two domains and seven kingdoms of prokaryotes. Int J Syst Evol Microbiol 2024; 74. [PMID: 38252124 DOI: 10.1099/ijsem.0.006242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
The International Code of Nomenclature of Prokaryotes (ICNP) now includes the categories domain and kingdom. For the purpose of the valid publication of their names under the ICNP, we consider here the two known domains, 'Bacteria' and 'Archaea', as well as a number of taxa suitable for the rank of kingdom, based on previous phylogenetic and taxonomic studies. It is proposed to subdivide the domain Bacteria into the kingdoms Bacillati, Fusobacteriati, Pseudomonadati and Thermotogati. This arrangement reflects contemporary phylogenetic hypotheses as well as previous taxonomic proposals based on cell wall structure, including 'diderms' vs. 'monoderms', Gracilicutes vs. Firmicutes, 'Negibacteria' vs. 'Unibacteria', 'Hydrobacteria' vs. 'Terrabacteria', and 'Hydrobacterida' vs. 'Terrabacterida'. The domain Archaea is proposed to include the kingdoms Methanobacteriati, Nanobdellati and Thermoproteati, reflecting the previous division into 'Euryarchaeota', 'DPANN superphylum' and 'TACK superphylum'.
Collapse
Affiliation(s)
- Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| | - Aharon Oren
- The Hebrew University of Jerusalem, The Institute of Life Sciences, Edmond J. Safra Campus - Givat Ram, 9190401 Jerusalem, Israel
| |
Collapse
|
9
|
Rangel LT, Fournier GP. Fast-Evolving Alignment Sites Are Highly Informative for Reconstructions of Deep Tree of Life Phylogenies. Microorganisms 2023; 11:2499. [PMID: 37894157 PMCID: PMC10609509 DOI: 10.3390/microorganisms11102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The trimming of fast-evolving sites, often known as "slow-fast" analysis, is broadly used in microbial phylogenetic reconstruction under the assumption that fast-evolving sites do not retain an accurate phylogenetic signal due to substitution saturation. Therefore, removing sites that have experienced multiple substitutions would improve the signal-to-noise ratio in phylogenetic analyses, with the remaining slower-evolving sites preserving a more reliable record of evolutionary relationships. Here, we show that, contrary to this assumption, even the fastest-evolving sites present in the conserved proteins often used in Tree of Life studies contain reliable and valuable phylogenetic information, and that the trimming of such sites can negatively impact the accuracy of phylogenetic reconstruction. Simulated alignments modeled after ribosomal protein datasets used in Tree of Life studies consistently show that slow-evolving sites are less likely to recover true bipartitions than even the fastest-evolving sites. Furthermore, site-specific substitution rates are positively correlated with the frequency of accurately recovered short-branched bipartitions, as slowly evolving sites are less likely to have experienced substitutions along these intervals. Using published Tree of Life sequence alignment datasets, we also show that both slow- and fast-evolving sites contain similarly inconsistent phylogenetic signals, and that, for fast-evolving sites, this inconsistency can be attributed to poor alignment quality. Furthermore, trimming fast sites, slow sites, or both is shown to have a substantial impact on phylogenetic reconstruction across multiple evolutionary models. This is perhaps most evident in the resulting placements of the Eukarya and Asgardarchaeota groups, which are especially sensitive to the implementation of different trimming schemes.
Collapse
Affiliation(s)
- L. Thibério Rangel
- Department of Earth, Atmospheric, & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | | |
Collapse
|
10
|
Tirumalai MR, Sivaraman RV, Kutty LA, Song EL, Fox GE. Ribosomal Protein Cluster Organization in Asgard Archaea. ARCHAEA (VANCOUVER, B.C.) 2023; 2023:5512414. [PMID: 38314098 PMCID: PMC10833476 DOI: 10.1155/2023/5512414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 02/06/2024]
Abstract
It has been proposed that the superphylum of Asgard Archaea may represent a historical link between the Archaea and Eukarya. Following the discovery of the Archaea, it was soon appreciated that archaeal ribosomes were more similar to those of Eukarya rather than Bacteria. Coupled with other eukaryotic-like features, it has been suggested that the Asgard Archaea may be directly linked to eukaryotes. However, the genomes of Bacteria and non-Asgard Archaea generally organize ribosome-related genes into clusters that likely function as operons. In contrast, eukaryotes typically do not employ an operon strategy. To gain further insight into conservation of the r-protein genes, the genome order of conserved ribosomal protein (r-protein) coding genes was identified in 17 Asgard genomes (thirteen complete genomes and four genomes with less than 20 contigs) and compared with those found previously in non-Asgard archaeal and bacterial genomes. A universal core of two clusters of 14 and 4 cooccurring r-proteins, respectively, was identified in both the Asgard and non-Asgard Archaea. The equivalent genes in the E. coli version of the cluster are found in the S10 and spc operons. The large cluster of 14 r-protein genes (uS19-uL22-uS3-uL29-uS17 from the S10 operon and uL14-uL24-uL5-uS14-uS8-uL6-uL18-uS5-uL30-uL15 from the spc operon) occurs as a complete set in the genomes of thirteen Asgard genomes (five Lokiarchaeotes, three Heimdallarchaeotes, one Odinarchaeote, and four Thorarchaeotes). Four less conserved clusters with partial bacterial equivalents were found in the Asgard. These were the L30e (str operon in Bacteria) cluster, the L18e (alpha operon in Bacteria) cluster, the S24e-S27ae-rpoE1 cluster, and the L31e, L12..L1 cluster. Finally, a new cluster referred to as L7ae was identified. In many cases, r-protein gene clusters/operons are less conserved in their organization in the Asgard group than in other Archaea. If this is generally true for nonribosomal gene clusters, the results may have implications for the history of genome organization. In particular, there may have been an early transition to or from the operon approach to genome organization. Other nonribosomal cellular features may support different relationships. For this reason, it may be important to consider ribosome features separately.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| |
Collapse
|
11
|
Pichard-Kostuch A, Da Cunha V, Oberto J, Sauguet L, Basta T. The universal Sua5/TsaC family evolved different mechanisms for the synthesis of a key tRNA modification. Front Microbiol 2023; 14:1204045. [PMID: 37415821 PMCID: PMC10321239 DOI: 10.3389/fmicb.2023.1204045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
TsaC/Sua5 family of enzymes catalyzes the first step in the synthesis of N6-threonyl-carbamoyl adenosine (t6A) one of few truly ubiquitous tRNA modifications important for translation accuracy. TsaC is a single domain protein while Sua5 proteins contains a TsaC-like domain and an additional SUA5 domain of unknown function. The emergence of these two proteins and their respective mechanisms for t6A synthesis remain poorly understood. Here, we performed phylogenetic and comparative sequence and structure analysis of TsaC and Sua5 proteins. We confirm that this family is ubiquitous but the co-occurrence of both variants in the same organism is rare and unstable. We further find that obligate symbionts are the only organisms lacking sua5 or tsaC genes. The data suggest that Sua5 was the ancestral version of the enzyme while TsaC arose via loss of the SUA5 domain that occurred multiple times in course of evolution. Multiple losses of one of the two variants in combination with horizontal gene transfers along a large range of phylogenetic distances explains the present day patchy distribution of Sua5 and TsaC. The loss of the SUA5 domain triggered adaptive mutations affecting the substrate binding in TsaC proteins. Finally, we identified atypical Sua5 proteins in Archaeoglobi archaea that seem to be in the process of losing the SUA5 domain through progressive gene erosion. Together, our study uncovers the evolutionary path for emergence of these homologous isofunctional enzymes and lays the groundwork for future experimental studies on the function of TsaC/Sua5 proteins in maintaining faithful translation.
Collapse
Affiliation(s)
- Adeline Pichard-Kostuch
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Violette Da Cunha
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jacques Oberto
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ludovic Sauguet
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Tamara Basta
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Eme L, Tamarit D, Caceres EF, Stairs CW, De Anda V, Schön ME, Seitz KW, Dombrowski N, Lewis WH, Homa F, Saw JH, Lombard J, Nunoura T, Li WJ, Hua ZS, Chen LX, Banfield JF, John ES, Reysenbach AL, Stott MB, Schramm A, Kjeldsen KU, Teske AP, Baker BJ, Ettema TJG. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 2023; 618:992-999. [PMID: 37316666 PMCID: PMC10307638 DOI: 10.1038/s41586-023-06186-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.
Collapse
Affiliation(s)
- Laura Eme
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Laboratoire Écologie, Systématique, Évolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Daniel Tamarit
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Eva F Caceres
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Courtney W Stairs
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Biology, Lund University, Lund, Sweden
| | - Valerie De Anda
- Department of Marine Science, Marine Science Institute, University of Texas Austin, Port Aransas, TX, USA
- Department of Integrative Biology, University of Texas Austin, Austin, TX, USA
| | - Max E Schön
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kiley W Seitz
- Department of Marine Science, Marine Science Institute, University of Texas Austin, Port Aransas, TX, USA
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nina Dombrowski
- Department of Marine Science, Marine Science Institute, University of Texas Austin, Port Aransas, TX, USA
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands
| | - William H Lewis
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Felix Homa
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jimmy H Saw
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Jonathan Lombard
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, PR China
| | - Lin-Xing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Emily St John
- Department of Biology, Portland State University, Portland, OR, USA
| | | | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Kasper U Kjeldsen
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas P Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Brett J Baker
- Department of Marine Science, Marine Science Institute, University of Texas Austin, Port Aransas, TX, USA
- Department of Integrative Biology, University of Texas Austin, Austin, TX, USA
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Spang A. Is an archaeon the ancestor of eukaryotes? Environ Microbiol 2022; 25:775-779. [PMID: 36562617 DOI: 10.1111/1462-2920.16323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The origin of complex cellular life is a key puzzle in evolutionary research, which has broad implications for various neighbouring scientific disciplines. Naturally, views on this topic vary widely depending on the world view and context from which this topic is approached. In the following, I will share my perspective about our current scientific knowledge on the origin of eukaryotic cells, that is, eukaryogenesis, from a biological point of view focusing on the question as to whether an archaeon was the ancestor of eukaryotes.
Collapse
Affiliation(s)
- Anja Spang
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, AB Den Burg, The Netherlands.,Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Forterre P. Carl Woese: Still ahead of our time. MLIFE 2022; 1:359-367. [PMID: 38818481 PMCID: PMC10989812 DOI: 10.1002/mlf2.12049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 06/01/2024]
Affiliation(s)
- Patrick Forterre
- Institut Pasteur, Departement de MicrobiologieParisFrance
- Institute for Integrative Biology of the Cell, équipeBiologie Cellulaire des Archées, Département de MicrobiologieGif sur YvetteFrance
| |
Collapse
|
15
|
Guglielmini J, Gaia M, Da Cunha V, Criscuolo A, Krupovic M, Forterre P. Viral origin of eukaryotic type IIA DNA topoisomerases. Virus Evol 2022; 8:veac097. [PMID: 36533149 PMCID: PMC9752973 DOI: 10.1093/ve/veac097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 08/24/2023] Open
Abstract
Type II DNA topoisomerases of the family A (Topo IIAs) are present in all Bacteria (DNA gyrase) and eukaryotes. In eukaryotes, they play a major role in transcription, DNA replication, chromosome segregation, and modulation of chromosome architecture. The origin of eukaryotic Topo IIA remains mysterious since they are very divergent from their bacterial homologs and have no orthologs in Archaea. Interestingly, eukaryotic Topo IIAs have close homologs in viruses of the phylum Nucleocytoviricota, an expansive assemblage of large and giant viruses formerly known as the nucleocytoplasmic large DNA viruses. Topo IIAs are also encoded by some bacterioviruses of the class Caudoviricetes (tailed bacteriophages). To elucidate the origin of the eukaryotic Topo IIA, we performed in-depth phylogenetic analyses on a dataset combining viral and cellular Topo IIA homologs. Topo IIAs encoded by Bacteria and eukaryotes form two monophyletic groups nested within Topo IIA encoded by Caudoviricetes and Nucleocytoviricota, respectively. Importantly, Nucleocytoviricota remained well separated from eukaryotes after removing both Bacteria and Caudoviricetes from the data set, indicating that the separation of Nucleocytoviricota and eukaryotes is probably not due to long-branch attraction artifact. The topologies of our trees suggest that the eukaryotic Topo IIA was probably acquired from an ancestral member of the Nucleocytoviricota of the class Megaviricetes, before the emergence of the last eukaryotic common ancestor (LECA). This result further highlights a key role of these viruses in eukaryogenesis and suggests that early proto-eukaryotes used a Topo IIB instead of a Topo IIA for solving their DNA topological problems.
Collapse
Affiliation(s)
| | - Morgan Gaia
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, 91000 Evry, France
| | - Violette Da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Alexis Criscuolo
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Archaeal Virology Unit, 75015 Paris, France
| | - Patrick Forterre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Archaeal Virology Unit, 75015 Paris, France
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| |
Collapse
|
16
|
Villain P, Catchpole R, Forterre P, Oberto J, da Cunha V, Basta T. Expanded dataset reveals the emergence and evolution of DNA gyrase in Archaea. Mol Biol Evol 2022; 39:6639447. [PMID: 35811376 PMCID: PMC9348778 DOI: 10.1093/molbev/msac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
DNA gyrase is a type II topoisomerase with the unique capacity to introduce negative supercoiling in DNA. In bacteria, DNA gyrase has an essential role in the homeostatic regulation of supercoiling. While ubiquitous in bacteria, DNA gyrase was previously reported to have a patchy distribution in Archaea but its emergent function and evolutionary history in this domain of life remains elusive. In this study, we used phylogenomic approaches and an up-to date sequence dataset to establish global and archaea-specific phylogenies of DNA gyrases. The most parsimonious evolutionary scenario infers that DNA gyrase was introduced into the lineage leading to Euryarchaeal group II via a single horizontal gene transfer from a bacterial donor which we identified as an ancestor of Gracilicutes and/or Terrabacteria. The archaea-focused trees indicate that DNA gyrase spread from Euryarchaeal group II to some DPANN and Asgard lineages via rare horizontal gene transfers. The analysis of successful recent transfers suggests a requirement for syntropic or symbiotic/parasitic relationship between donor and recipient organisms. We further show that the ubiquitous archaeal Topoisomerase VI may have co-evolved with DNA gyrase to allow the division of labor in the management of topological constraints. Collectively, our study reveals the evolutionary history of DNA gyrase in Archaea and provides testable hypotheses to understand the prerequisites for successful establishment of DNA gyrase in a naive archaeon and the associated adaptations in the management of topological constraints.
Collapse
Affiliation(s)
- Paul Villain
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ryan Catchpole
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Patrick Forterre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.,Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Jacques Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Violette da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Tamara Basta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Medvedeva S, Sun J, Yutin N, Koonin EV, Nunoura T, Rinke C, Krupovic M. Three families of Asgard archaeal viruses identified in metagenome-assembled genomes. Nat Microbiol 2022; 7:962-973. [PMID: 35760839 PMCID: PMC11165672 DOI: 10.1038/s41564-022-01144-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Asgardarchaeota harbour many eukaryotic signature proteins and are widely considered to represent the closest archaeal relatives of eukaryotes. Whether similarities between Asgard archaea and eukaryotes extend to their viromes remains unknown. Here we present 20 metagenome-assembled genomes of Asgardarchaeota from deep-sea sediments of the basin off the Shimokita Peninsula, Japan. By combining a CRISPR spacer search of metagenomic sequences with phylogenomic analysis, we identify three family-level groups of viruses associated with Asgard archaea. The first group, verdandiviruses, includes tailed viruses of the class Caudoviricetes (realm Duplodnaviria); the second, skuldviruses, consists of viruses with predicted icosahedral capsids of the realm Varidnaviria; and the third group, wyrdviruses, is related to spindle-shaped viruses previously identified in other archaea. More than 90% of the proteins encoded by these viruses of Asgard archaea show no sequence similarity to proteins encoded by other known viruses. Nevertheless, all three proposed families consist of viruses typical of prokaryotes, providing no indication of specific evolutionary relationships between viruses infecting Asgard archaea and eukaryotes. Verdandiviruses and skuldviruses are likely to be lytic, whereas wyrdviruses potentially establish chronic infection and are released without host cell lysis. All three groups of viruses are predicted to play important roles in controlling Asgard archaea populations in deep-sea ecosystems.
Collapse
Affiliation(s)
- Sofia Medvedeva
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, Russia
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Evolutionary Biology of the Microbial Cell Unit, Paris, France
| | - Jiarui Sun
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
| |
Collapse
|
18
|
Abstract
Members of candidate Asgardarchaeota superphylum appear to share numerous eukaryotic-like attributes thus being broadly explored for their relevance to eukaryogenesis. On the contrast, the ecological roles of Asgard archaea remains understudied. Asgard archaea have been frequently associated to low-oxygen aquatic sedimentary environments worldwide spanning a broad but not extreme salinity range. To date, the available information on diversity and potential biogeochemical roles of Asgardarchaeota mostly sourced from marine habitats and to a much lesser extend from true saline environments (i.e., > 3% w/v total salinity). Here, we provide an overview on diversity and ecological implications of Asgard archaea distributed across saline environments and briefly explore their metagenome-resolved potential for osmoadaptation. Loki-, Thor- and Heimdallarchaeota are the dominant Asgard clades in saline habitats where they might employ anaerobic/microaerophilic organic matter degradation and autotrophic carbon fixation. Homologs of primary solute uptake ABC transporters seemingly prevail in Thorarchaeota, whereas those putatively involved in trehalose and ectoine biosynthesis were mostly inferred in Lokiarchaeota. We speculate that Asgardarchaeota might adopt compatible solute-accumulating ('salt-out') strategy as response to salt stress. Our current understanding on the distribution, ecology and salt-adaptive strategies of Asgardarchaeota in saline environments are, however, limited by insufficient sampling and incompleteness of the available metagenome-assembled genomes. Extensive sampling combined with 'omics'- and cultivation-based approaches seem, therefore, crucial to gain deeper knowledge on this particularly intriguing archaeal lineage.
Collapse
|
19
|
Liu Y, Li M. The unstable evolutionary position of Korarchaeota and its relationship with other TACK and Asgard archaea. MLIFE 2022; 1:218-222. [PMID: 38817676 PMCID: PMC10989867 DOI: 10.1002/mlf2.12020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/24/2022] [Accepted: 04/18/2022] [Indexed: 06/01/2024]
Abstract
The applications of marker gene concatenation have been advanced to resolve the key questions in the Tree of Life. However, the interphylum evolutionary relationship between Korarchaeota of TACK (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) and Asgard archaea remains uncertain. We applied a marker gene ranking procedure to examine their evolutionary history. Our updated trees showed confident placements of (1) Korarchaeota as the basal branch to other TACK archaea and as a sister group to Asgard archaea; (2) Njordarchaeota at basal branch to Korarchaeota instead of within Asgard archaea. They highlight the importance of evaluating marker genes for phylogeny inference of the Archaea domain.
Collapse
Affiliation(s)
- Yang Liu
- Archaeal Biology Center, Institute for Advanced StudyShenzhen UniversityShenzhenChina
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced StudyShenzhen UniversityShenzhenChina
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced StudyShenzhen UniversityShenzhenChina
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced StudyShenzhen UniversityShenzhenChina
| |
Collapse
|
20
|
Spang A, Mahendrarajah TA, Offre P, Stairs CW. Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere. Genome Biol Evol 2022; 14:evac034. [PMID: 35218347 PMCID: PMC9169541 DOI: 10.1093/gbe/evac034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
The tree of life (TOL) is a powerful framework to depict the evolutionary history of cellular organisms through time, from our microbial origins to the diversification of multicellular eukaryotes that shape the visible biosphere today. During the past decades, our perception of the TOL has fundamentally changed, in part, due to profound methodological advances, which allowed a more objective approach to studying organismal and viral diversity and led to the discovery of major new branches in the TOL as well as viral lineages. Phylogenetic and comparative genomics analyses of these data have, among others, revolutionized our understanding of the deep roots and diversity of microbial life, the origin of the eukaryotic cell, eukaryotic diversity, as well as the origin, and diversification of viruses. In this review, we provide an overview of some of the recent discoveries on the evolutionary history of cellular organisms and their viruses and discuss a variety of complementary techniques that we consider crucial for making further progress in our understanding of the TOL and its interconnection with the virosphere.
Collapse
Affiliation(s)
- Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Courtney W Stairs
- Department of Biology, Microbiology research group, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Jüttner M, Ferreira-Cerca S. Looking through the Lens of the Ribosome Biogenesis Evolutionary History: Possible Implications for Archaeal Phylogeny and Eukaryogenesis. Mol Biol Evol 2022; 39:msac054. [PMID: 35275997 PMCID: PMC8997704 DOI: 10.1093/molbev/msac054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Our understanding of microbial diversity and its evolutionary relationships has increased substantially over the last decade. Such an understanding has been greatly fueled by culture-independent metagenomics analyses. However, the outcome of some of these studies and their biological and evolutionary implications, such as the origin of the eukaryotic lineage from the recently discovered archaeal Asgard superphylum, is debated. The sequences of the ribosomal constituents are amongst the most used phylogenetic markers. However, the functional consequences underlying the analysed sequence diversity and their putative evolutionary implications are essentially not taken into consideration. Here, we propose to exploit additional functional hallmarks of ribosome biogenesis to help disentangle competing evolutionary hypotheses. Using selected examples, such as the multiple origins of halophily in archaea or the evolutionary relationship between the Asgard archaea and Eukaryotes, we illustrate and discuss how function-aware phylogenetic framework can contribute to refining our understanding of archaeal phylogeny and the origin of eukaryotic cells.
Collapse
Affiliation(s)
- Michael Jüttner
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Meyer BH, Adam PS, Wagstaff BA, Kolyfetis GE, Probst AJ, Albers SV, Dorfmueller HC. Agl24 is an ancient archaeal homolog of the eukaryotic N-glycan chitobiose synthesis enzymes. eLife 2022; 11:e67448. [PMID: 35394422 PMCID: PMC8993221 DOI: 10.7554/elife.67448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/13/2022] [Indexed: 11/13/2022] Open
Abstract
Protein N-glycosylation is a post-translational modification found in organisms of all domains of life. The crenarchaeal N-glycosylation begins with the synthesis of a lipid-linked chitobiose core structure, identical to that in Eukaryotes, although the enzyme catalyzing this reaction remains unknown. Here, we report the identification of a thermostable archaeal β-1,4-N-acetylglucosaminyltransferase, named archaeal glycosylation enzyme 24 (Agl24), responsible for the synthesis of the N-glycan chitobiose core. Biochemical characterization confirmed its function as an inverting β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol glycosyltransferase. Substitution of a conserved histidine residue, found also in the eukaryotic and bacterial homologs, demonstrated its functional importance for Agl24. Furthermore, bioinformatics and structural modeling revealed similarities of Agl24 to the eukaryotic Alg14/13 and a distant relation to the bacterial MurG, which are catalyzing the same or a similar reaction, respectively. Phylogenetic analysis of Alg14/13 homologs indicates that they are ancient in Eukaryotes, either as a lateral transfer or inherited through eukaryogenesis.
Collapse
Affiliation(s)
- Benjamin H Meyer
- Environmental Microbiology and Biotechnology (EMB), Aquatic Microbial Ecology, University of Duisburg-EssenEssenGermany
- Division of Molecular Microbiology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Molecular Biology of Archaea, Faculty of Biology, University of FreiburgFreiburgGermany
| | - Panagiotis S Adam
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry University Duisburg-EssenEssenGermany
| | - Ben A Wagstaff
- Division of Molecular Microbiology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - George E Kolyfetis
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of AthensAthensGreece
| | - Alexander J Probst
- Centre of Water and Environmental Research (ZWU), University of Duisburg-EssenEssenGermany
| | - Sonja V Albers
- Molecular Biology of Archaea, Faculty of Biology, University of FreiburgFreiburgGermany
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
23
|
Da Cunha V, Gaïa M, Forterre P. The expanding Asgard archaea and their elusive relationships with Eukarya. MLIFE 2022; 1:3-12. [PMID: 38818326 PMCID: PMC10989751 DOI: 10.1002/mlf2.12012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 06/01/2024]
Abstract
The discovery of Asgard archaea and the exploration of their diversity over the last 6 years have deeply impacted the scientific community working on eukaryogenesis, rejuvenating an intense debate on the topology of the universal tree of life (uTol). Here, we discuss how this debate is impacted by two recent publications that expand the number of Asgard lineages and eukaryotic signature proteins (ESPs). We discuss some of the main difficulties that can impair the phylogenetic reconstructions of the uTol and suggest that the debate about its topology is not settled. We notably hypothesize the existence of horizontal gene transfers between ancestral Asgards and proto-eukaryotes that could result in the observed abnormal behaviors of some Asgard ESPs and universal marker proteins. This hypothesis is relevant regardless of the scenario considered regarding eukaryogenesis. It implies that the Asgards were already diversified before the last eukaryotic common ancestor and shared the same biotopes with proto-eukaryotes. We suggest that some Asgards might be still living in symbiosis today with modern Eukarya.
Collapse
Affiliation(s)
- Violette Da Cunha
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Morgan Gaïa
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRSUniv. Evry, Université Paris‐SaclayEvryFrance
| | - Patrick Forterre
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
- Département de Microbiologie, Institut PasteurParisFrance
| |
Collapse
|
24
|
Moody ERR, Mahendrarajah TA, Dombrowski N, Clark JW, Petitjean C, Offre P, Szöllősi GJ, Spang A, Williams TA. An estimate of the deepest branches of the tree of life from ancient vertically-evolving genes. eLife 2022; 11:66695. [PMID: 35190025 PMCID: PMC8890751 DOI: 10.7554/elife.66695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Core gene phylogenies provide a window into early evolution, but different gene sets and analytical methods have yielded substantially different views of the tree of life. Trees inferred from a small set of universal core genes have typically supported a long branch separating the archaeal and bacterial domains. By contrast, recent analyses of a broader set of non-ribosomal genes have suggested that Archaea may be less divergent from Bacteria, and that estimates of inter-domain distance are inflated due to accelerated evolution of ribosomal proteins along the inter-domain branch. Resolving this debate is key to determining the diversity of the archaeal and bacterial domains, the shape of the tree of life, and our understanding of the early course of cellular evolution. Here, we investigate the evolutionary history of the marker genes key to the debate. We show that estimates of a reduced Archaea-Bacteria (AB) branch length result from inter-domain gene transfers and hidden paralogy in the expanded marker gene set. By contrast, analysis of a broad range of manually curated marker gene datasets from an evenly sampled set of 700 Archaea and Bacteria reveals that current methods likely underestimate the AB branch length due to substitutional saturation and poor model fit; that the best-performing phylogenetic markers tend to support longer inter-domain branch lengths; and that the AB branch lengths of ribosomal and non-ribosomal marker genes are statistically indistinguishable. Furthermore, our phylogeny inferred from the 27 highest-ranked marker genes recovers a clade of DPANN at the base of the Archaea and places the bacterial Candidate Phyla Radiation (CPR) within Bacteria as the sister group to the Chloroflexota.
Collapse
Affiliation(s)
- Edmund R R Moody
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - James W Clark
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Celine Petitjean
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Gergely J Szöllősi
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
25
|
Adam PS, Bornemann TLV, Probst AJ. Progress and Challenges in Studying the Ecophysiology of Archaea. Methods Mol Biol 2022; 2522:469-486. [PMID: 36125771 DOI: 10.1007/978-1-0716-2445-6_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It has been less than two decades since the study of archaeal ecophysiology has become unshackled from the limitations of cultivation and amplicon sequencing through the advent of metagenomics. As a primer to the guide on producing archaeal genomes from metagenomes, we briefly summarize here how different meta'omics, imaging, and wet lab methods have contributed to progress in understanding the ecophysiology of Archaea. We then peer into the history of how our knowledge on two particularly important lineages was assembled: the anaerobic methane and alkane oxidizers, encountered primarily among Euryarchaeota, and the nanosized, mainly parasitic, members of the DPANN superphylum.
Collapse
Affiliation(s)
- Panagiotis S Adam
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
| | - Till L V Bornemann
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany
| | - Alexander J Probst
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
| |
Collapse
|
26
|
Ferreira-Cerca S. The dark side of the ribosome life cycle. RNA Biol 2022; 19:1045-1049. [PMID: 36082947 PMCID: PMC9467602 DOI: 10.1080/15476286.2022.2121421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Thanks to genetics, biochemistry, and structural biology many features of the ribosome´s life cycles in models of bacteria, eukaryotes, and some organelles have been revealed to near-atomic details. Collectively, these studies have provided a very detailed understanding of what are now well-established prototypes for ribosome biogenesis and function as viewed from a 'classical' model organisms perspective. However, very important challenges remain ahead to explore the functional and structural diversity of both ribosome biogenesis and function across the biological diversity on earth. Particularly, the 'third domain of life', the archaea, and also many non-model bacterial and eukaryotic organisms have been comparatively neglected. Importantly, characterizing these additional biological systems will not only offer a yet untapped window to enlighten the evolution of ribosome biogenesis and function but will also help to unravel fundamental principles of molecular adaptation of these central cellular processes.
Collapse
Affiliation(s)
- Sébastien Ferreira-Cerca
- Regensburg Center for Biochemistry, Biochemistry III - Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
27
|
Abstract
The rebuttal of the prokaryote-eukaryote dichotomy and the elaboration of the three domains concept by Carl Woese and colleagues has been a breakthrough in biology. With the methodologies available at this time, they have shown that a single molecule, the 16S ribosomal RNA, could reveal the global organization of the living world. Later on, mining archaeal genomes led to major discoveries in archaeal molecular biology, providing a third model for comparative molecular biology. These analyses revealed the strong eukaryal flavor of the basic molecular fabric of Archaea and support rooting the universal tree between Bacteria and Arcarya (the clade grouping Archaea and Eukarya). However, in contradiction with this conclusion, it remains to understand why the archaeal and bacterial mobilomes are so similar and so different from the eukaryal one. These last years, the number of recognized archaea lineages (phyla?) has exploded. The archaeal nomenclature is now in turmoil and debates about the nature of the last universal common ancestor, the last archaeal common ancestor, and the topology of the tree of life are still going on. Interestingly, the expansion of the archaeal eukaryome, especially in the Asgard archaea, has provided new opportunities to study eukaryogenesis. In recent years, the application to Archaea of the new methodologies described in the various chapters of this book have opened exciting avenues to study the molecular biology and the physiology of these fascinating microorganisms.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France.
- Institute for Integrative biology of the Cell. université Paris-Saclay, Gif sur Yvette, France.
| |
Collapse
|
28
|
Martinez-Gutierrez CA, Aylward FO. Phylogenetic Signal, Congruence, and Uncertainty across Bacteria and Archaea. Mol Biol Evol 2021; 38:5514-5527. [PMID: 34436605 PMCID: PMC8662615 DOI: 10.1093/molbev/msab254] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Reconstruction of the Tree of Life is a central goal in biology. Although numerous novel phyla of bacteria and archaea have recently been discovered, inconsistent phylogenetic relationships are routinely reported, and many inter-phylum and inter-domain evolutionary relationships remain unclear. Here, we benchmark different marker genes often used in constructing multidomain phylogenetic trees of bacteria and archaea and present a set of marker genes that perform best for multidomain trees constructed from concatenated alignments. We use recently-developed Tree Certainty metrics to assess the confidence of our results and to obviate the complications of traditional bootstrap-based metrics. Given the vastly disparate number of genomes available for different phyla of bacteria and archaea, we also assessed the impact of taxon sampling on multidomain tree construction. Our results demonstrate that biases between the representation of different taxonomic groups can dramatically impact the topology of resulting trees. Inspection of our highest-quality tree supports the division of most bacteria into Terrabacteria and Gracilicutes, with Thermatogota and Synergistota branching earlier from these superphyla. This tree also supports the inclusion of the Patescibacteria within the Terrabacteria as a sister group to the Chloroflexota instead of as a basal-branching lineage. For the Archaea, our tree supports three monophyletic lineages (DPANN, Euryarchaeota, and TACK/Asgard), although we note the basal placement of the DPANN may still represent an artifact caused by biased sequence composition. Our findings provide a robust and standardized framework for multidomain phylogenetic reconstruction that can be used to evaluate inter-phylum relationships and assess uncertainty in conflicting topologies of the Tree of Life.
Collapse
Affiliation(s)
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
29
|
Heimdallarchaea encodes profilin with eukaryotic-like actin regulation and polyproline binding. Commun Biol 2021; 4:1024. [PMID: 34471213 PMCID: PMC8410842 DOI: 10.1038/s42003-021-02543-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
It is now widely accepted that the first eukaryotic cell emerged from a merger of an archaeal host cell and an alphaproteobacterium. However, the exact sequence of events and the nature of the cellular biology of both partner cells is still contentious. Recently the structures of profilins from some members of the newly discovered Asgard superphylum were determined. In addition, it was found that these profilins inhibit eukaryotic rabbit actin polymerization and that this reaction is regulated by phospholipids. However, the interaction with polyproline repeats which are known to be crucial for the regulation of profilin:actin polymerization was found to be absent for these profilins and was thus suggested to have evolved later in the eukaryotic lineage. Here, we show that Heimdallarchaeota LC3, a candidate phylum within the Asgard superphylum, encodes a putative profilin (heimProfilin) that interacts with PIP2 and its binding is regulated by polyproline motifs, suggesting an origin predating the rise of the eukaryotes. More precisely, we determined the 3D-structure of Heimdallarchaeota LC3 profilin and show that this profilin is able to: i) inhibit eukaryotic actin polymerization in vitro; ii) bind to phospholipids; iii) bind to polyproline repeats from enabled/vasodilator‐stimulated phosphoprotein; iv) inhibit actin from Heimdallarchaeota from polymerizing into filaments. Our results therefore provide hints of the existence of a complex cytoskeleton already in last eukaryotic common ancestor. Chi and coworkers characterise proteins of Heimdallarchaeeota LC3, a member of the Asgard super phylum, and specifically investigate heim-Profilin and heim-Actin, and their interactions with polyproline and phospholipids. They also determine the 3D-structure of Heimdallarchaeota LC3 profilin. Their results suggest that a complex cytoskeleton existed in the last eukaryotic common ancestor indicating an origin predating the rise of the eukaryotes.
Collapse
|
30
|
Rangel LT, Soucy SM, Setubal JC, Gogarten JP, Fournier GP. An efficient, non-phylogenetic method for detecting genes sharing evolutionary signals in phylogenomic datasets. Genome Biol Evol 2021; 13:6352501. [PMID: 34390574 PMCID: PMC8483891 DOI: 10.1093/gbe/evab187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
Assessing the compatibility between gene family phylogenies is a crucial and often computationally demanding step in many phylogenomic analyses. Here, we describe the Evolutionary Similarity Index (IES), a means to assess shared evolution between gene families using a weighted orthogonal distance regression model applied to sequence distances. The utilization of pairwise distance matrices circumvents comparisons between gene tree topologies, which are inherently uncertain and sensitive to evolutionary model choice, phylogenetic reconstruction artifacts, and other sources of error. Furthermore, IES enables the many-to-many pairing of multiple copies between similarly evolving gene families. This is done by selecting non-overlapping pairs of copies, one from each assessed family, and yielding the least sum of squared residuals. Analyses of simulated gene family data sets show that IES’s accuracy is on par with popular tree-based methods while also less susceptible to noise introduced by sequence alignment and evolutionary model fitting. Applying IES to an empirical data set of 1,322 genes from 42 archaeal genomes identified eight major clusters of gene families with compatible evolutionary trends. The most cohesive cluster consisted of 62 genes with compatible evolutionary signal, which occur as both single-copy and multiple homologs per genome; phylogenetic analysis of concatenated alignments from this cluster produced a tree closely matching previously published species trees for Archaea. Four other clusters are mainly composed of accessory genes with limited distribution among Archaea and enriched toward specific metabolic functions. Pairwise evolutionary distances obtained from these accessory gene clusters suggest patterns of interphyla horizontal gene transfer. An IES implementation is available at https://github.com/lthiberiol/evolSimIndex.
Collapse
Affiliation(s)
- Luiz Thibério Rangel
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Corresponding author: E-mail:
| | - Shannon M Soucy
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brasil
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, USA
| | - Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
31
|
Woo AC, Gaia M, Guglielmini J, Da Cunha V, Forterre P. Phylogeny of the Varidnaviria Morphogenesis Module: Congruence and Incongruence With the Tree of Life and Viral Taxonomy. Front Microbiol 2021; 12:704052. [PMID: 34349745 PMCID: PMC8328091 DOI: 10.3389/fmicb.2021.704052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Double-stranded DNA viruses of the realm Varidnaviria (formerly PRD1-adenovirus lineage) are characterized by homologous major capsid proteins (MCPs) containing one (kingdom: Helvetiavirae) or two β-barrel domains (kingdom: Bamfordvirae) known as the jelly roll folds. Most of them also share homologous packaging ATPases (pATPases). Remarkably, Varidnaviria infect hosts from the three domains of life, suggesting that these viruses could be very ancient and share a common ancestor. Here, we analyzed the evolutionary history of Varidnaviria based on single and concatenated phylogenies of their MCPs and pATPases. We excluded Adenoviridae from our analysis as their MCPs and pATPases are too divergent. Sphaerolipoviridae, the only family in the kingdom Helvetiavirae, exhibit a complex history: their MCPs are very divergent from those of other Varidnaviria, as expected, but their pATPases groups them with Bamfordvirae. In single and concatenated trees, Bamfordvirae infecting archaea were grouped with those infecting bacteria, in contradiction with the cellular tree of life, whereas those infecting eukaryotes were organized into three monophyletic groups: the Nucleocytoviricota phylum, formerly known as the Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs), Lavidaviridae (virophages) and Polintoviruses. Although our analysis mostly supports the recent classification proposed by the International Committee on Taxonomy of Viruses (ICTV), it also raises questions, such as the validity of the Adenoviridae and Helvetiavirae ranking. Based on our phylogeny, we discuss current hypotheses on the origin and evolution of Varidnaviria and suggest new ones to reconcile the viral and cellular trees.
Collapse
Affiliation(s)
- Anthony C Woo
- Pôle Analyse de Données UMS 2700 2AD, Muséum National d'Histoire Naturelle, Paris, France.,Département de Microbiologie, Institut Pasteur, Paris, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Morgan Gaia
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRS, Univ. Évry, Université Paris-Saclay, Évry, France
| | - Julien Guglielmini
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Violette Da Cunha
- Département de Microbiologie, Institut Pasteur, Paris, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Patrick Forterre
- Département de Microbiologie, Institut Pasteur, Paris, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
32
|
Devos DP. Reconciling Asgardarchaeota Phylogenetic Proximity to Eukaryotes and Planctomycetes Cellular Features in the Evolution of Life. Mol Biol Evol 2021; 38:3531-3542. [PMID: 34229349 PMCID: PMC8382908 DOI: 10.1093/molbev/msab186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The relationship between the three domains of life—Archaea, Bacteria, and Eukarya—is one of Biology’s greatest mysteries. Current favored models imply two ancestral domains, Bacteria and Archaea, with eukaryotes originating within Archaea. This type of models has been supported by the recent description of the Asgardarchaeota, the closest prokaryotic relatives of eukaryotes. However, there are many problems associated with any scenarios implying that eukaryotes originated from within the Archaea, including genome mosaicism, phylogenies, the cellular organization of the Archaea, and their ancestral character. By contrast, all models of eukaryogenesis fail to consider two relevant discoveries: the detection of membrane coat proteins, and of phagocytosis-related processes in Planctomycetes, which are among the bacteria with the most developed endomembrane system. Consideration of these often overlooked features and others found in Planctomycetes and related bacteria suggest an evolutionary model based on a single ancestral domain. In this model, the proximity of Asgard and eukaryotes is not rejected but instead, Asgard are considered as diverging away from a common ancestor instead of on the way toward the eukaryotic ancestor. This model based on a single ancestral domain solves most of the ambiguities associated with the ones based on two ancestral domains. The single-domain model is better suited to explain the origin and evolution of all three domains of life, blurring the distinctions between them. Support for this model as well as the opportunities that it presents not only for reinterpreting previous results, but also for planning future experiments, are explored.
Collapse
Affiliation(s)
- Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD) - CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Seville, 41013, Spain
| |
Collapse
|
33
|
Sun J, Evans PN, Gagen EJ, Woodcroft BJ, Hedlund BP, Woyke T, Hugenholtz P, Rinke C. Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages. ISME COMMUNICATIONS 2021; 1:30. [PMID: 36739331 PMCID: PMC9723677 DOI: 10.1038/s43705-021-00032-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Asgardarchaeota have been proposed as the closest living relatives to eukaryotes, and a total of 72 metagenome-assembled genomes (MAGs) representing six primary lineages in this archaeal phylum have thus far been described. These organisms are predicted to be fermentative heterotrophs contributing to carbon cycling in sediment ecosystems. Here, we double the genomic catalogue of Asgardarchaeota by obtaining 71 MAGs from a range of habitats around the globe, including the deep subsurface, brackish shallow lakes, and geothermal spring sediments. Phylogenomic inferences followed by taxonomic rank normalisation confirmed previously established Asgardarchaeota classes and revealed four additional lineages, two of which were consistently recovered as monophyletic classes. We therefore propose the names Candidatus Sifarchaeia class nov. and Ca. Jordarchaeia class nov., derived from the gods Sif and Jord in Norse mythology. Metabolic inference suggests that both classes represent hetero-organotrophic acetogens, which also have the ability to utilise methyl groups such as methylated amines, with acetate as the probable end product in remnants of a methanogen-derived core metabolism. This inferred mode of energy conservation is predicted to be enhanced by genetic code expansions, i.e., stop codon recoding, allowing the incorporation of the rare 21st and 22nd amino acids selenocysteine (Sec) and pyrrolysine (Pyl). We found Sec recoding in Jordarchaeia and all other Asgardarchaeota classes, which likely benefit from increased catalytic activities of Sec-containing enzymes. Pyl recoding, on the other hand, is restricted to Sifarchaeia in the Asgardarchaeota, making it the first reported non-methanogenic archaeal lineage with an inferred complete Pyl machinery, likely providing members of this class with an efficient mechanism for methylamine utilisation. Furthermore, we identified enzymes for the biosynthesis of ester-type lipids, characteristic of bacteria and eukaryotes, in both newly described classes, supporting the hypothesis that mixed ether-ester lipids are a shared feature among Asgardarchaeota.
Collapse
Affiliation(s)
- Jiarui Sun
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Paul N Evans
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Emma J Gagen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ben J Woodcroft
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Brian P Hedlund
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
34
|
Degli Esposti M, Moya-Beltrán A, Quatrini R, Hederstedt L. Respiratory Heme A-Containing Oxidases Originated in the Ancestors of Iron-Oxidizing Bacteria. Front Microbiol 2021; 12:664216. [PMID: 34211444 PMCID: PMC8239418 DOI: 10.3389/fmicb.2021.664216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Respiration is a major trait shaping the biology of many environments. Cytochrome oxidase containing heme A (COX) is a common terminal oxidase in aerobic bacteria and is the only one in mammalian mitochondria. The synthesis of heme A is catalyzed by heme A synthase (CtaA/Cox15), an enzyme that most likely coevolved with COX. The evolutionary origin of COX in bacteria has remained unknown. Using extensive sequence and phylogenetic analysis, we show that the ancestral type of heme A synthases is present in iron-oxidizing Proteobacteria such as Acidithiobacillus spp. These bacteria also contain a deep branching form of the major COX subunit (COX1) and an ancestral variant of CtaG, a protein that is specifically required for COX biogenesis. Our work thus suggests that the ancestors of extant iron-oxidizers were the first to evolve COX. Consistent with this conclusion, acidophilic iron-oxidizing prokaryotes lived on emerged land around the time for which there is the earliest geochemical evidence of aerobic respiration on earth. Hence, ecological niches of iron oxidation have apparently promoted the evolution of aerobic respiration.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Ana Moya-Beltrán
- Fundación Ciencia & Vida, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Raquel Quatrini
- Fundación Ciencia & Vida, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Lars Hederstedt
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
35
|
Garnier F, Couturier M, Débat H, Nadal M. Archaea: A Gold Mine for Topoisomerase Diversity. Front Microbiol 2021; 12:661411. [PMID: 34113328 PMCID: PMC8185306 DOI: 10.3389/fmicb.2021.661411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
The control of DNA topology is a prerequisite for all the DNA transactions such as DNA replication, repair, recombination, and transcription. This global control is carried out by essential enzymes, named DNA-topoisomerases, that are mandatory for the genome stability. Since many decades, the Archaea provide a significant panel of new types of topoisomerases such as the reverse gyrase, the type IIB or the type IC. These more or less recent discoveries largely contributed to change the understanding of the role of the DNA topoisomerases in all the living world. Despite their very different life styles, Archaea share a quasi-homogeneous set of DNA-topoisomerases, except thermophilic organisms that possess at least one reverse gyrase that is considered a marker of the thermophily. Here, we discuss the effect of the life style of Archaea on DNA structure and topology and then we review the content of these essential enzymes within all the archaeal diversity based on complete sequenced genomes available. Finally, we discuss their roles, in particular in the processes involved in both the archaeal adaptation and the preservation of the genome stability.
Collapse
Affiliation(s)
- Florence Garnier
- Département de biologie, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université Paris-Saclay, UVSQ, Versailles, France
| | - Mohea Couturier
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Hélène Débat
- Département de biologie, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université Paris-Saclay, UVSQ, Versailles, France
| | - Marc Nadal
- Département de biologie, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
36
|
Lei L, Burton ZF. Early Evolution of Transcription Systems and Divergence of Archaea and Bacteria. Front Mol Biosci 2021; 8:651134. [PMID: 34026831 PMCID: PMC8131849 DOI: 10.3389/fmolb.2021.651134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
DNA template-dependent multi-subunit RNA polymerases (RNAPs) found in all three domains of life and some viruses are of the two-double-Ψ-β-barrel (DPBB) type. The 2-DPBB protein format is also found in some RNA template-dependent RNAPs and a major replicative DNA template-dependent DNA polymerase (DNAP) from Archaea (PolD). The 2-DPBB family of RNAPs and DNAPs probably evolved prior to the last universal common cellular ancestor (LUCA). Archaeal Transcription Factor B (TFB) and bacterial σ factors include homologous strings of helix-turn-helix units. The consequences of TFB-σ homology are discussed in terms of the evolution of archaeal and bacterial core promoters. Domain-specific DPBB loop inserts functionally connect general transcription factors to the RNAP active site. Archaea appear to be more similar to LUCA than Bacteria. Evolution of bacterial σ factors from TFB appears to have driven divergence of Bacteria from Archaea, splitting the prokaryotic domains.
Collapse
Affiliation(s)
- Lei Lei
- Department of Biology, University of New England, Biddeford, ME, United States
| | - Zachary F Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI, United States
| |
Collapse
|
37
|
Liu Y, Makarova KS, Huang WC, Wolf YI, Nikolskaya AN, Zhang X, Cai M, Zhang CJ, Xu W, Luo Z, Cheng L, Koonin EV, Li M. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 2021; 593:553-557. [PMID: 33911286 PMCID: PMC11165668 DOI: 10.1038/s41586-021-03494-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/26/2021] [Indexed: 01/21/2023]
Abstract
Asgard is a recently discovered superphylum of archaea that appears to include the closest archaeal relatives of eukaryotes1-5. Debate continues as to whether the archaeal ancestor of eukaryotes belongs within the Asgard superphylum or whether this ancestor is a sister group to all other archaea (that is, a two-domain versus a three-domain tree of life)6-8. Here we present a comparative analysis of 162 complete or nearly complete genomes of Asgard archaea, including 75 metagenome-assembled genomes that-to our knowledge-have not previously been reported. Our results substantially expand the phylogenetic diversity of Asgard and lead us to propose six additional phyla that include a deep branch that we have provisionally named Wukongarchaeota. Our phylogenomic analysis does not resolve unequivocally the evolutionary relationship between eukaryotes and Asgard archaea, but instead-depending on the choice of species and conserved genes used to build the phylogeny-supports either the origin of eukaryotes from within Asgard (as a sister group to the expanded Heimdallarchaeota-Wukongarchaeota branch) or a deeper branch for the eukaryote ancestor within archaea. Our comprehensive protein domain analysis using the 162 Asgard genomes results in a major expansion of the set of eukaryotic signature proteins. The Asgard eukaryotic signature proteins show variable phyletic distributions and domain architectures, which is suggestive of dynamic evolution through horizontal gene transfer, gene loss, gene duplication and domain shuffling. The phylogenomics of the Asgard archaea points to the accumulation of the components of the mobile archaeal 'eukaryome' in the archaeal ancestor of eukaryotes (within or outside Asgard) through extensive horizontal gene transfer.
Collapse
Affiliation(s)
- Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P. R. China
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Wen-Cong Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P. R. China
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Anastasia N Nikolskaya
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Xinxu Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P. R. China
| | - Mingwei Cai
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P. R. China
| | - Cui-Jing Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P. R. China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, P. R. China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, P. R. China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu, P. R. China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P. R. China.
| |
Collapse
|
38
|
Nasir A, Mughal F, Caetano-Anollés G. The tree of life describes a tripartite cellular world. Bioessays 2021; 43:e2000343. [PMID: 33837594 DOI: 10.1002/bies.202000343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022]
Abstract
The canonical view of a 3-domain (3D) tree of life was recently challenged by the discovery of Asgardarchaeota encoding eukaryote signature proteins (ESPs), which were treated as missing links of a 2-domain (2D) tree. Here we revisit the debate. We discuss methodological limitations of building trees with alignment-dependent approaches, which often fail to satisfactorily address the problem of ''gaps.'' In addition, most phylogenies are reconstructed unrooted, neglecting the power of direct rooting methods. Alignment-free methodologies lift most difficulties but require employing realistic evolutionary models. We argue that the discoveries of Asgards and ESPs, by themselves, do not rule out the 3D tree, which is strongly supported by comparative and evolutionary genomic analyses and vast genomic and biochemical superkingdom distinctions. Given uncertainties of retrodiction and interpretation difficulties, we conclude that the 3D view has not been falsified but instead has been strengthened by genomic analyses. In turn, the objections to the 2D model have not been lifted. The debate remains open. Also see the video abstract here: https://youtu.be/-6TBN0bubI8.
Collapse
Affiliation(s)
- Arshan Nasir
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Fizza Mughal
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Gustavo Caetano-Anollés
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
39
|
Russum S, Lam KJK, Wong NA, Iddamsetty V, Hendargo KJ, Wang J, Dubey A, Zhang Y, Medrano-Soto A, Saier MH. Comparative population genomic analyses of transporters within the Asgard archaeal superphylum. PLoS One 2021; 16:e0247806. [PMID: 33770091 PMCID: PMC7997004 DOI: 10.1371/journal.pone.0247806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/15/2021] [Indexed: 01/02/2023] Open
Abstract
Upon discovery of the first archaeal species in the 1970s, life has been subdivided into three domains: Eukarya, Archaea, and Bacteria. However, the organization of the three-domain tree of life has been challenged following the discovery of archaeal lineages such as the TACK and Asgard superphyla. The Asgard Superphylum has emerged as the closest archaeal ancestor to eukaryotes, potentially improving our understanding of the evolution of life forms. We characterized the transportomes and their substrates within four metagenome-assembled genomes (MAGs), that is, Odin-, Thor-, Heimdall- and Loki-archaeota as well as the fully sequenced genome of Candidatus Prometheoarchaeum syntrophicum strain MK-D1 that belongs to the Loki phylum. Using the Transporter Classification Database (TCDB) as reference, candidate transporters encoded within the proteomes were identified based on sequence similarity, alignment coverage, compatibility of hydropathy profiles, TMS topologies and shared domains. Identified transport systems were compared within the Asgard superphylum as well as within dissimilar eukaryotic, archaeal and bacterial organisms. From these analyses, we infer that Asgard organisms rely mostly on the transport of substrates driven by the proton motive force (pmf), the proton electrochemical gradient which then can be used for ATP production and to drive the activities of secondary carriers. The results indicate that Asgard archaea depend heavily on the uptake of organic molecules such as lipid precursors, amino acids and their derivatives, and sugars and their derivatives. Overall, the majority of the transporters identified are more similar to prokaryotic transporters than eukaryotic systems although several instances of the reverse were documented. Taken together, the results support the previous suggestions that the Asgard superphylum includes organisms that are largely mixotrophic and anaerobic but more clearly define their metabolic potential while providing evidence regarding their relatedness to eukaryotes.
Collapse
Affiliation(s)
- Steven Russum
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Katie Jing Kay Lam
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Nicholas Alan Wong
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Vasu Iddamsetty
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Kevin J. Hendargo
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Jianing Wang
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Aditi Dubey
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Yichi Zhang
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
| | - Arturo Medrano-Soto
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
- * E-mail: (MHS); (AMS)
| | - Milton H. Saier
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, United States of America
- * E-mail: (MHS); (AMS)
| |
Collapse
|
40
|
Williams TA, Schrempf D, Szöllősi GJ, Cox CJ, Foster PG, Embley TM. Inferring the deep past from molecular data. Genome Biol Evol 2021; 13:6192802. [PMID: 33772552 PMCID: PMC8175050 DOI: 10.1093/gbe/evab067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
There is an expectation that analyses of molecular sequences might be able to distinguish between alternative hypotheses for ancient relationships, but the phylogenetic methods used and types of data analyzed are of critical importance in any attempt to recover historical signal. Here, we discuss some common issues that can influence the topology of trees obtained when using overly simple models to analyze molecular data that often display complicated patterns of sequence heterogeneity. To illustrate our discussion, we have used three examples of inferred relationships which have changed radically as models and methods of analysis have improved. In two of these examples, the sister-group relationship between thermophilic Thermus and mesophilic Deinococcus, and the position of long-branch Microsporidia among eukaryotes, we show that recovering what is now generally considered to be the correct tree is critically dependent on the fit between model and data. In the third example, the position of eukaryotes in the tree of life, the hypothesis that is currently supported by the best available methods is fundamentally different from the classical view of relationships between major cellular domains. Since heterogeneity appears to be pervasive and varied among all molecular sequence data, and even the best available models can still struggle to deal with some problems, the issues we discuss are generally relevant to phylogenetic analyses. It remains essential to maintain a critical attitude to all trees as hypotheses of relationship that may change with more data and better methods.
Collapse
Affiliation(s)
- Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Dominik Schrempf
- Dept. of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Gergely J Szöllősi
- Dept. of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary.,MTA-ELTE "Lendület" Evolutionary Genomics Research Group, 1117 Budapest, Hungary.,Institute of Evolution, Centre for Ecological Research, 1121 Budapest, Hungary
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-319 Faro, Portugal
| | - Peter G Foster
- Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom
| | - T Martin Embley
- Biosciences Institute, Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom
| |
Collapse
|
41
|
Forterre P, Gaia M. [Giant viruses and the origin of eukaryotic RNA polymerases]. Med Sci (Paris) 2021; 37:230-233. [PMID: 33739269 DOI: 10.1051/medsci/2021007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Patrick Forterre
- Département de microbiologie, Institut Pasteur, 25 rue du Docteur-Roux, 75015 Paris, France. - Institut de biologie intégrative de la cellule (I2BC), Département de microbiologie, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Morgan Gaia
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Évry, Université Paris-Saclay, 91057 Évry, France
| |
Collapse
|
42
|
Nasir A, Romero-Severson E, Claverie JM. Investigating the Concept and Origin of Viruses. Trends Microbiol 2020; 28:959-967. [PMID: 33158732 PMCID: PMC7609044 DOI: 10.1016/j.tim.2020.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022]
Abstract
The ongoing COVID-19 pandemic has piqued public interest in the properties, evolution, and emergence of viruses. Here, we discuss how these basic questions have surprisingly remained disputed despite being increasingly within the reach of scientific analysis. We review recent data-driven efforts that shed light into the origin and evolution of viruses and explain factors that resist the widespread acceptance of new views and insights. We propose a new definition of viruses that is not restricted to the presence or absence of any genetic or physical feature, detail a scenario for how viruses likely originated from ancient cells, and explain technical and conceptual biases that limit our understanding of virus evolution. We note that the philosophical aspects of virus evolution also impact the way we might prepare for future outbreaks.
Collapse
Affiliation(s)
- Arshan Nasir
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Ethan Romero-Severson
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jean-Michel Claverie
- Aix Marseille University, CNRS, IGS, Structural and Genomic Information Laboratory (UMR7256), Mediterranean Institute of Microbiology (FR3479), Marseille, France
| |
Collapse
|
43
|
Garg SG, Kapust N, Lin W, Knopp M, Tria FDK, Nelson-Sathi S, Gould SB, Fan L, Zhu R, Zhang C, Martin WF. Anomalous Phylogenetic Behavior of Ribosomal Proteins in Metagenome-Assembled Asgard Archaea. Genome Biol Evol 2020; 13:5988511. [PMID: 33462601 DOI: 10.1093/gbe/evaa238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 01/20/2023] Open
Abstract
Metagenomic studies permit the exploration of microbial diversity in a defined habitat, and binning procedures enable phylogenomic analyses, taxon description, and even phenotypic characterizations in the absence of morphological evidence. Such lineages include asgard archaea, which were initially reported to represent archaea with eukaryotic cell complexity, although the first images of such an archaeon show simple cells with prokaryotic characteristics. However, these metagenome-assembled genomes (MAGs) might suffer from data quality problems not encountered in sequences from cultured organisms due to two common analytical procedures of bioinformatics: assembly of metagenomic sequences and binning of assembled sequences on the basis of innate sequence properties and abundance across samples. Consequently, genomic sequences of distantly related taxa, or domains, can in principle be assigned to the same MAG and result in chimeric sequences. The impacts of low-quality or chimeric MAGs on phylogenomic and metabolic prediction remain unknown. Debates that asgard archaeal data are contaminated with eukaryotic sequences are overshadowed by the lack of evidence indicating that individual asgard MAGs stem from the same chromosome. Here, we show that universal proteins including ribosomal proteins of asgard archaeal MAGs fail to meet the basic phylogenetic criterion fulfilled by genome sequences of cultured archaea investigated to date: These proteins do not share common evolutionary histories to the same extent as pure culture genomes do, pointing to a chimeric nature of asgard archaeal MAGs. Our analysis suggests that some asgard archaeal MAGs represent unnatural constructs, genome-like patchworks of genes resulting from assembly and/or the binning process.
Collapse
Affiliation(s)
- Sriram G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Nils Kapust
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Weili Lin
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Michael Knopp
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Fernando D K Tria
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Shijulal Nelson-Sathi
- Transdisciplinary Biology, Computational Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Lu Fan
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Ruixin Zhu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
44
|
Haq SR, Survery S, Hurtig F, Lindås AC, Chi CN. NMR resonance assignment and dynamics of profilin from Heimdallarchaeota. Sci Rep 2020; 10:15867. [PMID: 32985518 PMCID: PMC7522288 DOI: 10.1038/s41598-020-72550-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/05/2020] [Indexed: 11/13/2022] Open
Abstract
The origin of the eukaryotic cell is an unsettled scientific question. The Asgard superphylum has emerged as a compelling target for studying eukaryogenesis due to the previously unseen diversity of eukaryotic signature proteins. However, our knowledge about these proteins is still relegated to metagenomic data and very little is known about their structural properties. Additionally, it is still unclear if these proteins are functionally homologous to their eukaryotic counterparts. Here, we expressed, purified and structurally characterized profilin from Heimdallarchaeota in the Asgard superphylum. The structural analysis shows that while this profilin possesses similar secondary structural elements as eukaryotic profilin, it contains additional secondary structural elements that could be critical for its function and an indication of divergent evolution.
Collapse
Affiliation(s)
- Syed Razaul Haq
- Department of Molecular BioScience, Wenner-Gren Institute, Stockholm University, Svante Arrhenius v. 20C, 10691, Stockholm, Sweden
| | - Sabeen Survery
- Department of Molecular BioScience, Wenner-Gren Institute, Stockholm University, Svante Arrhenius v. 20C, 10691, Stockholm, Sweden
| | - Fredrik Hurtig
- Department of Molecular BioScience, Wenner-Gren Institute, Stockholm University, Svante Arrhenius v. 20C, 10691, Stockholm, Sweden
| | - Ann-Christin Lindås
- Department of Molecular BioScience, Wenner-Gren Institute, Stockholm University, Svante Arrhenius v. 20C, 10691, Stockholm, Sweden.
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, 75123, Uppsala, Sweden.
| |
Collapse
|
45
|
Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea. Proc Natl Acad Sci U S A 2020; 117:19904-19913. [PMID: 32747565 PMCID: PMC7444086 DOI: 10.1073/pnas.2009167117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Eukaryotic gelsolin superfamily proteins generally comprise three or more related domains. Here we characterize single- and double-domain gelsolins from Thorarchaeota (Thor). Similar domain architectures are present in Heimdall-, Loki-, and Odinarchaeota. Thor gelsolins are functional in regulating rabbit actin in in vitro assays, showing a range of activities including actin filament severing and bundling. These gelsolins bind to the eukaryotic gelsolin/cofilin-binding site on actin. Two-domain, but not one-domain, gelsolins are calcium regulated. Thor gelsolins appear to have the characteristics and structure consistent with primitive gelsolins/cofilins, suggesting that these single- and double-domain gelsolins are a record of a nascent preeukaryotic actin-regulation machinery. Asgard archaea genomes contain potential eukaryotic-like genes that provide intriguing insight for the evolution of eukaryotes. The eukaryotic actin polymerization/depolymerization cycle is critical for providing force and structure in many processes, including membrane remodeling. In general, Asgard genomes encode two classes of actin-regulating proteins from sequence analysis, profilins and gelsolins. Asgard profilins were demonstrated to regulate actin filament nucleation. Here, we identify actin filament severing, capping, annealing and bundling, and monomer sequestration activities by gelsolin proteins from Thorarchaeota (Thor), which complete a eukaryotic-like actin depolymerization cycle, and indicate complex actin cytoskeleton regulation in Asgard organisms. Thor gelsolins have homologs in other Asgard archaea and comprise one or two copies of the prototypical gelsolin domain. This appears to be a record of an initial preeukaryotic gene duplication event, since eukaryotic gelsolins are generally comprise three to six domains. X-ray structures of these proteins in complex with mammalian actin revealed similar interactions to the first domain of human gelsolin or cofilin with actin. Asgard two-domain, but not one-domain, gelsolins contain calcium-binding sites, which is manifested in calcium-controlled activities. Expression of two-domain gelsolins in mammalian cells enhanced actin filament disassembly on ionomycin-triggered calcium release. This functional demonstration, at the cellular level, provides evidence for a calcium-controlled Asgard actin cytoskeleton, indicating that the calcium-regulated actin cytoskeleton predates eukaryotes. In eukaryotes, dynamic bundled actin filaments are responsible for shaping filopodia and microvilli. By correlation, we hypothesize that the formation of the protrusions observed from Lokiarchaeota cell bodies may involve the gelsolin-regulated actin structures.
Collapse
|
46
|
Visualization of Lokiarchaeia and Heimdallarchaeia (Asgardarchaeota) by Fluorescence In Situ Hybridization and Catalyzed Reporter Deposition (CARD-FISH). mSphere 2020; 5:5/4/e00686-20. [PMID: 32727863 PMCID: PMC7392546 DOI: 10.1128/msphere.00686-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Asgardarchaeota are considered to be the closest relatives to modern eukaryotes. These enigmatic microbes have been mainly studied using metagenome-assembled genomes (MAGs). Only very recently, a first member of Lokiarchaeia was isolated and characterized in detail; it featured a striking morphology with long, branching protrusions. In order to visualize additional members of the phylum Asgardarchaeota, we applied a fluorescence in situ hybridization technique and epifluorescence microscopy on coastal hypersaline sediment samples, using specifically designed probes for Heimdallarchaeia and Lokiarchaeia lineages. We provide the first visual evidence for Heimdallarchaeia that are characterized by a uniform cellular morphology typified by an apparently centralized DNA localization. Further, we provide new images of a lineage of Lokiarchaeia that is different from the cultured representative and with multiple morphologies, ranging from small ovoid cells to long filaments. This diversity in observed cell shapes is likely owing to the large phylogenetic diversity within Asgardarchaeota, the vast majority of which remain uncultured. Metagenome-assembled genomes (MAGs) of Asgardarchaeota have been recovered from a variety of habitats, broadening their environmental distribution and providing access to the genetic makeup of this archaeal lineage. The recent success in cultivating the first representative of Lokiarchaeia was a breakthrough in science at large and gave rise to new hypotheses about the evolution of eukaryotes. Despite their singular phylogenetic position at the base of the eukaryotic tree of life, the morphology of these bewildering organisms remains a mystery, except for the report of an unusual morphology with long, branching protrusions of the cultivated Lokiarchaeion strain “Candidatus Prometheoarchaeum syntrophicum” MK-D1. In order to visualize this elusive group, we applied a combination of fluorescence in situ hybridization and catalyzed reporter deposition (CARD-FISH) and epifluorescence microscopy on coastal hypersaline sediment samples, using specifically designed CARD-FISH probes for Heimdallarchaeia and Lokiarchaeia lineages, and provide the first visual evidence for Heimdallarchaeia and new images of a lineage of Lokiarchaeia that is different from the cultured representative. Here, we show that while Heimdallarchaeia are characterized by a uniform cellular morphology typified by a centralized DNA localization, Lokiarchaeia display a plethora of shapes and sizes that likely reflect their broad phylogenetic diversity and ecological distribution. IMPORTANCE Asgardarchaeota are considered to be the closest relatives to modern eukaryotes. These enigmatic microbes have been mainly studied using metagenome-assembled genomes (MAGs). Only very recently, a first member of Lokiarchaeia was isolated and characterized in detail; it featured a striking morphology with long, branching protrusions. In order to visualize additional members of the phylum Asgardarchaeota, we applied a fluorescence in situ hybridization technique and epifluorescence microscopy on coastal hypersaline sediment samples, using specifically designed probes for Heimdallarchaeia and Lokiarchaeia lineages. We provide the first visual evidence for Heimdallarchaeia that are characterized by a uniform cellular morphology typified by an apparently centralized DNA localization. Further, we provide new images of a lineage of Lokiarchaeia that is different from the cultured representative and with multiple morphologies, ranging from small ovoid cells to long filaments. This diversity in observed cell shapes is likely owing to the large phylogenetic diversity within Asgardarchaeota, the vast majority of which remain uncultured.
Collapse
|
47
|
Phung DK, Etienne C, Batista M, Langendijk-Genevaux P, Moalic Y, Laurent S, Liuu S, Morales V, Jebbar M, Fichant G, Bouvier M, Flament D, Clouet-d’Orval B. RNA processing machineries in Archaea: the 5'-3' exoribonuclease aRNase J of the β-CASP family is engaged specifically with the helicase ASH-Ski2 and the 3'-5' exoribonucleolytic RNA exosome machinery. Nucleic Acids Res 2020; 48:3832-3847. [PMID: 32030412 PMCID: PMC7144898 DOI: 10.1093/nar/gkaa052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 01/22/2023] Open
Abstract
A network of RNA helicases, endoribonucleases and exoribonucleases regulates the quantity and quality of cellular RNAs. To date, mechanistic studies focussed on bacterial and eukaryal systems due to the challenge of identifying the main drivers of RNA decay and processing in Archaea. Here, our data support that aRNase J, a 5'-3' exoribonuclease of the β-CASP family conserved in Euryarchaeota, engages specifically with a Ski2-like helicase and the RNA exosome to potentially exert control over RNA surveillance, at the vicinity of the ribosome. Proteomic landscapes and direct protein-protein interaction analyses, strengthened by comprehensive phylogenomic studies demonstrated that aRNase J interplay with ASH-Ski2 and a cap exosome subunit. Finally, Thermococcus barophilus whole-cell extract fractionation experiments provide evidences that an aRNase J/ASH-Ski2 complex might exist in vivo and hint at an association of aRNase J with the ribosome that is emphasised in absence of ASH-Ski2. Whilst aRNase J homologues are found among bacteria, the RNA exosome and the Ski2-like RNA helicase have eukaryotic homologues, underlining the mosaic aspect of archaeal RNA machines. Altogether, these results suggest a fundamental role of β-CASP RNase/helicase complex in archaeal RNA metabolism.
Collapse
Affiliation(s)
- Duy Khanh Phung
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Clarisse Etienne
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Manon Batista
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Petra Langendijk-Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Yann Moalic
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Sébastien Laurent
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Sophie Liuu
- Micalis Institute, PAPPSO, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Violette Morales
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Mohamed Jebbar
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Didier Flament
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Béatrice Clouet-d’Orval
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
- To whom correspondence should be addressed. Tel: +33 561 335 875; Fax: +33 561 335 886;
| |
Collapse
|
48
|
Stairs CW, Ettema TJ. The Archaeal Roots of the Eukaryotic Dynamic Actin Cytoskeleton. Curr Biol 2020; 30:R521-R526. [DOI: 10.1016/j.cub.2020.02.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Bateman A. Division of labour in a matrix, rather than phagocytosis or endosymbiosis, as a route for the origin of eukaryotic cells. Biol Direct 2020; 15:8. [PMID: 32345370 PMCID: PMC7187495 DOI: 10.1186/s13062-020-00260-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract Two apparently irreconcilable models dominate research into the origin of eukaryotes. In one model, amitochondrial proto-eukaryotes emerged autogenously from the last universal common ancestor of all cells. Proto-eukaryotes subsequently acquired mitochondrial progenitors by the phagocytic capture of bacteria. In the second model, two prokaryotes, probably an archaeon and a bacterial cell, engaged in prokaryotic endosymbiosis, with the species resident within the host becoming the mitochondrial progenitor. Both models have limitations. A search was therefore undertaken for alternative routes towards the origin of eukaryotic cells. The question was addressed by considering classes of potential pathways from prokaryotic to eukaryotic cells based on considerations of cellular topology. Among the solutions identified, one, called here the “third-space model”, has not been widely explored. A version is presented in which an extracellular space (the third-space), serves as a proxy cytoplasm for mixed populations of archaea and bacteria to “merge” as a transitionary complex without obligatory endosymbiosis or phagocytosis and to form a precursor cell. Incipient nuclei and mitochondria diverge by division of labour. The third-space model can accommodate the reorganization of prokaryote-like genomes to a more eukaryote-like genome structure. Nuclei with multiple chromosomes and mitosis emerge as a natural feature of the model. The model is compatible with the loss of archaeal lipid biochemistry while retaining archaeal genes and provides a route for the development of membranous organelles such as the Golgi apparatus and endoplasmic reticulum. Advantages, limitations and variations of the “third-space” models are discussed. Reviewers This article was reviewed by Damien Devos, Buzz Baum and Michael Gray.
Collapse
Affiliation(s)
- Andrew Bateman
- Division of Experimental Medicine, Department of Medicine, McGill University, Glen Site Pavilion E, 1001 Boulevard Decarie, Montreal, Quebec, H4A 3J1, Canada. .,Centre for Translational Biology, Research Institute of McGill University Health Centre, Glen Site Pavilion E, 1001 Boulevard Decarie, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
50
|
Sun Y, Liu Y, Pan J, Wang F, Li M. Perspectives on Cultivation Strategies of Archaea. MICROBIAL ECOLOGY 2020; 79:770-784. [PMID: 31432245 DOI: 10.1007/s00248-019-01422-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Archaea have been recognized as a major domain of life since the 1970s and occupy a key position in the tree of life. Recent advances in culture-independent approaches have greatly accelerated the research son Archaea. However, many hypotheses concerning the diversity, physiology, and evolution of archaea are waiting to be confirmed by culture-base experiments. Consequently, archaeal isolates are in great demand. On the other hand, traditional approaches of archaeal cultivation are rarely successful and require urgent improvement. Here, we review the current practices and applicable microbial cultivation techniques, to inform on potential strategies that could improve archaeal cultivation in the future. We first summarize the current knowledge on archaeal diversity, with an emphasis on cultivated and uncultivated lineages pertinent to future research. Possible causes for the low success rate of the current cultivation practices are then discussed to propose future improvements. Finally, innovative insights for archaeal cultivation are described, including (1) medium refinement for selective cultivation based on the genetic and transcriptional information; (2) consideration of the up-to-date archaeal culturing skills; and (3) application of multiple cultivation techniques, such as co-culture, direct interspecies electron transfer (DIET), single-cell isolation, high-throughput culturing (HTC), and simulation of the natural habitat. Improved cultivation efforts should allow successful isolation of as yet uncultured archaea, contributing to the much-needed physiological investigation of archaea.
Collapse
Affiliation(s)
- Yihua Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Jie Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|